android_kernel_motorola_sm6225/drivers/video/imsttfb.c
Al Viro f815e8182b [PATCH] imsttfb missing iomem annotations
write_reg_le32() and read_reg_le32() expect iomem pointers...

Signed-off-by: Al Viro <viro@parcelfarce.linux.theplanet.co.uk>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-04-26 07:43:42 -07:00

1626 lines
44 KiB
C

/*
* drivers/video/imsttfb.c -- frame buffer device for IMS TwinTurbo
*
* This file is derived from the powermac console "imstt" driver:
* Copyright (C) 1997 Sigurdur Asgeirsson
* With additional hacking by Jeffrey Kuskin (jsk@mojave.stanford.edu)
* Modified by Danilo Beuche 1998
* Some register values added by Damien Doligez, INRIA Rocquencourt
* Various cleanups by Paul Mundt (lethal@chaoticdreams.org)
*
* This file was written by Ryan Nielsen (ran@krazynet.com)
* Most of the frame buffer device stuff was copied from atyfb.c
*
* This file is subject to the terms and conditions of the GNU General Public
* License. See the file COPYING in the main directory of this archive for
* more details.
*/
#include <linux/config.h>
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/errno.h>
#include <linux/string.h>
#include <linux/mm.h>
#include <linux/tty.h>
#include <linux/slab.h>
#include <linux/vmalloc.h>
#include <linux/delay.h>
#include <linux/interrupt.h>
#include <linux/fb.h>
#include <linux/init.h>
#include <linux/pci.h>
#include <asm/io.h>
#include <asm/uaccess.h>
#if defined(CONFIG_PPC)
#include <linux/nvram.h>
#include <asm/prom.h>
#include <asm/pci-bridge.h>
#include "macmodes.h"
#endif
#ifndef __powerpc__
#define eieio() /* Enforce In-order Execution of I/O */
#endif
/* TwinTurbo (Cosmo) registers */
enum {
S1SA = 0, /* 0x00 */
S2SA = 1, /* 0x04 */
SP = 2, /* 0x08 */
DSA = 3, /* 0x0C */
CNT = 4, /* 0x10 */
DP_OCTL = 5, /* 0x14 */
CLR = 6, /* 0x18 */
BI = 8, /* 0x20 */
MBC = 9, /* 0x24 */
BLTCTL = 10, /* 0x28 */
/* Scan Timing Generator Registers */
HES = 12, /* 0x30 */
HEB = 13, /* 0x34 */
HSB = 14, /* 0x38 */
HT = 15, /* 0x3C */
VES = 16, /* 0x40 */
VEB = 17, /* 0x44 */
VSB = 18, /* 0x48 */
VT = 19, /* 0x4C */
HCIV = 20, /* 0x50 */
VCIV = 21, /* 0x54 */
TCDR = 22, /* 0x58 */
VIL = 23, /* 0x5C */
STGCTL = 24, /* 0x60 */
/* Screen Refresh Generator Registers */
SSR = 25, /* 0x64 */
HRIR = 26, /* 0x68 */
SPR = 27, /* 0x6C */
CMR = 28, /* 0x70 */
SRGCTL = 29, /* 0x74 */
/* RAM Refresh Generator Registers */
RRCIV = 30, /* 0x78 */
RRSC = 31, /* 0x7C */
RRCR = 34, /* 0x88 */
/* System Registers */
GIOE = 32, /* 0x80 */
GIO = 33, /* 0x84 */
SCR = 35, /* 0x8C */
SSTATUS = 36, /* 0x90 */
PRC = 37, /* 0x94 */
#if 0
/* PCI Registers */
DVID = 0x00000000L,
SC = 0x00000004L,
CCR = 0x00000008L,
OG = 0x0000000CL,
BARM = 0x00000010L,
BARER = 0x00000030L,
#endif
};
/* IBM 624 RAMDAC Direct Registers */
enum {
PADDRW = 0x00,
PDATA = 0x04,
PPMASK = 0x08,
PADDRR = 0x0c,
PIDXLO = 0x10,
PIDXHI = 0x14,
PIDXDATA= 0x18,
PIDXCTL = 0x1c
};
/* IBM 624 RAMDAC Indirect Registers */
enum {
CLKCTL = 0x02, /* (0x01) Miscellaneous Clock Control */
SYNCCTL = 0x03, /* (0x00) Sync Control */
HSYNCPOS = 0x04, /* (0x00) Horizontal Sync Position */
PWRMNGMT = 0x05, /* (0x00) Power Management */
DACOP = 0x06, /* (0x02) DAC Operation */
PALETCTL = 0x07, /* (0x00) Palette Control */
SYSCLKCTL = 0x08, /* (0x01) System Clock Control */
PIXFMT = 0x0a, /* () Pixel Format [bpp >> 3 + 2] */
BPP8 = 0x0b, /* () 8 Bits/Pixel Control */
BPP16 = 0x0c, /* () 16 Bits/Pixel Control [bit 1=1 for 565] */
BPP24 = 0x0d, /* () 24 Bits/Pixel Control */
BPP32 = 0x0e, /* () 32 Bits/Pixel Control */
PIXCTL1 = 0x10, /* (0x05) Pixel PLL Control 1 */
PIXCTL2 = 0x11, /* (0x00) Pixel PLL Control 2 */
SYSCLKN = 0x15, /* () System Clock N (System PLL Reference Divider) */
SYSCLKM = 0x16, /* () System Clock M (System PLL VCO Divider) */
SYSCLKP = 0x17, /* () System Clock P */
SYSCLKC = 0x18, /* () System Clock C */
/*
* Dot clock rate is 20MHz * (m + 1) / ((n + 1) * (p ? 2 * p : 1)
* c is charge pump bias which depends on the VCO frequency
*/
PIXM0 = 0x20, /* () Pixel M 0 */
PIXN0 = 0x21, /* () Pixel N 0 */
PIXP0 = 0x22, /* () Pixel P 0 */
PIXC0 = 0x23, /* () Pixel C 0 */
CURSCTL = 0x30, /* (0x00) Cursor Control */
CURSXLO = 0x31, /* () Cursor X position, low 8 bits */
CURSXHI = 0x32, /* () Cursor X position, high 8 bits */
CURSYLO = 0x33, /* () Cursor Y position, low 8 bits */
CURSYHI = 0x34, /* () Cursor Y position, high 8 bits */
CURSHOTX = 0x35, /* () Cursor Hot Spot X */
CURSHOTY = 0x36, /* () Cursor Hot Spot Y */
CURSACCTL = 0x37, /* () Advanced Cursor Control Enable */
CURSACATTR = 0x38, /* () Advanced Cursor Attribute */
CURS1R = 0x40, /* () Cursor 1 Red */
CURS1G = 0x41, /* () Cursor 1 Green */
CURS1B = 0x42, /* () Cursor 1 Blue */
CURS2R = 0x43, /* () Cursor 2 Red */
CURS2G = 0x44, /* () Cursor 2 Green */
CURS2B = 0x45, /* () Cursor 2 Blue */
CURS3R = 0x46, /* () Cursor 3 Red */
CURS3G = 0x47, /* () Cursor 3 Green */
CURS3B = 0x48, /* () Cursor 3 Blue */
BORDR = 0x60, /* () Border Color Red */
BORDG = 0x61, /* () Border Color Green */
BORDB = 0x62, /* () Border Color Blue */
MISCTL1 = 0x70, /* (0x00) Miscellaneous Control 1 */
MISCTL2 = 0x71, /* (0x00) Miscellaneous Control 2 */
MISCTL3 = 0x72, /* (0x00) Miscellaneous Control 3 */
KEYCTL = 0x78 /* (0x00) Key Control/DB Operation */
};
/* TI TVP 3030 RAMDAC Direct Registers */
enum {
TVPADDRW = 0x00, /* 0 Palette/Cursor RAM Write Address/Index */
TVPPDATA = 0x04, /* 1 Palette Data RAM Data */
TVPPMASK = 0x08, /* 2 Pixel Read-Mask */
TVPPADRR = 0x0c, /* 3 Palette/Cursor RAM Read Address */
TVPCADRW = 0x10, /* 4 Cursor/Overscan Color Write Address */
TVPCDATA = 0x14, /* 5 Cursor/Overscan Color Data */
/* 6 reserved */
TVPCADRR = 0x1c, /* 7 Cursor/Overscan Color Read Address */
/* 8 reserved */
TVPDCCTL = 0x24, /* 9 Direct Cursor Control */
TVPIDATA = 0x28, /* 10 Index Data */
TVPCRDAT = 0x2c, /* 11 Cursor RAM Data */
TVPCXPOL = 0x30, /* 12 Cursor-Position X LSB */
TVPCXPOH = 0x34, /* 13 Cursor-Position X MSB */
TVPCYPOL = 0x38, /* 14 Cursor-Position Y LSB */
TVPCYPOH = 0x3c, /* 15 Cursor-Position Y MSB */
};
/* TI TVP 3030 RAMDAC Indirect Registers */
enum {
TVPIRREV = 0x01, /* Silicon Revision [RO] */
TVPIRICC = 0x06, /* Indirect Cursor Control (0x00) */
TVPIRBRC = 0x07, /* Byte Router Control (0xe4) */
TVPIRLAC = 0x0f, /* Latch Control (0x06) */
TVPIRTCC = 0x18, /* True Color Control (0x80) */
TVPIRMXC = 0x19, /* Multiplex Control (0x98) */
TVPIRCLS = 0x1a, /* Clock Selection (0x07) */
TVPIRPPG = 0x1c, /* Palette Page (0x00) */
TVPIRGEC = 0x1d, /* General Control (0x00) */
TVPIRMIC = 0x1e, /* Miscellaneous Control (0x00) */
TVPIRPLA = 0x2c, /* PLL Address */
TVPIRPPD = 0x2d, /* Pixel Clock PLL Data */
TVPIRMPD = 0x2e, /* Memory Clock PLL Data */
TVPIRLPD = 0x2f, /* Loop Clock PLL Data */
TVPIRCKL = 0x30, /* Color-Key Overlay Low */
TVPIRCKH = 0x31, /* Color-Key Overlay High */
TVPIRCRL = 0x32, /* Color-Key Red Low */
TVPIRCRH = 0x33, /* Color-Key Red High */
TVPIRCGL = 0x34, /* Color-Key Green Low */
TVPIRCGH = 0x35, /* Color-Key Green High */
TVPIRCBL = 0x36, /* Color-Key Blue Low */
TVPIRCBH = 0x37, /* Color-Key Blue High */
TVPIRCKC = 0x38, /* Color-Key Control (0x00) */
TVPIRMLC = 0x39, /* MCLK/Loop Clock Control (0x18) */
TVPIRSEN = 0x3a, /* Sense Test (0x00) */
TVPIRTMD = 0x3b, /* Test Mode Data */
TVPIRRML = 0x3c, /* CRC Remainder LSB [RO] */
TVPIRRMM = 0x3d, /* CRC Remainder MSB [RO] */
TVPIRRMS = 0x3e, /* CRC Bit Select [WO] */
TVPIRDID = 0x3f, /* Device ID [RO] (0x30) */
TVPIRRES = 0xff /* Software Reset [WO] */
};
struct initvalues {
__u8 addr, value;
};
static struct initvalues ibm_initregs[] __devinitdata = {
{ CLKCTL, 0x21 },
{ SYNCCTL, 0x00 },
{ HSYNCPOS, 0x00 },
{ PWRMNGMT, 0x00 },
{ DACOP, 0x02 },
{ PALETCTL, 0x00 },
{ SYSCLKCTL, 0x01 },
/*
* Note that colors in X are correct only if all video data is
* passed through the palette in the DAC. That is, "indirect
* color" must be configured. This is the case for the IBM DAC
* used in the 2MB and 4MB cards, at least.
*/
{ BPP8, 0x00 },
{ BPP16, 0x01 },
{ BPP24, 0x00 },
{ BPP32, 0x00 },
{ PIXCTL1, 0x05 },
{ PIXCTL2, 0x00 },
{ SYSCLKN, 0x08 },
{ SYSCLKM, 0x4f },
{ SYSCLKP, 0x00 },
{ SYSCLKC, 0x00 },
{ CURSCTL, 0x00 },
{ CURSACCTL, 0x01 },
{ CURSACATTR, 0xa8 },
{ CURS1R, 0xff },
{ CURS1G, 0xff },
{ CURS1B, 0xff },
{ CURS2R, 0xff },
{ CURS2G, 0xff },
{ CURS2B, 0xff },
{ CURS3R, 0xff },
{ CURS3G, 0xff },
{ CURS3B, 0xff },
{ BORDR, 0xff },
{ BORDG, 0xff },
{ BORDB, 0xff },
{ MISCTL1, 0x01 },
{ MISCTL2, 0x45 },
{ MISCTL3, 0x00 },
{ KEYCTL, 0x00 }
};
static struct initvalues tvp_initregs[] __devinitdata = {
{ TVPIRICC, 0x00 },
{ TVPIRBRC, 0xe4 },
{ TVPIRLAC, 0x06 },
{ TVPIRTCC, 0x80 },
{ TVPIRMXC, 0x4d },
{ TVPIRCLS, 0x05 },
{ TVPIRPPG, 0x00 },
{ TVPIRGEC, 0x00 },
{ TVPIRMIC, 0x08 },
{ TVPIRCKL, 0xff },
{ TVPIRCKH, 0xff },
{ TVPIRCRL, 0xff },
{ TVPIRCRH, 0xff },
{ TVPIRCGL, 0xff },
{ TVPIRCGH, 0xff },
{ TVPIRCBL, 0xff },
{ TVPIRCBH, 0xff },
{ TVPIRCKC, 0x00 },
{ TVPIRPLA, 0x00 },
{ TVPIRPPD, 0xc0 },
{ TVPIRPPD, 0xd5 },
{ TVPIRPPD, 0xea },
{ TVPIRPLA, 0x00 },
{ TVPIRMPD, 0xb9 },
{ TVPIRMPD, 0x3a },
{ TVPIRMPD, 0xb1 },
{ TVPIRPLA, 0x00 },
{ TVPIRLPD, 0xc1 },
{ TVPIRLPD, 0x3d },
{ TVPIRLPD, 0xf3 },
};
struct imstt_regvals {
__u32 pitch;
__u16 hes, heb, hsb, ht, ves, veb, vsb, vt, vil;
__u8 pclk_m, pclk_n, pclk_p;
/* Values of the tvp which change depending on colormode x resolution */
__u8 mlc[3]; /* Memory Loop Config 0x39 */
__u8 lckl_p[3]; /* P value of LCKL PLL */
};
struct imstt_par {
struct imstt_regvals init;
__u32 __iomem *dc_regs;
unsigned long cmap_regs_phys;
__u8 *cmap_regs;
__u32 ramdac;
};
enum {
IBM = 0,
TVP = 1
};
#define USE_NV_MODES 1
#define INIT_BPP 8
#define INIT_XRES 640
#define INIT_YRES 480
static int inverse = 0;
static char fontname[40] __initdata = { 0 };
#if defined(CONFIG_PPC)
static signed char init_vmode __devinitdata = -1, init_cmode __devinitdata = -1;
#endif
static struct imstt_regvals tvp_reg_init_2 = {
512,
0x0002, 0x0006, 0x0026, 0x0028, 0x0003, 0x0016, 0x0196, 0x0197, 0x0196,
0xec, 0x2a, 0xf3,
{ 0x3c, 0x3b, 0x39 }, { 0xf3, 0xf3, 0xf3 }
};
static struct imstt_regvals tvp_reg_init_6 = {
640,
0x0004, 0x0009, 0x0031, 0x0036, 0x0003, 0x002a, 0x020a, 0x020d, 0x020a,
0xef, 0x2e, 0xb2,
{ 0x39, 0x39, 0x38 }, { 0xf3, 0xf3, 0xf3 }
};
static struct imstt_regvals tvp_reg_init_12 = {
800,
0x0005, 0x000e, 0x0040, 0x0042, 0x0003, 0x018, 0x270, 0x271, 0x270,
0xf6, 0x2e, 0xf2,
{ 0x3a, 0x39, 0x38 }, { 0xf3, 0xf3, 0xf3 }
};
static struct imstt_regvals tvp_reg_init_13 = {
832,
0x0004, 0x0011, 0x0045, 0x0048, 0x0003, 0x002a, 0x029a, 0x029b, 0x0000,
0xfe, 0x3e, 0xf1,
{ 0x39, 0x38, 0x38 }, { 0xf3, 0xf3, 0xf2 }
};
static struct imstt_regvals tvp_reg_init_17 = {
1024,
0x0006, 0x0210, 0x0250, 0x0053, 0x1003, 0x0021, 0x0321, 0x0324, 0x0000,
0xfc, 0x3a, 0xf1,
{ 0x39, 0x38, 0x38 }, { 0xf3, 0xf3, 0xf2 }
};
static struct imstt_regvals tvp_reg_init_18 = {
1152,
0x0009, 0x0011, 0x059, 0x5b, 0x0003, 0x0031, 0x0397, 0x039a, 0x0000,
0xfd, 0x3a, 0xf1,
{ 0x39, 0x38, 0x38 }, { 0xf3, 0xf3, 0xf2 }
};
static struct imstt_regvals tvp_reg_init_19 = {
1280,
0x0009, 0x0016, 0x0066, 0x0069, 0x0003, 0x0027, 0x03e7, 0x03e8, 0x03e7,
0xf7, 0x36, 0xf0,
{ 0x38, 0x38, 0x38 }, { 0xf3, 0xf2, 0xf1 }
};
static struct imstt_regvals tvp_reg_init_20 = {
1280,
0x0009, 0x0018, 0x0068, 0x006a, 0x0003, 0x0029, 0x0429, 0x042a, 0x0000,
0xf0, 0x2d, 0xf0,
{ 0x38, 0x38, 0x38 }, { 0xf3, 0xf2, 0xf1 }
};
/*
* PCI driver prototypes
*/
static int imsttfb_probe(struct pci_dev *pdev, const struct pci_device_id *ent);
static void imsttfb_remove(struct pci_dev *pdev);
/*
* Register access
*/
static inline u32 read_reg_le32(volatile u32 __iomem *base, int regindex)
{
#ifdef __powerpc__
return in_le32(base + regindex);
#else
return readl(base + regindex);
#endif
}
static inline void write_reg_le32(volatile u32 __iomem *base, int regindex, u32 val)
{
#ifdef __powerpc__
out_le32(base + regindex, val);
#else
writel(val, base + regindex);
#endif
}
static __u32
getclkMHz(struct imstt_par *par)
{
__u32 clk_m, clk_n, clk_p;
clk_m = par->init.pclk_m;
clk_n = par->init.pclk_n;
clk_p = par->init.pclk_p;
return 20 * (clk_m + 1) / ((clk_n + 1) * (clk_p ? 2 * clk_p : 1));
}
static void
setclkMHz(struct imstt_par *par, __u32 MHz)
{
__u32 clk_m, clk_n, clk_p, x, stage, spilled;
clk_m = clk_n = clk_p = 0;
stage = spilled = 0;
for (;;) {
switch (stage) {
case 0:
clk_m++;
break;
case 1:
clk_n++;
break;
}
x = 20 * (clk_m + 1) / ((clk_n + 1) * (clk_p ? 2 * clk_p : 1));
if (x == MHz)
break;
if (x > MHz) {
spilled = 1;
stage = 1;
} else if (spilled && x < MHz) {
stage = 0;
}
}
par->init.pclk_m = clk_m;
par->init.pclk_n = clk_n;
par->init.pclk_p = clk_p;
}
static struct imstt_regvals *
compute_imstt_regvals_ibm(struct imstt_par *par, int xres, int yres)
{
struct imstt_regvals *init = &par->init;
__u32 MHz, hes, heb, veb, htp, vtp;
switch (xres) {
case 640:
hes = 0x0008; heb = 0x0012; veb = 0x002a; htp = 10; vtp = 2;
MHz = 30 /* .25 */ ;
break;
case 832:
hes = 0x0005; heb = 0x0020; veb = 0x0028; htp = 8; vtp = 3;
MHz = 57 /* .27_ */ ;
break;
case 1024:
hes = 0x000a; heb = 0x001c; veb = 0x0020; htp = 8; vtp = 3;
MHz = 80;
break;
case 1152:
hes = 0x0012; heb = 0x0022; veb = 0x0031; htp = 4; vtp = 3;
MHz = 101 /* .6_ */ ;
break;
case 1280:
hes = 0x0012; heb = 0x002f; veb = 0x0029; htp = 4; vtp = 1;
MHz = yres == 960 ? 126 : 135;
break;
case 1600:
hes = 0x0018; heb = 0x0040; veb = 0x002a; htp = 4; vtp = 3;
MHz = 200;
break;
default:
return NULL;
}
setclkMHz(par, MHz);
init->hes = hes;
init->heb = heb;
init->hsb = init->heb + (xres >> 3);
init->ht = init->hsb + htp;
init->ves = 0x0003;
init->veb = veb;
init->vsb = init->veb + yres;
init->vt = init->vsb + vtp;
init->vil = init->vsb;
init->pitch = xres;
return init;
}
static struct imstt_regvals *
compute_imstt_regvals_tvp(struct imstt_par *par, int xres, int yres)
{
struct imstt_regvals *init;
switch (xres) {
case 512:
init = &tvp_reg_init_2;
break;
case 640:
init = &tvp_reg_init_6;
break;
case 800:
init = &tvp_reg_init_12;
break;
case 832:
init = &tvp_reg_init_13;
break;
case 1024:
init = &tvp_reg_init_17;
break;
case 1152:
init = &tvp_reg_init_18;
break;
case 1280:
init = yres == 960 ? &tvp_reg_init_19 : &tvp_reg_init_20;
break;
default:
return NULL;
}
par->init = *init;
return init;
}
static struct imstt_regvals *
compute_imstt_regvals (struct imstt_par *par, u_int xres, u_int yres)
{
if (par->ramdac == IBM)
return compute_imstt_regvals_ibm(par, xres, yres);
else
return compute_imstt_regvals_tvp(par, xres, yres);
}
static void
set_imstt_regvals_ibm (struct imstt_par *par, u_int bpp)
{
struct imstt_regvals *init = &par->init;
__u8 pformat = (bpp >> 3) + 2;
par->cmap_regs[PIDXHI] = 0; eieio();
par->cmap_regs[PIDXLO] = PIXM0; eieio();
par->cmap_regs[PIDXDATA] = init->pclk_m;eieio();
par->cmap_regs[PIDXLO] = PIXN0; eieio();
par->cmap_regs[PIDXDATA] = init->pclk_n;eieio();
par->cmap_regs[PIDXLO] = PIXP0; eieio();
par->cmap_regs[PIDXDATA] = init->pclk_p;eieio();
par->cmap_regs[PIDXLO] = PIXC0; eieio();
par->cmap_regs[PIDXDATA] = 0x02; eieio();
par->cmap_regs[PIDXLO] = PIXFMT; eieio();
par->cmap_regs[PIDXDATA] = pformat; eieio();
}
static void
set_imstt_regvals_tvp (struct imstt_par *par, u_int bpp)
{
struct imstt_regvals *init = &par->init;
__u8 tcc, mxc, lckl_n, mic;
__u8 mlc, lckl_p;
switch (bpp) {
default:
case 8:
tcc = 0x80;
mxc = 0x4d;
lckl_n = 0xc1;
mlc = init->mlc[0];
lckl_p = init->lckl_p[0];
break;
case 16:
tcc = 0x44;
mxc = 0x55;
lckl_n = 0xe1;
mlc = init->mlc[1];
lckl_p = init->lckl_p[1];
break;
case 24:
tcc = 0x5e;
mxc = 0x5d;
lckl_n = 0xf1;
mlc = init->mlc[2];
lckl_p = init->lckl_p[2];
break;
case 32:
tcc = 0x46;
mxc = 0x5d;
lckl_n = 0xf1;
mlc = init->mlc[2];
lckl_p = init->lckl_p[2];
break;
}
mic = 0x08;
par->cmap_regs[TVPADDRW] = TVPIRPLA; eieio();
par->cmap_regs[TVPIDATA] = 0x00; eieio();
par->cmap_regs[TVPADDRW] = TVPIRPPD; eieio();
par->cmap_regs[TVPIDATA] = init->pclk_m; eieio();
par->cmap_regs[TVPADDRW] = TVPIRPPD; eieio();
par->cmap_regs[TVPIDATA] = init->pclk_n; eieio();
par->cmap_regs[TVPADDRW] = TVPIRPPD; eieio();
par->cmap_regs[TVPIDATA] = init->pclk_p; eieio();
par->cmap_regs[TVPADDRW] = TVPIRTCC; eieio();
par->cmap_regs[TVPIDATA] = tcc; eieio();
par->cmap_regs[TVPADDRW] = TVPIRMXC; eieio();
par->cmap_regs[TVPIDATA] = mxc; eieio();
par->cmap_regs[TVPADDRW] = TVPIRMIC; eieio();
par->cmap_regs[TVPIDATA] = mic; eieio();
par->cmap_regs[TVPADDRW] = TVPIRPLA; eieio();
par->cmap_regs[TVPIDATA] = 0x00; eieio();
par->cmap_regs[TVPADDRW] = TVPIRLPD; eieio();
par->cmap_regs[TVPIDATA] = lckl_n; eieio();
par->cmap_regs[TVPADDRW] = TVPIRPLA; eieio();
par->cmap_regs[TVPIDATA] = 0x15; eieio();
par->cmap_regs[TVPADDRW] = TVPIRMLC; eieio();
par->cmap_regs[TVPIDATA] = mlc; eieio();
par->cmap_regs[TVPADDRW] = TVPIRPLA; eieio();
par->cmap_regs[TVPIDATA] = 0x2a; eieio();
par->cmap_regs[TVPADDRW] = TVPIRLPD; eieio();
par->cmap_regs[TVPIDATA] = lckl_p; eieio();
}
static void
set_imstt_regvals (struct fb_info *info, u_int bpp)
{
struct imstt_par *par = (struct imstt_par *) info->par;
struct imstt_regvals *init = &par->init;
__u32 ctl, pitch, byteswap, scr;
if (par->ramdac == IBM)
set_imstt_regvals_ibm(par, bpp);
else
set_imstt_regvals_tvp(par, bpp);
/*
* From what I (jsk) can gather poking around with MacsBug,
* bits 8 and 9 in the SCR register control endianness
* correction (byte swapping). These bits must be set according
* to the color depth as follows:
* Color depth Bit 9 Bit 8
* ========== ===== =====
* 8bpp 0 0
* 16bpp 0 1
* 32bpp 1 1
*/
switch (bpp) {
default:
case 8:
ctl = 0x17b1;
pitch = init->pitch >> 2;
byteswap = 0x000;
break;
case 16:
ctl = 0x17b3;
pitch = init->pitch >> 1;
byteswap = 0x100;
break;
case 24:
ctl = 0x17b9;
pitch = init->pitch - (init->pitch >> 2);
byteswap = 0x200;
break;
case 32:
ctl = 0x17b5;
pitch = init->pitch;
byteswap = 0x300;
break;
}
if (par->ramdac == TVP)
ctl -= 0x30;
write_reg_le32(par->dc_regs, HES, init->hes);
write_reg_le32(par->dc_regs, HEB, init->heb);
write_reg_le32(par->dc_regs, HSB, init->hsb);
write_reg_le32(par->dc_regs, HT, init->ht);
write_reg_le32(par->dc_regs, VES, init->ves);
write_reg_le32(par->dc_regs, VEB, init->veb);
write_reg_le32(par->dc_regs, VSB, init->vsb);
write_reg_le32(par->dc_regs, VT, init->vt);
write_reg_le32(par->dc_regs, VIL, init->vil);
write_reg_le32(par->dc_regs, HCIV, 1);
write_reg_le32(par->dc_regs, VCIV, 1);
write_reg_le32(par->dc_regs, TCDR, 4);
write_reg_le32(par->dc_regs, RRCIV, 1);
write_reg_le32(par->dc_regs, RRSC, 0x980);
write_reg_le32(par->dc_regs, RRCR, 0x11);
if (par->ramdac == IBM) {
write_reg_le32(par->dc_regs, HRIR, 0x0100);
write_reg_le32(par->dc_regs, CMR, 0x00ff);
write_reg_le32(par->dc_regs, SRGCTL, 0x0073);
} else {
write_reg_le32(par->dc_regs, HRIR, 0x0200);
write_reg_le32(par->dc_regs, CMR, 0x01ff);
write_reg_le32(par->dc_regs, SRGCTL, 0x0003);
}
switch (info->fix.smem_len) {
case 0x200000:
scr = 0x059d | byteswap;
break;
/* case 0x400000:
case 0x800000: */
default:
pitch >>= 1;
scr = 0x150dd | byteswap;
break;
}
write_reg_le32(par->dc_regs, SCR, scr);
write_reg_le32(par->dc_regs, SPR, pitch);
write_reg_le32(par->dc_regs, STGCTL, ctl);
}
static inline void
set_offset (struct fb_var_screeninfo *var, struct fb_info *info)
{
struct imstt_par *par = (struct imstt_par *) info->par;
__u32 off = var->yoffset * (info->fix.line_length >> 3)
+ ((var->xoffset * (var->bits_per_pixel >> 3)) >> 3);
write_reg_le32(par->dc_regs, SSR, off);
}
static inline void
set_555 (struct imstt_par *par)
{
if (par->ramdac == IBM) {
par->cmap_regs[PIDXHI] = 0; eieio();
par->cmap_regs[PIDXLO] = BPP16; eieio();
par->cmap_regs[PIDXDATA] = 0x01; eieio();
} else {
par->cmap_regs[TVPADDRW] = TVPIRTCC; eieio();
par->cmap_regs[TVPIDATA] = 0x44; eieio();
}
}
static inline void
set_565 (struct imstt_par *par)
{
if (par->ramdac == IBM) {
par->cmap_regs[PIDXHI] = 0; eieio();
par->cmap_regs[PIDXLO] = BPP16; eieio();
par->cmap_regs[PIDXDATA] = 0x03; eieio();
} else {
par->cmap_regs[TVPADDRW] = TVPIRTCC; eieio();
par->cmap_regs[TVPIDATA] = 0x45; eieio();
}
}
static int
imsttfb_check_var(struct fb_var_screeninfo *var, struct fb_info *info)
{
if ((var->bits_per_pixel != 8 && var->bits_per_pixel != 16
&& var->bits_per_pixel != 24 && var->bits_per_pixel != 32)
|| var->xres_virtual < var->xres || var->yres_virtual < var->yres
|| var->nonstd
|| (var->vmode & FB_VMODE_MASK) != FB_VMODE_NONINTERLACED)
return -EINVAL;
if ((var->xres * var->yres) * (var->bits_per_pixel >> 3) > info->fix.smem_len
|| (var->xres_virtual * var->yres_virtual) * (var->bits_per_pixel >> 3) > info->fix.smem_len)
return -EINVAL;
switch (var->bits_per_pixel) {
case 8:
var->red.offset = 0;
var->red.length = 8;
var->green.offset = 0;
var->green.length = 8;
var->blue.offset = 0;
var->blue.length = 8;
var->transp.offset = 0;
var->transp.length = 0;
break;
case 16: /* RGB 555 or 565 */
if (var->green.length != 6)
var->red.offset = 10;
var->red.length = 5;
var->green.offset = 5;
if (var->green.length != 6)
var->green.length = 5;
var->blue.offset = 0;
var->blue.length = 5;
var->transp.offset = 0;
var->transp.length = 0;
break;
case 24: /* RGB 888 */
var->red.offset = 16;
var->red.length = 8;
var->green.offset = 8;
var->green.length = 8;
var->blue.offset = 0;
var->blue.length = 8;
var->transp.offset = 0;
var->transp.length = 0;
break;
case 32: /* RGBA 8888 */
var->red.offset = 16;
var->red.length = 8;
var->green.offset = 8;
var->green.length = 8;
var->blue.offset = 0;
var->blue.length = 8;
var->transp.offset = 24;
var->transp.length = 8;
break;
}
if (var->yres == var->yres_virtual) {
__u32 vram = (info->fix.smem_len - (PAGE_SIZE << 2));
var->yres_virtual = ((vram << 3) / var->bits_per_pixel) / var->xres_virtual;
if (var->yres_virtual < var->yres)
var->yres_virtual = var->yres;
}
var->red.msb_right = 0;
var->green.msb_right = 0;
var->blue.msb_right = 0;
var->transp.msb_right = 0;
var->height = -1;
var->width = -1;
var->vmode = FB_VMODE_NONINTERLACED;
var->left_margin = var->right_margin = 16;
var->upper_margin = var->lower_margin = 16;
var->hsync_len = var->vsync_len = 8;
return 0;
}
static int
imsttfb_set_par(struct fb_info *info)
{
struct imstt_par *par = (struct imstt_par *) info->par;
if (!compute_imstt_regvals(par, info->var.xres, info->var.yres))
return -EINVAL;
if (info->var.green.length == 6)
set_565(par);
else
set_555(par);
set_imstt_regvals(info, info->var.bits_per_pixel);
info->var.pixclock = 1000000 / getclkMHz(par);
return 0;
}
static int
imsttfb_setcolreg (u_int regno, u_int red, u_int green, u_int blue,
u_int transp, struct fb_info *info)
{
struct imstt_par *par = (struct imstt_par *) info->par;
u_int bpp = info->var.bits_per_pixel;
if (regno > 255)
return 1;
red >>= 8;
green >>= 8;
blue >>= 8;
/* PADDRW/PDATA are the same as TVPPADDRW/TVPPDATA */
if (0 && bpp == 16) /* screws up X */
par->cmap_regs[PADDRW] = regno << 3;
else
par->cmap_regs[PADDRW] = regno;
eieio();
par->cmap_regs[PDATA] = red; eieio();
par->cmap_regs[PDATA] = green; eieio();
par->cmap_regs[PDATA] = blue; eieio();
if (regno < 16)
switch (bpp) {
case 16:
((u16 *)info->pseudo_palette)[regno] = (regno << (info->var.green.length == 5 ? 10 : 11)) | (regno << 5) | regno;
break;
case 24:
((u32 *)info->pseudo_palette)[regno] = (regno << 16) | (regno << 8) | regno;
break;
case 32: {
int i = (regno << 8) | regno;
((u32 *)info->pseudo_palette)[regno] = (i << 16) | i;
break;
}
}
return 0;
}
static int
imsttfb_pan_display(struct fb_var_screeninfo *var, struct fb_info *info)
{
if (var->xoffset + info->var.xres > info->var.xres_virtual
|| var->yoffset + info->var.yres > info->var.yres_virtual)
return -EINVAL;
info->var.xoffset = var->xoffset;
info->var.yoffset = var->yoffset;
set_offset(var, info);
return 0;
}
static int
imsttfb_blank(int blank, struct fb_info *info)
{
struct imstt_par *par = (struct imstt_par *) info->par;
__u32 ctrl;
ctrl = read_reg_le32(par->dc_regs, STGCTL);
if (blank > 0) {
switch (blank) {
case FB_BLANK_NORMAL:
case FB_BLANK_POWERDOWN:
ctrl &= ~0x00000380;
if (par->ramdac == IBM) {
par->cmap_regs[PIDXHI] = 0; eieio();
par->cmap_regs[PIDXLO] = MISCTL2; eieio();
par->cmap_regs[PIDXDATA] = 0x55; eieio();
par->cmap_regs[PIDXLO] = MISCTL1; eieio();
par->cmap_regs[PIDXDATA] = 0x11; eieio();
par->cmap_regs[PIDXLO] = SYNCCTL; eieio();
par->cmap_regs[PIDXDATA] = 0x0f; eieio();
par->cmap_regs[PIDXLO] = PWRMNGMT; eieio();
par->cmap_regs[PIDXDATA] = 0x1f; eieio();
par->cmap_regs[PIDXLO] = CLKCTL; eieio();
par->cmap_regs[PIDXDATA] = 0xc0;
}
break;
case FB_BLANK_VSYNC_SUSPEND:
ctrl &= ~0x00000020;
break;
case FB_BLANK_HSYNC_SUSPEND:
ctrl &= ~0x00000010;
break;
}
} else {
if (par->ramdac == IBM) {
ctrl |= 0x000017b0;
par->cmap_regs[PIDXHI] = 0; eieio();
par->cmap_regs[PIDXLO] = CLKCTL; eieio();
par->cmap_regs[PIDXDATA] = 0x01; eieio();
par->cmap_regs[PIDXLO] = PWRMNGMT; eieio();
par->cmap_regs[PIDXDATA] = 0x00; eieio();
par->cmap_regs[PIDXLO] = SYNCCTL; eieio();
par->cmap_regs[PIDXDATA] = 0x00; eieio();
par->cmap_regs[PIDXLO] = MISCTL1; eieio();
par->cmap_regs[PIDXDATA] = 0x01; eieio();
par->cmap_regs[PIDXLO] = MISCTL2; eieio();
par->cmap_regs[PIDXDATA] = 0x45; eieio();
} else
ctrl |= 0x00001780;
}
write_reg_le32(par->dc_regs, STGCTL, ctrl);
return 0;
}
static void
imsttfb_fillrect(struct fb_info *info, const struct fb_fillrect *rect)
{
struct imstt_par *par = (struct imstt_par *) info->par;
__u32 Bpp, line_pitch, bgc, dx, dy, width, height;
bgc = rect->color;
bgc |= (bgc << 8);
bgc |= (bgc << 16);
Bpp = info->var.bits_per_pixel >> 3,
line_pitch = info->fix.line_length;
dy = rect->dy * line_pitch;
dx = rect->dx * Bpp;
height = rect->height;
height--;
width = rect->width * Bpp;
width--;
if (rect->rop == ROP_COPY) {
while(read_reg_le32(par->dc_regs, SSTATUS) & 0x80);
write_reg_le32(par->dc_regs, DSA, dy + dx);
write_reg_le32(par->dc_regs, CNT, (height << 16) | width);
write_reg_le32(par->dc_regs, DP_OCTL, line_pitch);
write_reg_le32(par->dc_regs, BI, 0xffffffff);
write_reg_le32(par->dc_regs, MBC, 0xffffffff);
write_reg_le32(par->dc_regs, CLR, bgc);
write_reg_le32(par->dc_regs, BLTCTL, 0x840); /* 0x200000 */
while(read_reg_le32(par->dc_regs, SSTATUS) & 0x80);
while(read_reg_le32(par->dc_regs, SSTATUS) & 0x40);
} else {
while(read_reg_le32(par->dc_regs, SSTATUS) & 0x80);
write_reg_le32(par->dc_regs, DSA, dy + dx);
write_reg_le32(par->dc_regs, S1SA, dy + dx);
write_reg_le32(par->dc_regs, CNT, (height << 16) | width);
write_reg_le32(par->dc_regs, DP_OCTL, line_pitch);
write_reg_le32(par->dc_regs, SP, line_pitch);
write_reg_le32(par->dc_regs, BLTCTL, 0x40005);
while(read_reg_le32(par->dc_regs, SSTATUS) & 0x80);
while(read_reg_le32(par->dc_regs, SSTATUS) & 0x40);
}
}
static void
imsttfb_copyarea(struct fb_info *info, const struct fb_copyarea *area)
{
struct imstt_par *par = (struct imstt_par *) info->par;
__u32 Bpp, line_pitch, fb_offset_old, fb_offset_new, sp, dp_octl;
__u32 cnt, bltctl, sx, sy, dx, dy, height, width;
Bpp = info->var.bits_per_pixel >> 3,
sx = area->sx * Bpp;
sy = area->sy;
dx = area->dx * Bpp;
dy = area->dy;
height = area->height;
height--;
width = area->width * Bpp;
width--;
line_pitch = info->fix.line_length;
bltctl = 0x05;
sp = line_pitch << 16;
cnt = height << 16;
if (sy < dy) {
sy += height;
dy += height;
sp |= -(line_pitch) & 0xffff;
dp_octl = -(line_pitch) & 0xffff;
} else {
sp |= line_pitch;
dp_octl = line_pitch;
}
if (sx < dx) {
sx += width;
dx += width;
bltctl |= 0x80;
cnt |= -(width) & 0xffff;
} else {
cnt |= width;
}
fb_offset_old = sy * line_pitch + sx;
fb_offset_new = dy * line_pitch + dx;
while(read_reg_le32(par->dc_regs, SSTATUS) & 0x80);
write_reg_le32(par->dc_regs, S1SA, fb_offset_old);
write_reg_le32(par->dc_regs, SP, sp);
write_reg_le32(par->dc_regs, DSA, fb_offset_new);
write_reg_le32(par->dc_regs, CNT, cnt);
write_reg_le32(par->dc_regs, DP_OCTL, dp_octl);
write_reg_le32(par->dc_regs, BLTCTL, bltctl);
while(read_reg_le32(par->dc_regs, SSTATUS) & 0x80);
while(read_reg_le32(par->dc_regs, SSTATUS) & 0x40);
}
#if 0
static int
imsttfb_load_cursor_image(struct imstt_par *par, int width, int height, __u8 fgc)
{
u_int x, y;
if (width > 32 || height > 32)
return -EINVAL;
if (par->ramdac == IBM) {
par->cmap_regs[PIDXHI] = 1; eieio();
for (x = 0; x < 0x100; x++) {
par->cmap_regs[PIDXLO] = x; eieio();
par->cmap_regs[PIDXDATA] = 0x00; eieio();
}
par->cmap_regs[PIDXHI] = 1; eieio();
for (y = 0; y < height; y++)
for (x = 0; x < width >> 2; x++) {
par->cmap_regs[PIDXLO] = x + y * 8; eieio();
par->cmap_regs[PIDXDATA] = 0xff; eieio();
}
par->cmap_regs[PIDXHI] = 0; eieio();
par->cmap_regs[PIDXLO] = CURS1R; eieio();
par->cmap_regs[PIDXDATA] = fgc; eieio();
par->cmap_regs[PIDXLO] = CURS1G; eieio();
par->cmap_regs[PIDXDATA] = fgc; eieio();
par->cmap_regs[PIDXLO] = CURS1B; eieio();
par->cmap_regs[PIDXDATA] = fgc; eieio();
par->cmap_regs[PIDXLO] = CURS2R; eieio();
par->cmap_regs[PIDXDATA] = fgc; eieio();
par->cmap_regs[PIDXLO] = CURS2G; eieio();
par->cmap_regs[PIDXDATA] = fgc; eieio();
par->cmap_regs[PIDXLO] = CURS2B; eieio();
par->cmap_regs[PIDXDATA] = fgc; eieio();
par->cmap_regs[PIDXLO] = CURS3R; eieio();
par->cmap_regs[PIDXDATA] = fgc; eieio();
par->cmap_regs[PIDXLO] = CURS3G; eieio();
par->cmap_regs[PIDXDATA] = fgc; eieio();
par->cmap_regs[PIDXLO] = CURS3B; eieio();
par->cmap_regs[PIDXDATA] = fgc; eieio();
} else {
par->cmap_regs[TVPADDRW] = TVPIRICC; eieio();
par->cmap_regs[TVPIDATA] &= 0x03; eieio();
par->cmap_regs[TVPADDRW] = 0; eieio();
for (x = 0; x < 0x200; x++) {
par->cmap_regs[TVPCRDAT] = 0x00; eieio();
}
for (x = 0; x < 0x200; x++) {
par->cmap_regs[TVPCRDAT] = 0xff; eieio();
}
par->cmap_regs[TVPADDRW] = TVPIRICC; eieio();
par->cmap_regs[TVPIDATA] &= 0x03; eieio();
for (y = 0; y < height; y++)
for (x = 0; x < width >> 3; x++) {
par->cmap_regs[TVPADDRW] = x + y * 8; eieio();
par->cmap_regs[TVPCRDAT] = 0xff; eieio();
}
par->cmap_regs[TVPADDRW] = TVPIRICC; eieio();
par->cmap_regs[TVPIDATA] |= 0x08; eieio();
for (y = 0; y < height; y++)
for (x = 0; x < width >> 3; x++) {
par->cmap_regs[TVPADDRW] = x + y * 8; eieio();
par->cmap_regs[TVPCRDAT] = 0xff; eieio();
}
par->cmap_regs[TVPCADRW] = 0x00; eieio();
for (x = 0; x < 12; x++)
par->cmap_regs[TVPCDATA] = fgc; eieio();
}
return 1;
}
static void
imstt_set_cursor(struct imstt_par *par, struct fb_image *d, int on)
{
if (par->ramdac == IBM) {
par->cmap_regs[PIDXHI] = 0; eieio();
if (!on) {
par->cmap_regs[PIDXLO] = CURSCTL; eieio();
par->cmap_regs[PIDXDATA] = 0x00; eieio();
} else {
par->cmap_regs[PIDXLO] = CURSXHI; eieio();
par->cmap_regs[PIDXDATA] = d->dx >> 8; eieio();
par->cmap_regs[PIDXLO] = CURSXLO; eieio();
par->cmap_regs[PIDXDATA] = d->dx & 0xff;eieio();
par->cmap_regs[PIDXLO] = CURSYHI; eieio();
par->cmap_regs[PIDXDATA] = d->dy >> 8; eieio();
par->cmap_regs[PIDXLO] = CURSYLO; eieio();
par->cmap_regs[PIDXDATA] = d->dy & 0xff;eieio();
par->cmap_regs[PIDXLO] = CURSCTL; eieio();
par->cmap_regs[PIDXDATA] = 0x02; eieio();
}
} else {
if (!on) {
par->cmap_regs[TVPADDRW] = TVPIRICC; eieio();
par->cmap_regs[TVPIDATA] = 0x00; eieio();
} else {
__u16 x = d->dx + 0x40, y = d->dy + 0x40;
par->cmap_regs[TVPCXPOH] = x >> 8; eieio();
par->cmap_regs[TVPCXPOL] = x & 0xff; eieio();
par->cmap_regs[TVPCYPOH] = y >> 8; eieio();
par->cmap_regs[TVPCYPOL] = y & 0xff; eieio();
par->cmap_regs[TVPADDRW] = TVPIRICC; eieio();
par->cmap_regs[TVPIDATA] = 0x02; eieio();
}
}
}
static int
imsttfb_cursor(struct fb_info *info, struct fb_cursor *cursor)
{
struct imstt_par *par = (struct imstt_par *) info->par;
u32 flags = cursor->set, fg, bg, xx, yy;
if (cursor->dest == NULL && cursor->rop == ROP_XOR)
return 1;
imstt_set_cursor(info, cursor, 0);
if (flags & FB_CUR_SETPOS) {
xx = cursor->image.dx - info->var.xoffset;
yy = cursor->image.dy - info->var.yoffset;
}
if (flags & FB_CUR_SETSIZE) {
}
if (flags & (FB_CUR_SETSHAPE | FB_CUR_SETCMAP)) {
int fg_idx = cursor->image.fg_color;
int width = (cursor->image.width+7)/8;
u8 *dat = (u8 *) cursor->image.data;
u8 *dst = (u8 *) cursor->dest;
u8 *msk = (u8 *) cursor->mask;
switch (cursor->rop) {
case ROP_XOR:
for (i = 0; i < cursor->image.height; i++) {
for (j = 0; j < width; j++) {
d_idx = i * MAX_CURS/8 + j;
data[d_idx] = byte_rev[dat[s_idx] ^
dst[s_idx]];
mask[d_idx] = byte_rev[msk[s_idx]];
s_idx++;
}
}
break;
case ROP_COPY:
default:
for (i = 0; i < cursor->image.height; i++) {
for (j = 0; j < width; j++) {
d_idx = i * MAX_CURS/8 + j;
data[d_idx] = byte_rev[dat[s_idx]];
mask[d_idx] = byte_rev[msk[s_idx]];
s_idx++;
}
}
break;
}
fg = ((info->cmap.red[fg_idx] & 0xf8) << 7) |
((info->cmap.green[fg_idx] & 0xf8) << 2) |
((info->cmap.blue[fg_idx] & 0xf8) >> 3) | 1 << 15;
imsttfb_load_cursor_image(par, xx, yy, fgc);
}
if (cursor->enable)
imstt_set_cursor(info, cursor, 1);
return 0;
}
#endif
#define FBIMSTT_SETREG 0x545401
#define FBIMSTT_GETREG 0x545402
#define FBIMSTT_SETCMAPREG 0x545403
#define FBIMSTT_GETCMAPREG 0x545404
#define FBIMSTT_SETIDXREG 0x545405
#define FBIMSTT_GETIDXREG 0x545406
static int
imsttfb_ioctl(struct inode *inode, struct file *file, u_int cmd,
u_long arg, struct fb_info *info)
{
struct imstt_par *par = (struct imstt_par *) info->par;
void __user *argp = (void __user *)arg;
__u32 reg[2];
__u8 idx[2];
switch (cmd) {
case FBIMSTT_SETREG:
if (copy_from_user(reg, argp, 8) || reg[0] > (0x1000 - sizeof(reg[0])) / sizeof(reg[0]))
return -EFAULT;
write_reg_le32(par->dc_regs, reg[0], reg[1]);
return 0;
case FBIMSTT_GETREG:
if (copy_from_user(reg, argp, 4) || reg[0] > (0x1000 - sizeof(reg[0])) / sizeof(reg[0]))
return -EFAULT;
reg[1] = read_reg_le32(par->dc_regs, reg[0]);
if (copy_to_user((void __user *)(arg + 4), &reg[1], 4))
return -EFAULT;
return 0;
case FBIMSTT_SETCMAPREG:
if (copy_from_user(reg, argp, 8) || reg[0] > (0x1000 - sizeof(reg[0])) / sizeof(reg[0]))
return -EFAULT;
write_reg_le32(((u_int __iomem *)par->cmap_regs), reg[0], reg[1]);
return 0;
case FBIMSTT_GETCMAPREG:
if (copy_from_user(reg, argp, 4) || reg[0] > (0x1000 - sizeof(reg[0])) / sizeof(reg[0]))
return -EFAULT;
reg[1] = read_reg_le32(((u_int __iomem *)par->cmap_regs), reg[0]);
if (copy_to_user((void __user *)(arg + 4), &reg[1], 4))
return -EFAULT;
return 0;
case FBIMSTT_SETIDXREG:
if (copy_from_user(idx, argp, 2))
return -EFAULT;
par->cmap_regs[PIDXHI] = 0; eieio();
par->cmap_regs[PIDXLO] = idx[0]; eieio();
par->cmap_regs[PIDXDATA] = idx[1]; eieio();
return 0;
case FBIMSTT_GETIDXREG:
if (copy_from_user(idx, argp, 1))
return -EFAULT;
par->cmap_regs[PIDXHI] = 0; eieio();
par->cmap_regs[PIDXLO] = idx[0]; eieio();
idx[1] = par->cmap_regs[PIDXDATA];
if (copy_to_user((void __user *)(arg + 1), &idx[1], 1))
return -EFAULT;
return 0;
default:
return -ENOIOCTLCMD;
}
}
static struct pci_device_id imsttfb_pci_tbl[] = {
{ PCI_VENDOR_ID_IMS, PCI_DEVICE_ID_IMS_TT128,
PCI_ANY_ID, PCI_ANY_ID, 0, 0, IBM },
{ PCI_VENDOR_ID_IMS, PCI_DEVICE_ID_IMS_TT3D,
PCI_ANY_ID, PCI_ANY_ID, 0, 0, TVP },
{ 0, }
};
MODULE_DEVICE_TABLE(pci, imsttfb_pci_tbl);
static struct pci_driver imsttfb_pci_driver = {
.name = "imsttfb",
.id_table = imsttfb_pci_tbl,
.probe = imsttfb_probe,
.remove = __devexit_p(imsttfb_remove),
};
static struct fb_ops imsttfb_ops = {
.owner = THIS_MODULE,
.fb_check_var = imsttfb_check_var,
.fb_set_par = imsttfb_set_par,
.fb_setcolreg = imsttfb_setcolreg,
.fb_pan_display = imsttfb_pan_display,
.fb_blank = imsttfb_blank,
.fb_fillrect = imsttfb_fillrect,
.fb_copyarea = imsttfb_copyarea,
.fb_imageblit = cfb_imageblit,
.fb_cursor = soft_cursor,
.fb_ioctl = imsttfb_ioctl,
};
static void __devinit
init_imstt(struct fb_info *info)
{
struct imstt_par *par = (struct imstt_par *) info->par;
__u32 i, tmp, *ip, *end;
tmp = read_reg_le32(par->dc_regs, PRC);
if (par->ramdac == IBM)
info->fix.smem_len = (tmp & 0x0004) ? 0x400000 : 0x200000;
else
info->fix.smem_len = 0x800000;
ip = (__u32 *)info->screen_base;
end = (__u32 *)(info->screen_base + info->fix.smem_len);
while (ip < end)
*ip++ = 0;
/* initialize the card */
tmp = read_reg_le32(par->dc_regs, STGCTL);
write_reg_le32(par->dc_regs, STGCTL, tmp & ~0x1);
write_reg_le32(par->dc_regs, SSR, 0);
/* set default values for DAC registers */
if (par->ramdac == IBM) {
par->cmap_regs[PPMASK] = 0xff; eieio();
par->cmap_regs[PIDXHI] = 0; eieio();
for (i = 0; i < sizeof(ibm_initregs) / sizeof(*ibm_initregs); i++) {
par->cmap_regs[PIDXLO] = ibm_initregs[i].addr; eieio();
par->cmap_regs[PIDXDATA] = ibm_initregs[i].value; eieio();
}
} else {
for (i = 0; i < sizeof(tvp_initregs) / sizeof(*tvp_initregs); i++) {
par->cmap_regs[TVPADDRW] = tvp_initregs[i].addr; eieio();
par->cmap_regs[TVPIDATA] = tvp_initregs[i].value; eieio();
}
}
#if USE_NV_MODES && defined(CONFIG_PPC)
{
int vmode = init_vmode, cmode = init_cmode;
if (vmode == -1) {
vmode = nvram_read_byte(NV_VMODE);
if (vmode <= 0 || vmode > VMODE_MAX)
vmode = VMODE_640_480_67;
}
if (cmode == -1) {
cmode = nvram_read_byte(NV_CMODE);
if (cmode < CMODE_8 || cmode > CMODE_32)
cmode = CMODE_8;
}
if (mac_vmode_to_var(vmode, cmode, &info->var)) {
info->var.xres = info->var.xres_virtual = INIT_XRES;
info->var.yres = info->var.yres_virtual = INIT_YRES;
info->var.bits_per_pixel = INIT_BPP;
}
}
#else
info->var.xres = info->var.xres_virtual = INIT_XRES;
info->var.yres = info->var.yres_virtual = INIT_YRES;
info->var.bits_per_pixel = INIT_BPP;
#endif
if ((info->var.xres * info->var.yres) * (info->var.bits_per_pixel >> 3) > info->fix.smem_len
|| !(compute_imstt_regvals(par, info->var.xres, info->var.yres))) {
printk("imsttfb: %ux%ux%u not supported\n", info->var.xres, info->var.yres, info->var.bits_per_pixel);
kfree(info);
return;
}
sprintf(info->fix.id, "IMS TT (%s)", par->ramdac == IBM ? "IBM" : "TVP");
info->fix.mmio_len = 0x1000;
info->fix.accel = FB_ACCEL_IMS_TWINTURBO;
info->fix.type = FB_TYPE_PACKED_PIXELS;
info->fix.visual = info->var.bits_per_pixel == 8 ? FB_VISUAL_PSEUDOCOLOR
: FB_VISUAL_DIRECTCOLOR;
info->fix.line_length = info->var.xres * (info->var.bits_per_pixel >> 3);
info->fix.xpanstep = 8;
info->fix.ypanstep = 1;
info->fix.ywrapstep = 0;
info->var.accel_flags = FB_ACCELF_TEXT;
// if (par->ramdac == IBM)
// imstt_cursor_init(info);
if (info->var.green.length == 6)
set_565(par);
else
set_555(par);
set_imstt_regvals(info, info->var.bits_per_pixel);
info->var.pixclock = 1000000 / getclkMHz(par);
info->fbops = &imsttfb_ops;
info->flags = FBINFO_DEFAULT |
FBINFO_HWACCEL_COPYAREA |
FBINFO_HWACCEL_FILLRECT |
FBINFO_HWACCEL_YPAN;
fb_alloc_cmap(&info->cmap, 0, 0);
if (register_framebuffer(info) < 0) {
kfree(info);
return;
}
tmp = (read_reg_le32(par->dc_regs, SSTATUS) & 0x0f00) >> 8;
printk("fb%u: %s frame buffer; %uMB vram; chip version %u\n",
info->node, info->fix.id, info->fix.smem_len >> 20, tmp);
}
static int __devinit
imsttfb_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
{
unsigned long addr, size;
struct imstt_par *par;
struct fb_info *info;
#ifdef CONFIG_PPC_OF
struct device_node *dp;
dp = pci_device_to_OF_node(pdev);
if(dp)
printk(KERN_INFO "%s: OF name %s\n",__FUNCTION__, dp->name);
else
printk(KERN_ERR "imsttfb: no OF node for pci device\n");
#endif /* CONFIG_PPC_OF */
size = sizeof(struct fb_info) + sizeof(struct imstt_par) +
sizeof(u32) * 16;
info = kmalloc(size, GFP_KERNEL);
if (!info) {
printk(KERN_ERR "imsttfb: Can't allocate memory\n");
return -ENOMEM;
}
memset(info, 0, size);
par = (struct imstt_par *) (info + 1);
addr = pci_resource_start (pdev, 0);
size = pci_resource_len (pdev, 0);
if (!request_mem_region(addr, size, "imsttfb")) {
printk(KERN_ERR "imsttfb: Can't reserve memory region\n");
kfree(info);
return -ENODEV;
}
switch (pdev->device) {
case PCI_DEVICE_ID_IMS_TT128: /* IMS,tt128mbA */
par->ramdac = IBM;
#ifdef CONFIG_PPC_OF
if (dp && ((strcmp(dp->name, "IMS,tt128mb8") == 0) ||
(strcmp(dp->name, "IMS,tt128mb8A") == 0)))
par->ramdac = TVP;
#endif /* CONFIG_PPC_OF */
break;
case PCI_DEVICE_ID_IMS_TT3D: /* IMS,tt3d */
par->ramdac = TVP;
break;
default:
printk(KERN_INFO "imsttfb: Device 0x%x unknown, "
"contact maintainer.\n", pdev->device);
return -ENODEV;
}
info->fix.smem_start = addr;
info->screen_base = (__u8 *)ioremap(addr, par->ramdac == IBM ? 0x400000 : 0x800000);
info->fix.mmio_start = addr + 0x800000;
par->dc_regs = ioremap(addr + 0x800000, 0x1000);
par->cmap_regs_phys = addr + 0x840000;
par->cmap_regs = (__u8 *)ioremap(addr + 0x840000, 0x1000);
info->par = par;
info->pseudo_palette = (void *) (par + 1);
info->device = &pdev->dev;
init_imstt(info);
pci_set_drvdata(pdev, info);
return 0;
}
static void __devexit
imsttfb_remove(struct pci_dev *pdev)
{
struct fb_info *info = pci_get_drvdata(pdev);
struct imstt_par *par = (struct imstt_par *) info->par;
int size = pci_resource_len(pdev, 0);
unregister_framebuffer(info);
iounmap(par->cmap_regs);
iounmap(par->dc_regs);
iounmap(info->screen_base);
release_mem_region(info->fix.smem_start, size);
kfree(info);
}
#ifndef MODULE
static int __init
imsttfb_setup(char *options)
{
char *this_opt;
if (!options || !*options)
return 0;
while ((this_opt = strsep(&options, ",")) != NULL) {
if (!strncmp(this_opt, "font:", 5)) {
char *p;
int i;
p = this_opt + 5;
for (i = 0; i < sizeof(fontname) - 1; i++)
if (!*p || *p == ' ' || *p == ',')
break;
memcpy(fontname, this_opt + 5, i);
fontname[i] = 0;
} else if (!strncmp(this_opt, "inverse", 7)) {
inverse = 1;
fb_invert_cmaps();
}
#if defined(CONFIG_PPC)
else if (!strncmp(this_opt, "vmode:", 6)) {
int vmode = simple_strtoul(this_opt+6, NULL, 0);
if (vmode > 0 && vmode <= VMODE_MAX)
init_vmode = vmode;
} else if (!strncmp(this_opt, "cmode:", 6)) {
int cmode = simple_strtoul(this_opt+6, NULL, 0);
switch (cmode) {
case CMODE_8:
case 8:
init_cmode = CMODE_8;
break;
case CMODE_16:
case 15:
case 16:
init_cmode = CMODE_16;
break;
case CMODE_32:
case 24:
case 32:
init_cmode = CMODE_32;
break;
}
}
#endif
}
return 0;
}
#endif /* MODULE */
static int __init imsttfb_init(void)
{
#ifndef MODULE
char *option = NULL;
if (fb_get_options("imsttfb", &option))
return -ENODEV;
imsttfb_setup(option);
#endif
return pci_register_driver(&imsttfb_pci_driver);
}
static void __exit imsttfb_exit(void)
{
pci_unregister_driver(&imsttfb_pci_driver);
}
MODULE_LICENSE("GPL");
module_init(imsttfb_init);
module_exit(imsttfb_exit);