android_kernel_motorola_sm6225/arch/blackfin/mach-common/ints-priority-sc.c
Bernd Schmidt 8be80ed3f7 Blackfin arch: Initialize the exception vectors early in the boot process
Initialize the exception vectors early in the boot process, so that CPLB faults
can be handled when memory protection is enabled.

Signed-off-by: Bernd Schmidt <bernd.schmidt@analog.com>
Signed-off-by: Bryan Wu <bryan.wu@analog.com>
2007-07-25 14:44:49 +08:00

914 lines
21 KiB
C

/*
* File: arch/blackfin/mach-common/ints-priority-sc.c
* Based on:
* Author:
*
* Created: ?
* Description: Set up the interrupt priorities
*
* Modified:
* 1996 Roman Zippel
* 1999 D. Jeff Dionne <jeff@uclinux.org>
* 2000-2001 Lineo, Inc. D. Jefff Dionne <jeff@lineo.ca>
* 2002 Arcturus Networks Inc. MaTed <mated@sympatico.ca>
* 2003 Metrowerks/Motorola
* 2003 Bas Vermeulen <bas@buyways.nl>
* Copyright 2004-2007 Analog Devices Inc.
*
* Bugs: Enter bugs at http://blackfin.uclinux.org/
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, see the file COPYING, or write
* to the Free Software Foundation, Inc.,
* 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include <linux/module.h>
#include <linux/kernel_stat.h>
#include <linux/seq_file.h>
#include <linux/irq.h>
#ifdef CONFIG_KGDB
#include <linux/kgdb.h>
#endif
#include <asm/traps.h>
#include <asm/blackfin.h>
#include <asm/gpio.h>
#include <asm/irq_handler.h>
#ifdef BF537_FAMILY
# define BF537_GENERIC_ERROR_INT_DEMUX
#else
# undef BF537_GENERIC_ERROR_INT_DEMUX
#endif
/*
* NOTES:
* - we have separated the physical Hardware interrupt from the
* levels that the LINUX kernel sees (see the description in irq.h)
* -
*/
unsigned long irq_flags = 0;
/* The number of spurious interrupts */
atomic_t num_spurious;
struct ivgx {
/* irq number for request_irq, available in mach-bf533/irq.h */
unsigned int irqno;
/* corresponding bit in the SIC_ISR register */
unsigned int isrflag;
} ivg_table[NR_PERI_INTS];
struct ivg_slice {
/* position of first irq in ivg_table for given ivg */
struct ivgx *ifirst;
struct ivgx *istop;
} ivg7_13[IVG13 - IVG7 + 1];
static void search_IAR(void);
/*
* Search SIC_IAR and fill tables with the irqvalues
* and their positions in the SIC_ISR register.
*/
static void __init search_IAR(void)
{
unsigned ivg, irq_pos = 0;
for (ivg = 0; ivg <= IVG13 - IVG7; ivg++) {
int irqn;
ivg7_13[ivg].istop = ivg7_13[ivg].ifirst = &ivg_table[irq_pos];
for (irqn = 0; irqn < NR_PERI_INTS; irqn++) {
int iar_shift = (irqn & 7) * 4;
if (ivg ==
(0xf &
bfin_read32((unsigned long *)SIC_IAR0 +
(irqn >> 3)) >> iar_shift)) {
ivg_table[irq_pos].irqno = IVG7 + irqn;
ivg_table[irq_pos].isrflag = 1 << (irqn % 32);
ivg7_13[ivg].istop++;
irq_pos++;
}
}
}
}
/*
* This is for BF533 internal IRQs
*/
static void ack_noop(unsigned int irq)
{
/* Dummy function. */
}
static void bfin_core_mask_irq(unsigned int irq)
{
irq_flags &= ~(1 << irq);
if (!irqs_disabled())
local_irq_enable();
}
static void bfin_core_unmask_irq(unsigned int irq)
{
irq_flags |= 1 << irq;
/*
* If interrupts are enabled, IMASK must contain the same value
* as irq_flags. Make sure that invariant holds. If interrupts
* are currently disabled we need not do anything; one of the
* callers will take care of setting IMASK to the proper value
* when reenabling interrupts.
* local_irq_enable just does "STI irq_flags", so it's exactly
* what we need.
*/
if (!irqs_disabled())
local_irq_enable();
return;
}
static void bfin_internal_mask_irq(unsigned int irq)
{
#ifndef CONFIG_BF54x
bfin_write_SIC_IMASK(bfin_read_SIC_IMASK() &
~(1 << (irq - (IRQ_CORETMR + 1))));
#else
unsigned mask_bank, mask_bit;
mask_bank = (irq - (IRQ_CORETMR + 1)) / 32;
mask_bit = (irq - (IRQ_CORETMR + 1)) % 32;
bfin_write_SIC_IMASK(mask_bank, bfin_read_SIC_IMASK(mask_bank) &
~(1 << mask_bit));
#endif
SSYNC();
}
static void bfin_internal_unmask_irq(unsigned int irq)
{
#ifndef CONFIG_BF54x
bfin_write_SIC_IMASK(bfin_read_SIC_IMASK() |
(1 << (irq - (IRQ_CORETMR + 1))));
#else
unsigned mask_bank, mask_bit;
mask_bank = (irq - (IRQ_CORETMR + 1)) / 32;
mask_bit = (irq - (IRQ_CORETMR + 1)) % 32;
bfin_write_SIC_IMASK(mask_bank, bfin_read_SIC_IMASK(mask_bank) |
(1 << mask_bit));
#endif
SSYNC();
}
static struct irq_chip bfin_core_irqchip = {
.ack = ack_noop,
.mask = bfin_core_mask_irq,
.unmask = bfin_core_unmask_irq,
};
static struct irq_chip bfin_internal_irqchip = {
.ack = ack_noop,
.mask = bfin_internal_mask_irq,
.unmask = bfin_internal_unmask_irq,
};
#ifdef BF537_GENERIC_ERROR_INT_DEMUX
static int error_int_mask;
static void bfin_generic_error_ack_irq(unsigned int irq)
{
}
static void bfin_generic_error_mask_irq(unsigned int irq)
{
error_int_mask &= ~(1L << (irq - IRQ_PPI_ERROR));
if (!error_int_mask) {
local_irq_disable();
bfin_write_SIC_IMASK(bfin_read_SIC_IMASK() &
~(1 <<
(IRQ_GENERIC_ERROR -
(IRQ_CORETMR + 1))));
SSYNC();
local_irq_enable();
}
}
static void bfin_generic_error_unmask_irq(unsigned int irq)
{
local_irq_disable();
bfin_write_SIC_IMASK(bfin_read_SIC_IMASK() | 1 <<
(IRQ_GENERIC_ERROR - (IRQ_CORETMR + 1)));
SSYNC();
local_irq_enable();
error_int_mask |= 1L << (irq - IRQ_PPI_ERROR);
}
static struct irq_chip bfin_generic_error_irqchip = {
.ack = bfin_generic_error_ack_irq,
.mask = bfin_generic_error_mask_irq,
.unmask = bfin_generic_error_unmask_irq,
};
static void bfin_demux_error_irq(unsigned int int_err_irq,
struct irq_desc *intb_desc)
{
int irq = 0;
SSYNC();
#if (defined(CONFIG_BF537) || defined(CONFIG_BF536))
if (bfin_read_EMAC_SYSTAT() & EMAC_ERR_MASK)
irq = IRQ_MAC_ERROR;
else
#endif
if (bfin_read_SPORT0_STAT() & SPORT_ERR_MASK)
irq = IRQ_SPORT0_ERROR;
else if (bfin_read_SPORT1_STAT() & SPORT_ERR_MASK)
irq = IRQ_SPORT1_ERROR;
else if (bfin_read_PPI_STATUS() & PPI_ERR_MASK)
irq = IRQ_PPI_ERROR;
else if (bfin_read_CAN_GIF() & CAN_ERR_MASK)
irq = IRQ_CAN_ERROR;
else if (bfin_read_SPI_STAT() & SPI_ERR_MASK)
irq = IRQ_SPI_ERROR;
else if ((bfin_read_UART0_IIR() & UART_ERR_MASK_STAT1) &&
(bfin_read_UART0_IIR() & UART_ERR_MASK_STAT0))
irq = IRQ_UART0_ERROR;
else if ((bfin_read_UART1_IIR() & UART_ERR_MASK_STAT1) &&
(bfin_read_UART1_IIR() & UART_ERR_MASK_STAT0))
irq = IRQ_UART1_ERROR;
if (irq) {
if (error_int_mask & (1L << (irq - IRQ_PPI_ERROR))) {
struct irq_desc *desc = irq_desc + irq;
desc->handle_irq(irq, desc);
} else {
switch (irq) {
case IRQ_PPI_ERROR:
bfin_write_PPI_STATUS(PPI_ERR_MASK);
break;
#if (defined(CONFIG_BF537) || defined(CONFIG_BF536))
case IRQ_MAC_ERROR:
bfin_write_EMAC_SYSTAT(EMAC_ERR_MASK);
break;
#endif
case IRQ_SPORT0_ERROR:
bfin_write_SPORT0_STAT(SPORT_ERR_MASK);
break;
case IRQ_SPORT1_ERROR:
bfin_write_SPORT1_STAT(SPORT_ERR_MASK);
break;
case IRQ_CAN_ERROR:
bfin_write_CAN_GIS(CAN_ERR_MASK);
break;
case IRQ_SPI_ERROR:
bfin_write_SPI_STAT(SPI_ERR_MASK);
break;
default:
break;
}
pr_debug("IRQ %d:"
" MASKED PERIPHERAL ERROR INTERRUPT ASSERTED\n",
irq);
}
} else
printk(KERN_ERR
"%s : %s : LINE %d :\nIRQ ?: PERIPHERAL ERROR"
" INTERRUPT ASSERTED BUT NO SOURCE FOUND\n",
__FUNCTION__, __FILE__, __LINE__);
}
#endif /* BF537_GENERIC_ERROR_INT_DEMUX */
#if defined(CONFIG_IRQCHIP_DEMUX_GPIO) && !defined(CONFIG_BF54x)
static unsigned short gpio_enabled[gpio_bank(MAX_BLACKFIN_GPIOS)];
static unsigned short gpio_edge_triggered[gpio_bank(MAX_BLACKFIN_GPIOS)];
static void bfin_gpio_ack_irq(unsigned int irq)
{
u16 gpionr = irq - IRQ_PF0;
if (gpio_edge_triggered[gpio_bank(gpionr)] & gpio_bit(gpionr)) {
set_gpio_data(gpionr, 0);
SSYNC();
}
}
static void bfin_gpio_mask_ack_irq(unsigned int irq)
{
u16 gpionr = irq - IRQ_PF0;
if (gpio_edge_triggered[gpio_bank(gpionr)] & gpio_bit(gpionr)) {
set_gpio_data(gpionr, 0);
SSYNC();
}
set_gpio_maska(gpionr, 0);
SSYNC();
}
static void bfin_gpio_mask_irq(unsigned int irq)
{
set_gpio_maska(irq - IRQ_PF0, 0);
SSYNC();
}
static void bfin_gpio_unmask_irq(unsigned int irq)
{
set_gpio_maska(irq - IRQ_PF0, 1);
SSYNC();
}
static unsigned int bfin_gpio_irq_startup(unsigned int irq)
{
unsigned int ret;
u16 gpionr = irq - IRQ_PF0;
if (!(gpio_enabled[gpio_bank(gpionr)] & gpio_bit(gpionr))) {
ret = gpio_request(gpionr, NULL);
if (ret)
return ret;
}
gpio_enabled[gpio_bank(gpionr)] |= gpio_bit(gpionr);
bfin_gpio_unmask_irq(irq);
return ret;
}
static void bfin_gpio_irq_shutdown(unsigned int irq)
{
bfin_gpio_mask_irq(irq);
gpio_free(irq - IRQ_PF0);
gpio_enabled[gpio_bank(irq - IRQ_PF0)] &= ~gpio_bit(irq - IRQ_PF0);
}
static int bfin_gpio_irq_type(unsigned int irq, unsigned int type)
{
unsigned int ret;
u16 gpionr = irq - IRQ_PF0;
if (type == IRQ_TYPE_PROBE) {
/* only probe unenabled GPIO interrupt lines */
if (gpio_enabled[gpio_bank(gpionr)] & gpio_bit(gpionr))
return 0;
type = IRQ_TYPE_EDGE_RISING | IRQ_TYPE_EDGE_FALLING;
}
if (type & (IRQ_TYPE_EDGE_RISING | IRQ_TYPE_EDGE_FALLING |
IRQ_TYPE_LEVEL_HIGH | IRQ_TYPE_LEVEL_LOW)) {
if (!(gpio_enabled[gpio_bank(gpionr)] & gpio_bit(gpionr))) {
ret = gpio_request(gpionr, NULL);
if (ret)
return ret;
}
gpio_enabled[gpio_bank(gpionr)] |= gpio_bit(gpionr);
} else {
gpio_enabled[gpio_bank(gpionr)] &= ~gpio_bit(gpionr);
return 0;
}
set_gpio_dir(gpionr, 0);
set_gpio_inen(gpionr, 1);
if (type & (IRQ_TYPE_EDGE_RISING | IRQ_TYPE_EDGE_FALLING)) {
gpio_edge_triggered[gpio_bank(gpionr)] |= gpio_bit(gpionr);
set_gpio_edge(gpionr, 1);
} else {
set_gpio_edge(gpionr, 0);
gpio_edge_triggered[gpio_bank(gpionr)] &= ~gpio_bit(gpionr);
}
if ((type & (IRQ_TYPE_EDGE_RISING | IRQ_TYPE_EDGE_FALLING))
== (IRQ_TYPE_EDGE_RISING | IRQ_TYPE_EDGE_FALLING))
set_gpio_both(gpionr, 1);
else
set_gpio_both(gpionr, 0);
if ((type & (IRQ_TYPE_EDGE_FALLING | IRQ_TYPE_LEVEL_LOW)))
set_gpio_polar(gpionr, 1); /* low or falling edge denoted by one */
else
set_gpio_polar(gpionr, 0); /* high or rising edge denoted by zero */
SSYNC();
if (type & (IRQ_TYPE_EDGE_RISING | IRQ_TYPE_EDGE_FALLING))
set_irq_handler(irq, handle_edge_irq);
else
set_irq_handler(irq, handle_level_irq);
return 0;
}
static struct irq_chip bfin_gpio_irqchip = {
.ack = bfin_gpio_ack_irq,
.mask = bfin_gpio_mask_irq,
.mask_ack = bfin_gpio_mask_ack_irq,
.unmask = bfin_gpio_unmask_irq,
.set_type = bfin_gpio_irq_type,
.startup = bfin_gpio_irq_startup,
.shutdown = bfin_gpio_irq_shutdown
};
static void bfin_demux_gpio_irq(unsigned int intb_irq,
struct irq_desc *intb_desc)
{
u16 i;
struct irq_desc *desc;
for (i = 0; i < MAX_BLACKFIN_GPIOS; i += 16) {
int irq = IRQ_PF0 + i;
int flag_d = get_gpiop_data(i);
int mask =
flag_d & (gpio_enabled[gpio_bank(i)] & get_gpiop_maska(i));
while (mask) {
if (mask & 1) {
desc = irq_desc + irq;
desc->handle_irq(irq, desc);
}
irq++;
mask >>= 1;
}
}
}
#else /* CONFIG_IRQCHIP_DEMUX_GPIO */
#define NR_PINT_SYS_IRQS 4
#define NR_PINT_BITS 32
#define NR_PINTS 160
#define IRQ_NOT_AVAIL 0xFF
#define PINT_2_BANK(x) ((x) >> 5)
#define PINT_2_BIT(x) ((x) & 0x1F)
#define PINT_BIT(x) (1 << (PINT_2_BIT(x)))
static unsigned char irq2pint_lut[NR_PINTS];
static unsigned char pint2irq_lut[NR_PINT_SYS_IRQS * NR_PINT_BITS];
struct pin_int_t {
unsigned int mask_set;
unsigned int mask_clear;
unsigned int request;
unsigned int assign;
unsigned int edge_set;
unsigned int edge_clear;
unsigned int invert_set;
unsigned int invert_clear;
unsigned int pinstate;
unsigned int latch;
};
static struct pin_int_t *pint[NR_PINT_SYS_IRQS] = {
(struct pin_int_t *)PINT0_MASK_SET,
(struct pin_int_t *)PINT1_MASK_SET,
(struct pin_int_t *)PINT2_MASK_SET,
(struct pin_int_t *)PINT3_MASK_SET,
};
unsigned short get_irq_base(u8 bank, u8 bmap)
{
u16 irq_base;
if (bank < 2) { /*PA-PB */
irq_base = IRQ_PA0 + bmap * 16;
} else { /*PC-PJ */
irq_base = IRQ_PC0 + bmap * 16;
}
return irq_base;
}
/* Whenever PINTx_ASSIGN is altered init_pint_lut() must be executed! */
void init_pint_lut(void)
{
u16 bank, bit, irq_base, bit_pos;
u32 pint_assign;
u8 bmap;
memset(irq2pint_lut, IRQ_NOT_AVAIL, sizeof(irq2pint_lut));
for (bank = 0; bank < NR_PINT_SYS_IRQS; bank++) {
pint_assign = pint[bank]->assign;
for (bit = 0; bit < NR_PINT_BITS; bit++) {
bmap = (pint_assign >> ((bit / 8) * 8)) & 0xFF;
irq_base = get_irq_base(bank, bmap);
irq_base += (bit % 8) + ((bit / 8) & 1 ? 8 : 0);
bit_pos = bit + bank * NR_PINT_BITS;
pint2irq_lut[bit_pos] = irq_base - SYS_IRQS;
irq2pint_lut[irq_base - SYS_IRQS] = bit_pos;
}
}
}
static unsigned short gpio_enabled[gpio_bank(MAX_BLACKFIN_GPIOS)];
static void bfin_gpio_ack_irq(unsigned int irq)
{
u8 pint_val = irq2pint_lut[irq - SYS_IRQS];
pint[PINT_2_BANK(pint_val)]->request = PINT_BIT(pint_val);
SSYNC();
}
static void bfin_gpio_mask_ack_irq(unsigned int irq)
{
u8 pint_val = irq2pint_lut[irq - SYS_IRQS];
u32 pintbit = PINT_BIT(pint_val);
u8 bank = PINT_2_BANK(pint_val);
pint[bank]->request = pintbit;
pint[bank]->mask_clear = pintbit;
SSYNC();
}
static void bfin_gpio_mask_irq(unsigned int irq)
{
u8 pint_val = irq2pint_lut[irq - SYS_IRQS];
pint[PINT_2_BANK(pint_val)]->mask_clear = PINT_BIT(pint_val);
SSYNC();
}
static void bfin_gpio_unmask_irq(unsigned int irq)
{
u8 pint_val = irq2pint_lut[irq - SYS_IRQS];
u32 pintbit = PINT_BIT(pint_val);
u8 bank = PINT_2_BANK(pint_val);
pint[bank]->request = pintbit;
pint[bank]->mask_set = pintbit;
SSYNC();
}
static unsigned int bfin_gpio_irq_startup(unsigned int irq)
{
unsigned int ret;
u16 gpionr = irq - IRQ_PA0;
u8 pint_val = irq2pint_lut[irq - SYS_IRQS];
if (pint_val == IRQ_NOT_AVAIL)
return -ENODEV;
if (!(gpio_enabled[gpio_bank(gpionr)] & gpio_bit(gpionr))) {
ret = gpio_request(gpionr, NULL);
if (ret)
return ret;
}
gpio_enabled[gpio_bank(gpionr)] |= gpio_bit(gpionr);
bfin_gpio_unmask_irq(irq);
return ret;
}
static void bfin_gpio_irq_shutdown(unsigned int irq)
{
bfin_gpio_mask_irq(irq);
gpio_free(irq - IRQ_PA0);
gpio_enabled[gpio_bank(irq - IRQ_PA0)] &= ~gpio_bit(irq - IRQ_PA0);
}
static int bfin_gpio_irq_type(unsigned int irq, unsigned int type)
{
unsigned int ret;
u16 gpionr = irq - IRQ_PA0;
u8 pint_val = irq2pint_lut[irq - SYS_IRQS];
u32 pintbit = PINT_BIT(pint_val);
u8 bank = PINT_2_BANK(pint_val);
if (pint_val == IRQ_NOT_AVAIL)
return -ENODEV;
if (type == IRQ_TYPE_PROBE) {
/* only probe unenabled GPIO interrupt lines */
if (gpio_enabled[gpio_bank(gpionr)] & gpio_bit(gpionr))
return 0;
type = IRQ_TYPE_EDGE_RISING | IRQ_TYPE_EDGE_FALLING;
}
if (type & (IRQ_TYPE_EDGE_RISING | IRQ_TYPE_EDGE_FALLING |
IRQ_TYPE_LEVEL_HIGH | IRQ_TYPE_LEVEL_LOW)) {
if (!(gpio_enabled[gpio_bank(gpionr)] & gpio_bit(gpionr))) {
ret = gpio_request(gpionr, NULL);
if (ret)
return ret;
}
gpio_enabled[gpio_bank(gpionr)] |= gpio_bit(gpionr);
} else {
gpio_enabled[gpio_bank(gpionr)] &= ~gpio_bit(gpionr);
return 0;
}
gpio_direction_input(gpionr);
if (type & (IRQ_TYPE_EDGE_RISING | IRQ_TYPE_EDGE_FALLING)) {
pint[bank]->edge_set = pintbit;
} else {
pint[bank]->edge_clear = pintbit;
}
if ((type & (IRQ_TYPE_EDGE_FALLING | IRQ_TYPE_LEVEL_LOW)))
pint[bank]->invert_set = pintbit; /* low or falling edge denoted by one */
else
pint[bank]->invert_set = pintbit; /* high or rising edge denoted by zero */
if (type & (IRQ_TYPE_EDGE_RISING | IRQ_TYPE_EDGE_FALLING))
pint[bank]->invert_set = pintbit;
else
pint[bank]->invert_set = pintbit;
SSYNC();
if (type & (IRQ_TYPE_EDGE_RISING | IRQ_TYPE_EDGE_FALLING))
set_irq_handler(irq, handle_edge_irq);
else
set_irq_handler(irq, handle_level_irq);
return 0;
}
static struct irq_chip bfin_gpio_irqchip = {
.ack = bfin_gpio_ack_irq,
.mask = bfin_gpio_mask_irq,
.mask_ack = bfin_gpio_mask_ack_irq,
.unmask = bfin_gpio_unmask_irq,
.set_type = bfin_gpio_irq_type,
.startup = bfin_gpio_irq_startup,
.shutdown = bfin_gpio_irq_shutdown
};
static void bfin_demux_gpio_irq(unsigned int intb_irq,
struct irq_desc *intb_desc)
{
u8 bank, pint_val;
u32 request, irq;
struct irq_desc *desc;
switch (intb_irq) {
case IRQ_PINT0:
bank = 0;
break;
case IRQ_PINT2:
bank = 2;
break;
case IRQ_PINT3:
bank = 3;
break;
case IRQ_PINT1:
bank = 1;
break;
default:
return;
}
pint_val = bank * NR_PINT_BITS;
request = pint[bank]->request;
while (request) {
if (request & 1) {
irq = pint2irq_lut[pint_val] + SYS_IRQS;
desc = irq_desc + irq;
desc->handle_irq(irq, desc);
}
pint_val++;
request >>= 1;
}
}
#endif /* CONFIG_IRQCHIP_DEMUX_GPIO */
void __init init_exception_vectors(void)
{
SSYNC();
#ifndef CONFIG_KGDB
bfin_write_EVT0(evt_emulation);
#endif
bfin_write_EVT2(evt_evt2);
bfin_write_EVT3(trap);
bfin_write_EVT5(evt_ivhw);
bfin_write_EVT6(evt_timer);
bfin_write_EVT7(evt_evt7);
bfin_write_EVT8(evt_evt8);
bfin_write_EVT9(evt_evt9);
bfin_write_EVT10(evt_evt10);
bfin_write_EVT11(evt_evt11);
bfin_write_EVT12(evt_evt12);
bfin_write_EVT13(evt_evt13);
bfin_write_EVT14(evt14_softirq);
bfin_write_EVT15(evt_system_call);
CSYNC();
}
/*
* This function should be called during kernel startup to initialize
* the BFin IRQ handling routines.
*/
int __init init_arch_irq(void)
{
int irq;
unsigned long ilat = 0;
/* Disable all the peripheral intrs - page 4-29 HW Ref manual */
#ifdef CONFIG_BF54x
bfin_write_SIC_IMASK0(SIC_UNMASK_ALL);
bfin_write_SIC_IMASK1(SIC_UNMASK_ALL);
bfin_write_SIC_IMASK2(SIC_UNMASK_ALL);
bfin_write_SIC_IWR0(IWR_ENABLE_ALL);
bfin_write_SIC_IWR1(IWR_ENABLE_ALL);
bfin_write_SIC_IWR2(IWR_ENABLE_ALL);
#else
bfin_write_SIC_IMASK(SIC_UNMASK_ALL);
bfin_write_SIC_IWR(IWR_ENABLE_ALL);
#endif
SSYNC();
local_irq_disable();
#if defined(CONFIG_IRQCHIP_DEMUX_GPIO) && defined(CONFIG_BF54x)
#ifdef CONFIG_PINTx_REASSIGN
pint[0]->assign = CONFIG_PINT0_ASSIGN;
pint[1]->assign = CONFIG_PINT1_ASSIGN;
pint[2]->assign = CONFIG_PINT2_ASSIGN;
pint[3]->assign = CONFIG_PINT3_ASSIGN;
#endif
/* Whenever PINTx_ASSIGN is altered init_pint_lut() must be executed! */
init_pint_lut();
#endif
for (irq = 0; irq <= SYS_IRQS; irq++) {
if (irq <= IRQ_CORETMR)
set_irq_chip(irq, &bfin_core_irqchip);
else
set_irq_chip(irq, &bfin_internal_irqchip);
#ifdef BF537_GENERIC_ERROR_INT_DEMUX
if (irq != IRQ_GENERIC_ERROR) {
#endif
switch (irq) {
#ifdef CONFIG_IRQCHIP_DEMUX_GPIO
#ifndef CONFIG_BF54x
case IRQ_PROG_INTA:
set_irq_chained_handler(irq,
bfin_demux_gpio_irq);
break;
#if defined(BF537_FAMILY) && !(defined(CONFIG_BFIN_MAC) || defined(CONFIG_BFIN_MAC_MODULE))
case IRQ_MAC_RX:
set_irq_chained_handler(irq,
bfin_demux_gpio_irq);
break;
#endif
#else
case IRQ_PINT0:
set_irq_chained_handler(irq,
bfin_demux_gpio_irq);
break;
case IRQ_PINT1:
set_irq_chained_handler(irq,
bfin_demux_gpio_irq);
break;
case IRQ_PINT2:
set_irq_chained_handler(irq,
bfin_demux_gpio_irq);
break;
case IRQ_PINT3:
set_irq_chained_handler(irq,
bfin_demux_gpio_irq);
break;
#endif /*CONFIG_BF54x */
#endif
default:
set_irq_handler(irq, handle_simple_irq);
break;
}
#ifdef BF537_GENERIC_ERROR_INT_DEMUX
} else {
set_irq_handler(irq, bfin_demux_error_irq);
}
#endif
}
#ifdef BF537_GENERIC_ERROR_INT_DEMUX
for (irq = IRQ_PPI_ERROR; irq <= IRQ_UART1_ERROR; irq++) {
set_irq_chip(irq, &bfin_generic_error_irqchip);
set_irq_handler(irq, handle_level_irq);
}
#endif
#ifdef CONFIG_IRQCHIP_DEMUX_GPIO
#ifndef CONFIG_BF54x
for (irq = IRQ_PF0; irq < NR_IRQS; irq++) {
#else
for (irq = IRQ_PA0; irq < NR_IRQS; irq++) {
#endif
set_irq_chip(irq, &bfin_gpio_irqchip);
/* if configured as edge, then will be changed to do_edge_IRQ */
set_irq_handler(irq, handle_level_irq);
}
#endif
bfin_write_IMASK(0);
CSYNC();
ilat = bfin_read_ILAT();
CSYNC();
bfin_write_ILAT(ilat);
CSYNC();
printk(KERN_INFO "Configuring Blackfin Priority Driven Interrupts\n");
/* IMASK=xxx is equivalent to STI xx or irq_flags=xx,
* local_irq_enable()
*/
program_IAR();
/* Therefore it's better to setup IARs before interrupts enabled */
search_IAR();
/* Enable interrupts IVG7-15 */
irq_flags = irq_flags | IMASK_IVG15 |
IMASK_IVG14 | IMASK_IVG13 | IMASK_IVG12 | IMASK_IVG11 |
IMASK_IVG10 | IMASK_IVG9 | IMASK_IVG8 | IMASK_IVG7 | IMASK_IVGHW;
return 0;
}
#ifdef CONFIG_DO_IRQ_L1
void do_irq(int vec, struct pt_regs *fp) __attribute__((l1_text));
#endif
void do_irq(int vec, struct pt_regs *fp)
{
if (vec == EVT_IVTMR_P) {
vec = IRQ_CORETMR;
} else {
struct ivgx *ivg = ivg7_13[vec - IVG7].ifirst;
struct ivgx *ivg_stop = ivg7_13[vec - IVG7].istop;
#ifdef CONFIG_BF54x
unsigned long sic_status[3];
SSYNC();
sic_status[0] = bfin_read_SIC_ISR(0) & bfin_read_SIC_IMASK(0);
sic_status[1] = bfin_read_SIC_ISR(1) & bfin_read_SIC_IMASK(1);
sic_status[2] = bfin_read_SIC_ISR(2) & bfin_read_SIC_IMASK(2);
for (;; ivg++) {
if (ivg >= ivg_stop) {
atomic_inc(&num_spurious);
return;
}
if (sic_status[(ivg->irqno - IVG7) / 32] & ivg->isrflag)
break;
}
#else
unsigned long sic_status;
SSYNC();
sic_status = bfin_read_SIC_IMASK() & bfin_read_SIC_ISR();
for (;; ivg++) {
if (ivg >= ivg_stop) {
atomic_inc(&num_spurious);
return;
} else if (sic_status & ivg->isrflag)
break;
}
#endif
vec = ivg->irqno;
}
asm_do_IRQ(vec, fp);
#ifdef CONFIG_KGDB
kgdb_process_breakpoint();
#endif
}