android_kernel_motorola_sm6225/include/acpi/processor.h
Thomas Gleixner b04e7bdb98 ACPI: disable lower idle C-states across suspend/resume
device_suspend() calls ACPI suspend functions, which seems to have undesired
side effects on lower idle C-states. It took me some time to realize that
especially the VAIO BIOSes (both Andrews jinxed UP and my elfstruck SMP one)
show this effect. I'm quite sure that other bug reports against suspend/resume
about turning the system into a brick have the same root cause.

After fishing in the dark for quite some time, I realized that removing the ACPI
processor module before suspend (this removes the lower C-state functionality)
made the problem disappear. Interestingly enough the propability of having a
bricked box is influenced by various factors (interrupts, size of the ram image,
...). Even adding a bunch of printks in the wrong places made the problem go
away. The previous periodic tick implementation simply pampered over the
problem, which explains why the dyntick / clockevents changes made this more
prominent.

We avoid complex functionality during the boot process and we have to do the
same during suspend/resume. It is a similar scenario and equaly fragile.

Add suspend / resume functions to the ACPI processor code and disable the lower
idle C-states across suspend/resume. Fall back to the default idle
implementation (halt) instead.

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Len Brown <lenb@kernel.org>
Cc: Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
Cc: Rafael J. Wysocki <rjw@sisk.pl>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-09-22 17:15:34 -07:00

344 lines
8.4 KiB
C

#ifndef __ACPI_PROCESSOR_H
#define __ACPI_PROCESSOR_H
#include <linux/kernel.h>
#include <linux/cpu.h>
#include <asm/acpi.h>
#define ACPI_PROCESSOR_BUSY_METRIC 10
#define ACPI_PROCESSOR_MAX_POWER 8
#define ACPI_PROCESSOR_MAX_C2_LATENCY 100
#define ACPI_PROCESSOR_MAX_C3_LATENCY 1000
#define ACPI_PROCESSOR_MAX_THROTTLING 16
#define ACPI_PROCESSOR_MAX_THROTTLE 250 /* 25% */
#define ACPI_PROCESSOR_MAX_DUTY_WIDTH 4
#define ACPI_PDC_REVISION_ID 0x1
#define ACPI_PSD_REV0_REVISION 0 /* Support for _PSD as in ACPI 3.0 */
#define ACPI_PSD_REV0_ENTRIES 5
#define ACPI_TSD_REV0_REVISION 0 /* Support for _PSD as in ACPI 3.0 */
#define ACPI_TSD_REV0_ENTRIES 5
/*
* Types of coordination defined in ACPI 3.0. Same macros can be used across
* P, C and T states
*/
#define DOMAIN_COORD_TYPE_SW_ALL 0xfc
#define DOMAIN_COORD_TYPE_SW_ANY 0xfd
#define DOMAIN_COORD_TYPE_HW_ALL 0xfe
#define ACPI_CSTATE_SYSTEMIO (0)
#define ACPI_CSTATE_FFH (1)
/* Power Management */
struct acpi_processor_cx;
struct acpi_power_register {
u8 descriptor;
u16 length;
u8 space_id;
u8 bit_width;
u8 bit_offset;
u8 reserved;
u64 address;
} __attribute__ ((packed));
struct acpi_processor_cx_policy {
u32 count;
struct acpi_processor_cx *state;
struct {
u32 time;
u32 ticks;
u32 count;
u32 bm;
} threshold;
};
struct acpi_processor_cx {
u8 valid;
u8 type;
u32 address;
u8 space_id;
u8 index;
u32 latency;
u32 latency_ticks;
u32 power;
u32 usage;
u64 time;
struct acpi_processor_cx_policy promotion;
struct acpi_processor_cx_policy demotion;
};
struct acpi_processor_power {
struct acpi_processor_cx *state;
unsigned long bm_check_timestamp;
u32 default_state;
u32 bm_activity;
int count;
struct acpi_processor_cx states[ACPI_PROCESSOR_MAX_POWER];
int timer_broadcast_on_state;
};
/* Performance Management */
struct acpi_psd_package {
acpi_integer num_entries;
acpi_integer revision;
acpi_integer domain;
acpi_integer coord_type;
acpi_integer num_processors;
} __attribute__ ((packed));
struct acpi_pct_register {
u8 descriptor;
u16 length;
u8 space_id;
u8 bit_width;
u8 bit_offset;
u8 reserved;
u64 address;
} __attribute__ ((packed));
struct acpi_processor_px {
acpi_integer core_frequency; /* megahertz */
acpi_integer power; /* milliWatts */
acpi_integer transition_latency; /* microseconds */
acpi_integer bus_master_latency; /* microseconds */
acpi_integer control; /* control value */
acpi_integer status; /* success indicator */
};
struct acpi_processor_performance {
unsigned int state;
unsigned int platform_limit;
struct acpi_pct_register control_register;
struct acpi_pct_register status_register;
unsigned int state_count;
struct acpi_processor_px *states;
struct acpi_psd_package domain_info;
cpumask_t shared_cpu_map;
unsigned int shared_type;
};
/* Throttling Control */
struct acpi_tsd_package {
acpi_integer num_entries;
acpi_integer revision;
acpi_integer domain;
acpi_integer coord_type;
acpi_integer num_processors;
} __attribute__ ((packed));
struct acpi_ptc_register {
u8 descriptor;
u16 length;
u8 space_id;
u8 bit_width;
u8 bit_offset;
u8 reserved;
u64 address;
} __attribute__ ((packed));
struct acpi_processor_tx_tss {
acpi_integer freqpercentage; /* */
acpi_integer power; /* milliWatts */
acpi_integer transition_latency; /* microseconds */
acpi_integer control; /* control value */
acpi_integer status; /* success indicator */
};
struct acpi_processor_tx {
u16 power;
u16 performance;
};
struct acpi_processor;
struct acpi_processor_throttling {
unsigned int state;
unsigned int platform_limit;
struct acpi_pct_register control_register;
struct acpi_pct_register status_register;
unsigned int state_count;
struct acpi_processor_tx_tss *states_tss;
struct acpi_tsd_package domain_info;
cpumask_t shared_cpu_map;
int (*acpi_processor_get_throttling) (struct acpi_processor * pr);
int (*acpi_processor_set_throttling) (struct acpi_processor * pr,
int state);
u32 address;
u8 duty_offset;
u8 duty_width;
struct acpi_processor_tx states[ACPI_PROCESSOR_MAX_THROTTLING];
};
/* Limit Interface */
struct acpi_processor_lx {
int px; /* performace state */
int tx; /* throttle level */
};
struct acpi_processor_limit {
struct acpi_processor_lx state; /* current limit */
struct acpi_processor_lx thermal; /* thermal limit */
struct acpi_processor_lx user; /* user limit */
};
struct acpi_processor_flags {
u8 power:1;
u8 performance:1;
u8 throttling:1;
u8 limit:1;
u8 bm_control:1;
u8 bm_check:1;
u8 has_cst:1;
u8 power_setup_done:1;
};
struct acpi_processor {
acpi_handle handle;
u32 acpi_id;
u32 id;
u32 pblk;
int performance_platform_limit;
int throttling_platform_limit;
/* 0 - states 0..n-th state available */
struct acpi_processor_flags flags;
struct acpi_processor_power power;
struct acpi_processor_performance *performance;
struct acpi_processor_throttling throttling;
struct acpi_processor_limit limit;
/* the _PDC objects for this processor, if any */
struct acpi_object_list *pdc;
};
struct acpi_processor_errata {
u8 smp;
struct {
u8 throttle:1;
u8 fdma:1;
u8 reserved:6;
u32 bmisx;
} piix4;
};
extern int acpi_processor_preregister_performance(struct
acpi_processor_performance
*performance);
extern int acpi_processor_register_performance(struct acpi_processor_performance
*performance, unsigned int cpu);
extern void acpi_processor_unregister_performance(struct
acpi_processor_performance
*performance,
unsigned int cpu);
/* note: this locks both the calling module and the processor module
if a _PPC object exists, rmmod is disallowed then */
int acpi_processor_notify_smm(struct module *calling_module);
/* for communication between multiple parts of the processor kernel module */
extern struct acpi_processor *processors[NR_CPUS];
extern struct acpi_processor_errata errata;
void arch_acpi_processor_init_pdc(struct acpi_processor *pr);
#ifdef ARCH_HAS_POWER_INIT
void acpi_processor_power_init_bm_check(struct acpi_processor_flags *flags,
unsigned int cpu);
int acpi_processor_ffh_cstate_probe(unsigned int cpu,
struct acpi_processor_cx *cx,
struct acpi_power_register *reg);
void acpi_processor_ffh_cstate_enter(struct acpi_processor_cx *cstate);
#else
static inline void acpi_processor_power_init_bm_check(struct
acpi_processor_flags
*flags, unsigned int cpu)
{
flags->bm_check = 1;
return;
}
static inline int acpi_processor_ffh_cstate_probe(unsigned int cpu,
struct acpi_processor_cx *cx,
struct acpi_power_register
*reg)
{
return -1;
}
static inline void acpi_processor_ffh_cstate_enter(struct acpi_processor_cx
*cstate)
{
return;
}
#endif
/* in processor_perflib.c */
#ifdef CONFIG_CPU_FREQ
void acpi_processor_ppc_init(void);
void acpi_processor_ppc_exit(void);
int acpi_processor_ppc_has_changed(struct acpi_processor *pr);
#else
static inline void acpi_processor_ppc_init(void)
{
return;
}
static inline void acpi_processor_ppc_exit(void)
{
return;
}
static inline int acpi_processor_ppc_has_changed(struct acpi_processor *pr)
{
static unsigned int printout = 1;
if (printout) {
printk(KERN_WARNING
"Warning: Processor Platform Limit event detected, but not handled.\n");
printk(KERN_WARNING
"Consider compiling CPUfreq support into your kernel.\n");
printout = 0;
}
return 0;
}
#endif /* CONFIG_CPU_FREQ */
/* in processor_throttling.c */
int acpi_processor_get_throttling_info(struct acpi_processor *pr);
extern int acpi_processor_set_throttling(struct acpi_processor *pr, int state);
extern struct file_operations acpi_processor_throttling_fops;
/* in processor_idle.c */
int acpi_processor_power_init(struct acpi_processor *pr,
struct acpi_device *device);
int acpi_processor_cst_has_changed(struct acpi_processor *pr);
int acpi_processor_power_exit(struct acpi_processor *pr,
struct acpi_device *device);
int acpi_processor_suspend(struct acpi_device * device, pm_message_t state);
int acpi_processor_resume(struct acpi_device * device);
/* in processor_thermal.c */
int acpi_processor_get_limit_info(struct acpi_processor *pr);
extern struct file_operations acpi_processor_limit_fops;
#ifdef CONFIG_CPU_FREQ
void acpi_thermal_cpufreq_init(void);
void acpi_thermal_cpufreq_exit(void);
#else
static inline void acpi_thermal_cpufreq_init(void)
{
return;
}
static inline void acpi_thermal_cpufreq_exit(void)
{
return;
}
#endif
#endif