b291aa7a65
I have had four seperate system lockups attributable to this exact problem in two days of testing. Instead of trying to handle all the weird end cases and wrap, how about changing it to look for exactly what we appear to want. The following patch removes a couple races in setup_APIC_timer. One occurs when the HPET advances the COUNTER past the T0_CMP value between the time the T0_CMP was originally read and when COUNTER is read. This results in a delay waiting for the counter to wrap. The other results from the counter wrapping. This change takes a snapshot of T0_CMP at the beginning of the loop and simply loops until T0_CMP has changed (a tick has happened). <later> I have one small concern about the patch. I am not sure it meets the intent as well as it should. I think we are trying to match APIC timer interrupts up with the hpet counter increment. The event which appears to be disturbing this loop in our test environment is the NMI watchdog. What we believe has been happening with the existing code is the setup_APIC_timer loop has read the CMP value, and the NMI watchdog code fires for the first time. This results in a series of icache miss slowdowns and by the time we get back to things it has wrapped. I think this code is trying to get the CMP as close to the counter value as possible. If that is the intent, maybe we should really be testing against a "window" around the CMP. Something like COUNTER = CMP+/2. It appears COUNTER should get advanced every 89nSec (IIRC). The above seems like an unreasonably small window, but may be necessary. Without documentation, I am not sure of the original intent with this code. In summary, this code fixes my boot hangs, but since I am not certain of the intent of the existing code, I am not certain this has not introduced new bugs or unexpected behaviors. Signed-off-by: Robin Holt <holt@sgi.com> Acked-by: Andi Kleen <ak@suse.de> Cc: Vojtech Pavlik <vojtech@suse.cz> Cc: "Aaron Durbin" <adurbin@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
1253 lines
30 KiB
C
1253 lines
30 KiB
C
/*
|
|
* Local APIC handling, local APIC timers
|
|
*
|
|
* (c) 1999, 2000 Ingo Molnar <mingo@redhat.com>
|
|
*
|
|
* Fixes
|
|
* Maciej W. Rozycki : Bits for genuine 82489DX APICs;
|
|
* thanks to Eric Gilmore
|
|
* and Rolf G. Tews
|
|
* for testing these extensively.
|
|
* Maciej W. Rozycki : Various updates and fixes.
|
|
* Mikael Pettersson : Power Management for UP-APIC.
|
|
* Pavel Machek and
|
|
* Mikael Pettersson : PM converted to driver model.
|
|
*/
|
|
|
|
#include <linux/init.h>
|
|
|
|
#include <linux/mm.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/bootmem.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/mc146818rtc.h>
|
|
#include <linux/kernel_stat.h>
|
|
#include <linux/sysdev.h>
|
|
#include <linux/module.h>
|
|
#include <linux/ioport.h>
|
|
|
|
#include <asm/atomic.h>
|
|
#include <asm/smp.h>
|
|
#include <asm/mtrr.h>
|
|
#include <asm/mpspec.h>
|
|
#include <asm/pgalloc.h>
|
|
#include <asm/mach_apic.h>
|
|
#include <asm/nmi.h>
|
|
#include <asm/idle.h>
|
|
#include <asm/proto.h>
|
|
#include <asm/timex.h>
|
|
#include <asm/hpet.h>
|
|
#include <asm/apic.h>
|
|
|
|
int apic_mapped;
|
|
int apic_verbosity;
|
|
int apic_runs_main_timer;
|
|
int apic_calibrate_pmtmr __initdata;
|
|
|
|
int disable_apic_timer __initdata;
|
|
|
|
/* Local APIC timer works in C2? */
|
|
int local_apic_timer_c2_ok;
|
|
EXPORT_SYMBOL_GPL(local_apic_timer_c2_ok);
|
|
|
|
static struct resource *ioapic_resources;
|
|
static struct resource lapic_resource = {
|
|
.name = "Local APIC",
|
|
.flags = IORESOURCE_MEM | IORESOURCE_BUSY,
|
|
};
|
|
|
|
/*
|
|
* cpu_mask that denotes the CPUs that needs timer interrupt coming in as
|
|
* IPIs in place of local APIC timers
|
|
*/
|
|
static cpumask_t timer_interrupt_broadcast_ipi_mask;
|
|
|
|
/* Using APIC to generate smp_local_timer_interrupt? */
|
|
int using_apic_timer __read_mostly = 0;
|
|
|
|
static void apic_pm_activate(void);
|
|
|
|
void apic_wait_icr_idle(void)
|
|
{
|
|
while (apic_read(APIC_ICR) & APIC_ICR_BUSY)
|
|
cpu_relax();
|
|
}
|
|
|
|
unsigned int safe_apic_wait_icr_idle(void)
|
|
{
|
|
unsigned int send_status;
|
|
int timeout;
|
|
|
|
timeout = 0;
|
|
do {
|
|
send_status = apic_read(APIC_ICR) & APIC_ICR_BUSY;
|
|
if (!send_status)
|
|
break;
|
|
udelay(100);
|
|
} while (timeout++ < 1000);
|
|
|
|
return send_status;
|
|
}
|
|
|
|
void enable_NMI_through_LVT0 (void * dummy)
|
|
{
|
|
unsigned int v;
|
|
|
|
/* unmask and set to NMI */
|
|
v = APIC_DM_NMI;
|
|
apic_write(APIC_LVT0, v);
|
|
}
|
|
|
|
int get_maxlvt(void)
|
|
{
|
|
unsigned int v, maxlvt;
|
|
|
|
v = apic_read(APIC_LVR);
|
|
maxlvt = GET_APIC_MAXLVT(v);
|
|
return maxlvt;
|
|
}
|
|
|
|
/*
|
|
* 'what should we do if we get a hw irq event on an illegal vector'.
|
|
* each architecture has to answer this themselves.
|
|
*/
|
|
void ack_bad_irq(unsigned int irq)
|
|
{
|
|
printk("unexpected IRQ trap at vector %02x\n", irq);
|
|
/*
|
|
* Currently unexpected vectors happen only on SMP and APIC.
|
|
* We _must_ ack these because every local APIC has only N
|
|
* irq slots per priority level, and a 'hanging, unacked' IRQ
|
|
* holds up an irq slot - in excessive cases (when multiple
|
|
* unexpected vectors occur) that might lock up the APIC
|
|
* completely.
|
|
* But don't ack when the APIC is disabled. -AK
|
|
*/
|
|
if (!disable_apic)
|
|
ack_APIC_irq();
|
|
}
|
|
|
|
void clear_local_APIC(void)
|
|
{
|
|
int maxlvt;
|
|
unsigned int v;
|
|
|
|
maxlvt = get_maxlvt();
|
|
|
|
/*
|
|
* Masking an LVT entry can trigger a local APIC error
|
|
* if the vector is zero. Mask LVTERR first to prevent this.
|
|
*/
|
|
if (maxlvt >= 3) {
|
|
v = ERROR_APIC_VECTOR; /* any non-zero vector will do */
|
|
apic_write(APIC_LVTERR, v | APIC_LVT_MASKED);
|
|
}
|
|
/*
|
|
* Careful: we have to set masks only first to deassert
|
|
* any level-triggered sources.
|
|
*/
|
|
v = apic_read(APIC_LVTT);
|
|
apic_write(APIC_LVTT, v | APIC_LVT_MASKED);
|
|
v = apic_read(APIC_LVT0);
|
|
apic_write(APIC_LVT0, v | APIC_LVT_MASKED);
|
|
v = apic_read(APIC_LVT1);
|
|
apic_write(APIC_LVT1, v | APIC_LVT_MASKED);
|
|
if (maxlvt >= 4) {
|
|
v = apic_read(APIC_LVTPC);
|
|
apic_write(APIC_LVTPC, v | APIC_LVT_MASKED);
|
|
}
|
|
|
|
/*
|
|
* Clean APIC state for other OSs:
|
|
*/
|
|
apic_write(APIC_LVTT, APIC_LVT_MASKED);
|
|
apic_write(APIC_LVT0, APIC_LVT_MASKED);
|
|
apic_write(APIC_LVT1, APIC_LVT_MASKED);
|
|
if (maxlvt >= 3)
|
|
apic_write(APIC_LVTERR, APIC_LVT_MASKED);
|
|
if (maxlvt >= 4)
|
|
apic_write(APIC_LVTPC, APIC_LVT_MASKED);
|
|
apic_write(APIC_ESR, 0);
|
|
apic_read(APIC_ESR);
|
|
}
|
|
|
|
void disconnect_bsp_APIC(int virt_wire_setup)
|
|
{
|
|
/* Go back to Virtual Wire compatibility mode */
|
|
unsigned long value;
|
|
|
|
/* For the spurious interrupt use vector F, and enable it */
|
|
value = apic_read(APIC_SPIV);
|
|
value &= ~APIC_VECTOR_MASK;
|
|
value |= APIC_SPIV_APIC_ENABLED;
|
|
value |= 0xf;
|
|
apic_write(APIC_SPIV, value);
|
|
|
|
if (!virt_wire_setup) {
|
|
/* For LVT0 make it edge triggered, active high, external and enabled */
|
|
value = apic_read(APIC_LVT0);
|
|
value &= ~(APIC_MODE_MASK | APIC_SEND_PENDING |
|
|
APIC_INPUT_POLARITY | APIC_LVT_REMOTE_IRR |
|
|
APIC_LVT_LEVEL_TRIGGER | APIC_LVT_MASKED );
|
|
value |= APIC_LVT_REMOTE_IRR | APIC_SEND_PENDING;
|
|
value = SET_APIC_DELIVERY_MODE(value, APIC_MODE_EXTINT);
|
|
apic_write(APIC_LVT0, value);
|
|
} else {
|
|
/* Disable LVT0 */
|
|
apic_write(APIC_LVT0, APIC_LVT_MASKED);
|
|
}
|
|
|
|
/* For LVT1 make it edge triggered, active high, nmi and enabled */
|
|
value = apic_read(APIC_LVT1);
|
|
value &= ~(APIC_MODE_MASK | APIC_SEND_PENDING |
|
|
APIC_INPUT_POLARITY | APIC_LVT_REMOTE_IRR |
|
|
APIC_LVT_LEVEL_TRIGGER | APIC_LVT_MASKED);
|
|
value |= APIC_LVT_REMOTE_IRR | APIC_SEND_PENDING;
|
|
value = SET_APIC_DELIVERY_MODE(value, APIC_MODE_NMI);
|
|
apic_write(APIC_LVT1, value);
|
|
}
|
|
|
|
void disable_local_APIC(void)
|
|
{
|
|
unsigned int value;
|
|
|
|
clear_local_APIC();
|
|
|
|
/*
|
|
* Disable APIC (implies clearing of registers
|
|
* for 82489DX!).
|
|
*/
|
|
value = apic_read(APIC_SPIV);
|
|
value &= ~APIC_SPIV_APIC_ENABLED;
|
|
apic_write(APIC_SPIV, value);
|
|
}
|
|
|
|
/*
|
|
* This is to verify that we're looking at a real local APIC.
|
|
* Check these against your board if the CPUs aren't getting
|
|
* started for no apparent reason.
|
|
*/
|
|
int __init verify_local_APIC(void)
|
|
{
|
|
unsigned int reg0, reg1;
|
|
|
|
/*
|
|
* The version register is read-only in a real APIC.
|
|
*/
|
|
reg0 = apic_read(APIC_LVR);
|
|
apic_printk(APIC_DEBUG, "Getting VERSION: %x\n", reg0);
|
|
apic_write(APIC_LVR, reg0 ^ APIC_LVR_MASK);
|
|
reg1 = apic_read(APIC_LVR);
|
|
apic_printk(APIC_DEBUG, "Getting VERSION: %x\n", reg1);
|
|
|
|
/*
|
|
* The two version reads above should print the same
|
|
* numbers. If the second one is different, then we
|
|
* poke at a non-APIC.
|
|
*/
|
|
if (reg1 != reg0)
|
|
return 0;
|
|
|
|
/*
|
|
* Check if the version looks reasonably.
|
|
*/
|
|
reg1 = GET_APIC_VERSION(reg0);
|
|
if (reg1 == 0x00 || reg1 == 0xff)
|
|
return 0;
|
|
reg1 = get_maxlvt();
|
|
if (reg1 < 0x02 || reg1 == 0xff)
|
|
return 0;
|
|
|
|
/*
|
|
* The ID register is read/write in a real APIC.
|
|
*/
|
|
reg0 = apic_read(APIC_ID);
|
|
apic_printk(APIC_DEBUG, "Getting ID: %x\n", reg0);
|
|
apic_write(APIC_ID, reg0 ^ APIC_ID_MASK);
|
|
reg1 = apic_read(APIC_ID);
|
|
apic_printk(APIC_DEBUG, "Getting ID: %x\n", reg1);
|
|
apic_write(APIC_ID, reg0);
|
|
if (reg1 != (reg0 ^ APIC_ID_MASK))
|
|
return 0;
|
|
|
|
/*
|
|
* The next two are just to see if we have sane values.
|
|
* They're only really relevant if we're in Virtual Wire
|
|
* compatibility mode, but most boxes are anymore.
|
|
*/
|
|
reg0 = apic_read(APIC_LVT0);
|
|
apic_printk(APIC_DEBUG,"Getting LVT0: %x\n", reg0);
|
|
reg1 = apic_read(APIC_LVT1);
|
|
apic_printk(APIC_DEBUG, "Getting LVT1: %x\n", reg1);
|
|
|
|
return 1;
|
|
}
|
|
|
|
void __init sync_Arb_IDs(void)
|
|
{
|
|
/* Unsupported on P4 - see Intel Dev. Manual Vol. 3, Ch. 8.6.1 */
|
|
unsigned int ver = GET_APIC_VERSION(apic_read(APIC_LVR));
|
|
if (ver >= 0x14) /* P4 or higher */
|
|
return;
|
|
|
|
/*
|
|
* Wait for idle.
|
|
*/
|
|
apic_wait_icr_idle();
|
|
|
|
apic_printk(APIC_DEBUG, "Synchronizing Arb IDs.\n");
|
|
apic_write(APIC_ICR, APIC_DEST_ALLINC | APIC_INT_LEVELTRIG
|
|
| APIC_DM_INIT);
|
|
}
|
|
|
|
/*
|
|
* An initial setup of the virtual wire mode.
|
|
*/
|
|
void __init init_bsp_APIC(void)
|
|
{
|
|
unsigned int value;
|
|
|
|
/*
|
|
* Don't do the setup now if we have a SMP BIOS as the
|
|
* through-I/O-APIC virtual wire mode might be active.
|
|
*/
|
|
if (smp_found_config || !cpu_has_apic)
|
|
return;
|
|
|
|
value = apic_read(APIC_LVR);
|
|
|
|
/*
|
|
* Do not trust the local APIC being empty at bootup.
|
|
*/
|
|
clear_local_APIC();
|
|
|
|
/*
|
|
* Enable APIC.
|
|
*/
|
|
value = apic_read(APIC_SPIV);
|
|
value &= ~APIC_VECTOR_MASK;
|
|
value |= APIC_SPIV_APIC_ENABLED;
|
|
value |= APIC_SPIV_FOCUS_DISABLED;
|
|
value |= SPURIOUS_APIC_VECTOR;
|
|
apic_write(APIC_SPIV, value);
|
|
|
|
/*
|
|
* Set up the virtual wire mode.
|
|
*/
|
|
apic_write(APIC_LVT0, APIC_DM_EXTINT);
|
|
value = APIC_DM_NMI;
|
|
apic_write(APIC_LVT1, value);
|
|
}
|
|
|
|
void __cpuinit setup_local_APIC (void)
|
|
{
|
|
unsigned int value, maxlvt;
|
|
int i, j;
|
|
|
|
value = apic_read(APIC_LVR);
|
|
|
|
BUILD_BUG_ON((SPURIOUS_APIC_VECTOR & 0x0f) != 0x0f);
|
|
|
|
/*
|
|
* Double-check whether this APIC is really registered.
|
|
* This is meaningless in clustered apic mode, so we skip it.
|
|
*/
|
|
if (!apic_id_registered())
|
|
BUG();
|
|
|
|
/*
|
|
* Intel recommends to set DFR, LDR and TPR before enabling
|
|
* an APIC. See e.g. "AP-388 82489DX User's Manual" (Intel
|
|
* document number 292116). So here it goes...
|
|
*/
|
|
init_apic_ldr();
|
|
|
|
/*
|
|
* Set Task Priority to 'accept all'. We never change this
|
|
* later on.
|
|
*/
|
|
value = apic_read(APIC_TASKPRI);
|
|
value &= ~APIC_TPRI_MASK;
|
|
apic_write(APIC_TASKPRI, value);
|
|
|
|
/*
|
|
* After a crash, we no longer service the interrupts and a pending
|
|
* interrupt from previous kernel might still have ISR bit set.
|
|
*
|
|
* Most probably by now CPU has serviced that pending interrupt and
|
|
* it might not have done the ack_APIC_irq() because it thought,
|
|
* interrupt came from i8259 as ExtInt. LAPIC did not get EOI so it
|
|
* does not clear the ISR bit and cpu thinks it has already serivced
|
|
* the interrupt. Hence a vector might get locked. It was noticed
|
|
* for timer irq (vector 0x31). Issue an extra EOI to clear ISR.
|
|
*/
|
|
for (i = APIC_ISR_NR - 1; i >= 0; i--) {
|
|
value = apic_read(APIC_ISR + i*0x10);
|
|
for (j = 31; j >= 0; j--) {
|
|
if (value & (1<<j))
|
|
ack_APIC_irq();
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Now that we are all set up, enable the APIC
|
|
*/
|
|
value = apic_read(APIC_SPIV);
|
|
value &= ~APIC_VECTOR_MASK;
|
|
/*
|
|
* Enable APIC
|
|
*/
|
|
value |= APIC_SPIV_APIC_ENABLED;
|
|
|
|
/* We always use processor focus */
|
|
|
|
/*
|
|
* Set spurious IRQ vector
|
|
*/
|
|
value |= SPURIOUS_APIC_VECTOR;
|
|
apic_write(APIC_SPIV, value);
|
|
|
|
/*
|
|
* Set up LVT0, LVT1:
|
|
*
|
|
* set up through-local-APIC on the BP's LINT0. This is not
|
|
* strictly necessary in pure symmetric-IO mode, but sometimes
|
|
* we delegate interrupts to the 8259A.
|
|
*/
|
|
/*
|
|
* TODO: set up through-local-APIC from through-I/O-APIC? --macro
|
|
*/
|
|
value = apic_read(APIC_LVT0) & APIC_LVT_MASKED;
|
|
if (!smp_processor_id() && !value) {
|
|
value = APIC_DM_EXTINT;
|
|
apic_printk(APIC_VERBOSE, "enabled ExtINT on CPU#%d\n", smp_processor_id());
|
|
} else {
|
|
value = APIC_DM_EXTINT | APIC_LVT_MASKED;
|
|
apic_printk(APIC_VERBOSE, "masked ExtINT on CPU#%d\n", smp_processor_id());
|
|
}
|
|
apic_write(APIC_LVT0, value);
|
|
|
|
/*
|
|
* only the BP should see the LINT1 NMI signal, obviously.
|
|
*/
|
|
if (!smp_processor_id())
|
|
value = APIC_DM_NMI;
|
|
else
|
|
value = APIC_DM_NMI | APIC_LVT_MASKED;
|
|
apic_write(APIC_LVT1, value);
|
|
|
|
{
|
|
unsigned oldvalue;
|
|
maxlvt = get_maxlvt();
|
|
oldvalue = apic_read(APIC_ESR);
|
|
value = ERROR_APIC_VECTOR; // enables sending errors
|
|
apic_write(APIC_LVTERR, value);
|
|
/*
|
|
* spec says clear errors after enabling vector.
|
|
*/
|
|
if (maxlvt > 3)
|
|
apic_write(APIC_ESR, 0);
|
|
value = apic_read(APIC_ESR);
|
|
if (value != oldvalue)
|
|
apic_printk(APIC_VERBOSE,
|
|
"ESR value after enabling vector: %08x, after %08x\n",
|
|
oldvalue, value);
|
|
}
|
|
|
|
nmi_watchdog_default();
|
|
setup_apic_nmi_watchdog(NULL);
|
|
apic_pm_activate();
|
|
}
|
|
|
|
#ifdef CONFIG_PM
|
|
|
|
static struct {
|
|
/* 'active' is true if the local APIC was enabled by us and
|
|
not the BIOS; this signifies that we are also responsible
|
|
for disabling it before entering apm/acpi suspend */
|
|
int active;
|
|
/* r/w apic fields */
|
|
unsigned int apic_id;
|
|
unsigned int apic_taskpri;
|
|
unsigned int apic_ldr;
|
|
unsigned int apic_dfr;
|
|
unsigned int apic_spiv;
|
|
unsigned int apic_lvtt;
|
|
unsigned int apic_lvtpc;
|
|
unsigned int apic_lvt0;
|
|
unsigned int apic_lvt1;
|
|
unsigned int apic_lvterr;
|
|
unsigned int apic_tmict;
|
|
unsigned int apic_tdcr;
|
|
unsigned int apic_thmr;
|
|
} apic_pm_state;
|
|
|
|
static int lapic_suspend(struct sys_device *dev, pm_message_t state)
|
|
{
|
|
unsigned long flags;
|
|
int maxlvt;
|
|
|
|
if (!apic_pm_state.active)
|
|
return 0;
|
|
|
|
maxlvt = get_maxlvt();
|
|
|
|
apic_pm_state.apic_id = apic_read(APIC_ID);
|
|
apic_pm_state.apic_taskpri = apic_read(APIC_TASKPRI);
|
|
apic_pm_state.apic_ldr = apic_read(APIC_LDR);
|
|
apic_pm_state.apic_dfr = apic_read(APIC_DFR);
|
|
apic_pm_state.apic_spiv = apic_read(APIC_SPIV);
|
|
apic_pm_state.apic_lvtt = apic_read(APIC_LVTT);
|
|
if (maxlvt >= 4)
|
|
apic_pm_state.apic_lvtpc = apic_read(APIC_LVTPC);
|
|
apic_pm_state.apic_lvt0 = apic_read(APIC_LVT0);
|
|
apic_pm_state.apic_lvt1 = apic_read(APIC_LVT1);
|
|
apic_pm_state.apic_lvterr = apic_read(APIC_LVTERR);
|
|
apic_pm_state.apic_tmict = apic_read(APIC_TMICT);
|
|
apic_pm_state.apic_tdcr = apic_read(APIC_TDCR);
|
|
#ifdef CONFIG_X86_MCE_INTEL
|
|
if (maxlvt >= 5)
|
|
apic_pm_state.apic_thmr = apic_read(APIC_LVTTHMR);
|
|
#endif
|
|
local_irq_save(flags);
|
|
disable_local_APIC();
|
|
local_irq_restore(flags);
|
|
return 0;
|
|
}
|
|
|
|
static int lapic_resume(struct sys_device *dev)
|
|
{
|
|
unsigned int l, h;
|
|
unsigned long flags;
|
|
int maxlvt;
|
|
|
|
if (!apic_pm_state.active)
|
|
return 0;
|
|
|
|
maxlvt = get_maxlvt();
|
|
|
|
local_irq_save(flags);
|
|
rdmsr(MSR_IA32_APICBASE, l, h);
|
|
l &= ~MSR_IA32_APICBASE_BASE;
|
|
l |= MSR_IA32_APICBASE_ENABLE | mp_lapic_addr;
|
|
wrmsr(MSR_IA32_APICBASE, l, h);
|
|
apic_write(APIC_LVTERR, ERROR_APIC_VECTOR | APIC_LVT_MASKED);
|
|
apic_write(APIC_ID, apic_pm_state.apic_id);
|
|
apic_write(APIC_DFR, apic_pm_state.apic_dfr);
|
|
apic_write(APIC_LDR, apic_pm_state.apic_ldr);
|
|
apic_write(APIC_TASKPRI, apic_pm_state.apic_taskpri);
|
|
apic_write(APIC_SPIV, apic_pm_state.apic_spiv);
|
|
apic_write(APIC_LVT0, apic_pm_state.apic_lvt0);
|
|
apic_write(APIC_LVT1, apic_pm_state.apic_lvt1);
|
|
#ifdef CONFIG_X86_MCE_INTEL
|
|
if (maxlvt >= 5)
|
|
apic_write(APIC_LVTTHMR, apic_pm_state.apic_thmr);
|
|
#endif
|
|
if (maxlvt >= 4)
|
|
apic_write(APIC_LVTPC, apic_pm_state.apic_lvtpc);
|
|
apic_write(APIC_LVTT, apic_pm_state.apic_lvtt);
|
|
apic_write(APIC_TDCR, apic_pm_state.apic_tdcr);
|
|
apic_write(APIC_TMICT, apic_pm_state.apic_tmict);
|
|
apic_write(APIC_ESR, 0);
|
|
apic_read(APIC_ESR);
|
|
apic_write(APIC_LVTERR, apic_pm_state.apic_lvterr);
|
|
apic_write(APIC_ESR, 0);
|
|
apic_read(APIC_ESR);
|
|
local_irq_restore(flags);
|
|
return 0;
|
|
}
|
|
|
|
static struct sysdev_class lapic_sysclass = {
|
|
set_kset_name("lapic"),
|
|
.resume = lapic_resume,
|
|
.suspend = lapic_suspend,
|
|
};
|
|
|
|
static struct sys_device device_lapic = {
|
|
.id = 0,
|
|
.cls = &lapic_sysclass,
|
|
};
|
|
|
|
static void __cpuinit apic_pm_activate(void)
|
|
{
|
|
apic_pm_state.active = 1;
|
|
}
|
|
|
|
static int __init init_lapic_sysfs(void)
|
|
{
|
|
int error;
|
|
if (!cpu_has_apic)
|
|
return 0;
|
|
/* XXX: remove suspend/resume procs if !apic_pm_state.active? */
|
|
error = sysdev_class_register(&lapic_sysclass);
|
|
if (!error)
|
|
error = sysdev_register(&device_lapic);
|
|
return error;
|
|
}
|
|
device_initcall(init_lapic_sysfs);
|
|
|
|
#else /* CONFIG_PM */
|
|
|
|
static void apic_pm_activate(void) { }
|
|
|
|
#endif /* CONFIG_PM */
|
|
|
|
static int __init apic_set_verbosity(char *str)
|
|
{
|
|
if (str == NULL) {
|
|
skip_ioapic_setup = 0;
|
|
ioapic_force = 1;
|
|
return 0;
|
|
}
|
|
if (strcmp("debug", str) == 0)
|
|
apic_verbosity = APIC_DEBUG;
|
|
else if (strcmp("verbose", str) == 0)
|
|
apic_verbosity = APIC_VERBOSE;
|
|
else {
|
|
printk(KERN_WARNING "APIC Verbosity level %s not recognised"
|
|
" use apic=verbose or apic=debug\n", str);
|
|
return -EINVAL;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
early_param("apic", apic_set_verbosity);
|
|
|
|
/*
|
|
* Detect and enable local APICs on non-SMP boards.
|
|
* Original code written by Keir Fraser.
|
|
* On AMD64 we trust the BIOS - if it says no APIC it is likely
|
|
* not correctly set up (usually the APIC timer won't work etc.)
|
|
*/
|
|
|
|
static int __init detect_init_APIC (void)
|
|
{
|
|
if (!cpu_has_apic) {
|
|
printk(KERN_INFO "No local APIC present\n");
|
|
return -1;
|
|
}
|
|
|
|
mp_lapic_addr = APIC_DEFAULT_PHYS_BASE;
|
|
boot_cpu_id = 0;
|
|
return 0;
|
|
}
|
|
|
|
#ifdef CONFIG_X86_IO_APIC
|
|
static struct resource * __init ioapic_setup_resources(void)
|
|
{
|
|
#define IOAPIC_RESOURCE_NAME_SIZE 11
|
|
unsigned long n;
|
|
struct resource *res;
|
|
char *mem;
|
|
int i;
|
|
|
|
if (nr_ioapics <= 0)
|
|
return NULL;
|
|
|
|
n = IOAPIC_RESOURCE_NAME_SIZE + sizeof(struct resource);
|
|
n *= nr_ioapics;
|
|
|
|
mem = alloc_bootmem(n);
|
|
res = (void *)mem;
|
|
|
|
if (mem != NULL) {
|
|
memset(mem, 0, n);
|
|
mem += sizeof(struct resource) * nr_ioapics;
|
|
|
|
for (i = 0; i < nr_ioapics; i++) {
|
|
res[i].name = mem;
|
|
res[i].flags = IORESOURCE_MEM | IORESOURCE_BUSY;
|
|
sprintf(mem, "IOAPIC %u", i);
|
|
mem += IOAPIC_RESOURCE_NAME_SIZE;
|
|
}
|
|
}
|
|
|
|
ioapic_resources = res;
|
|
|
|
return res;
|
|
}
|
|
|
|
static int __init ioapic_insert_resources(void)
|
|
{
|
|
int i;
|
|
struct resource *r = ioapic_resources;
|
|
|
|
if (!r) {
|
|
printk("IO APIC resources could be not be allocated.\n");
|
|
return -1;
|
|
}
|
|
|
|
for (i = 0; i < nr_ioapics; i++) {
|
|
insert_resource(&iomem_resource, r);
|
|
r++;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Insert the IO APIC resources after PCI initialization has occured to handle
|
|
* IO APICS that are mapped in on a BAR in PCI space. */
|
|
late_initcall(ioapic_insert_resources);
|
|
#endif
|
|
|
|
void __init init_apic_mappings(void)
|
|
{
|
|
unsigned long apic_phys;
|
|
|
|
/*
|
|
* If no local APIC can be found then set up a fake all
|
|
* zeroes page to simulate the local APIC and another
|
|
* one for the IO-APIC.
|
|
*/
|
|
if (!smp_found_config && detect_init_APIC()) {
|
|
apic_phys = (unsigned long) alloc_bootmem_pages(PAGE_SIZE);
|
|
apic_phys = __pa(apic_phys);
|
|
} else
|
|
apic_phys = mp_lapic_addr;
|
|
|
|
set_fixmap_nocache(FIX_APIC_BASE, apic_phys);
|
|
apic_mapped = 1;
|
|
apic_printk(APIC_VERBOSE,"mapped APIC to %16lx (%16lx)\n", APIC_BASE, apic_phys);
|
|
|
|
/* Put local APIC into the resource map. */
|
|
lapic_resource.start = apic_phys;
|
|
lapic_resource.end = lapic_resource.start + PAGE_SIZE - 1;
|
|
insert_resource(&iomem_resource, &lapic_resource);
|
|
|
|
/*
|
|
* Fetch the APIC ID of the BSP in case we have a
|
|
* default configuration (or the MP table is broken).
|
|
*/
|
|
boot_cpu_id = GET_APIC_ID(apic_read(APIC_ID));
|
|
|
|
{
|
|
unsigned long ioapic_phys, idx = FIX_IO_APIC_BASE_0;
|
|
int i;
|
|
struct resource *ioapic_res;
|
|
|
|
ioapic_res = ioapic_setup_resources();
|
|
for (i = 0; i < nr_ioapics; i++) {
|
|
if (smp_found_config) {
|
|
ioapic_phys = mp_ioapics[i].mpc_apicaddr;
|
|
} else {
|
|
ioapic_phys = (unsigned long) alloc_bootmem_pages(PAGE_SIZE);
|
|
ioapic_phys = __pa(ioapic_phys);
|
|
}
|
|
set_fixmap_nocache(idx, ioapic_phys);
|
|
apic_printk(APIC_VERBOSE,"mapped IOAPIC to %016lx (%016lx)\n",
|
|
__fix_to_virt(idx), ioapic_phys);
|
|
idx++;
|
|
|
|
if (ioapic_res != NULL) {
|
|
ioapic_res->start = ioapic_phys;
|
|
ioapic_res->end = ioapic_phys + (4 * 1024) - 1;
|
|
ioapic_res++;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* This function sets up the local APIC timer, with a timeout of
|
|
* 'clocks' APIC bus clock. During calibration we actually call
|
|
* this function twice on the boot CPU, once with a bogus timeout
|
|
* value, second time for real. The other (noncalibrating) CPUs
|
|
* call this function only once, with the real, calibrated value.
|
|
*
|
|
* We do reads before writes even if unnecessary, to get around the
|
|
* P5 APIC double write bug.
|
|
*/
|
|
|
|
#define APIC_DIVISOR 16
|
|
|
|
static void __setup_APIC_LVTT(unsigned int clocks)
|
|
{
|
|
unsigned int lvtt_value, tmp_value;
|
|
int cpu = smp_processor_id();
|
|
|
|
lvtt_value = APIC_LVT_TIMER_PERIODIC | LOCAL_TIMER_VECTOR;
|
|
|
|
if (cpu_isset(cpu, timer_interrupt_broadcast_ipi_mask))
|
|
lvtt_value |= APIC_LVT_MASKED;
|
|
|
|
apic_write(APIC_LVTT, lvtt_value);
|
|
|
|
/*
|
|
* Divide PICLK by 16
|
|
*/
|
|
tmp_value = apic_read(APIC_TDCR);
|
|
apic_write(APIC_TDCR, (tmp_value
|
|
& ~(APIC_TDR_DIV_1 | APIC_TDR_DIV_TMBASE))
|
|
| APIC_TDR_DIV_16);
|
|
|
|
apic_write(APIC_TMICT, clocks/APIC_DIVISOR);
|
|
}
|
|
|
|
static void setup_APIC_timer(unsigned int clocks)
|
|
{
|
|
unsigned long flags;
|
|
|
|
local_irq_save(flags);
|
|
|
|
/* wait for irq slice */
|
|
if (hpet_address && hpet_use_timer) {
|
|
u32 trigger = hpet_readl(HPET_T0_CMP);
|
|
while (hpet_readl(HPET_T0_CMP) == trigger)
|
|
/* do nothing */ ;
|
|
} else {
|
|
int c1, c2;
|
|
outb_p(0x00, 0x43);
|
|
c2 = inb_p(0x40);
|
|
c2 |= inb_p(0x40) << 8;
|
|
do {
|
|
c1 = c2;
|
|
outb_p(0x00, 0x43);
|
|
c2 = inb_p(0x40);
|
|
c2 |= inb_p(0x40) << 8;
|
|
} while (c2 - c1 < 300);
|
|
}
|
|
__setup_APIC_LVTT(clocks);
|
|
/* Turn off PIT interrupt if we use APIC timer as main timer.
|
|
Only works with the PM timer right now
|
|
TBD fix it for HPET too. */
|
|
if ((pmtmr_ioport != 0) &&
|
|
smp_processor_id() == boot_cpu_id &&
|
|
apic_runs_main_timer == 1 &&
|
|
!cpu_isset(boot_cpu_id, timer_interrupt_broadcast_ipi_mask)) {
|
|
stop_timer_interrupt();
|
|
apic_runs_main_timer++;
|
|
}
|
|
local_irq_restore(flags);
|
|
}
|
|
|
|
/*
|
|
* In this function we calibrate APIC bus clocks to the external
|
|
* timer. Unfortunately we cannot use jiffies and the timer irq
|
|
* to calibrate, since some later bootup code depends on getting
|
|
* the first irq? Ugh.
|
|
*
|
|
* We want to do the calibration only once since we
|
|
* want to have local timer irqs syncron. CPUs connected
|
|
* by the same APIC bus have the very same bus frequency.
|
|
* And we want to have irqs off anyways, no accidental
|
|
* APIC irq that way.
|
|
*/
|
|
|
|
#define TICK_COUNT 100000000
|
|
|
|
static int __init calibrate_APIC_clock(void)
|
|
{
|
|
unsigned apic, apic_start;
|
|
unsigned long tsc, tsc_start;
|
|
int result;
|
|
/*
|
|
* Put whatever arbitrary (but long enough) timeout
|
|
* value into the APIC clock, we just want to get the
|
|
* counter running for calibration.
|
|
*/
|
|
__setup_APIC_LVTT(4000000000);
|
|
|
|
apic_start = apic_read(APIC_TMCCT);
|
|
#ifdef CONFIG_X86_PM_TIMER
|
|
if (apic_calibrate_pmtmr && pmtmr_ioport) {
|
|
pmtimer_wait(5000); /* 5ms wait */
|
|
apic = apic_read(APIC_TMCCT);
|
|
result = (apic_start - apic) * 1000L / 5;
|
|
} else
|
|
#endif
|
|
{
|
|
rdtscll(tsc_start);
|
|
|
|
do {
|
|
apic = apic_read(APIC_TMCCT);
|
|
rdtscll(tsc);
|
|
} while ((tsc - tsc_start) < TICK_COUNT &&
|
|
(apic_start - apic) < TICK_COUNT);
|
|
|
|
result = (apic_start - apic) * 1000L * tsc_khz /
|
|
(tsc - tsc_start);
|
|
}
|
|
printk("result %d\n", result);
|
|
|
|
|
|
printk(KERN_INFO "Detected %d.%03d MHz APIC timer.\n",
|
|
result / 1000 / 1000, result / 1000 % 1000);
|
|
|
|
return result * APIC_DIVISOR / HZ;
|
|
}
|
|
|
|
static unsigned int calibration_result;
|
|
|
|
void __init setup_boot_APIC_clock (void)
|
|
{
|
|
if (disable_apic_timer) {
|
|
printk(KERN_INFO "Disabling APIC timer\n");
|
|
return;
|
|
}
|
|
|
|
printk(KERN_INFO "Using local APIC timer interrupts.\n");
|
|
using_apic_timer = 1;
|
|
|
|
local_irq_disable();
|
|
|
|
calibration_result = calibrate_APIC_clock();
|
|
/*
|
|
* Now set up the timer for real.
|
|
*/
|
|
setup_APIC_timer(calibration_result);
|
|
|
|
local_irq_enable();
|
|
}
|
|
|
|
void __cpuinit setup_secondary_APIC_clock(void)
|
|
{
|
|
local_irq_disable(); /* FIXME: Do we need this? --RR */
|
|
setup_APIC_timer(calibration_result);
|
|
local_irq_enable();
|
|
}
|
|
|
|
void disable_APIC_timer(void)
|
|
{
|
|
if (using_apic_timer) {
|
|
unsigned long v;
|
|
|
|
v = apic_read(APIC_LVTT);
|
|
/*
|
|
* When an illegal vector value (0-15) is written to an LVT
|
|
* entry and delivery mode is Fixed, the APIC may signal an
|
|
* illegal vector error, with out regard to whether the mask
|
|
* bit is set or whether an interrupt is actually seen on input.
|
|
*
|
|
* Boot sequence might call this function when the LVTT has
|
|
* '0' vector value. So make sure vector field is set to
|
|
* valid value.
|
|
*/
|
|
v |= (APIC_LVT_MASKED | LOCAL_TIMER_VECTOR);
|
|
apic_write(APIC_LVTT, v);
|
|
}
|
|
}
|
|
|
|
void enable_APIC_timer(void)
|
|
{
|
|
int cpu = smp_processor_id();
|
|
|
|
if (using_apic_timer &&
|
|
!cpu_isset(cpu, timer_interrupt_broadcast_ipi_mask)) {
|
|
unsigned long v;
|
|
|
|
v = apic_read(APIC_LVTT);
|
|
apic_write(APIC_LVTT, v & ~APIC_LVT_MASKED);
|
|
}
|
|
}
|
|
|
|
void switch_APIC_timer_to_ipi(void *cpumask)
|
|
{
|
|
cpumask_t mask = *(cpumask_t *)cpumask;
|
|
int cpu = smp_processor_id();
|
|
|
|
if (cpu_isset(cpu, mask) &&
|
|
!cpu_isset(cpu, timer_interrupt_broadcast_ipi_mask)) {
|
|
disable_APIC_timer();
|
|
cpu_set(cpu, timer_interrupt_broadcast_ipi_mask);
|
|
}
|
|
}
|
|
EXPORT_SYMBOL(switch_APIC_timer_to_ipi);
|
|
|
|
void smp_send_timer_broadcast_ipi(void)
|
|
{
|
|
int cpu = smp_processor_id();
|
|
cpumask_t mask;
|
|
|
|
cpus_and(mask, cpu_online_map, timer_interrupt_broadcast_ipi_mask);
|
|
|
|
if (cpu_isset(cpu, mask)) {
|
|
cpu_clear(cpu, mask);
|
|
add_pda(apic_timer_irqs, 1);
|
|
smp_local_timer_interrupt();
|
|
}
|
|
|
|
if (!cpus_empty(mask)) {
|
|
send_IPI_mask(mask, LOCAL_TIMER_VECTOR);
|
|
}
|
|
}
|
|
|
|
void switch_ipi_to_APIC_timer(void *cpumask)
|
|
{
|
|
cpumask_t mask = *(cpumask_t *)cpumask;
|
|
int cpu = smp_processor_id();
|
|
|
|
if (cpu_isset(cpu, mask) &&
|
|
cpu_isset(cpu, timer_interrupt_broadcast_ipi_mask)) {
|
|
cpu_clear(cpu, timer_interrupt_broadcast_ipi_mask);
|
|
enable_APIC_timer();
|
|
}
|
|
}
|
|
EXPORT_SYMBOL(switch_ipi_to_APIC_timer);
|
|
|
|
int setup_profiling_timer(unsigned int multiplier)
|
|
{
|
|
return -EINVAL;
|
|
}
|
|
|
|
void setup_APIC_extended_lvt(unsigned char lvt_off, unsigned char vector,
|
|
unsigned char msg_type, unsigned char mask)
|
|
{
|
|
unsigned long reg = (lvt_off << 4) + K8_APIC_EXT_LVT_BASE;
|
|
unsigned int v = (mask << 16) | (msg_type << 8) | vector;
|
|
apic_write(reg, v);
|
|
}
|
|
|
|
#undef APIC_DIVISOR
|
|
|
|
/*
|
|
* Local timer interrupt handler. It does both profiling and
|
|
* process statistics/rescheduling.
|
|
*
|
|
* We do profiling in every local tick, statistics/rescheduling
|
|
* happen only every 'profiling multiplier' ticks. The default
|
|
* multiplier is 1 and it can be changed by writing the new multiplier
|
|
* value into /proc/profile.
|
|
*/
|
|
|
|
void smp_local_timer_interrupt(void)
|
|
{
|
|
profile_tick(CPU_PROFILING);
|
|
#ifdef CONFIG_SMP
|
|
update_process_times(user_mode(get_irq_regs()));
|
|
#endif
|
|
if (apic_runs_main_timer > 1 && smp_processor_id() == boot_cpu_id)
|
|
main_timer_handler();
|
|
/*
|
|
* We take the 'long' return path, and there every subsystem
|
|
* grabs the appropriate locks (kernel lock/ irq lock).
|
|
*
|
|
* We might want to decouple profiling from the 'long path',
|
|
* and do the profiling totally in assembly.
|
|
*
|
|
* Currently this isn't too much of an issue (performance wise),
|
|
* we can take more than 100K local irqs per second on a 100 MHz P5.
|
|
*/
|
|
}
|
|
|
|
/*
|
|
* Local APIC timer interrupt. This is the most natural way for doing
|
|
* local interrupts, but local timer interrupts can be emulated by
|
|
* broadcast interrupts too. [in case the hw doesn't support APIC timers]
|
|
*
|
|
* [ if a single-CPU system runs an SMP kernel then we call the local
|
|
* interrupt as well. Thus we cannot inline the local irq ... ]
|
|
*/
|
|
void smp_apic_timer_interrupt(struct pt_regs *regs)
|
|
{
|
|
struct pt_regs *old_regs = set_irq_regs(regs);
|
|
|
|
/*
|
|
* the NMI deadlock-detector uses this.
|
|
*/
|
|
add_pda(apic_timer_irqs, 1);
|
|
|
|
/*
|
|
* NOTE! We'd better ACK the irq immediately,
|
|
* because timer handling can be slow.
|
|
*/
|
|
ack_APIC_irq();
|
|
/*
|
|
* update_process_times() expects us to have done irq_enter().
|
|
* Besides, if we don't timer interrupts ignore the global
|
|
* interrupt lock, which is the WrongThing (tm) to do.
|
|
*/
|
|
exit_idle();
|
|
irq_enter();
|
|
smp_local_timer_interrupt();
|
|
irq_exit();
|
|
set_irq_regs(old_regs);
|
|
}
|
|
|
|
/*
|
|
* apic_is_clustered_box() -- Check if we can expect good TSC
|
|
*
|
|
* Thus far, the major user of this is IBM's Summit2 series:
|
|
*
|
|
* Clustered boxes may have unsynced TSC problems if they are
|
|
* multi-chassis. Use available data to take a good guess.
|
|
* If in doubt, go HPET.
|
|
*/
|
|
__cpuinit int apic_is_clustered_box(void)
|
|
{
|
|
int i, clusters, zeros;
|
|
unsigned id;
|
|
DECLARE_BITMAP(clustermap, NUM_APIC_CLUSTERS);
|
|
|
|
bitmap_zero(clustermap, NUM_APIC_CLUSTERS);
|
|
|
|
for (i = 0; i < NR_CPUS; i++) {
|
|
id = bios_cpu_apicid[i];
|
|
if (id != BAD_APICID)
|
|
__set_bit(APIC_CLUSTERID(id), clustermap);
|
|
}
|
|
|
|
/* Problem: Partially populated chassis may not have CPUs in some of
|
|
* the APIC clusters they have been allocated. Only present CPUs have
|
|
* bios_cpu_apicid entries, thus causing zeroes in the bitmap. Since
|
|
* clusters are allocated sequentially, count zeros only if they are
|
|
* bounded by ones.
|
|
*/
|
|
clusters = 0;
|
|
zeros = 0;
|
|
for (i = 0; i < NUM_APIC_CLUSTERS; i++) {
|
|
if (test_bit(i, clustermap)) {
|
|
clusters += 1 + zeros;
|
|
zeros = 0;
|
|
} else
|
|
++zeros;
|
|
}
|
|
|
|
/*
|
|
* If clusters > 2, then should be multi-chassis.
|
|
* May have to revisit this when multi-core + hyperthreaded CPUs come
|
|
* out, but AFAIK this will work even for them.
|
|
*/
|
|
return (clusters > 2);
|
|
}
|
|
|
|
/*
|
|
* This interrupt should _never_ happen with our APIC/SMP architecture
|
|
*/
|
|
asmlinkage void smp_spurious_interrupt(void)
|
|
{
|
|
unsigned int v;
|
|
exit_idle();
|
|
irq_enter();
|
|
/*
|
|
* Check if this really is a spurious interrupt and ACK it
|
|
* if it is a vectored one. Just in case...
|
|
* Spurious interrupts should not be ACKed.
|
|
*/
|
|
v = apic_read(APIC_ISR + ((SPURIOUS_APIC_VECTOR & ~0x1f) >> 1));
|
|
if (v & (1 << (SPURIOUS_APIC_VECTOR & 0x1f)))
|
|
ack_APIC_irq();
|
|
|
|
irq_exit();
|
|
}
|
|
|
|
/*
|
|
* This interrupt should never happen with our APIC/SMP architecture
|
|
*/
|
|
|
|
asmlinkage void smp_error_interrupt(void)
|
|
{
|
|
unsigned int v, v1;
|
|
|
|
exit_idle();
|
|
irq_enter();
|
|
/* First tickle the hardware, only then report what went on. -- REW */
|
|
v = apic_read(APIC_ESR);
|
|
apic_write(APIC_ESR, 0);
|
|
v1 = apic_read(APIC_ESR);
|
|
ack_APIC_irq();
|
|
atomic_inc(&irq_err_count);
|
|
|
|
/* Here is what the APIC error bits mean:
|
|
0: Send CS error
|
|
1: Receive CS error
|
|
2: Send accept error
|
|
3: Receive accept error
|
|
4: Reserved
|
|
5: Send illegal vector
|
|
6: Received illegal vector
|
|
7: Illegal register address
|
|
*/
|
|
printk (KERN_DEBUG "APIC error on CPU%d: %02x(%02x)\n",
|
|
smp_processor_id(), v , v1);
|
|
irq_exit();
|
|
}
|
|
|
|
int disable_apic;
|
|
|
|
/*
|
|
* This initializes the IO-APIC and APIC hardware if this is
|
|
* a UP kernel.
|
|
*/
|
|
int __init APIC_init_uniprocessor (void)
|
|
{
|
|
if (disable_apic) {
|
|
printk(KERN_INFO "Apic disabled\n");
|
|
return -1;
|
|
}
|
|
if (!cpu_has_apic) {
|
|
disable_apic = 1;
|
|
printk(KERN_INFO "Apic disabled by BIOS\n");
|
|
return -1;
|
|
}
|
|
|
|
verify_local_APIC();
|
|
|
|
phys_cpu_present_map = physid_mask_of_physid(boot_cpu_id);
|
|
apic_write(APIC_ID, SET_APIC_ID(boot_cpu_id));
|
|
|
|
setup_local_APIC();
|
|
|
|
if (smp_found_config && !skip_ioapic_setup && nr_ioapics)
|
|
setup_IO_APIC();
|
|
else
|
|
nr_ioapics = 0;
|
|
setup_boot_APIC_clock();
|
|
check_nmi_watchdog();
|
|
return 0;
|
|
}
|
|
|
|
static __init int setup_disableapic(char *str)
|
|
{
|
|
disable_apic = 1;
|
|
clear_bit(X86_FEATURE_APIC, boot_cpu_data.x86_capability);
|
|
return 0;
|
|
}
|
|
early_param("disableapic", setup_disableapic);
|
|
|
|
/* same as disableapic, for compatibility */
|
|
static __init int setup_nolapic(char *str)
|
|
{
|
|
return setup_disableapic(str);
|
|
}
|
|
early_param("nolapic", setup_nolapic);
|
|
|
|
static int __init parse_lapic_timer_c2_ok(char *arg)
|
|
{
|
|
local_apic_timer_c2_ok = 1;
|
|
return 0;
|
|
}
|
|
early_param("lapic_timer_c2_ok", parse_lapic_timer_c2_ok);
|
|
|
|
static __init int setup_noapictimer(char *str)
|
|
{
|
|
if (str[0] != ' ' && str[0] != 0)
|
|
return 0;
|
|
disable_apic_timer = 1;
|
|
return 1;
|
|
}
|
|
|
|
static __init int setup_apicmaintimer(char *str)
|
|
{
|
|
apic_runs_main_timer = 1;
|
|
nohpet = 1;
|
|
return 1;
|
|
}
|
|
__setup("apicmaintimer", setup_apicmaintimer);
|
|
|
|
static __init int setup_noapicmaintimer(char *str)
|
|
{
|
|
apic_runs_main_timer = -1;
|
|
return 1;
|
|
}
|
|
__setup("noapicmaintimer", setup_noapicmaintimer);
|
|
|
|
static __init int setup_apicpmtimer(char *s)
|
|
{
|
|
apic_calibrate_pmtmr = 1;
|
|
notsc_setup(NULL);
|
|
return setup_apicmaintimer(NULL);
|
|
}
|
|
__setup("apicpmtimer", setup_apicpmtimer);
|
|
|
|
__setup("noapictimer", setup_noapictimer);
|
|
|