7d12e780e0
Maintain a per-CPU global "struct pt_regs *" variable which can be used instead of passing regs around manually through all ~1800 interrupt handlers in the Linux kernel. The regs pointer is used in few places, but it potentially costs both stack space and code to pass it around. On the FRV arch, removing the regs parameter from all the genirq function results in a 20% speed up of the IRQ exit path (ie: from leaving timer_interrupt() to leaving do_IRQ()). Where appropriate, an arch may override the generic storage facility and do something different with the variable. On FRV, for instance, the address is maintained in GR28 at all times inside the kernel as part of general exception handling. Having looked over the code, it appears that the parameter may be handed down through up to twenty or so layers of functions. Consider a USB character device attached to a USB hub, attached to a USB controller that posts its interrupts through a cascaded auxiliary interrupt controller. A character device driver may want to pass regs to the sysrq handler through the input layer which adds another few layers of parameter passing. I've build this code with allyesconfig for x86_64 and i386. I've runtested the main part of the code on FRV and i386, though I can't test most of the drivers. I've also done partial conversion for powerpc and MIPS - these at least compile with minimal configurations. This will affect all archs. Mostly the changes should be relatively easy. Take do_IRQ(), store the regs pointer at the beginning, saving the old one: struct pt_regs *old_regs = set_irq_regs(regs); And put the old one back at the end: set_irq_regs(old_regs); Don't pass regs through to generic_handle_irq() or __do_IRQ(). In timer_interrupt(), this sort of change will be necessary: - update_process_times(user_mode(regs)); - profile_tick(CPU_PROFILING, regs); + update_process_times(user_mode(get_irq_regs())); + profile_tick(CPU_PROFILING); I'd like to move update_process_times()'s use of get_irq_regs() into itself, except that i386, alone of the archs, uses something other than user_mode(). Some notes on the interrupt handling in the drivers: (*) input_dev() is now gone entirely. The regs pointer is no longer stored in the input_dev struct. (*) finish_unlinks() in drivers/usb/host/ohci-q.c needs checking. It does something different depending on whether it's been supplied with a regs pointer or not. (*) Various IRQ handler function pointers have been moved to type irq_handler_t. Signed-Off-By: David Howells <dhowells@redhat.com> (cherry picked from 1b16e7ac850969f38b375e511e3fa2f474a33867 commit)
905 lines
25 KiB
C
905 lines
25 KiB
C
/*
|
|
* USB Keyspan PDA / Xircom / Entregra Converter driver
|
|
*
|
|
* Copyright (C) 1999 - 2001 Greg Kroah-Hartman <greg@kroah.com>
|
|
* Copyright (C) 1999, 2000 Brian Warner <warner@lothar.com>
|
|
* Copyright (C) 2000 Al Borchers <borchers@steinerpoint.com>
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; either version 2 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* See Documentation/usb/usb-serial.txt for more information on using this driver
|
|
*
|
|
* (09/07/2001) gkh
|
|
* cleaned up the Xircom support. Added ids for Entregra device which is
|
|
* the same as the Xircom device. Enabled the code to be compiled for
|
|
* either Xircom or Keyspan devices.
|
|
*
|
|
* (08/11/2001) Cristian M. Craciunescu
|
|
* support for Xircom PGSDB9
|
|
*
|
|
* (05/31/2001) gkh
|
|
* switched from using spinlock to a semaphore, which fixes lots of problems.
|
|
*
|
|
* (04/08/2001) gb
|
|
* Identify version on module load.
|
|
*
|
|
* (11/01/2000) Adam J. Richter
|
|
* usb_device_id table support
|
|
*
|
|
* (10/05/2000) gkh
|
|
* Fixed bug with urb->dev not being set properly, now that the usb
|
|
* core needs it.
|
|
*
|
|
* (08/28/2000) gkh
|
|
* Added locks for SMP safeness.
|
|
* Fixed MOD_INC and MOD_DEC logic and the ability to open a port more
|
|
* than once.
|
|
*
|
|
* (07/20/2000) borchers
|
|
* - keyspan_pda_write no longer sleeps if it is called on interrupt time;
|
|
* PPP and the line discipline with stty echo on can call write on
|
|
* interrupt time and this would cause an oops if write slept
|
|
* - if keyspan_pda_write is in an interrupt, it will not call
|
|
* usb_control_msg (which sleeps) to query the room in the device
|
|
* buffer, it simply uses the current room value it has
|
|
* - if the urb is busy or if it is throttled keyspan_pda_write just
|
|
* returns 0, rather than sleeping to wait for this to change; the
|
|
* write_chan code in n_tty.c will sleep if needed before calling
|
|
* keyspan_pda_write again
|
|
* - if the device needs to be unthrottled, write now queues up the
|
|
* call to usb_control_msg (which sleeps) to unthrottle the device
|
|
* - the wakeups from keyspan_pda_write_bulk_callback are queued rather
|
|
* than done directly from the callback to avoid the race in write_chan
|
|
* - keyspan_pda_chars_in_buffer also indicates its buffer is full if the
|
|
* urb status is -EINPROGRESS, meaning it cannot write at the moment
|
|
*
|
|
* (07/19/2000) gkh
|
|
* Added module_init and module_exit functions to handle the fact that this
|
|
* driver is a loadable module now.
|
|
*
|
|
* (03/26/2000) gkh
|
|
* Split driver up into device specific pieces.
|
|
*
|
|
*/
|
|
|
|
|
|
#include <linux/kernel.h>
|
|
#include <linux/errno.h>
|
|
#include <linux/init.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/tty.h>
|
|
#include <linux/tty_driver.h>
|
|
#include <linux/tty_flip.h>
|
|
#include <linux/module.h>
|
|
#include <linux/spinlock.h>
|
|
#include <linux/workqueue.h>
|
|
#include <asm/uaccess.h>
|
|
#include <linux/usb.h>
|
|
#include <linux/usb/serial.h>
|
|
|
|
static int debug;
|
|
|
|
struct ezusb_hex_record {
|
|
__u16 address;
|
|
__u8 data_size;
|
|
__u8 data[16];
|
|
};
|
|
|
|
/* make a simple define to handle if we are compiling keyspan_pda or xircom support */
|
|
#if defined(CONFIG_USB_SERIAL_KEYSPAN_PDA) || defined(CONFIG_USB_SERIAL_KEYSPAN_PDA_MODULE)
|
|
#define KEYSPAN
|
|
#else
|
|
#undef KEYSPAN
|
|
#endif
|
|
#if defined(CONFIG_USB_SERIAL_XIRCOM) || defined(CONFIG_USB_SERIAL_XIRCOM_MODULE)
|
|
#define XIRCOM
|
|
#else
|
|
#undef XIRCOM
|
|
#endif
|
|
|
|
#ifdef KEYSPAN
|
|
#include "keyspan_pda_fw.h"
|
|
#endif
|
|
|
|
#ifdef XIRCOM
|
|
#include "xircom_pgs_fw.h"
|
|
#endif
|
|
|
|
/*
|
|
* Version Information
|
|
*/
|
|
#define DRIVER_VERSION "v1.1"
|
|
#define DRIVER_AUTHOR "Brian Warner <warner@lothar.com>"
|
|
#define DRIVER_DESC "USB Keyspan PDA Converter driver"
|
|
|
|
struct keyspan_pda_private {
|
|
int tx_room;
|
|
int tx_throttled;
|
|
struct work_struct wakeup_work;
|
|
struct work_struct unthrottle_work;
|
|
};
|
|
|
|
|
|
#define KEYSPAN_VENDOR_ID 0x06cd
|
|
#define KEYSPAN_PDA_FAKE_ID 0x0103
|
|
#define KEYSPAN_PDA_ID 0x0104 /* no clue */
|
|
|
|
/* For Xircom PGSDB9 and older Entregra version of the same device */
|
|
#define XIRCOM_VENDOR_ID 0x085a
|
|
#define XIRCOM_FAKE_ID 0x8027
|
|
#define ENTREGRA_VENDOR_ID 0x1645
|
|
#define ENTREGRA_FAKE_ID 0x8093
|
|
|
|
static struct usb_device_id id_table_combined [] = {
|
|
#ifdef KEYSPAN
|
|
{ USB_DEVICE(KEYSPAN_VENDOR_ID, KEYSPAN_PDA_FAKE_ID) },
|
|
#endif
|
|
#ifdef XIRCOM
|
|
{ USB_DEVICE(XIRCOM_VENDOR_ID, XIRCOM_FAKE_ID) },
|
|
{ USB_DEVICE(ENTREGRA_VENDOR_ID, ENTREGRA_FAKE_ID) },
|
|
#endif
|
|
{ USB_DEVICE(KEYSPAN_VENDOR_ID, KEYSPAN_PDA_ID) },
|
|
{ } /* Terminating entry */
|
|
};
|
|
|
|
MODULE_DEVICE_TABLE (usb, id_table_combined);
|
|
|
|
static struct usb_driver keyspan_pda_driver = {
|
|
.name = "keyspan_pda",
|
|
.probe = usb_serial_probe,
|
|
.disconnect = usb_serial_disconnect,
|
|
.id_table = id_table_combined,
|
|
.no_dynamic_id = 1,
|
|
};
|
|
|
|
static struct usb_device_id id_table_std [] = {
|
|
{ USB_DEVICE(KEYSPAN_VENDOR_ID, KEYSPAN_PDA_ID) },
|
|
{ } /* Terminating entry */
|
|
};
|
|
|
|
#ifdef KEYSPAN
|
|
static struct usb_device_id id_table_fake [] = {
|
|
{ USB_DEVICE(KEYSPAN_VENDOR_ID, KEYSPAN_PDA_FAKE_ID) },
|
|
{ } /* Terminating entry */
|
|
};
|
|
#endif
|
|
|
|
#ifdef XIRCOM
|
|
static struct usb_device_id id_table_fake_xircom [] = {
|
|
{ USB_DEVICE(XIRCOM_VENDOR_ID, XIRCOM_FAKE_ID) },
|
|
{ USB_DEVICE(ENTREGRA_VENDOR_ID, ENTREGRA_FAKE_ID) },
|
|
{ }
|
|
};
|
|
#endif
|
|
|
|
static void keyspan_pda_wakeup_write( struct usb_serial_port *port )
|
|
{
|
|
|
|
struct tty_struct *tty = port->tty;
|
|
|
|
/* wake up port processes */
|
|
wake_up_interruptible( &port->write_wait );
|
|
|
|
/* wake up line discipline */
|
|
tty_wakeup(tty);
|
|
}
|
|
|
|
static void keyspan_pda_request_unthrottle( struct usb_serial *serial )
|
|
{
|
|
int result;
|
|
|
|
dbg(" request_unthrottle");
|
|
/* ask the device to tell us when the tx buffer becomes
|
|
sufficiently empty */
|
|
result = usb_control_msg(serial->dev,
|
|
usb_sndctrlpipe(serial->dev, 0),
|
|
7, /* request_unthrottle */
|
|
USB_TYPE_VENDOR | USB_RECIP_INTERFACE
|
|
| USB_DIR_OUT,
|
|
16, /* value: threshold */
|
|
0, /* index */
|
|
NULL,
|
|
0,
|
|
2000);
|
|
if (result < 0)
|
|
dbg("%s - error %d from usb_control_msg",
|
|
__FUNCTION__, result);
|
|
}
|
|
|
|
|
|
static void keyspan_pda_rx_interrupt (struct urb *urb)
|
|
{
|
|
struct usb_serial_port *port = (struct usb_serial_port *)urb->context;
|
|
struct tty_struct *tty = port->tty;
|
|
unsigned char *data = urb->transfer_buffer;
|
|
int i;
|
|
int status;
|
|
struct keyspan_pda_private *priv;
|
|
priv = usb_get_serial_port_data(port);
|
|
|
|
switch (urb->status) {
|
|
case 0:
|
|
/* success */
|
|
break;
|
|
case -ECONNRESET:
|
|
case -ENOENT:
|
|
case -ESHUTDOWN:
|
|
/* this urb is terminated, clean up */
|
|
dbg("%s - urb shutting down with status: %d", __FUNCTION__, urb->status);
|
|
return;
|
|
default:
|
|
dbg("%s - nonzero urb status received: %d", __FUNCTION__, urb->status);
|
|
goto exit;
|
|
}
|
|
|
|
/* see if the message is data or a status interrupt */
|
|
switch (data[0]) {
|
|
case 0:
|
|
/* rest of message is rx data */
|
|
if (urb->actual_length) {
|
|
for (i = 1; i < urb->actual_length ; ++i) {
|
|
tty_insert_flip_char(tty, data[i], 0);
|
|
}
|
|
tty_flip_buffer_push(tty);
|
|
}
|
|
break;
|
|
case 1:
|
|
/* status interrupt */
|
|
dbg(" rx int, d1=%d, d2=%d", data[1], data[2]);
|
|
switch (data[1]) {
|
|
case 1: /* modemline change */
|
|
break;
|
|
case 2: /* tx unthrottle interrupt */
|
|
priv->tx_throttled = 0;
|
|
/* queue up a wakeup at scheduler time */
|
|
schedule_work(&priv->wakeup_work);
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
exit:
|
|
status = usb_submit_urb (urb, GFP_ATOMIC);
|
|
if (status)
|
|
err ("%s - usb_submit_urb failed with result %d",
|
|
__FUNCTION__, status);
|
|
}
|
|
|
|
|
|
static void keyspan_pda_rx_throttle (struct usb_serial_port *port)
|
|
{
|
|
/* stop receiving characters. We just turn off the URB request, and
|
|
let chars pile up in the device. If we're doing hardware
|
|
flowcontrol, the device will signal the other end when its buffer
|
|
fills up. If we're doing XON/XOFF, this would be a good time to
|
|
send an XOFF, although it might make sense to foist that off
|
|
upon the device too. */
|
|
|
|
dbg("keyspan_pda_rx_throttle port %d", port->number);
|
|
usb_kill_urb(port->interrupt_in_urb);
|
|
}
|
|
|
|
|
|
static void keyspan_pda_rx_unthrottle (struct usb_serial_port *port)
|
|
{
|
|
/* just restart the receive interrupt URB */
|
|
dbg("keyspan_pda_rx_unthrottle port %d", port->number);
|
|
port->interrupt_in_urb->dev = port->serial->dev;
|
|
if (usb_submit_urb(port->interrupt_in_urb, GFP_ATOMIC))
|
|
dbg(" usb_submit_urb(read urb) failed");
|
|
return;
|
|
}
|
|
|
|
|
|
static int keyspan_pda_setbaud (struct usb_serial *serial, int baud)
|
|
{
|
|
int rc;
|
|
int bindex;
|
|
|
|
switch(baud) {
|
|
case 110: bindex = 0; break;
|
|
case 300: bindex = 1; break;
|
|
case 1200: bindex = 2; break;
|
|
case 2400: bindex = 3; break;
|
|
case 4800: bindex = 4; break;
|
|
case 9600: bindex = 5; break;
|
|
case 19200: bindex = 6; break;
|
|
case 38400: bindex = 7; break;
|
|
case 57600: bindex = 8; break;
|
|
case 115200: bindex = 9; break;
|
|
default: return -EINVAL;
|
|
}
|
|
|
|
/* rather than figure out how to sleep while waiting for this
|
|
to complete, I just use the "legacy" API. */
|
|
rc = usb_control_msg(serial->dev, usb_sndctrlpipe(serial->dev, 0),
|
|
0, /* set baud */
|
|
USB_TYPE_VENDOR
|
|
| USB_RECIP_INTERFACE
|
|
| USB_DIR_OUT, /* type */
|
|
bindex, /* value */
|
|
0, /* index */
|
|
NULL, /* &data */
|
|
0, /* size */
|
|
2000); /* timeout */
|
|
return(rc);
|
|
}
|
|
|
|
|
|
static void keyspan_pda_break_ctl (struct usb_serial_port *port, int break_state)
|
|
{
|
|
struct usb_serial *serial = port->serial;
|
|
int value;
|
|
int result;
|
|
|
|
if (break_state == -1)
|
|
value = 1; /* start break */
|
|
else
|
|
value = 0; /* clear break */
|
|
result = usb_control_msg(serial->dev, usb_sndctrlpipe(serial->dev, 0),
|
|
4, /* set break */
|
|
USB_TYPE_VENDOR | USB_RECIP_INTERFACE | USB_DIR_OUT,
|
|
value, 0, NULL, 0, 2000);
|
|
if (result < 0)
|
|
dbg("%s - error %d from usb_control_msg",
|
|
__FUNCTION__, result);
|
|
/* there is something funky about this.. the TCSBRK that 'cu' performs
|
|
ought to translate into a break_ctl(-1),break_ctl(0) pair HZ/4
|
|
seconds apart, but it feels like the break sent isn't as long as it
|
|
is on /dev/ttyS0 */
|
|
}
|
|
|
|
|
|
static void keyspan_pda_set_termios (struct usb_serial_port *port,
|
|
struct termios *old_termios)
|
|
{
|
|
struct usb_serial *serial = port->serial;
|
|
unsigned int cflag = port->tty->termios->c_cflag;
|
|
|
|
/* cflag specifies lots of stuff: number of stop bits, parity, number
|
|
of data bits, baud. What can the device actually handle?:
|
|
CSTOPB (1 stop bit or 2)
|
|
PARENB (parity)
|
|
CSIZE (5bit .. 8bit)
|
|
There is minimal hw support for parity (a PSW bit seems to hold the
|
|
parity of whatever is in the accumulator). The UART either deals
|
|
with 10 bits (start, 8 data, stop) or 11 bits (start, 8 data,
|
|
1 special, stop). So, with firmware changes, we could do:
|
|
8N1: 10 bit
|
|
8N2: 11 bit, extra bit always (mark?)
|
|
8[EOMS]1: 11 bit, extra bit is parity
|
|
7[EOMS]1: 10 bit, b0/b7 is parity
|
|
7[EOMS]2: 11 bit, b0/b7 is parity, extra bit always (mark?)
|
|
|
|
HW flow control is dictated by the tty->termios->c_cflags & CRTSCTS
|
|
bit.
|
|
|
|
For now, just do baud. */
|
|
|
|
switch (cflag & CBAUD) {
|
|
/* we could support more values here, just need to calculate
|
|
the necessary divisors in the firmware. <asm/termbits.h>
|
|
has the Bnnn constants. */
|
|
case B110: keyspan_pda_setbaud(serial, 110); break;
|
|
case B300: keyspan_pda_setbaud(serial, 300); break;
|
|
case B1200: keyspan_pda_setbaud(serial, 1200); break;
|
|
case B2400: keyspan_pda_setbaud(serial, 2400); break;
|
|
case B4800: keyspan_pda_setbaud(serial, 4800); break;
|
|
case B9600: keyspan_pda_setbaud(serial, 9600); break;
|
|
case B19200: keyspan_pda_setbaud(serial, 19200); break;
|
|
case B38400: keyspan_pda_setbaud(serial, 38400); break;
|
|
case B57600: keyspan_pda_setbaud(serial, 57600); break;
|
|
case B115200: keyspan_pda_setbaud(serial, 115200); break;
|
|
default: dbg("can't handle requested baud rate"); break;
|
|
}
|
|
}
|
|
|
|
|
|
/* modem control pins: DTR and RTS are outputs and can be controlled.
|
|
DCD, RI, DSR, CTS are inputs and can be read. All outputs can also be
|
|
read. The byte passed is: DTR(b7) DCD RI DSR CTS RTS(b2) unused unused */
|
|
|
|
static int keyspan_pda_get_modem_info(struct usb_serial *serial,
|
|
unsigned char *value)
|
|
{
|
|
int rc;
|
|
unsigned char data;
|
|
rc = usb_control_msg(serial->dev, usb_rcvctrlpipe(serial->dev, 0),
|
|
3, /* get pins */
|
|
USB_TYPE_VENDOR|USB_RECIP_INTERFACE|USB_DIR_IN,
|
|
0, 0, &data, 1, 2000);
|
|
if (rc > 0)
|
|
*value = data;
|
|
return rc;
|
|
}
|
|
|
|
|
|
static int keyspan_pda_set_modem_info(struct usb_serial *serial,
|
|
unsigned char value)
|
|
{
|
|
int rc;
|
|
rc = usb_control_msg(serial->dev, usb_sndctrlpipe(serial->dev, 0),
|
|
3, /* set pins */
|
|
USB_TYPE_VENDOR|USB_RECIP_INTERFACE|USB_DIR_OUT,
|
|
value, 0, NULL, 0, 2000);
|
|
return rc;
|
|
}
|
|
|
|
static int keyspan_pda_tiocmget(struct usb_serial_port *port, struct file *file)
|
|
{
|
|
struct usb_serial *serial = port->serial;
|
|
int rc;
|
|
unsigned char status;
|
|
int value;
|
|
|
|
rc = keyspan_pda_get_modem_info(serial, &status);
|
|
if (rc < 0)
|
|
return rc;
|
|
value =
|
|
((status & (1<<7)) ? TIOCM_DTR : 0) |
|
|
((status & (1<<6)) ? TIOCM_CAR : 0) |
|
|
((status & (1<<5)) ? TIOCM_RNG : 0) |
|
|
((status & (1<<4)) ? TIOCM_DSR : 0) |
|
|
((status & (1<<3)) ? TIOCM_CTS : 0) |
|
|
((status & (1<<2)) ? TIOCM_RTS : 0);
|
|
return value;
|
|
}
|
|
|
|
static int keyspan_pda_tiocmset(struct usb_serial_port *port, struct file *file,
|
|
unsigned int set, unsigned int clear)
|
|
{
|
|
struct usb_serial *serial = port->serial;
|
|
int rc;
|
|
unsigned char status;
|
|
|
|
rc = keyspan_pda_get_modem_info(serial, &status);
|
|
if (rc < 0)
|
|
return rc;
|
|
|
|
if (set & TIOCM_RTS)
|
|
status |= (1<<2);
|
|
if (set & TIOCM_DTR)
|
|
status |= (1<<7);
|
|
|
|
if (clear & TIOCM_RTS)
|
|
status &= ~(1<<2);
|
|
if (clear & TIOCM_DTR)
|
|
status &= ~(1<<7);
|
|
rc = keyspan_pda_set_modem_info(serial, status);
|
|
return rc;
|
|
}
|
|
|
|
static int keyspan_pda_ioctl(struct usb_serial_port *port, struct file *file,
|
|
unsigned int cmd, unsigned long arg)
|
|
{
|
|
switch (cmd) {
|
|
case TIOCMIWAIT:
|
|
/* wait for any of the 4 modem inputs (DCD,RI,DSR,CTS)*/
|
|
/* TODO */
|
|
case TIOCGICOUNT:
|
|
/* return count of modemline transitions */
|
|
return 0; /* TODO */
|
|
}
|
|
|
|
return -ENOIOCTLCMD;
|
|
}
|
|
|
|
static int keyspan_pda_write(struct usb_serial_port *port,
|
|
const unsigned char *buf, int count)
|
|
{
|
|
struct usb_serial *serial = port->serial;
|
|
int request_unthrottle = 0;
|
|
int rc = 0;
|
|
struct keyspan_pda_private *priv;
|
|
|
|
priv = usb_get_serial_port_data(port);
|
|
/* guess how much room is left in the device's ring buffer, and if we
|
|
want to send more than that, check first, updating our notion of
|
|
what is left. If our write will result in no room left, ask the
|
|
device to give us an interrupt when the room available rises above
|
|
a threshold, and hold off all writers (eventually, those using
|
|
select() or poll() too) until we receive that unthrottle interrupt.
|
|
Block if we can't write anything at all, otherwise write as much as
|
|
we can. */
|
|
dbg("keyspan_pda_write(%d)",count);
|
|
if (count == 0) {
|
|
dbg(" write request of 0 bytes");
|
|
return (0);
|
|
}
|
|
|
|
/* we might block because of:
|
|
the TX urb is in-flight (wait until it completes)
|
|
the device is full (wait until it says there is room)
|
|
*/
|
|
spin_lock_bh(&port->lock);
|
|
if (port->write_urb_busy || priv->tx_throttled) {
|
|
spin_unlock_bh(&port->lock);
|
|
return 0;
|
|
}
|
|
port->write_urb_busy = 1;
|
|
spin_unlock_bh(&port->lock);
|
|
|
|
/* At this point the URB is in our control, nobody else can submit it
|
|
again (the only sudden transition was the one from EINPROGRESS to
|
|
finished). Also, the tx process is not throttled. So we are
|
|
ready to write. */
|
|
|
|
count = (count > port->bulk_out_size) ? port->bulk_out_size : count;
|
|
|
|
/* Check if we might overrun the Tx buffer. If so, ask the
|
|
device how much room it really has. This is done only on
|
|
scheduler time, since usb_control_msg() sleeps. */
|
|
if (count > priv->tx_room && !in_interrupt()) {
|
|
unsigned char room;
|
|
rc = usb_control_msg(serial->dev,
|
|
usb_rcvctrlpipe(serial->dev, 0),
|
|
6, /* write_room */
|
|
USB_TYPE_VENDOR | USB_RECIP_INTERFACE
|
|
| USB_DIR_IN,
|
|
0, /* value: 0 means "remaining room" */
|
|
0, /* index */
|
|
&room,
|
|
1,
|
|
2000);
|
|
if (rc < 0) {
|
|
dbg(" roomquery failed");
|
|
goto exit;
|
|
}
|
|
if (rc == 0) {
|
|
dbg(" roomquery returned 0 bytes");
|
|
rc = -EIO; /* device didn't return any data */
|
|
goto exit;
|
|
}
|
|
dbg(" roomquery says %d", room);
|
|
priv->tx_room = room;
|
|
}
|
|
if (count > priv->tx_room) {
|
|
/* we're about to completely fill the Tx buffer, so
|
|
we'll be throttled afterwards. */
|
|
count = priv->tx_room;
|
|
request_unthrottle = 1;
|
|
}
|
|
|
|
if (count) {
|
|
/* now transfer data */
|
|
memcpy (port->write_urb->transfer_buffer, buf, count);
|
|
/* send the data out the bulk port */
|
|
port->write_urb->transfer_buffer_length = count;
|
|
|
|
priv->tx_room -= count;
|
|
|
|
port->write_urb->dev = port->serial->dev;
|
|
rc = usb_submit_urb(port->write_urb, GFP_ATOMIC);
|
|
if (rc) {
|
|
dbg(" usb_submit_urb(write bulk) failed");
|
|
goto exit;
|
|
}
|
|
}
|
|
else {
|
|
/* There wasn't any room left, so we are throttled until
|
|
the buffer empties a bit */
|
|
request_unthrottle = 1;
|
|
}
|
|
|
|
if (request_unthrottle) {
|
|
priv->tx_throttled = 1; /* block writers */
|
|
schedule_work(&priv->unthrottle_work);
|
|
}
|
|
|
|
rc = count;
|
|
exit:
|
|
if (rc < 0)
|
|
port->write_urb_busy = 0;
|
|
return rc;
|
|
}
|
|
|
|
|
|
static void keyspan_pda_write_bulk_callback (struct urb *urb)
|
|
{
|
|
struct usb_serial_port *port = (struct usb_serial_port *)urb->context;
|
|
struct keyspan_pda_private *priv;
|
|
|
|
port->write_urb_busy = 0;
|
|
priv = usb_get_serial_port_data(port);
|
|
|
|
/* queue up a wakeup at scheduler time */
|
|
schedule_work(&priv->wakeup_work);
|
|
}
|
|
|
|
|
|
static int keyspan_pda_write_room (struct usb_serial_port *port)
|
|
{
|
|
struct keyspan_pda_private *priv;
|
|
|
|
priv = usb_get_serial_port_data(port);
|
|
|
|
/* used by n_tty.c for processing of tabs and such. Giving it our
|
|
conservative guess is probably good enough, but needs testing by
|
|
running a console through the device. */
|
|
|
|
return (priv->tx_room);
|
|
}
|
|
|
|
|
|
static int keyspan_pda_chars_in_buffer (struct usb_serial_port *port)
|
|
{
|
|
struct keyspan_pda_private *priv;
|
|
|
|
priv = usb_get_serial_port_data(port);
|
|
|
|
/* when throttled, return at least WAKEUP_CHARS to tell select() (via
|
|
n_tty.c:normal_poll() ) that we're not writeable. */
|
|
if (port->write_urb_busy || priv->tx_throttled)
|
|
return 256;
|
|
return 0;
|
|
}
|
|
|
|
|
|
static int keyspan_pda_open (struct usb_serial_port *port, struct file *filp)
|
|
{
|
|
struct usb_serial *serial = port->serial;
|
|
unsigned char room;
|
|
int rc = 0;
|
|
struct keyspan_pda_private *priv;
|
|
|
|
/* find out how much room is in the Tx ring */
|
|
rc = usb_control_msg(serial->dev, usb_rcvctrlpipe(serial->dev, 0),
|
|
6, /* write_room */
|
|
USB_TYPE_VENDOR | USB_RECIP_INTERFACE
|
|
| USB_DIR_IN,
|
|
0, /* value */
|
|
0, /* index */
|
|
&room,
|
|
1,
|
|
2000);
|
|
if (rc < 0) {
|
|
dbg("%s - roomquery failed", __FUNCTION__);
|
|
goto error;
|
|
}
|
|
if (rc == 0) {
|
|
dbg("%s - roomquery returned 0 bytes", __FUNCTION__);
|
|
rc = -EIO;
|
|
goto error;
|
|
}
|
|
priv = usb_get_serial_port_data(port);
|
|
priv->tx_room = room;
|
|
priv->tx_throttled = room ? 0 : 1;
|
|
|
|
/* the normal serial device seems to always turn on DTR and RTS here,
|
|
so do the same */
|
|
if (port->tty->termios->c_cflag & CBAUD)
|
|
keyspan_pda_set_modem_info(serial, (1<<7) | (1<<2) );
|
|
else
|
|
keyspan_pda_set_modem_info(serial, 0);
|
|
|
|
/*Start reading from the device*/
|
|
port->interrupt_in_urb->dev = serial->dev;
|
|
rc = usb_submit_urb(port->interrupt_in_urb, GFP_KERNEL);
|
|
if (rc) {
|
|
dbg("%s - usb_submit_urb(read int) failed", __FUNCTION__);
|
|
goto error;
|
|
}
|
|
|
|
error:
|
|
return rc;
|
|
}
|
|
|
|
|
|
static void keyspan_pda_close(struct usb_serial_port *port, struct file *filp)
|
|
{
|
|
struct usb_serial *serial = port->serial;
|
|
|
|
if (serial->dev) {
|
|
/* the normal serial device seems to always shut off DTR and RTS now */
|
|
if (port->tty->termios->c_cflag & HUPCL)
|
|
keyspan_pda_set_modem_info(serial, 0);
|
|
|
|
/* shutdown our bulk reads and writes */
|
|
usb_kill_urb(port->write_urb);
|
|
usb_kill_urb(port->interrupt_in_urb);
|
|
}
|
|
}
|
|
|
|
|
|
/* download the firmware to a "fake" device (pre-renumeration) */
|
|
static int keyspan_pda_fake_startup (struct usb_serial *serial)
|
|
{
|
|
int response;
|
|
const struct ezusb_hex_record *record = NULL;
|
|
|
|
/* download the firmware here ... */
|
|
response = ezusb_set_reset(serial, 1);
|
|
|
|
#ifdef KEYSPAN
|
|
if (le16_to_cpu(serial->dev->descriptor.idVendor) == KEYSPAN_VENDOR_ID)
|
|
record = &keyspan_pda_firmware[0];
|
|
#endif
|
|
#ifdef XIRCOM
|
|
if ((le16_to_cpu(serial->dev->descriptor.idVendor) == XIRCOM_VENDOR_ID) ||
|
|
(le16_to_cpu(serial->dev->descriptor.idVendor) == ENTREGRA_VENDOR_ID))
|
|
record = &xircom_pgs_firmware[0];
|
|
#endif
|
|
if (record == NULL) {
|
|
err("%s: unknown vendor, aborting.", __FUNCTION__);
|
|
return -ENODEV;
|
|
}
|
|
|
|
while(record->address != 0xffff) {
|
|
response = ezusb_writememory(serial, record->address,
|
|
(unsigned char *)record->data,
|
|
record->data_size, 0xa0);
|
|
if (response < 0) {
|
|
err("ezusb_writememory failed for Keyspan PDA "
|
|
"firmware (%d %04X %p %d)",
|
|
response,
|
|
record->address, record->data, record->data_size);
|
|
break;
|
|
}
|
|
record++;
|
|
}
|
|
/* bring device out of reset. Renumeration will occur in a moment
|
|
and the new device will bind to the real driver */
|
|
response = ezusb_set_reset(serial, 0);
|
|
|
|
/* we want this device to fail to have a driver assigned to it. */
|
|
return (1);
|
|
}
|
|
|
|
static int keyspan_pda_startup (struct usb_serial *serial)
|
|
{
|
|
|
|
struct keyspan_pda_private *priv;
|
|
|
|
/* allocate the private data structures for all ports. Well, for all
|
|
one ports. */
|
|
|
|
priv = kmalloc(sizeof(struct keyspan_pda_private), GFP_KERNEL);
|
|
if (!priv)
|
|
return (1); /* error */
|
|
usb_set_serial_port_data(serial->port[0], priv);
|
|
init_waitqueue_head(&serial->port[0]->write_wait);
|
|
INIT_WORK(&priv->wakeup_work, (void *)keyspan_pda_wakeup_write,
|
|
(void *)(serial->port[0]));
|
|
INIT_WORK(&priv->unthrottle_work,
|
|
(void *)keyspan_pda_request_unthrottle,
|
|
(void *)(serial));
|
|
return (0);
|
|
}
|
|
|
|
static void keyspan_pda_shutdown (struct usb_serial *serial)
|
|
{
|
|
dbg("%s", __FUNCTION__);
|
|
|
|
kfree(usb_get_serial_port_data(serial->port[0]));
|
|
}
|
|
|
|
#ifdef KEYSPAN
|
|
static struct usb_serial_driver keyspan_pda_fake_device = {
|
|
.driver = {
|
|
.owner = THIS_MODULE,
|
|
.name = "keyspan_pda_pre",
|
|
},
|
|
.description = "Keyspan PDA - (prerenumeration)",
|
|
.id_table = id_table_fake,
|
|
.num_interrupt_in = NUM_DONT_CARE,
|
|
.num_bulk_in = NUM_DONT_CARE,
|
|
.num_bulk_out = NUM_DONT_CARE,
|
|
.num_ports = 1,
|
|
.attach = keyspan_pda_fake_startup,
|
|
};
|
|
#endif
|
|
|
|
#ifdef XIRCOM
|
|
static struct usb_serial_driver xircom_pgs_fake_device = {
|
|
.driver = {
|
|
.owner = THIS_MODULE,
|
|
.name = "xircom_no_firm",
|
|
},
|
|
.description = "Xircom / Entregra PGS - (prerenumeration)",
|
|
.id_table = id_table_fake_xircom,
|
|
.num_interrupt_in = NUM_DONT_CARE,
|
|
.num_bulk_in = NUM_DONT_CARE,
|
|
.num_bulk_out = NUM_DONT_CARE,
|
|
.num_ports = 1,
|
|
.attach = keyspan_pda_fake_startup,
|
|
};
|
|
#endif
|
|
|
|
static struct usb_serial_driver keyspan_pda_device = {
|
|
.driver = {
|
|
.owner = THIS_MODULE,
|
|
.name = "keyspan_pda",
|
|
},
|
|
.description = "Keyspan PDA",
|
|
.id_table = id_table_std,
|
|
.num_interrupt_in = 1,
|
|
.num_bulk_in = 0,
|
|
.num_bulk_out = 1,
|
|
.num_ports = 1,
|
|
.open = keyspan_pda_open,
|
|
.close = keyspan_pda_close,
|
|
.write = keyspan_pda_write,
|
|
.write_room = keyspan_pda_write_room,
|
|
.write_bulk_callback = keyspan_pda_write_bulk_callback,
|
|
.read_int_callback = keyspan_pda_rx_interrupt,
|
|
.chars_in_buffer = keyspan_pda_chars_in_buffer,
|
|
.throttle = keyspan_pda_rx_throttle,
|
|
.unthrottle = keyspan_pda_rx_unthrottle,
|
|
.ioctl = keyspan_pda_ioctl,
|
|
.set_termios = keyspan_pda_set_termios,
|
|
.break_ctl = keyspan_pda_break_ctl,
|
|
.tiocmget = keyspan_pda_tiocmget,
|
|
.tiocmset = keyspan_pda_tiocmset,
|
|
.attach = keyspan_pda_startup,
|
|
.shutdown = keyspan_pda_shutdown,
|
|
};
|
|
|
|
|
|
static int __init keyspan_pda_init (void)
|
|
{
|
|
int retval;
|
|
retval = usb_serial_register(&keyspan_pda_device);
|
|
if (retval)
|
|
goto failed_pda_register;
|
|
#ifdef KEYSPAN
|
|
retval = usb_serial_register(&keyspan_pda_fake_device);
|
|
if (retval)
|
|
goto failed_pda_fake_register;
|
|
#endif
|
|
#ifdef XIRCOM
|
|
retval = usb_serial_register(&xircom_pgs_fake_device);
|
|
if (retval)
|
|
goto failed_xircom_register;
|
|
#endif
|
|
retval = usb_register(&keyspan_pda_driver);
|
|
if (retval)
|
|
goto failed_usb_register;
|
|
info(DRIVER_DESC " " DRIVER_VERSION);
|
|
return 0;
|
|
failed_usb_register:
|
|
#ifdef XIRCOM
|
|
usb_serial_deregister(&xircom_pgs_fake_device);
|
|
failed_xircom_register:
|
|
#endif /* XIRCOM */
|
|
#ifdef KEYSPAN
|
|
usb_serial_deregister(&keyspan_pda_fake_device);
|
|
#endif
|
|
#ifdef KEYSPAN
|
|
failed_pda_fake_register:
|
|
#endif
|
|
usb_serial_deregister(&keyspan_pda_device);
|
|
failed_pda_register:
|
|
return retval;
|
|
}
|
|
|
|
|
|
static void __exit keyspan_pda_exit (void)
|
|
{
|
|
usb_deregister (&keyspan_pda_driver);
|
|
usb_serial_deregister (&keyspan_pda_device);
|
|
#ifdef KEYSPAN
|
|
usb_serial_deregister (&keyspan_pda_fake_device);
|
|
#endif
|
|
#ifdef XIRCOM
|
|
usb_serial_deregister (&xircom_pgs_fake_device);
|
|
#endif
|
|
}
|
|
|
|
|
|
module_init(keyspan_pda_init);
|
|
module_exit(keyspan_pda_exit);
|
|
|
|
MODULE_AUTHOR( DRIVER_AUTHOR );
|
|
MODULE_DESCRIPTION( DRIVER_DESC );
|
|
MODULE_LICENSE("GPL");
|
|
|
|
module_param(debug, bool, S_IRUGO | S_IWUSR);
|
|
MODULE_PARM_DESC(debug, "Debug enabled or not");
|
|
|