android_kernel_motorola_sm6225/drivers/scsi/aic7xxx/aic7xxx_osm.c
Linus Torvalds 1da177e4c3 Linux-2.6.12-rc2
Initial git repository build. I'm not bothering with the full history,
even though we have it. We can create a separate "historical" git
archive of that later if we want to, and in the meantime it's about
3.2GB when imported into git - space that would just make the early
git days unnecessarily complicated, when we don't have a lot of good
infrastructure for it.

Let it rip!
2005-04-16 15:20:36 -07:00

5043 lines
137 KiB
C

/*
* Adaptec AIC7xxx device driver for Linux.
*
* $Id: //depot/aic7xxx/linux/drivers/scsi/aic7xxx/aic7xxx_osm.c#235 $
*
* Copyright (c) 1994 John Aycock
* The University of Calgary Department of Computer Science.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2, or (at your option)
* any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; see the file COPYING. If not, write to
* the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
*
* Sources include the Adaptec 1740 driver (aha1740.c), the Ultrastor 24F
* driver (ultrastor.c), various Linux kernel source, the Adaptec EISA
* config file (!adp7771.cfg), the Adaptec AHA-2740A Series User's Guide,
* the Linux Kernel Hacker's Guide, Writing a SCSI Device Driver for Linux,
* the Adaptec 1542 driver (aha1542.c), the Adaptec EISA overlay file
* (adp7770.ovl), the Adaptec AHA-2740 Series Technical Reference Manual,
* the Adaptec AIC-7770 Data Book, the ANSI SCSI specification, the
* ANSI SCSI-2 specification (draft 10c), ...
*
* --------------------------------------------------------------------------
*
* Modifications by Daniel M. Eischen (deischen@iworks.InterWorks.org):
*
* Substantially modified to include support for wide and twin bus
* adapters, DMAing of SCBs, tagged queueing, IRQ sharing, bug fixes,
* SCB paging, and other rework of the code.
*
* --------------------------------------------------------------------------
* Copyright (c) 1994-2000 Justin T. Gibbs.
* Copyright (c) 2000-2001 Adaptec Inc.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions, and the following disclaimer,
* without modification.
* 2. Redistributions in binary form must reproduce at minimum a disclaimer
* substantially similar to the "NO WARRANTY" disclaimer below
* ("Disclaimer") and any redistribution must be conditioned upon
* including a substantially similar Disclaimer requirement for further
* binary redistribution.
* 3. Neither the names of the above-listed copyright holders nor the names
* of any contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* Alternatively, this software may be distributed under the terms of the
* GNU General Public License ("GPL") version 2 as published by the Free
* Software Foundation.
*
* NO WARRANTY
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
* IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGES.
*
*---------------------------------------------------------------------------
*
* Thanks also go to (in alphabetical order) the following:
*
* Rory Bolt - Sequencer bug fixes
* Jay Estabrook - Initial DEC Alpha support
* Doug Ledford - Much needed abort/reset bug fixes
* Kai Makisara - DMAing of SCBs
*
* A Boot time option was also added for not resetting the scsi bus.
*
* Form: aic7xxx=extended
* aic7xxx=no_reset
* aic7xxx=verbose
*
* Daniel M. Eischen, deischen@iworks.InterWorks.org, 1/23/97
*
* Id: aic7xxx.c,v 4.1 1997/06/12 08:23:42 deang Exp
*/
/*
* Further driver modifications made by Doug Ledford <dledford@redhat.com>
*
* Copyright (c) 1997-1999 Doug Ledford
*
* These changes are released under the same licensing terms as the FreeBSD
* driver written by Justin Gibbs. Please see his Copyright notice above
* for the exact terms and conditions covering my changes as well as the
* warranty statement.
*
* Modifications made to the aic7xxx.c,v 4.1 driver from Dan Eischen include
* but are not limited to:
*
* 1: Import of the latest FreeBSD sequencer code for this driver
* 2: Modification of kernel code to accommodate different sequencer semantics
* 3: Extensive changes throughout kernel portion of driver to improve
* abort/reset processing and error hanndling
* 4: Other work contributed by various people on the Internet
* 5: Changes to printk information and verbosity selection code
* 6: General reliability related changes, especially in IRQ management
* 7: Modifications to the default probe/attach order for supported cards
* 8: SMP friendliness has been improved
*
*/
#include "aic7xxx_osm.h"
#include "aic7xxx_inline.h"
#include <scsi/scsicam.h>
/*
* Include aiclib.c as part of our
* "module dependencies are hard" work around.
*/
#include "aiclib.c"
#include <linux/init.h> /* __setup */
#if LINUX_VERSION_CODE < KERNEL_VERSION(2,5,0)
#include "sd.h" /* For geometry detection */
#endif
#include <linux/mm.h> /* For fetching system memory size */
#include <linux/blkdev.h> /* For block_size() */
#include <linux/delay.h> /* For ssleep/msleep */
/*
* Lock protecting manipulation of the ahc softc list.
*/
spinlock_t ahc_list_spinlock;
#if LINUX_VERSION_CODE < KERNEL_VERSION(2,5,0)
/* For dynamic sglist size calculation. */
u_int ahc_linux_nseg;
#endif
/*
* Set this to the delay in seconds after SCSI bus reset.
* Note, we honor this only for the initial bus reset.
* The scsi error recovery code performs its own bus settle
* delay handling for error recovery actions.
*/
#ifdef CONFIG_AIC7XXX_RESET_DELAY_MS
#define AIC7XXX_RESET_DELAY CONFIG_AIC7XXX_RESET_DELAY_MS
#else
#define AIC7XXX_RESET_DELAY 5000
#endif
/*
* Control collection of SCSI transfer statistics for the /proc filesystem.
*
* NOTE: Do NOT enable this when running on kernels version 1.2.x and below.
* NOTE: This does affect performance since it has to maintain statistics.
*/
#ifdef CONFIG_AIC7XXX_PROC_STATS
#define AIC7XXX_PROC_STATS
#endif
/*
* To change the default number of tagged transactions allowed per-device,
* add a line to the lilo.conf file like:
* append="aic7xxx=verbose,tag_info:{{32,32,32,32},{32,32,32,32}}"
* which will result in the first four devices on the first two
* controllers being set to a tagged queue depth of 32.
*
* The tag_commands is an array of 16 to allow for wide and twin adapters.
* Twin adapters will use indexes 0-7 for channel 0, and indexes 8-15
* for channel 1.
*/
typedef struct {
uint8_t tag_commands[16]; /* Allow for wide/twin adapters. */
} adapter_tag_info_t;
/*
* Modify this as you see fit for your system.
*
* 0 tagged queuing disabled
* 1 <= n <= 253 n == max tags ever dispatched.
*
* The driver will throttle the number of commands dispatched to a
* device if it returns queue full. For devices with a fixed maximum
* queue depth, the driver will eventually determine this depth and
* lock it in (a console message is printed to indicate that a lock
* has occurred). On some devices, queue full is returned for a temporary
* resource shortage. These devices will return queue full at varying
* depths. The driver will throttle back when the queue fulls occur and
* attempt to slowly increase the depth over time as the device recovers
* from the resource shortage.
*
* In this example, the first line will disable tagged queueing for all
* the devices on the first probed aic7xxx adapter.
*
* The second line enables tagged queueing with 4 commands/LUN for IDs
* (0, 2-11, 13-15), disables tagged queueing for ID 12, and tells the
* driver to attempt to use up to 64 tags for ID 1.
*
* The third line is the same as the first line.
*
* The fourth line disables tagged queueing for devices 0 and 3. It
* enables tagged queueing for the other IDs, with 16 commands/LUN
* for IDs 1 and 4, 127 commands/LUN for ID 8, and 4 commands/LUN for
* IDs 2, 5-7, and 9-15.
*/
/*
* NOTE: The below structure is for reference only, the actual structure
* to modify in order to change things is just below this comment block.
adapter_tag_info_t aic7xxx_tag_info[] =
{
{{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}},
{{4, 64, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 0, 4, 4, 4}},
{{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}},
{{0, 16, 4, 0, 16, 4, 4, 4, 127, 4, 4, 4, 4, 4, 4, 4}}
};
*/
#ifdef CONFIG_AIC7XXX_CMDS_PER_DEVICE
#define AIC7XXX_CMDS_PER_DEVICE CONFIG_AIC7XXX_CMDS_PER_DEVICE
#else
#define AIC7XXX_CMDS_PER_DEVICE AHC_MAX_QUEUE
#endif
#define AIC7XXX_CONFIGED_TAG_COMMANDS { \
AIC7XXX_CMDS_PER_DEVICE, AIC7XXX_CMDS_PER_DEVICE, \
AIC7XXX_CMDS_PER_DEVICE, AIC7XXX_CMDS_PER_DEVICE, \
AIC7XXX_CMDS_PER_DEVICE, AIC7XXX_CMDS_PER_DEVICE, \
AIC7XXX_CMDS_PER_DEVICE, AIC7XXX_CMDS_PER_DEVICE, \
AIC7XXX_CMDS_PER_DEVICE, AIC7XXX_CMDS_PER_DEVICE, \
AIC7XXX_CMDS_PER_DEVICE, AIC7XXX_CMDS_PER_DEVICE, \
AIC7XXX_CMDS_PER_DEVICE, AIC7XXX_CMDS_PER_DEVICE, \
AIC7XXX_CMDS_PER_DEVICE, AIC7XXX_CMDS_PER_DEVICE \
}
/*
* By default, use the number of commands specified by
* the users kernel configuration.
*/
static adapter_tag_info_t aic7xxx_tag_info[] =
{
{AIC7XXX_CONFIGED_TAG_COMMANDS},
{AIC7XXX_CONFIGED_TAG_COMMANDS},
{AIC7XXX_CONFIGED_TAG_COMMANDS},
{AIC7XXX_CONFIGED_TAG_COMMANDS},
{AIC7XXX_CONFIGED_TAG_COMMANDS},
{AIC7XXX_CONFIGED_TAG_COMMANDS},
{AIC7XXX_CONFIGED_TAG_COMMANDS},
{AIC7XXX_CONFIGED_TAG_COMMANDS},
{AIC7XXX_CONFIGED_TAG_COMMANDS},
{AIC7XXX_CONFIGED_TAG_COMMANDS},
{AIC7XXX_CONFIGED_TAG_COMMANDS},
{AIC7XXX_CONFIGED_TAG_COMMANDS},
{AIC7XXX_CONFIGED_TAG_COMMANDS},
{AIC7XXX_CONFIGED_TAG_COMMANDS},
{AIC7XXX_CONFIGED_TAG_COMMANDS},
{AIC7XXX_CONFIGED_TAG_COMMANDS}
};
/*
* DV option:
*
* positive value = DV Enabled
* zero = DV Disabled
* negative value = DV Default for adapter type/seeprom
*/
#ifdef CONFIG_AIC7XXX_DV_SETTING
#define AIC7XXX_CONFIGED_DV CONFIG_AIC7XXX_DV_SETTING
#else
#define AIC7XXX_CONFIGED_DV -1
#endif
static int8_t aic7xxx_dv_settings[] =
{
AIC7XXX_CONFIGED_DV,
AIC7XXX_CONFIGED_DV,
AIC7XXX_CONFIGED_DV,
AIC7XXX_CONFIGED_DV,
AIC7XXX_CONFIGED_DV,
AIC7XXX_CONFIGED_DV,
AIC7XXX_CONFIGED_DV,
AIC7XXX_CONFIGED_DV,
AIC7XXX_CONFIGED_DV,
AIC7XXX_CONFIGED_DV,
AIC7XXX_CONFIGED_DV,
AIC7XXX_CONFIGED_DV,
AIC7XXX_CONFIGED_DV,
AIC7XXX_CONFIGED_DV,
AIC7XXX_CONFIGED_DV,
AIC7XXX_CONFIGED_DV
};
/*
* There should be a specific return value for this in scsi.h, but
* it seems that most drivers ignore it.
*/
#define DID_UNDERFLOW DID_ERROR
void
ahc_print_path(struct ahc_softc *ahc, struct scb *scb)
{
printk("(scsi%d:%c:%d:%d): ",
ahc->platform_data->host->host_no,
scb != NULL ? SCB_GET_CHANNEL(ahc, scb) : 'X',
scb != NULL ? SCB_GET_TARGET(ahc, scb) : -1,
scb != NULL ? SCB_GET_LUN(scb) : -1);
}
/*
* XXX - these options apply unilaterally to _all_ 274x/284x/294x
* cards in the system. This should be fixed. Exceptions to this
* rule are noted in the comments.
*/
/*
* Skip the scsi bus reset. Non 0 make us skip the reset at startup. This
* has no effect on any later resets that might occur due to things like
* SCSI bus timeouts.
*/
static uint32_t aic7xxx_no_reset;
/*
* Certain PCI motherboards will scan PCI devices from highest to lowest,
* others scan from lowest to highest, and they tend to do all kinds of
* strange things when they come into contact with PCI bridge chips. The
* net result of all this is that the PCI card that is actually used to boot
* the machine is very hard to detect. Most motherboards go from lowest
* PCI slot number to highest, and the first SCSI controller found is the
* one you boot from. The only exceptions to this are when a controller
* has its BIOS disabled. So, we by default sort all of our SCSI controllers
* from lowest PCI slot number to highest PCI slot number. We also force
* all controllers with their BIOS disabled to the end of the list. This
* works on *almost* all computers. Where it doesn't work, we have this
* option. Setting this option to non-0 will reverse the order of the sort
* to highest first, then lowest, but will still leave cards with their BIOS
* disabled at the very end. That should fix everyone up unless there are
* really strange cirumstances.
*/
static uint32_t aic7xxx_reverse_scan;
/*
* Should we force EXTENDED translation on a controller.
* 0 == Use whatever is in the SEEPROM or default to off
* 1 == Use whatever is in the SEEPROM or default to on
*/
static uint32_t aic7xxx_extended;
/*
* PCI bus parity checking of the Adaptec controllers. This is somewhat
* dubious at best. To my knowledge, this option has never actually
* solved a PCI parity problem, but on certain machines with broken PCI
* chipset configurations where stray PCI transactions with bad parity are
* the norm rather than the exception, the error messages can be overwelming.
* It's included in the driver for completeness.
* 0 = Shut off PCI parity check
* non-0 = reverse polarity pci parity checking
*/
static uint32_t aic7xxx_pci_parity = ~0;
/*
* Certain newer motherboards have put new PCI based devices into the
* IO spaces that used to typically be occupied by VLB or EISA cards.
* This overlap can cause these newer motherboards to lock up when scanned
* for older EISA and VLB devices. Setting this option to non-0 will
* cause the driver to skip scanning for any VLB or EISA controllers and
* only support the PCI controllers. NOTE: this means that if the kernel
* os compiled with PCI support disabled, then setting this to non-0
* would result in never finding any devices :)
*/
#ifndef CONFIG_AIC7XXX_PROBE_EISA_VL
uint32_t aic7xxx_probe_eisa_vl;
#else
uint32_t aic7xxx_probe_eisa_vl = ~0;
#endif
/*
* There are lots of broken chipsets in the world. Some of them will
* violate the PCI spec when we issue byte sized memory writes to our
* controller. I/O mapped register access, if allowed by the given
* platform, will work in almost all cases.
*/
uint32_t aic7xxx_allow_memio = ~0;
/*
* aic7xxx_detect() has been run, so register all device arrivals
* immediately with the system rather than deferring to the sorted
* attachment performed by aic7xxx_detect().
*/
int aic7xxx_detect_complete;
/*
* So that we can set how long each device is given as a selection timeout.
* The table of values goes like this:
* 0 - 256ms
* 1 - 128ms
* 2 - 64ms
* 3 - 32ms
* We default to 256ms because some older devices need a longer time
* to respond to initial selection.
*/
static uint32_t aic7xxx_seltime;
/*
* Certain devices do not perform any aging on commands. Should the
* device be saturated by commands in one portion of the disk, it is
* possible for transactions on far away sectors to never be serviced.
* To handle these devices, we can periodically send an ordered tag to
* force all outstanding transactions to be serviced prior to a new
* transaction.
*/
uint32_t aic7xxx_periodic_otag;
/*
* Module information and settable options.
*/
static char *aic7xxx = NULL;
MODULE_AUTHOR("Maintainer: Justin T. Gibbs <gibbs@scsiguy.com>");
MODULE_DESCRIPTION("Adaptec Aic77XX/78XX SCSI Host Bus Adapter driver");
MODULE_LICENSE("Dual BSD/GPL");
MODULE_VERSION(AIC7XXX_DRIVER_VERSION);
module_param(aic7xxx, charp, 0444);
MODULE_PARM_DESC(aic7xxx,
"period delimited, options string.\n"
" verbose Enable verbose/diagnostic logging\n"
" allow_memio Allow device registers to be memory mapped\n"
" debug Bitmask of debug values to enable\n"
" no_probe Toggle EISA/VLB controller probing\n"
" probe_eisa_vl Toggle EISA/VLB controller probing\n"
" no_reset Supress initial bus resets\n"
" extended Enable extended geometry on all controllers\n"
" periodic_otag Send an ordered tagged transaction\n"
" periodically to prevent tag starvation.\n"
" This may be required by some older disk\n"
" drives or RAID arrays.\n"
" reverse_scan Sort PCI devices highest Bus/Slot to lowest\n"
" tag_info:<tag_str> Set per-target tag depth\n"
" global_tag_depth:<int> Global tag depth for every target\n"
" on every bus\n"
" dv:<dv_settings> Set per-controller Domain Validation Setting.\n"
" seltime:<int> Selection Timeout\n"
" (0/256ms,1/128ms,2/64ms,3/32ms)\n"
"\n"
" Sample /etc/modprobe.conf line:\n"
" Toggle EISA/VLB probing\n"
" Set tag depth on Controller 1/Target 1 to 10 tags\n"
" Shorten the selection timeout to 128ms\n"
"\n"
" options aic7xxx 'aic7xxx=probe_eisa_vl.tag_info:{{}.{.10}}.seltime:1'\n"
);
static void ahc_linux_handle_scsi_status(struct ahc_softc *,
struct ahc_linux_device *,
struct scb *);
static void ahc_linux_queue_cmd_complete(struct ahc_softc *ahc,
Scsi_Cmnd *cmd);
static void ahc_linux_filter_inquiry(struct ahc_softc*, struct ahc_devinfo*);
static void ahc_linux_sem_timeout(u_long arg);
static void ahc_linux_freeze_simq(struct ahc_softc *ahc);
static void ahc_linux_release_simq(u_long arg);
static void ahc_linux_dev_timed_unfreeze(u_long arg);
static int ahc_linux_queue_recovery_cmd(Scsi_Cmnd *cmd, scb_flag flag);
static void ahc_linux_initialize_scsi_bus(struct ahc_softc *ahc);
static void ahc_linux_size_nseg(void);
static void ahc_linux_thread_run_complete_queue(struct ahc_softc *ahc);
static void ahc_linux_start_dv(struct ahc_softc *ahc);
static void ahc_linux_dv_timeout(struct scsi_cmnd *cmd);
static int ahc_linux_dv_thread(void *data);
static void ahc_linux_kill_dv_thread(struct ahc_softc *ahc);
static void ahc_linux_dv_target(struct ahc_softc *ahc, u_int target);
static void ahc_linux_dv_transition(struct ahc_softc *ahc,
struct scsi_cmnd *cmd,
struct ahc_devinfo *devinfo,
struct ahc_linux_target *targ);
static void ahc_linux_dv_fill_cmd(struct ahc_softc *ahc,
struct scsi_cmnd *cmd,
struct ahc_devinfo *devinfo);
static void ahc_linux_dv_inq(struct ahc_softc *ahc,
struct scsi_cmnd *cmd,
struct ahc_devinfo *devinfo,
struct ahc_linux_target *targ,
u_int request_length);
static void ahc_linux_dv_tur(struct ahc_softc *ahc,
struct scsi_cmnd *cmd,
struct ahc_devinfo *devinfo);
static void ahc_linux_dv_rebd(struct ahc_softc *ahc,
struct scsi_cmnd *cmd,
struct ahc_devinfo *devinfo,
struct ahc_linux_target *targ);
static void ahc_linux_dv_web(struct ahc_softc *ahc,
struct scsi_cmnd *cmd,
struct ahc_devinfo *devinfo,
struct ahc_linux_target *targ);
static void ahc_linux_dv_reb(struct ahc_softc *ahc,
struct scsi_cmnd *cmd,
struct ahc_devinfo *devinfo,
struct ahc_linux_target *targ);
static void ahc_linux_dv_su(struct ahc_softc *ahc,
struct scsi_cmnd *cmd,
struct ahc_devinfo *devinfo,
struct ahc_linux_target *targ);
static int ahc_linux_fallback(struct ahc_softc *ahc,
struct ahc_devinfo *devinfo);
static void ahc_linux_dv_complete(Scsi_Cmnd *cmd);
static void ahc_linux_generate_dv_pattern(struct ahc_linux_target *targ);
static u_int ahc_linux_user_tagdepth(struct ahc_softc *ahc,
struct ahc_devinfo *devinfo);
static u_int ahc_linux_user_dv_setting(struct ahc_softc *ahc);
static void ahc_linux_device_queue_depth(struct ahc_softc *ahc,
struct ahc_linux_device *dev);
static struct ahc_linux_target* ahc_linux_alloc_target(struct ahc_softc*,
u_int, u_int);
static void ahc_linux_free_target(struct ahc_softc*,
struct ahc_linux_target*);
static struct ahc_linux_device* ahc_linux_alloc_device(struct ahc_softc*,
struct ahc_linux_target*,
u_int);
static void ahc_linux_free_device(struct ahc_softc*,
struct ahc_linux_device*);
static void ahc_linux_run_device_queue(struct ahc_softc*,
struct ahc_linux_device*);
static void ahc_linux_setup_tag_info_global(char *p);
static aic_option_callback_t ahc_linux_setup_tag_info;
static aic_option_callback_t ahc_linux_setup_dv;
static int aic7xxx_setup(char *s);
static int ahc_linux_next_unit(void);
static void ahc_runq_tasklet(unsigned long data);
static struct ahc_cmd *ahc_linux_run_complete_queue(struct ahc_softc *ahc);
/********************************* Inlines ************************************/
static __inline void ahc_schedule_runq(struct ahc_softc *ahc);
static __inline struct ahc_linux_device*
ahc_linux_get_device(struct ahc_softc *ahc, u_int channel,
u_int target, u_int lun, int alloc);
static __inline void ahc_schedule_completeq(struct ahc_softc *ahc);
static __inline void ahc_linux_check_device_queue(struct ahc_softc *ahc,
struct ahc_linux_device *dev);
static __inline struct ahc_linux_device *
ahc_linux_next_device_to_run(struct ahc_softc *ahc);
static __inline void ahc_linux_run_device_queues(struct ahc_softc *ahc);
static __inline void ahc_linux_unmap_scb(struct ahc_softc*, struct scb*);
static __inline int ahc_linux_map_seg(struct ahc_softc *ahc, struct scb *scb,
struct ahc_dma_seg *sg,
dma_addr_t addr, bus_size_t len);
static __inline void
ahc_schedule_completeq(struct ahc_softc *ahc)
{
if ((ahc->platform_data->flags & AHC_RUN_CMPLT_Q_TIMER) == 0) {
ahc->platform_data->flags |= AHC_RUN_CMPLT_Q_TIMER;
ahc->platform_data->completeq_timer.expires = jiffies;
add_timer(&ahc->platform_data->completeq_timer);
}
}
/*
* Must be called with our lock held.
*/
static __inline void
ahc_schedule_runq(struct ahc_softc *ahc)
{
tasklet_schedule(&ahc->platform_data->runq_tasklet);
}
static __inline struct ahc_linux_device*
ahc_linux_get_device(struct ahc_softc *ahc, u_int channel, u_int target,
u_int lun, int alloc)
{
struct ahc_linux_target *targ;
struct ahc_linux_device *dev;
u_int target_offset;
target_offset = target;
if (channel != 0)
target_offset += 8;
targ = ahc->platform_data->targets[target_offset];
if (targ == NULL) {
if (alloc != 0) {
targ = ahc_linux_alloc_target(ahc, channel, target);
if (targ == NULL)
return (NULL);
} else
return (NULL);
}
dev = targ->devices[lun];
if (dev == NULL && alloc != 0)
dev = ahc_linux_alloc_device(ahc, targ, lun);
return (dev);
}
#define AHC_LINUX_MAX_RETURNED_ERRORS 4
static struct ahc_cmd *
ahc_linux_run_complete_queue(struct ahc_softc *ahc)
{
struct ahc_cmd *acmd;
u_long done_flags;
int with_errors;
with_errors = 0;
ahc_done_lock(ahc, &done_flags);
while ((acmd = TAILQ_FIRST(&ahc->platform_data->completeq)) != NULL) {
Scsi_Cmnd *cmd;
if (with_errors > AHC_LINUX_MAX_RETURNED_ERRORS) {
/*
* Linux uses stack recursion to requeue
* commands that need to be retried. Avoid
* blowing out the stack by "spoon feeding"
* commands that completed with error back
* the operating system in case they are going
* to be retried. "ick"
*/
ahc_schedule_completeq(ahc);
break;
}
TAILQ_REMOVE(&ahc->platform_data->completeq,
acmd, acmd_links.tqe);
cmd = &acmd_scsi_cmd(acmd);
cmd->host_scribble = NULL;
if (ahc_cmd_get_transaction_status(cmd) != DID_OK
|| (cmd->result & 0xFF) != SCSI_STATUS_OK)
with_errors++;
cmd->scsi_done(cmd);
}
ahc_done_unlock(ahc, &done_flags);
return (acmd);
}
static __inline void
ahc_linux_check_device_queue(struct ahc_softc *ahc,
struct ahc_linux_device *dev)
{
if ((dev->flags & AHC_DEV_FREEZE_TIL_EMPTY) != 0
&& dev->active == 0) {
dev->flags &= ~AHC_DEV_FREEZE_TIL_EMPTY;
dev->qfrozen--;
}
if (TAILQ_FIRST(&dev->busyq) == NULL
|| dev->openings == 0 || dev->qfrozen != 0)
return;
ahc_linux_run_device_queue(ahc, dev);
}
static __inline struct ahc_linux_device *
ahc_linux_next_device_to_run(struct ahc_softc *ahc)
{
if ((ahc->flags & AHC_RESOURCE_SHORTAGE) != 0
|| (ahc->platform_data->qfrozen != 0
&& AHC_DV_SIMQ_FROZEN(ahc) == 0))
return (NULL);
return (TAILQ_FIRST(&ahc->platform_data->device_runq));
}
static __inline void
ahc_linux_run_device_queues(struct ahc_softc *ahc)
{
struct ahc_linux_device *dev;
while ((dev = ahc_linux_next_device_to_run(ahc)) != NULL) {
TAILQ_REMOVE(&ahc->platform_data->device_runq, dev, links);
dev->flags &= ~AHC_DEV_ON_RUN_LIST;
ahc_linux_check_device_queue(ahc, dev);
}
}
static __inline void
ahc_linux_unmap_scb(struct ahc_softc *ahc, struct scb *scb)
{
Scsi_Cmnd *cmd;
cmd = scb->io_ctx;
ahc_sync_sglist(ahc, scb, BUS_DMASYNC_POSTWRITE);
if (cmd->use_sg != 0) {
struct scatterlist *sg;
sg = (struct scatterlist *)cmd->request_buffer;
pci_unmap_sg(ahc->dev_softc, sg, cmd->use_sg,
scsi_to_pci_dma_dir(cmd->sc_data_direction));
} else if (cmd->request_bufflen != 0) {
pci_unmap_single(ahc->dev_softc,
scb->platform_data->buf_busaddr,
cmd->request_bufflen,
scsi_to_pci_dma_dir(cmd->sc_data_direction));
}
}
static __inline int
ahc_linux_map_seg(struct ahc_softc *ahc, struct scb *scb,
struct ahc_dma_seg *sg, dma_addr_t addr, bus_size_t len)
{
int consumed;
if ((scb->sg_count + 1) > AHC_NSEG)
panic("Too few segs for dma mapping. "
"Increase AHC_NSEG\n");
consumed = 1;
sg->addr = ahc_htole32(addr & 0xFFFFFFFF);
scb->platform_data->xfer_len += len;
if (sizeof(dma_addr_t) > 4
&& (ahc->flags & AHC_39BIT_ADDRESSING) != 0)
len |= (addr >> 8) & AHC_SG_HIGH_ADDR_MASK;
sg->len = ahc_htole32(len);
return (consumed);
}
/************************ Host template entry points *************************/
static int ahc_linux_detect(Scsi_Host_Template *);
static int ahc_linux_queue(Scsi_Cmnd *, void (*)(Scsi_Cmnd *));
static const char *ahc_linux_info(struct Scsi_Host *);
#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,5,0)
static int ahc_linux_slave_alloc(Scsi_Device *);
static int ahc_linux_slave_configure(Scsi_Device *);
static void ahc_linux_slave_destroy(Scsi_Device *);
#if defined(__i386__)
static int ahc_linux_biosparam(struct scsi_device*,
struct block_device*,
sector_t, int[]);
#endif
#else
static int ahc_linux_release(struct Scsi_Host *);
static void ahc_linux_select_queue_depth(struct Scsi_Host *host,
Scsi_Device *scsi_devs);
#if defined(__i386__)
static int ahc_linux_biosparam(Disk *, kdev_t, int[]);
#endif
#endif
static int ahc_linux_bus_reset(Scsi_Cmnd *);
static int ahc_linux_dev_reset(Scsi_Cmnd *);
static int ahc_linux_abort(Scsi_Cmnd *);
/*
* Calculate a safe value for AHC_NSEG (as expressed through ahc_linux_nseg).
*
* In pre-2.5.X...
* The midlayer allocates an S/G array dynamically when a command is issued
* using SCSI malloc. This array, which is in an OS dependent format that
* must later be copied to our private S/G list, is sized to house just the
* number of segments needed for the current transfer. Since the code that
* sizes the SCSI malloc pool does not take into consideration fragmentation
* of the pool, executing transactions numbering just a fraction of our
* concurrent transaction limit with list lengths aproaching AHC_NSEG will
* quickly depleat the SCSI malloc pool of usable space. Unfortunately, the
* mid-layer does not properly handle this scsi malloc failures for the S/G
* array and the result can be a lockup of the I/O subsystem. We try to size
* our S/G list so that it satisfies our drivers allocation requirements in
* addition to avoiding fragmentation of the SCSI malloc pool.
*/
static void
ahc_linux_size_nseg(void)
{
#if LINUX_VERSION_CODE < KERNEL_VERSION(2,5,0)
u_int cur_size;
u_int best_size;
/*
* The SCSI allocator rounds to the nearest 512 bytes
* an cannot allocate across a page boundary. Our algorithm
* is to start at 1K of scsi malloc space per-command and
* loop through all factors of the PAGE_SIZE and pick the best.
*/
best_size = 0;
for (cur_size = 1024; cur_size <= PAGE_SIZE; cur_size *= 2) {
u_int nseg;
nseg = cur_size / sizeof(struct scatterlist);
if (nseg < AHC_LINUX_MIN_NSEG)
continue;
if (best_size == 0) {
best_size = cur_size;
ahc_linux_nseg = nseg;
} else {
u_int best_rem;
u_int cur_rem;
/*
* Compare the traits of the current "best_size"
* with the current size to determine if the
* current size is a better size.
*/
best_rem = best_size % sizeof(struct scatterlist);
cur_rem = cur_size % sizeof(struct scatterlist);
if (cur_rem < best_rem) {
best_size = cur_size;
ahc_linux_nseg = nseg;
}
}
}
#endif
}
/*
* Try to detect an Adaptec 7XXX controller.
*/
static int
ahc_linux_detect(Scsi_Host_Template *template)
{
struct ahc_softc *ahc;
int found = 0;
#if LINUX_VERSION_CODE < KERNEL_VERSION(2,5,0)
/*
* It is a bug that the upper layer takes
* this lock just prior to calling us.
*/
spin_unlock_irq(&io_request_lock);
#endif
/*
* Sanity checking of Linux SCSI data structures so
* that some of our hacks^H^H^H^H^Hassumptions aren't
* violated.
*/
if (offsetof(struct ahc_cmd_internal, end)
> offsetof(struct scsi_cmnd, host_scribble)) {
printf("ahc_linux_detect: SCSI data structures changed.\n");
printf("ahc_linux_detect: Unable to attach\n");
return (0);
}
ahc_linux_size_nseg();
/*
* If we've been passed any parameters, process them now.
*/
if (aic7xxx)
aic7xxx_setup(aic7xxx);
template->proc_name = "aic7xxx";
/*
* Initialize our softc list lock prior to
* probing for any adapters.
*/
ahc_list_lockinit();
found = ahc_linux_pci_init();
if (!ahc_linux_eisa_init())
found++;
/*
* Register with the SCSI layer all
* controllers we've found.
*/
TAILQ_FOREACH(ahc, &ahc_tailq, links) {
if (ahc_linux_register_host(ahc, template) == 0)
found++;
}
#if LINUX_VERSION_CODE < KERNEL_VERSION(2,5,0)
spin_lock_irq(&io_request_lock);
#endif
aic7xxx_detect_complete++;
return (found);
}
#if LINUX_VERSION_CODE < KERNEL_VERSION(2,5,0)
/*
* Free the passed in Scsi_Host memory structures prior to unloading the
* module.
*/
int
ahc_linux_release(struct Scsi_Host * host)
{
struct ahc_softc *ahc;
u_long l;
ahc_list_lock(&l);
if (host != NULL) {
/*
* We should be able to just perform
* the free directly, but check our
* list for extra sanity.
*/
ahc = ahc_find_softc(*(struct ahc_softc **)host->hostdata);
if (ahc != NULL) {
u_long s;
ahc_lock(ahc, &s);
ahc_intr_enable(ahc, FALSE);
ahc_unlock(ahc, &s);
ahc_free(ahc);
}
}
ahc_list_unlock(&l);
return (0);
}
#endif
/*
* Return a string describing the driver.
*/
static const char *
ahc_linux_info(struct Scsi_Host *host)
{
static char buffer[512];
char ahc_info[256];
char *bp;
struct ahc_softc *ahc;
bp = &buffer[0];
ahc = *(struct ahc_softc **)host->hostdata;
memset(bp, 0, sizeof(buffer));
strcpy(bp, "Adaptec AIC7XXX EISA/VLB/PCI SCSI HBA DRIVER, Rev ");
strcat(bp, AIC7XXX_DRIVER_VERSION);
strcat(bp, "\n");
strcat(bp, " <");
strcat(bp, ahc->description);
strcat(bp, ">\n");
strcat(bp, " ");
ahc_controller_info(ahc, ahc_info);
strcat(bp, ahc_info);
strcat(bp, "\n");
return (bp);
}
/*
* Queue an SCB to the controller.
*/
static int
ahc_linux_queue(Scsi_Cmnd * cmd, void (*scsi_done) (Scsi_Cmnd *))
{
struct ahc_softc *ahc;
struct ahc_linux_device *dev;
u_long flags;
ahc = *(struct ahc_softc **)cmd->device->host->hostdata;
/*
* Save the callback on completion function.
*/
cmd->scsi_done = scsi_done;
ahc_midlayer_entrypoint_lock(ahc, &flags);
/*
* Close the race of a command that was in the process of
* being queued to us just as our simq was frozen. Let
* DV commands through so long as we are only frozen to
* perform DV.
*/
if (ahc->platform_data->qfrozen != 0
&& AHC_DV_CMD(cmd) == 0) {
ahc_cmd_set_transaction_status(cmd, CAM_REQUEUE_REQ);
ahc_linux_queue_cmd_complete(ahc, cmd);
ahc_schedule_completeq(ahc);
ahc_midlayer_entrypoint_unlock(ahc, &flags);
return (0);
}
dev = ahc_linux_get_device(ahc, cmd->device->channel, cmd->device->id,
cmd->device->lun, /*alloc*/TRUE);
if (dev == NULL) {
ahc_cmd_set_transaction_status(cmd, CAM_RESRC_UNAVAIL);
ahc_linux_queue_cmd_complete(ahc, cmd);
ahc_schedule_completeq(ahc);
ahc_midlayer_entrypoint_unlock(ahc, &flags);
printf("%s: aic7xxx_linux_queue - Unable to allocate device!\n",
ahc_name(ahc));
return (0);
}
cmd->result = CAM_REQ_INPROG << 16;
TAILQ_INSERT_TAIL(&dev->busyq, (struct ahc_cmd *)cmd, acmd_links.tqe);
if ((dev->flags & AHC_DEV_ON_RUN_LIST) == 0) {
TAILQ_INSERT_TAIL(&ahc->platform_data->device_runq, dev, links);
dev->flags |= AHC_DEV_ON_RUN_LIST;
ahc_linux_run_device_queues(ahc);
}
ahc_midlayer_entrypoint_unlock(ahc, &flags);
return (0);
}
#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,5,0)
static int
ahc_linux_slave_alloc(Scsi_Device *device)
{
struct ahc_softc *ahc;
ahc = *((struct ahc_softc **)device->host->hostdata);
if (bootverbose)
printf("%s: Slave Alloc %d\n", ahc_name(ahc), device->id);
return (0);
}
static int
ahc_linux_slave_configure(Scsi_Device *device)
{
struct ahc_softc *ahc;
struct ahc_linux_device *dev;
u_long flags;
ahc = *((struct ahc_softc **)device->host->hostdata);
if (bootverbose)
printf("%s: Slave Configure %d\n", ahc_name(ahc), device->id);
ahc_midlayer_entrypoint_lock(ahc, &flags);
/*
* Since Linux has attached to the device, configure
* it so we don't free and allocate the device
* structure on every command.
*/
dev = ahc_linux_get_device(ahc, device->channel,
device->id, device->lun,
/*alloc*/TRUE);
if (dev != NULL) {
dev->flags &= ~AHC_DEV_UNCONFIGURED;
dev->scsi_device = device;
ahc_linux_device_queue_depth(ahc, dev);
}
ahc_midlayer_entrypoint_unlock(ahc, &flags);
return (0);
}
static void
ahc_linux_slave_destroy(Scsi_Device *device)
{
struct ahc_softc *ahc;
struct ahc_linux_device *dev;
u_long flags;
ahc = *((struct ahc_softc **)device->host->hostdata);
if (bootverbose)
printf("%s: Slave Destroy %d\n", ahc_name(ahc), device->id);
ahc_midlayer_entrypoint_lock(ahc, &flags);
dev = ahc_linux_get_device(ahc, device->channel,
device->id, device->lun,
/*alloc*/FALSE);
/*
* Filter out "silly" deletions of real devices by only
* deleting devices that have had slave_configure()
* called on them. All other devices that have not
* been configured will automatically be deleted by
* the refcounting process.
*/
if (dev != NULL
&& (dev->flags & AHC_DEV_SLAVE_CONFIGURED) != 0) {
dev->flags |= AHC_DEV_UNCONFIGURED;
if (TAILQ_EMPTY(&dev->busyq)
&& dev->active == 0
&& (dev->flags & AHC_DEV_TIMER_ACTIVE) == 0)
ahc_linux_free_device(ahc, dev);
}
ahc_midlayer_entrypoint_unlock(ahc, &flags);
}
#else
/*
* Sets the queue depth for each SCSI device hanging
* off the input host adapter.
*/
static void
ahc_linux_select_queue_depth(struct Scsi_Host *host, Scsi_Device *scsi_devs)
{
Scsi_Device *device;
Scsi_Device *ldev;
struct ahc_softc *ahc;
u_long flags;
ahc = *((struct ahc_softc **)host->hostdata);
ahc_lock(ahc, &flags);
for (device = scsi_devs; device != NULL; device = device->next) {
/*
* Watch out for duplicate devices. This works around
* some quirks in how the SCSI scanning code does its
* device management.
*/
for (ldev = scsi_devs; ldev != device; ldev = ldev->next) {
if (ldev->host == device->host
&& ldev->channel == device->channel
&& ldev->id == device->id
&& ldev->lun == device->lun)
break;
}
/* Skip duplicate. */
if (ldev != device)
continue;
if (device->host == host) {
struct ahc_linux_device *dev;
/*
* Since Linux has attached to the device, configure
* it so we don't free and allocate the device
* structure on every command.
*/
dev = ahc_linux_get_device(ahc, device->channel,
device->id, device->lun,
/*alloc*/TRUE);
if (dev != NULL) {
dev->flags &= ~AHC_DEV_UNCONFIGURED;
dev->scsi_device = device;
ahc_linux_device_queue_depth(ahc, dev);
device->queue_depth = dev->openings
+ dev->active;
if ((dev->flags & (AHC_DEV_Q_BASIC
| AHC_DEV_Q_TAGGED)) == 0) {
/*
* We allow the OS to queue 2 untagged
* transactions to us at any time even
* though we can only execute them
* serially on the controller/device.
* This should remove some latency.
*/
device->queue_depth = 2;
}
}
}
}
ahc_unlock(ahc, &flags);
}
#endif
#if defined(__i386__)
/*
* Return the disk geometry for the given SCSI device.
*/
static int
#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,5,0)
ahc_linux_biosparam(struct scsi_device *sdev, struct block_device *bdev,
sector_t capacity, int geom[])
{
uint8_t *bh;
#else
ahc_linux_biosparam(Disk *disk, kdev_t dev, int geom[])
{
struct scsi_device *sdev = disk->device;
u_long capacity = disk->capacity;
struct buffer_head *bh;
#endif
int heads;
int sectors;
int cylinders;
int ret;
int extended;
struct ahc_softc *ahc;
u_int channel;
ahc = *((struct ahc_softc **)sdev->host->hostdata);
channel = sdev->channel;
#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,5,0)
bh = scsi_bios_ptable(bdev);
#elif LINUX_VERSION_CODE >= KERNEL_VERSION(2,4,17)
bh = bread(MKDEV(MAJOR(dev), MINOR(dev) & ~0xf), 0, block_size(dev));
#else
bh = bread(MKDEV(MAJOR(dev), MINOR(dev) & ~0xf), 0, 1024);
#endif
if (bh) {
ret = scsi_partsize(bh, capacity,
&geom[2], &geom[0], &geom[1]);
#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,5,0)
kfree(bh);
#else
brelse(bh);
#endif
if (ret != -1)
return (ret);
}
heads = 64;
sectors = 32;
cylinders = aic_sector_div(capacity, heads, sectors);
if (aic7xxx_extended != 0)
extended = 1;
else if (channel == 0)
extended = (ahc->flags & AHC_EXTENDED_TRANS_A) != 0;
else
extended = (ahc->flags & AHC_EXTENDED_TRANS_B) != 0;
if (extended && cylinders >= 1024) {
heads = 255;
sectors = 63;
cylinders = aic_sector_div(capacity, heads, sectors);
}
geom[0] = heads;
geom[1] = sectors;
geom[2] = cylinders;
return (0);
}
#endif
/*
* Abort the current SCSI command(s).
*/
static int
ahc_linux_abort(Scsi_Cmnd *cmd)
{
int error;
error = ahc_linux_queue_recovery_cmd(cmd, SCB_ABORT);
if (error != 0)
printf("aic7xxx_abort returns 0x%x\n", error);
return (error);
}
/*
* Attempt to send a target reset message to the device that timed out.
*/
static int
ahc_linux_dev_reset(Scsi_Cmnd *cmd)
{
int error;
error = ahc_linux_queue_recovery_cmd(cmd, SCB_DEVICE_RESET);
if (error != 0)
printf("aic7xxx_dev_reset returns 0x%x\n", error);
return (error);
}
/*
* Reset the SCSI bus.
*/
static int
ahc_linux_bus_reset(Scsi_Cmnd *cmd)
{
struct ahc_softc *ahc;
u_long s;
int found;
ahc = *(struct ahc_softc **)cmd->device->host->hostdata;
ahc_midlayer_entrypoint_lock(ahc, &s);
found = ahc_reset_channel(ahc, cmd->device->channel + 'A',
/*initiate reset*/TRUE);
ahc_linux_run_complete_queue(ahc);
ahc_midlayer_entrypoint_unlock(ahc, &s);
if (bootverbose)
printf("%s: SCSI bus reset delivered. "
"%d SCBs aborted.\n", ahc_name(ahc), found);
return SUCCESS;
}
Scsi_Host_Template aic7xxx_driver_template = {
.module = THIS_MODULE,
.name = "aic7xxx",
.proc_info = ahc_linux_proc_info,
.info = ahc_linux_info,
.queuecommand = ahc_linux_queue,
.eh_abort_handler = ahc_linux_abort,
.eh_device_reset_handler = ahc_linux_dev_reset,
.eh_bus_reset_handler = ahc_linux_bus_reset,
#if defined(__i386__)
.bios_param = ahc_linux_biosparam,
#endif
.can_queue = AHC_MAX_QUEUE,
.this_id = -1,
.cmd_per_lun = 2,
.use_clustering = ENABLE_CLUSTERING,
.slave_alloc = ahc_linux_slave_alloc,
.slave_configure = ahc_linux_slave_configure,
.slave_destroy = ahc_linux_slave_destroy,
};
/**************************** Tasklet Handler *********************************/
/*
* In 2.4.X and above, this routine is called from a tasklet,
* so we must re-acquire our lock prior to executing this code.
* In all prior kernels, ahc_schedule_runq() calls this routine
* directly and ahc_schedule_runq() is called with our lock held.
*/
static void
ahc_runq_tasklet(unsigned long data)
{
struct ahc_softc* ahc;
struct ahc_linux_device *dev;
u_long flags;
ahc = (struct ahc_softc *)data;
ahc_lock(ahc, &flags);
while ((dev = ahc_linux_next_device_to_run(ahc)) != NULL) {
TAILQ_REMOVE(&ahc->platform_data->device_runq, dev, links);
dev->flags &= ~AHC_DEV_ON_RUN_LIST;
ahc_linux_check_device_queue(ahc, dev);
/* Yeild to our interrupt handler */
ahc_unlock(ahc, &flags);
ahc_lock(ahc, &flags);
}
ahc_unlock(ahc, &flags);
}
/******************************** Macros **************************************/
#define BUILD_SCSIID(ahc, cmd) \
((((cmd)->device->id << TID_SHIFT) & TID) \
| (((cmd)->device->channel == 0) ? (ahc)->our_id : (ahc)->our_id_b) \
| (((cmd)->device->channel == 0) ? 0 : TWIN_CHNLB))
/******************************** Bus DMA *************************************/
int
ahc_dma_tag_create(struct ahc_softc *ahc, bus_dma_tag_t parent,
bus_size_t alignment, bus_size_t boundary,
dma_addr_t lowaddr, dma_addr_t highaddr,
bus_dma_filter_t *filter, void *filterarg,
bus_size_t maxsize, int nsegments,
bus_size_t maxsegsz, int flags, bus_dma_tag_t *ret_tag)
{
bus_dma_tag_t dmat;
dmat = malloc(sizeof(*dmat), M_DEVBUF, M_NOWAIT);
if (dmat == NULL)
return (ENOMEM);
/*
* Linux is very simplistic about DMA memory. For now don't
* maintain all specification information. Once Linux supplies
* better facilities for doing these operations, or the
* needs of this particular driver change, we might need to do
* more here.
*/
dmat->alignment = alignment;
dmat->boundary = boundary;
dmat->maxsize = maxsize;
*ret_tag = dmat;
return (0);
}
void
ahc_dma_tag_destroy(struct ahc_softc *ahc, bus_dma_tag_t dmat)
{
free(dmat, M_DEVBUF);
}
int
ahc_dmamem_alloc(struct ahc_softc *ahc, bus_dma_tag_t dmat, void** vaddr,
int flags, bus_dmamap_t *mapp)
{
bus_dmamap_t map;
map = malloc(sizeof(*map), M_DEVBUF, M_NOWAIT);
if (map == NULL)
return (ENOMEM);
/*
* Although we can dma data above 4GB, our
* "consistent" memory is below 4GB for
* space efficiency reasons (only need a 4byte
* address). For this reason, we have to reset
* our dma mask when doing allocations.
*/
if (ahc->dev_softc != NULL)
if (pci_set_dma_mask(ahc->dev_softc, 0xFFFFFFFF)) {
printk(KERN_WARNING "aic7xxx: No suitable DMA available.\n");
kfree(map);
return (ENODEV);
}
*vaddr = pci_alloc_consistent(ahc->dev_softc,
dmat->maxsize, &map->bus_addr);
if (ahc->dev_softc != NULL)
if (pci_set_dma_mask(ahc->dev_softc,
ahc->platform_data->hw_dma_mask)) {
printk(KERN_WARNING "aic7xxx: No suitable DMA available.\n");
kfree(map);
return (ENODEV);
}
if (*vaddr == NULL)
return (ENOMEM);
*mapp = map;
return(0);
}
void
ahc_dmamem_free(struct ahc_softc *ahc, bus_dma_tag_t dmat,
void* vaddr, bus_dmamap_t map)
{
pci_free_consistent(ahc->dev_softc, dmat->maxsize,
vaddr, map->bus_addr);
}
int
ahc_dmamap_load(struct ahc_softc *ahc, bus_dma_tag_t dmat, bus_dmamap_t map,
void *buf, bus_size_t buflen, bus_dmamap_callback_t *cb,
void *cb_arg, int flags)
{
/*
* Assume for now that this will only be used during
* initialization and not for per-transaction buffer mapping.
*/
bus_dma_segment_t stack_sg;
stack_sg.ds_addr = map->bus_addr;
stack_sg.ds_len = dmat->maxsize;
cb(cb_arg, &stack_sg, /*nseg*/1, /*error*/0);
return (0);
}
void
ahc_dmamap_destroy(struct ahc_softc *ahc, bus_dma_tag_t dmat, bus_dmamap_t map)
{
/*
* The map may is NULL in our < 2.3.X implementation.
* Now it's 2.6.5, but just in case...
*/
BUG_ON(map == NULL);
free(map, M_DEVBUF);
}
int
ahc_dmamap_unload(struct ahc_softc *ahc, bus_dma_tag_t dmat, bus_dmamap_t map)
{
/* Nothing to do */
return (0);
}
/********************* Platform Dependent Functions ***************************/
/*
* Compare "left hand" softc with "right hand" softc, returning:
* < 0 - lahc has a lower priority than rahc
* 0 - Softcs are equal
* > 0 - lahc has a higher priority than rahc
*/
int
ahc_softc_comp(struct ahc_softc *lahc, struct ahc_softc *rahc)
{
int value;
int rvalue;
int lvalue;
/*
* Under Linux, cards are ordered as follows:
* 1) VLB/EISA BIOS enabled devices sorted by BIOS address.
* 2) PCI devices with BIOS enabled sorted by bus/slot/func.
* 3) All remaining VLB/EISA devices sorted by ioport.
* 4) All remaining PCI devices sorted by bus/slot/func.
*/
value = (lahc->flags & AHC_BIOS_ENABLED)
- (rahc->flags & AHC_BIOS_ENABLED);
if (value != 0)
/* Controllers with BIOS enabled have a *higher* priority */
return (value);
/*
* Same BIOS setting, now sort based on bus type.
* EISA and VL controllers sort together. EISA/VL
* have higher priority than PCI.
*/
rvalue = (rahc->chip & AHC_BUS_MASK);
if (rvalue == AHC_VL)
rvalue = AHC_EISA;
lvalue = (lahc->chip & AHC_BUS_MASK);
if (lvalue == AHC_VL)
lvalue = AHC_EISA;
value = rvalue - lvalue;
if (value != 0)
return (value);
/* Still equal. Sort by BIOS address, ioport, or bus/slot/func. */
switch (rvalue) {
#ifdef CONFIG_PCI
case AHC_PCI:
{
char primary_channel;
if (aic7xxx_reverse_scan != 0)
value = ahc_get_pci_bus(lahc->dev_softc)
- ahc_get_pci_bus(rahc->dev_softc);
else
value = ahc_get_pci_bus(rahc->dev_softc)
- ahc_get_pci_bus(lahc->dev_softc);
if (value != 0)
break;
if (aic7xxx_reverse_scan != 0)
value = ahc_get_pci_slot(lahc->dev_softc)
- ahc_get_pci_slot(rahc->dev_softc);
else
value = ahc_get_pci_slot(rahc->dev_softc)
- ahc_get_pci_slot(lahc->dev_softc);
if (value != 0)
break;
/*
* On multi-function devices, the user can choose
* to have function 1 probed before function 0.
* Give whichever channel is the primary channel
* the highest priority.
*/
primary_channel = (lahc->flags & AHC_PRIMARY_CHANNEL) + 'A';
value = -1;
if (lahc->channel == primary_channel)
value = 1;
break;
}
#endif
case AHC_EISA:
if ((rahc->flags & AHC_BIOS_ENABLED) != 0) {
value = rahc->platform_data->bios_address
- lahc->platform_data->bios_address;
} else {
value = rahc->bsh.ioport
- lahc->bsh.ioport;
}
break;
default:
panic("ahc_softc_sort: invalid bus type");
}
return (value);
}
static void
ahc_linux_setup_tag_info_global(char *p)
{
int tags, i, j;
tags = simple_strtoul(p + 1, NULL, 0) & 0xff;
printf("Setting Global Tags= %d\n", tags);
for (i = 0; i < NUM_ELEMENTS(aic7xxx_tag_info); i++) {
for (j = 0; j < AHC_NUM_TARGETS; j++) {
aic7xxx_tag_info[i].tag_commands[j] = tags;
}
}
}
static void
ahc_linux_setup_tag_info(u_long arg, int instance, int targ, int32_t value)
{
if ((instance >= 0) && (targ >= 0)
&& (instance < NUM_ELEMENTS(aic7xxx_tag_info))
&& (targ < AHC_NUM_TARGETS)) {
aic7xxx_tag_info[instance].tag_commands[targ] = value & 0xff;
if (bootverbose)
printf("tag_info[%d:%d] = %d\n", instance, targ, value);
}
}
static void
ahc_linux_setup_dv(u_long arg, int instance, int targ, int32_t value)
{
if ((instance >= 0)
&& (instance < NUM_ELEMENTS(aic7xxx_dv_settings))) {
aic7xxx_dv_settings[instance] = value;
if (bootverbose)
printf("dv[%d] = %d\n", instance, value);
}
}
/*
* Handle Linux boot parameters. This routine allows for assigning a value
* to a parameter with a ':' between the parameter and the value.
* ie. aic7xxx=stpwlev:1,extended
*/
static int
aic7xxx_setup(char *s)
{
int i, n;
char *p;
char *end;
static struct {
const char *name;
uint32_t *flag;
} options[] = {
{ "extended", &aic7xxx_extended },
{ "no_reset", &aic7xxx_no_reset },
{ "verbose", &aic7xxx_verbose },
{ "allow_memio", &aic7xxx_allow_memio},
#ifdef AHC_DEBUG
{ "debug", &ahc_debug },
#endif
{ "reverse_scan", &aic7xxx_reverse_scan },
{ "no_probe", &aic7xxx_probe_eisa_vl },
{ "probe_eisa_vl", &aic7xxx_probe_eisa_vl },
{ "periodic_otag", &aic7xxx_periodic_otag },
{ "pci_parity", &aic7xxx_pci_parity },
{ "seltime", &aic7xxx_seltime },
{ "tag_info", NULL },
{ "global_tag_depth", NULL },
{ "dv", NULL }
};
end = strchr(s, '\0');
/*
* XXX ia64 gcc isn't smart enough to know that NUM_ELEMENTS
* will never be 0 in this case.
*/
n = 0;
while ((p = strsep(&s, ",.")) != NULL) {
if (*p == '\0')
continue;
for (i = 0; i < NUM_ELEMENTS(options); i++) {
n = strlen(options[i].name);
if (strncmp(options[i].name, p, n) == 0)
break;
}
if (i == NUM_ELEMENTS(options))
continue;
if (strncmp(p, "global_tag_depth", n) == 0) {
ahc_linux_setup_tag_info_global(p + n);
} else if (strncmp(p, "tag_info", n) == 0) {
s = aic_parse_brace_option("tag_info", p + n, end,
2, ahc_linux_setup_tag_info, 0);
} else if (strncmp(p, "dv", n) == 0) {
s = aic_parse_brace_option("dv", p + n, end, 1,
ahc_linux_setup_dv, 0);
} else if (p[n] == ':') {
*(options[i].flag) = simple_strtoul(p + n + 1, NULL, 0);
} else if (strncmp(p, "verbose", n) == 0) {
*(options[i].flag) = 1;
} else {
*(options[i].flag) ^= 0xFFFFFFFF;
}
}
return 1;
}
__setup("aic7xxx=", aic7xxx_setup);
uint32_t aic7xxx_verbose;
int
ahc_linux_register_host(struct ahc_softc *ahc, Scsi_Host_Template *template)
{
char buf[80];
struct Scsi_Host *host;
char *new_name;
u_long s;
u_int targ_offset;
template->name = ahc->description;
host = scsi_host_alloc(template, sizeof(struct ahc_softc *));
if (host == NULL)
return (ENOMEM);
*((struct ahc_softc **)host->hostdata) = ahc;
ahc_lock(ahc, &s);
#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,5,0)
scsi_assign_lock(host, &ahc->platform_data->spin_lock);
#elif AHC_SCSI_HAS_HOST_LOCK != 0
host->lock = &ahc->platform_data->spin_lock;
#endif
ahc->platform_data->host = host;
host->can_queue = AHC_MAX_QUEUE;
host->cmd_per_lun = 2;
/* XXX No way to communicate the ID for multiple channels */
host->this_id = ahc->our_id;
host->irq = ahc->platform_data->irq;
host->max_id = (ahc->features & AHC_WIDE) ? 16 : 8;
host->max_lun = AHC_NUM_LUNS;
host->max_channel = (ahc->features & AHC_TWIN) ? 1 : 0;
host->sg_tablesize = AHC_NSEG;
ahc_set_unit(ahc, ahc_linux_next_unit());
sprintf(buf, "scsi%d", host->host_no);
new_name = malloc(strlen(buf) + 1, M_DEVBUF, M_NOWAIT);
if (new_name != NULL) {
strcpy(new_name, buf);
ahc_set_name(ahc, new_name);
}
host->unique_id = ahc->unit;
#if LINUX_VERSION_CODE < KERNEL_VERSION(2,5,0)
scsi_set_pci_device(host, ahc->dev_softc);
#endif
ahc_linux_initialize_scsi_bus(ahc);
ahc_unlock(ahc, &s);
ahc->platform_data->dv_pid = kernel_thread(ahc_linux_dv_thread, ahc, 0);
ahc_lock(ahc, &s);
if (ahc->platform_data->dv_pid < 0) {
printf("%s: Failed to create DV thread, error= %d\n",
ahc_name(ahc), ahc->platform_data->dv_pid);
return (-ahc->platform_data->dv_pid);
}
/*
* Initially allocate *all* of our linux target objects
* so that the DV thread will scan them all in parallel
* just after driver initialization. Any device that
* does not exist will have its target object destroyed
* by the selection timeout handler. In the case of a
* device that appears after the initial DV scan, async
* negotiation will occur for the first command, and DV
* will comence should that first command be successful.
*/
for (targ_offset = 0;
targ_offset < host->max_id * (host->max_channel + 1);
targ_offset++) {
u_int channel;
u_int target;
channel = 0;
target = targ_offset;
if (target > 7
&& (ahc->features & AHC_TWIN) != 0) {
channel = 1;
target &= 0x7;
}
/*
* Skip our own ID. Some Compaq/HP storage devices
* have enclosure management devices that respond to
* single bit selection (i.e. selecting ourselves).
* It is expected that either an external application
* or a modified kernel will be used to probe this
* ID if it is appropriate. To accommodate these
* installations, ahc_linux_alloc_target() will allocate
* for our ID if asked to do so.
*/
if ((channel == 0 && target == ahc->our_id)
|| (channel == 1 && target == ahc->our_id_b))
continue;
ahc_linux_alloc_target(ahc, channel, target);
}
ahc_intr_enable(ahc, TRUE);
ahc_linux_start_dv(ahc);
ahc_unlock(ahc, &s);
#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,5,0)
scsi_add_host(host, (ahc->dev_softc ? &ahc->dev_softc->dev : NULL)); /* XXX handle failure */
scsi_scan_host(host);
#endif
return (0);
}
uint64_t
ahc_linux_get_memsize(void)
{
struct sysinfo si;
si_meminfo(&si);
return ((uint64_t)si.totalram << PAGE_SHIFT);
}
/*
* Find the smallest available unit number to use
* for a new device. We don't just use a static
* count to handle the "repeated hot-(un)plug"
* scenario.
*/
static int
ahc_linux_next_unit(void)
{
struct ahc_softc *ahc;
int unit;
unit = 0;
retry:
TAILQ_FOREACH(ahc, &ahc_tailq, links) {
if (ahc->unit == unit) {
unit++;
goto retry;
}
}
return (unit);
}
/*
* Place the SCSI bus into a known state by either resetting it,
* or forcing transfer negotiations on the next command to any
* target.
*/
void
ahc_linux_initialize_scsi_bus(struct ahc_softc *ahc)
{
int i;
int numtarg;
i = 0;
numtarg = 0;
if (aic7xxx_no_reset != 0)
ahc->flags &= ~(AHC_RESET_BUS_A|AHC_RESET_BUS_B);
if ((ahc->flags & AHC_RESET_BUS_A) != 0)
ahc_reset_channel(ahc, 'A', /*initiate_reset*/TRUE);
else
numtarg = (ahc->features & AHC_WIDE) ? 16 : 8;
if ((ahc->features & AHC_TWIN) != 0) {
if ((ahc->flags & AHC_RESET_BUS_B) != 0) {
ahc_reset_channel(ahc, 'B', /*initiate_reset*/TRUE);
} else {
if (numtarg == 0)
i = 8;
numtarg += 8;
}
}
/*
* Force negotiation to async for all targets that
* will not see an initial bus reset.
*/
for (; i < numtarg; i++) {
struct ahc_devinfo devinfo;
struct ahc_initiator_tinfo *tinfo;
struct ahc_tmode_tstate *tstate;
u_int our_id;
u_int target_id;
char channel;
channel = 'A';
our_id = ahc->our_id;
target_id = i;
if (i > 7 && (ahc->features & AHC_TWIN) != 0) {
channel = 'B';
our_id = ahc->our_id_b;
target_id = i % 8;
}
tinfo = ahc_fetch_transinfo(ahc, channel, our_id,
target_id, &tstate);
ahc_compile_devinfo(&devinfo, our_id, target_id,
CAM_LUN_WILDCARD, channel, ROLE_INITIATOR);
ahc_update_neg_request(ahc, &devinfo, tstate,
tinfo, AHC_NEG_ALWAYS);
}
/* Give the bus some time to recover */
if ((ahc->flags & (AHC_RESET_BUS_A|AHC_RESET_BUS_B)) != 0) {
ahc_linux_freeze_simq(ahc);
init_timer(&ahc->platform_data->reset_timer);
ahc->platform_data->reset_timer.data = (u_long)ahc;
ahc->platform_data->reset_timer.expires =
jiffies + (AIC7XXX_RESET_DELAY * HZ)/1000;
ahc->platform_data->reset_timer.function =
ahc_linux_release_simq;
add_timer(&ahc->platform_data->reset_timer);
}
}
int
ahc_platform_alloc(struct ahc_softc *ahc, void *platform_arg)
{
ahc->platform_data =
malloc(sizeof(struct ahc_platform_data), M_DEVBUF, M_NOWAIT);
if (ahc->platform_data == NULL)
return (ENOMEM);
memset(ahc->platform_data, 0, sizeof(struct ahc_platform_data));
TAILQ_INIT(&ahc->platform_data->completeq);
TAILQ_INIT(&ahc->platform_data->device_runq);
ahc->platform_data->irq = AHC_LINUX_NOIRQ;
ahc->platform_data->hw_dma_mask = 0xFFFFFFFF;
ahc_lockinit(ahc);
ahc_done_lockinit(ahc);
init_timer(&ahc->platform_data->completeq_timer);
ahc->platform_data->completeq_timer.data = (u_long)ahc;
ahc->platform_data->completeq_timer.function =
(ahc_linux_callback_t *)ahc_linux_thread_run_complete_queue;
init_MUTEX_LOCKED(&ahc->platform_data->eh_sem);
init_MUTEX_LOCKED(&ahc->platform_data->dv_sem);
init_MUTEX_LOCKED(&ahc->platform_data->dv_cmd_sem);
tasklet_init(&ahc->platform_data->runq_tasklet, ahc_runq_tasklet,
(unsigned long)ahc);
ahc->seltime = (aic7xxx_seltime & 0x3) << 4;
ahc->seltime_b = (aic7xxx_seltime & 0x3) << 4;
if (aic7xxx_pci_parity == 0)
ahc->flags |= AHC_DISABLE_PCI_PERR;
return (0);
}
void
ahc_platform_free(struct ahc_softc *ahc)
{
struct ahc_linux_target *targ;
struct ahc_linux_device *dev;
int i, j;
if (ahc->platform_data != NULL) {
del_timer_sync(&ahc->platform_data->completeq_timer);
ahc_linux_kill_dv_thread(ahc);
tasklet_kill(&ahc->platform_data->runq_tasklet);
if (ahc->platform_data->host != NULL) {
#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,5,0)
scsi_remove_host(ahc->platform_data->host);
#endif
scsi_host_put(ahc->platform_data->host);
}
/* destroy all of the device and target objects */
for (i = 0; i < AHC_NUM_TARGETS; i++) {
targ = ahc->platform_data->targets[i];
if (targ != NULL) {
/* Keep target around through the loop. */
targ->refcount++;
for (j = 0; j < AHC_NUM_LUNS; j++) {
if (targ->devices[j] == NULL)
continue;
dev = targ->devices[j];
ahc_linux_free_device(ahc, dev);
}
/*
* Forcibly free the target now that
* all devices are gone.
*/
ahc_linux_free_target(ahc, targ);
}
}
if (ahc->platform_data->irq != AHC_LINUX_NOIRQ)
free_irq(ahc->platform_data->irq, ahc);
if (ahc->tag == BUS_SPACE_PIO
&& ahc->bsh.ioport != 0)
release_region(ahc->bsh.ioport, 256);
if (ahc->tag == BUS_SPACE_MEMIO
&& ahc->bsh.maddr != NULL) {
iounmap(ahc->bsh.maddr);
release_mem_region(ahc->platform_data->mem_busaddr,
0x1000);
}
#if LINUX_VERSION_CODE < KERNEL_VERSION(2,5,0)
/*
* In 2.4 we detach from the scsi midlayer before the PCI
* layer invokes our remove callback. No per-instance
* detach is provided, so we must reach inside the PCI
* subsystem's internals and detach our driver manually.
*/
if (ahc->dev_softc != NULL)
ahc->dev_softc->driver = NULL;
#endif
free(ahc->platform_data, M_DEVBUF);
}
}
void
ahc_platform_freeze_devq(struct ahc_softc *ahc, struct scb *scb)
{
ahc_platform_abort_scbs(ahc, SCB_GET_TARGET(ahc, scb),
SCB_GET_CHANNEL(ahc, scb),
SCB_GET_LUN(scb), SCB_LIST_NULL,
ROLE_UNKNOWN, CAM_REQUEUE_REQ);
}
void
ahc_platform_set_tags(struct ahc_softc *ahc, struct ahc_devinfo *devinfo,
ahc_queue_alg alg)
{
struct ahc_linux_device *dev;
int was_queuing;
int now_queuing;
dev = ahc_linux_get_device(ahc, devinfo->channel - 'A',
devinfo->target,
devinfo->lun, /*alloc*/FALSE);
if (dev == NULL)
return;
was_queuing = dev->flags & (AHC_DEV_Q_BASIC|AHC_DEV_Q_TAGGED);
switch (alg) {
default:
case AHC_QUEUE_NONE:
now_queuing = 0;
break;
case AHC_QUEUE_BASIC:
now_queuing = AHC_DEV_Q_BASIC;
break;
case AHC_QUEUE_TAGGED:
now_queuing = AHC_DEV_Q_TAGGED;
break;
}
if ((dev->flags & AHC_DEV_FREEZE_TIL_EMPTY) == 0
&& (was_queuing != now_queuing)
&& (dev->active != 0)) {
dev->flags |= AHC_DEV_FREEZE_TIL_EMPTY;
dev->qfrozen++;
}
dev->flags &= ~(AHC_DEV_Q_BASIC|AHC_DEV_Q_TAGGED|AHC_DEV_PERIODIC_OTAG);
if (now_queuing) {
u_int usertags;
usertags = ahc_linux_user_tagdepth(ahc, devinfo);
if (!was_queuing) {
/*
* Start out agressively and allow our
* dynamic queue depth algorithm to take
* care of the rest.
*/
dev->maxtags = usertags;
dev->openings = dev->maxtags - dev->active;
}
if (dev->maxtags == 0) {
/*
* Queueing is disabled by the user.
*/
dev->openings = 1;
} else if (alg == AHC_QUEUE_TAGGED) {
dev->flags |= AHC_DEV_Q_TAGGED;
if (aic7xxx_periodic_otag != 0)
dev->flags |= AHC_DEV_PERIODIC_OTAG;
} else
dev->flags |= AHC_DEV_Q_BASIC;
} else {
/* We can only have one opening. */
dev->maxtags = 0;
dev->openings = 1 - dev->active;
}
#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,5,0)
if (dev->scsi_device != NULL) {
switch ((dev->flags & (AHC_DEV_Q_BASIC|AHC_DEV_Q_TAGGED))) {
case AHC_DEV_Q_BASIC:
scsi_adjust_queue_depth(dev->scsi_device,
MSG_SIMPLE_TASK,
dev->openings + dev->active);
break;
case AHC_DEV_Q_TAGGED:
scsi_adjust_queue_depth(dev->scsi_device,
MSG_ORDERED_TASK,
dev->openings + dev->active);
break;
default:
/*
* We allow the OS to queue 2 untagged transactions to
* us at any time even though we can only execute them
* serially on the controller/device. This should
* remove some latency.
*/
scsi_adjust_queue_depth(dev->scsi_device,
/*NON-TAGGED*/0,
/*queue depth*/2);
break;
}
}
#endif
}
int
ahc_platform_abort_scbs(struct ahc_softc *ahc, int target, char channel,
int lun, u_int tag, role_t role, uint32_t status)
{
int chan;
int maxchan;
int targ;
int maxtarg;
int clun;
int maxlun;
int count;
if (tag != SCB_LIST_NULL)
return (0);
chan = 0;
if (channel != ALL_CHANNELS) {
chan = channel - 'A';
maxchan = chan + 1;
} else {
maxchan = (ahc->features & AHC_TWIN) ? 2 : 1;
}
targ = 0;
if (target != CAM_TARGET_WILDCARD) {
targ = target;
maxtarg = targ + 1;
} else {
maxtarg = (ahc->features & AHC_WIDE) ? 16 : 8;
}
clun = 0;
if (lun != CAM_LUN_WILDCARD) {
clun = lun;
maxlun = clun + 1;
} else {
maxlun = AHC_NUM_LUNS;
}
count = 0;
for (; chan < maxchan; chan++) {
for (; targ < maxtarg; targ++) {
for (; clun < maxlun; clun++) {
struct ahc_linux_device *dev;
struct ahc_busyq *busyq;
struct ahc_cmd *acmd;
dev = ahc_linux_get_device(ahc, chan,
targ, clun,
/*alloc*/FALSE);
if (dev == NULL)
continue;
busyq = &dev->busyq;
while ((acmd = TAILQ_FIRST(busyq)) != NULL) {
Scsi_Cmnd *cmd;
cmd = &acmd_scsi_cmd(acmd);
TAILQ_REMOVE(busyq, acmd,
acmd_links.tqe);
count++;
cmd->result = status << 16;
ahc_linux_queue_cmd_complete(ahc, cmd);
}
}
}
}
return (count);
}
static void
ahc_linux_thread_run_complete_queue(struct ahc_softc *ahc)
{
u_long flags;
ahc_lock(ahc, &flags);
del_timer(&ahc->platform_data->completeq_timer);
ahc->platform_data->flags &= ~AHC_RUN_CMPLT_Q_TIMER;
ahc_linux_run_complete_queue(ahc);
ahc_unlock(ahc, &flags);
}
static void
ahc_linux_start_dv(struct ahc_softc *ahc)
{
/*
* Freeze the simq and signal ahc_linux_queue to not let any
* more commands through.
*/
if ((ahc->platform_data->flags & AHC_DV_ACTIVE) == 0) {
#ifdef AHC_DEBUG
if (ahc_debug & AHC_SHOW_DV)
printf("%s: Waking DV thread\n", ahc_name(ahc));
#endif
ahc->platform_data->flags |= AHC_DV_ACTIVE;
ahc_linux_freeze_simq(ahc);
/* Wake up the DV kthread */
up(&ahc->platform_data->dv_sem);
}
}
static void
ahc_linux_kill_dv_thread(struct ahc_softc *ahc)
{
u_long s;
ahc_lock(ahc, &s);
if (ahc->platform_data->dv_pid != 0) {
ahc->platform_data->flags |= AHC_DV_SHUTDOWN;
ahc_unlock(ahc, &s);
up(&ahc->platform_data->dv_sem);
/*
* Use the eh_sem as an indicator that the
* dv thread is exiting. Note that the dv
* thread must still return after performing
* the up on our semaphore before it has
* completely exited this module. Unfortunately,
* there seems to be no easy way to wait for the
* exit of a thread for which you are not the
* parent (dv threads are parented by init).
* Cross your fingers...
*/
down(&ahc->platform_data->eh_sem);
/*
* Mark the dv thread as already dead. This
* avoids attempting to kill it a second time.
* This is necessary because we must kill the
* DV thread before calling ahc_free() in the
* module shutdown case to avoid bogus locking
* in the SCSI mid-layer, but we ahc_free() is
* called without killing the DV thread in the
* instance detach case, so ahc_platform_free()
* calls us again to verify that the DV thread
* is dead.
*/
ahc->platform_data->dv_pid = 0;
} else {
ahc_unlock(ahc, &s);
}
}
static int
ahc_linux_dv_thread(void *data)
{
struct ahc_softc *ahc;
int target;
u_long s;
ahc = (struct ahc_softc *)data;
#ifdef AHC_DEBUG
if (ahc_debug & AHC_SHOW_DV)
printf("Launching DV Thread\n");
#endif
/*
* Complete thread creation.
*/
lock_kernel();
#if LINUX_VERSION_CODE < KERNEL_VERSION(2,5,0)
/*
* Don't care about any signals.
*/
siginitsetinv(&current->blocked, 0);
daemonize();
sprintf(current->comm, "ahc_dv_%d", ahc->unit);
#else
daemonize("ahc_dv_%d", ahc->unit);
current->flags |= PF_FREEZE;
#endif
unlock_kernel();
while (1) {
/*
* Use down_interruptible() rather than down() to
* avoid inclusion in the load average.
*/
down_interruptible(&ahc->platform_data->dv_sem);
/* Check to see if we've been signaled to exit */
ahc_lock(ahc, &s);
if ((ahc->platform_data->flags & AHC_DV_SHUTDOWN) != 0) {
ahc_unlock(ahc, &s);
break;
}
ahc_unlock(ahc, &s);
#ifdef AHC_DEBUG
if (ahc_debug & AHC_SHOW_DV)
printf("%s: Beginning Domain Validation\n",
ahc_name(ahc));
#endif
/*
* Wait for any pending commands to drain before proceeding.
*/
ahc_lock(ahc, &s);
while (LIST_FIRST(&ahc->pending_scbs) != NULL) {
ahc->platform_data->flags |= AHC_DV_WAIT_SIMQ_EMPTY;
ahc_unlock(ahc, &s);
down_interruptible(&ahc->platform_data->dv_sem);
ahc_lock(ahc, &s);
}
/*
* Wait for the SIMQ to be released so that DV is the
* only reason the queue is frozen.
*/
while (AHC_DV_SIMQ_FROZEN(ahc) == 0) {
ahc->platform_data->flags |= AHC_DV_WAIT_SIMQ_RELEASE;
ahc_unlock(ahc, &s);
down_interruptible(&ahc->platform_data->dv_sem);
ahc_lock(ahc, &s);
}
ahc_unlock(ahc, &s);
for (target = 0; target < AHC_NUM_TARGETS; target++)
ahc_linux_dv_target(ahc, target);
ahc_lock(ahc, &s);
ahc->platform_data->flags &= ~AHC_DV_ACTIVE;
ahc_unlock(ahc, &s);
/*
* Release the SIMQ so that normal commands are
* allowed to continue on the bus.
*/
ahc_linux_release_simq((u_long)ahc);
}
up(&ahc->platform_data->eh_sem);
return (0);
}
#define AHC_LINUX_DV_INQ_SHORT_LEN 36
#define AHC_LINUX_DV_INQ_LEN 256
#define AHC_LINUX_DV_TIMEOUT (HZ / 4)
#define AHC_SET_DV_STATE(ahc, targ, newstate) \
ahc_set_dv_state(ahc, targ, newstate, __LINE__)
static __inline void
ahc_set_dv_state(struct ahc_softc *ahc, struct ahc_linux_target *targ,
ahc_dv_state newstate, u_int line)
{
ahc_dv_state oldstate;
oldstate = targ->dv_state;
#ifdef AHC_DEBUG
if (ahc_debug & AHC_SHOW_DV)
printf("%s:%d: Going from state %d to state %d\n",
ahc_name(ahc), line, oldstate, newstate);
#endif
if (oldstate == newstate)
targ->dv_state_retry++;
else
targ->dv_state_retry = 0;
targ->dv_state = newstate;
}
static void
ahc_linux_dv_target(struct ahc_softc *ahc, u_int target_offset)
{
struct ahc_devinfo devinfo;
struct ahc_linux_target *targ;
struct scsi_cmnd *cmd;
struct scsi_device *scsi_dev;
struct scsi_sense_data *sense;
uint8_t *buffer;
u_long s;
u_int timeout;
int echo_size;
sense = NULL;
buffer = NULL;
echo_size = 0;
ahc_lock(ahc, &s);
targ = ahc->platform_data->targets[target_offset];
if (targ == NULL || (targ->flags & AHC_DV_REQUIRED) == 0) {
ahc_unlock(ahc, &s);
return;
}
ahc_compile_devinfo(&devinfo,
targ->channel == 0 ? ahc->our_id : ahc->our_id_b,
targ->target, /*lun*/0, targ->channel + 'A',
ROLE_INITIATOR);
#ifdef AHC_DEBUG
if (ahc_debug & AHC_SHOW_DV) {
ahc_print_devinfo(ahc, &devinfo);
printf("Performing DV\n");
}
#endif
ahc_unlock(ahc, &s);
cmd = malloc(sizeof(struct scsi_cmnd), M_DEVBUF, M_WAITOK);
scsi_dev = malloc(sizeof(struct scsi_device), M_DEVBUF, M_WAITOK);
scsi_dev->host = ahc->platform_data->host;
scsi_dev->id = devinfo.target;
scsi_dev->lun = devinfo.lun;
scsi_dev->channel = devinfo.channel - 'A';
ahc->platform_data->dv_scsi_dev = scsi_dev;
AHC_SET_DV_STATE(ahc, targ, AHC_DV_STATE_INQ_SHORT_ASYNC);
while (targ->dv_state != AHC_DV_STATE_EXIT) {
timeout = AHC_LINUX_DV_TIMEOUT;
switch (targ->dv_state) {
case AHC_DV_STATE_INQ_SHORT_ASYNC:
case AHC_DV_STATE_INQ_ASYNC:
case AHC_DV_STATE_INQ_ASYNC_VERIFY:
/*
* Set things to async narrow to reduce the
* chance that the INQ will fail.
*/
ahc_lock(ahc, &s);
ahc_set_syncrate(ahc, &devinfo, NULL, 0, 0, 0,
AHC_TRANS_GOAL, /*paused*/FALSE);
ahc_set_width(ahc, &devinfo, MSG_EXT_WDTR_BUS_8_BIT,
AHC_TRANS_GOAL, /*paused*/FALSE);
ahc_unlock(ahc, &s);
timeout = 10 * HZ;
targ->flags &= ~AHC_INQ_VALID;
/* FALLTHROUGH */
case AHC_DV_STATE_INQ_VERIFY:
{
u_int inq_len;
if (targ->dv_state == AHC_DV_STATE_INQ_SHORT_ASYNC)
inq_len = AHC_LINUX_DV_INQ_SHORT_LEN;
else
inq_len = targ->inq_data->additional_length + 5;
ahc_linux_dv_inq(ahc, cmd, &devinfo, targ, inq_len);
break;
}
case AHC_DV_STATE_TUR:
case AHC_DV_STATE_BUSY:
timeout = 5 * HZ;
ahc_linux_dv_tur(ahc, cmd, &devinfo);
break;
case AHC_DV_STATE_REBD:
ahc_linux_dv_rebd(ahc, cmd, &devinfo, targ);
break;
case AHC_DV_STATE_WEB:
ahc_linux_dv_web(ahc, cmd, &devinfo, targ);
break;
case AHC_DV_STATE_REB:
ahc_linux_dv_reb(ahc, cmd, &devinfo, targ);
break;
case AHC_DV_STATE_SU:
ahc_linux_dv_su(ahc, cmd, &devinfo, targ);
timeout = 50 * HZ;
break;
default:
ahc_print_devinfo(ahc, &devinfo);
printf("Unknown DV state %d\n", targ->dv_state);
goto out;
}
/* Queue the command and wait for it to complete */
/* Abuse eh_timeout in the scsi_cmnd struct for our purposes */
init_timer(&cmd->eh_timeout);
#ifdef AHC_DEBUG
if ((ahc_debug & AHC_SHOW_MESSAGES) != 0)
/*
* All of the printfs during negotiation
* really slow down the negotiation.
* Add a bit of time just to be safe.
*/
timeout += HZ;
#endif
scsi_add_timer(cmd, timeout, ahc_linux_dv_timeout);
/*
* In 2.5.X, it is assumed that all calls from the
* "midlayer" (which we are emulating) will have the
* ahc host lock held. For other kernels, the
* io_request_lock must be held.
*/
#if AHC_SCSI_HAS_HOST_LOCK != 0
ahc_lock(ahc, &s);
#else
spin_lock_irqsave(&io_request_lock, s);
#endif
ahc_linux_queue(cmd, ahc_linux_dv_complete);
#if AHC_SCSI_HAS_HOST_LOCK != 0
ahc_unlock(ahc, &s);
#else
spin_unlock_irqrestore(&io_request_lock, s);
#endif
down_interruptible(&ahc->platform_data->dv_cmd_sem);
/*
* Wait for the SIMQ to be released so that DV is the
* only reason the queue is frozen.
*/
ahc_lock(ahc, &s);
while (AHC_DV_SIMQ_FROZEN(ahc) == 0) {
ahc->platform_data->flags |= AHC_DV_WAIT_SIMQ_RELEASE;
ahc_unlock(ahc, &s);
down_interruptible(&ahc->platform_data->dv_sem);
ahc_lock(ahc, &s);
}
ahc_unlock(ahc, &s);
ahc_linux_dv_transition(ahc, cmd, &devinfo, targ);
}
out:
if ((targ->flags & AHC_INQ_VALID) != 0
&& ahc_linux_get_device(ahc, devinfo.channel - 'A',
devinfo.target, devinfo.lun,
/*alloc*/FALSE) == NULL) {
/*
* The DV state machine failed to configure this device.
* This is normal if DV is disabled. Since we have inquiry
* data, filter it and use the "optimistic" negotiation
* parameters found in the inquiry string.
*/
ahc_linux_filter_inquiry(ahc, &devinfo);
if ((targ->flags & (AHC_BASIC_DV|AHC_ENHANCED_DV)) != 0) {
ahc_print_devinfo(ahc, &devinfo);
printf("DV failed to configure device. "
"Please file a bug report against "
"this driver.\n");
}
}
if (cmd != NULL)
free(cmd, M_DEVBUF);
if (ahc->platform_data->dv_scsi_dev != NULL) {
free(ahc->platform_data->dv_scsi_dev, M_DEVBUF);
ahc->platform_data->dv_scsi_dev = NULL;
}
ahc_lock(ahc, &s);
if (targ->dv_buffer != NULL) {
free(targ->dv_buffer, M_DEVBUF);
targ->dv_buffer = NULL;
}
if (targ->dv_buffer1 != NULL) {
free(targ->dv_buffer1, M_DEVBUF);
targ->dv_buffer1 = NULL;
}
targ->flags &= ~AHC_DV_REQUIRED;
if (targ->refcount == 0)
ahc_linux_free_target(ahc, targ);
ahc_unlock(ahc, &s);
}
static void
ahc_linux_dv_transition(struct ahc_softc *ahc, struct scsi_cmnd *cmd,
struct ahc_devinfo *devinfo,
struct ahc_linux_target *targ)
{
u_int32_t status;
status = aic_error_action(cmd, targ->inq_data,
ahc_cmd_get_transaction_status(cmd),
ahc_cmd_get_scsi_status(cmd));
#ifdef AHC_DEBUG
if (ahc_debug & AHC_SHOW_DV) {
ahc_print_devinfo(ahc, devinfo);
printf("Entering ahc_linux_dv_transition, state= %d, "
"status= 0x%x, cmd->result= 0x%x\n", targ->dv_state,
status, cmd->result);
}
#endif
switch (targ->dv_state) {
case AHC_DV_STATE_INQ_SHORT_ASYNC:
case AHC_DV_STATE_INQ_ASYNC:
switch (status & SS_MASK) {
case SS_NOP:
{
AHC_SET_DV_STATE(ahc, targ, targ->dv_state+1);
break;
}
case SS_INQ_REFRESH:
AHC_SET_DV_STATE(ahc, targ,
AHC_DV_STATE_INQ_SHORT_ASYNC);
break;
case SS_TUR:
case SS_RETRY:
AHC_SET_DV_STATE(ahc, targ, targ->dv_state);
if (ahc_cmd_get_transaction_status(cmd)
== CAM_REQUEUE_REQ)
targ->dv_state_retry--;
if ((status & SS_ERRMASK) == EBUSY)
AHC_SET_DV_STATE(ahc, targ, AHC_DV_STATE_BUSY);
if (targ->dv_state_retry < 10)
break;
/* FALLTHROUGH */
default:
AHC_SET_DV_STATE(ahc, targ, AHC_DV_STATE_EXIT);
#ifdef AHC_DEBUG
if (ahc_debug & AHC_SHOW_DV) {
ahc_print_devinfo(ahc, devinfo);
printf("Failed DV inquiry, skipping\n");
}
#endif
break;
}
break;
case AHC_DV_STATE_INQ_ASYNC_VERIFY:
switch (status & SS_MASK) {
case SS_NOP:
{
u_int xportflags;
u_int spi3data;
if (memcmp(targ->inq_data, targ->dv_buffer,
AHC_LINUX_DV_INQ_LEN) != 0) {
/*
* Inquiry data must have changed.
* Try from the top again.
*/
AHC_SET_DV_STATE(ahc, targ,
AHC_DV_STATE_INQ_SHORT_ASYNC);
break;
}
AHC_SET_DV_STATE(ahc, targ, targ->dv_state+1);
targ->flags |= AHC_INQ_VALID;
if (ahc_linux_user_dv_setting(ahc) == 0)
break;
xportflags = targ->inq_data->flags;
if ((xportflags & (SID_Sync|SID_WBus16)) == 0)
break;
spi3data = targ->inq_data->spi3data;
switch (spi3data & SID_SPI_CLOCK_DT_ST) {
default:
case SID_SPI_CLOCK_ST:
/* Assume only basic DV is supported. */
targ->flags |= AHC_BASIC_DV;
break;
case SID_SPI_CLOCK_DT:
case SID_SPI_CLOCK_DT_ST:
targ->flags |= AHC_ENHANCED_DV;
break;
}
break;
}
case SS_INQ_REFRESH:
AHC_SET_DV_STATE(ahc, targ,
AHC_DV_STATE_INQ_SHORT_ASYNC);
break;
case SS_TUR:
case SS_RETRY:
AHC_SET_DV_STATE(ahc, targ, targ->dv_state);
if (ahc_cmd_get_transaction_status(cmd)
== CAM_REQUEUE_REQ)
targ->dv_state_retry--;
if ((status & SS_ERRMASK) == EBUSY)
AHC_SET_DV_STATE(ahc, targ, AHC_DV_STATE_BUSY);
if (targ->dv_state_retry < 10)
break;
/* FALLTHROUGH */
default:
AHC_SET_DV_STATE(ahc, targ, AHC_DV_STATE_EXIT);
#ifdef AHC_DEBUG
if (ahc_debug & AHC_SHOW_DV) {
ahc_print_devinfo(ahc, devinfo);
printf("Failed DV inquiry, skipping\n");
}
#endif
break;
}
break;
case AHC_DV_STATE_INQ_VERIFY:
switch (status & SS_MASK) {
case SS_NOP:
{
if (memcmp(targ->inq_data, targ->dv_buffer,
AHC_LINUX_DV_INQ_LEN) == 0) {
AHC_SET_DV_STATE(ahc, targ, AHC_DV_STATE_EXIT);
break;
}
#ifdef AHC_DEBUG
if (ahc_debug & AHC_SHOW_DV) {
int i;
ahc_print_devinfo(ahc, devinfo);
printf("Inquiry buffer mismatch:");
for (i = 0; i < AHC_LINUX_DV_INQ_LEN; i++) {
if ((i & 0xF) == 0)
printf("\n ");
printf("0x%x:0x0%x ",
((uint8_t *)targ->inq_data)[i],
targ->dv_buffer[i]);
}
printf("\n");
}
#endif
if (ahc_linux_fallback(ahc, devinfo) != 0) {
AHC_SET_DV_STATE(ahc, targ, AHC_DV_STATE_EXIT);
break;
}
/*
* Do not count "falling back"
* against our retries.
*/
targ->dv_state_retry = 0;
AHC_SET_DV_STATE(ahc, targ, targ->dv_state);
break;
}
case SS_INQ_REFRESH:
AHC_SET_DV_STATE(ahc, targ,
AHC_DV_STATE_INQ_SHORT_ASYNC);
break;
case SS_TUR:
case SS_RETRY:
AHC_SET_DV_STATE(ahc, targ, targ->dv_state);
if (ahc_cmd_get_transaction_status(cmd)
== CAM_REQUEUE_REQ) {
targ->dv_state_retry--;
} else if ((status & SSQ_FALLBACK) != 0) {
if (ahc_linux_fallback(ahc, devinfo) != 0) {
AHC_SET_DV_STATE(ahc, targ,
AHC_DV_STATE_EXIT);
break;
}
/*
* Do not count "falling back"
* against our retries.
*/
targ->dv_state_retry = 0;
} else if ((status & SS_ERRMASK) == EBUSY)
AHC_SET_DV_STATE(ahc, targ, AHC_DV_STATE_BUSY);
if (targ->dv_state_retry < 10)
break;
/* FALLTHROUGH */
default:
AHC_SET_DV_STATE(ahc, targ, AHC_DV_STATE_EXIT);
#ifdef AHC_DEBUG
if (ahc_debug & AHC_SHOW_DV) {
ahc_print_devinfo(ahc, devinfo);
printf("Failed DV inquiry, skipping\n");
}
#endif
break;
}
break;
case AHC_DV_STATE_TUR:
switch (status & SS_MASK) {
case SS_NOP:
if ((targ->flags & AHC_BASIC_DV) != 0) {
ahc_linux_filter_inquiry(ahc, devinfo);
AHC_SET_DV_STATE(ahc, targ,
AHC_DV_STATE_INQ_VERIFY);
} else if ((targ->flags & AHC_ENHANCED_DV) != 0) {
AHC_SET_DV_STATE(ahc, targ, AHC_DV_STATE_REBD);
} else {
AHC_SET_DV_STATE(ahc, targ, AHC_DV_STATE_EXIT);
}
break;
case SS_RETRY:
case SS_TUR:
if ((status & SS_ERRMASK) == EBUSY) {
AHC_SET_DV_STATE(ahc, targ, AHC_DV_STATE_BUSY);
break;
}
AHC_SET_DV_STATE(ahc, targ, targ->dv_state);
if (ahc_cmd_get_transaction_status(cmd)
== CAM_REQUEUE_REQ) {
targ->dv_state_retry--;
} else if ((status & SSQ_FALLBACK) != 0) {
if (ahc_linux_fallback(ahc, devinfo) != 0) {
AHC_SET_DV_STATE(ahc, targ,
AHC_DV_STATE_EXIT);
break;
}
/*
* Do not count "falling back"
* against our retries.
*/
targ->dv_state_retry = 0;
}
if (targ->dv_state_retry >= 10) {
#ifdef AHC_DEBUG
if (ahc_debug & AHC_SHOW_DV) {
ahc_print_devinfo(ahc, devinfo);
printf("DV TUR reties exhausted\n");
}
#endif
AHC_SET_DV_STATE(ahc, targ, AHC_DV_STATE_EXIT);
break;
}
if (status & SSQ_DELAY)
ssleep(1);
break;
case SS_START:
AHC_SET_DV_STATE(ahc, targ, AHC_DV_STATE_SU);
break;
case SS_INQ_REFRESH:
AHC_SET_DV_STATE(ahc, targ,
AHC_DV_STATE_INQ_SHORT_ASYNC);
break;
default:
AHC_SET_DV_STATE(ahc, targ, AHC_DV_STATE_EXIT);
break;
}
break;
case AHC_DV_STATE_REBD:
switch (status & SS_MASK) {
case SS_NOP:
{
uint32_t echo_size;
AHC_SET_DV_STATE(ahc, targ, AHC_DV_STATE_WEB);
echo_size = scsi_3btoul(&targ->dv_buffer[1]);
echo_size &= 0x1FFF;
#ifdef AHC_DEBUG
if (ahc_debug & AHC_SHOW_DV) {
ahc_print_devinfo(ahc, devinfo);
printf("Echo buffer size= %d\n", echo_size);
}
#endif
if (echo_size == 0) {
AHC_SET_DV_STATE(ahc, targ, AHC_DV_STATE_EXIT);
break;
}
/* Generate the buffer pattern */
targ->dv_echo_size = echo_size;
ahc_linux_generate_dv_pattern(targ);
/*
* Setup initial negotiation values.
*/
ahc_linux_filter_inquiry(ahc, devinfo);
break;
}
case SS_INQ_REFRESH:
AHC_SET_DV_STATE(ahc, targ,
AHC_DV_STATE_INQ_SHORT_ASYNC);
break;
case SS_RETRY:
AHC_SET_DV_STATE(ahc, targ, targ->dv_state);
if (ahc_cmd_get_transaction_status(cmd)
== CAM_REQUEUE_REQ)
targ->dv_state_retry--;
if (targ->dv_state_retry <= 10)
break;
#ifdef AHC_DEBUG
if (ahc_debug & AHC_SHOW_DV) {
ahc_print_devinfo(ahc, devinfo);
printf("DV REBD reties exhausted\n");
}
#endif
/* FALLTHROUGH */
case SS_FATAL:
default:
/*
* Setup initial negotiation values
* and try level 1 DV.
*/
ahc_linux_filter_inquiry(ahc, devinfo);
AHC_SET_DV_STATE(ahc, targ, AHC_DV_STATE_INQ_VERIFY);
targ->dv_echo_size = 0;
break;
}
break;
case AHC_DV_STATE_WEB:
switch (status & SS_MASK) {
case SS_NOP:
AHC_SET_DV_STATE(ahc, targ, AHC_DV_STATE_REB);
break;
case SS_INQ_REFRESH:
AHC_SET_DV_STATE(ahc, targ,
AHC_DV_STATE_INQ_SHORT_ASYNC);
break;
case SS_RETRY:
AHC_SET_DV_STATE(ahc, targ, targ->dv_state);
if (ahc_cmd_get_transaction_status(cmd)
== CAM_REQUEUE_REQ) {
targ->dv_state_retry--;
} else if ((status & SSQ_FALLBACK) != 0) {
if (ahc_linux_fallback(ahc, devinfo) != 0) {
AHC_SET_DV_STATE(ahc, targ,
AHC_DV_STATE_EXIT);
break;
}
/*
* Do not count "falling back"
* against our retries.
*/
targ->dv_state_retry = 0;
}
if (targ->dv_state_retry <= 10)
break;
/* FALLTHROUGH */
#ifdef AHC_DEBUG
if (ahc_debug & AHC_SHOW_DV) {
ahc_print_devinfo(ahc, devinfo);
printf("DV WEB reties exhausted\n");
}
#endif
default:
AHC_SET_DV_STATE(ahc, targ, AHC_DV_STATE_EXIT);
break;
}
break;
case AHC_DV_STATE_REB:
switch (status & SS_MASK) {
case SS_NOP:
if (memcmp(targ->dv_buffer, targ->dv_buffer1,
targ->dv_echo_size) != 0) {
if (ahc_linux_fallback(ahc, devinfo) != 0)
AHC_SET_DV_STATE(ahc, targ,
AHC_DV_STATE_EXIT);
else
AHC_SET_DV_STATE(ahc, targ,
AHC_DV_STATE_WEB);
break;
}
if (targ->dv_buffer != NULL) {
free(targ->dv_buffer, M_DEVBUF);
targ->dv_buffer = NULL;
}
if (targ->dv_buffer1 != NULL) {
free(targ->dv_buffer1, M_DEVBUF);
targ->dv_buffer1 = NULL;
}
AHC_SET_DV_STATE(ahc, targ, AHC_DV_STATE_EXIT);
break;
case SS_INQ_REFRESH:
AHC_SET_DV_STATE(ahc, targ,
AHC_DV_STATE_INQ_SHORT_ASYNC);
break;
case SS_RETRY:
AHC_SET_DV_STATE(ahc, targ, targ->dv_state);
if (ahc_cmd_get_transaction_status(cmd)
== CAM_REQUEUE_REQ) {
targ->dv_state_retry--;
} else if ((status & SSQ_FALLBACK) != 0) {
if (ahc_linux_fallback(ahc, devinfo) != 0) {
AHC_SET_DV_STATE(ahc, targ,
AHC_DV_STATE_EXIT);
break;
}
AHC_SET_DV_STATE(ahc, targ, AHC_DV_STATE_WEB);
}
if (targ->dv_state_retry <= 10) {
if ((status & (SSQ_DELAY_RANDOM|SSQ_DELAY))!= 0)
msleep(ahc->our_id*1000/10);
break;
}
#ifdef AHC_DEBUG
if (ahc_debug & AHC_SHOW_DV) {
ahc_print_devinfo(ahc, devinfo);
printf("DV REB reties exhausted\n");
}
#endif
/* FALLTHROUGH */
default:
AHC_SET_DV_STATE(ahc, targ, AHC_DV_STATE_EXIT);
break;
}
break;
case AHC_DV_STATE_SU:
switch (status & SS_MASK) {
case SS_NOP:
case SS_INQ_REFRESH:
AHC_SET_DV_STATE(ahc, targ,
AHC_DV_STATE_INQ_SHORT_ASYNC);
break;
default:
AHC_SET_DV_STATE(ahc, targ, AHC_DV_STATE_EXIT);
break;
}
break;
case AHC_DV_STATE_BUSY:
switch (status & SS_MASK) {
case SS_NOP:
case SS_INQ_REFRESH:
AHC_SET_DV_STATE(ahc, targ,
AHC_DV_STATE_INQ_SHORT_ASYNC);
break;
case SS_TUR:
case SS_RETRY:
AHC_SET_DV_STATE(ahc, targ, targ->dv_state);
if (ahc_cmd_get_transaction_status(cmd)
== CAM_REQUEUE_REQ) {
targ->dv_state_retry--;
} else if (targ->dv_state_retry < 60) {
if ((status & SSQ_DELAY) != 0)
ssleep(1);
} else {
#ifdef AHC_DEBUG
if (ahc_debug & AHC_SHOW_DV) {
ahc_print_devinfo(ahc, devinfo);
printf("DV BUSY reties exhausted\n");
}
#endif
AHC_SET_DV_STATE(ahc, targ, AHC_DV_STATE_EXIT);
}
break;
default:
AHC_SET_DV_STATE(ahc, targ, AHC_DV_STATE_EXIT);
break;
}
break;
default:
printf("%s: Invalid DV completion state %d\n", ahc_name(ahc),
targ->dv_state);
AHC_SET_DV_STATE(ahc, targ, AHC_DV_STATE_EXIT);
break;
}
}
static void
ahc_linux_dv_fill_cmd(struct ahc_softc *ahc, struct scsi_cmnd *cmd,
struct ahc_devinfo *devinfo)
{
memset(cmd, 0, sizeof(struct scsi_cmnd));
cmd->device = ahc->platform_data->dv_scsi_dev;
cmd->scsi_done = ahc_linux_dv_complete;
}
/*
* Synthesize an inquiry command. On the return trip, it'll be
* sniffed and the device transfer settings set for us.
*/
static void
ahc_linux_dv_inq(struct ahc_softc *ahc, struct scsi_cmnd *cmd,
struct ahc_devinfo *devinfo, struct ahc_linux_target *targ,
u_int request_length)
{
#ifdef AHC_DEBUG
if (ahc_debug & AHC_SHOW_DV) {
ahc_print_devinfo(ahc, devinfo);
printf("Sending INQ\n");
}
#endif
if (targ->inq_data == NULL)
targ->inq_data = malloc(AHC_LINUX_DV_INQ_LEN,
M_DEVBUF, M_WAITOK);
if (targ->dv_state > AHC_DV_STATE_INQ_ASYNC) {
if (targ->dv_buffer != NULL)
free(targ->dv_buffer, M_DEVBUF);
targ->dv_buffer = malloc(AHC_LINUX_DV_INQ_LEN,
M_DEVBUF, M_WAITOK);
}
ahc_linux_dv_fill_cmd(ahc, cmd, devinfo);
cmd->sc_data_direction = SCSI_DATA_READ;
cmd->cmd_len = 6;
cmd->cmnd[0] = INQUIRY;
cmd->cmnd[4] = request_length;
cmd->request_bufflen = request_length;
if (targ->dv_state > AHC_DV_STATE_INQ_ASYNC)
cmd->request_buffer = targ->dv_buffer;
else
cmd->request_buffer = targ->inq_data;
memset(cmd->request_buffer, 0, AHC_LINUX_DV_INQ_LEN);
}
static void
ahc_linux_dv_tur(struct ahc_softc *ahc, struct scsi_cmnd *cmd,
struct ahc_devinfo *devinfo)
{
#ifdef AHC_DEBUG
if (ahc_debug & AHC_SHOW_DV) {
ahc_print_devinfo(ahc, devinfo);
printf("Sending TUR\n");
}
#endif
/* Do a TUR to clear out any non-fatal transitional state */
ahc_linux_dv_fill_cmd(ahc, cmd, devinfo);
cmd->sc_data_direction = SCSI_DATA_NONE;
cmd->cmd_len = 6;
cmd->cmnd[0] = TEST_UNIT_READY;
}
#define AHC_REBD_LEN 4
static void
ahc_linux_dv_rebd(struct ahc_softc *ahc, struct scsi_cmnd *cmd,
struct ahc_devinfo *devinfo, struct ahc_linux_target *targ)
{
#ifdef AHC_DEBUG
if (ahc_debug & AHC_SHOW_DV) {
ahc_print_devinfo(ahc, devinfo);
printf("Sending REBD\n");
}
#endif
if (targ->dv_buffer != NULL)
free(targ->dv_buffer, M_DEVBUF);
targ->dv_buffer = malloc(AHC_REBD_LEN, M_DEVBUF, M_WAITOK);
ahc_linux_dv_fill_cmd(ahc, cmd, devinfo);
cmd->sc_data_direction = SCSI_DATA_READ;
cmd->cmd_len = 10;
cmd->cmnd[0] = READ_BUFFER;
cmd->cmnd[1] = 0x0b;
scsi_ulto3b(AHC_REBD_LEN, &cmd->cmnd[6]);
cmd->request_bufflen = AHC_REBD_LEN;
cmd->underflow = cmd->request_bufflen;
cmd->request_buffer = targ->dv_buffer;
}
static void
ahc_linux_dv_web(struct ahc_softc *ahc, struct scsi_cmnd *cmd,
struct ahc_devinfo *devinfo, struct ahc_linux_target *targ)
{
#ifdef AHC_DEBUG
if (ahc_debug & AHC_SHOW_DV) {
ahc_print_devinfo(ahc, devinfo);
printf("Sending WEB\n");
}
#endif
ahc_linux_dv_fill_cmd(ahc, cmd, devinfo);
cmd->sc_data_direction = SCSI_DATA_WRITE;
cmd->cmd_len = 10;
cmd->cmnd[0] = WRITE_BUFFER;
cmd->cmnd[1] = 0x0a;
scsi_ulto3b(targ->dv_echo_size, &cmd->cmnd[6]);
cmd->request_bufflen = targ->dv_echo_size;
cmd->underflow = cmd->request_bufflen;
cmd->request_buffer = targ->dv_buffer;
}
static void
ahc_linux_dv_reb(struct ahc_softc *ahc, struct scsi_cmnd *cmd,
struct ahc_devinfo *devinfo, struct ahc_linux_target *targ)
{
#ifdef AHC_DEBUG
if (ahc_debug & AHC_SHOW_DV) {
ahc_print_devinfo(ahc, devinfo);
printf("Sending REB\n");
}
#endif
ahc_linux_dv_fill_cmd(ahc, cmd, devinfo);
cmd->sc_data_direction = SCSI_DATA_READ;
cmd->cmd_len = 10;
cmd->cmnd[0] = READ_BUFFER;
cmd->cmnd[1] = 0x0a;
scsi_ulto3b(targ->dv_echo_size, &cmd->cmnd[6]);
cmd->request_bufflen = targ->dv_echo_size;
cmd->underflow = cmd->request_bufflen;
cmd->request_buffer = targ->dv_buffer1;
}
static void
ahc_linux_dv_su(struct ahc_softc *ahc, struct scsi_cmnd *cmd,
struct ahc_devinfo *devinfo,
struct ahc_linux_target *targ)
{
u_int le;
le = SID_IS_REMOVABLE(targ->inq_data) ? SSS_LOEJ : 0;
#ifdef AHC_DEBUG
if (ahc_debug & AHC_SHOW_DV) {
ahc_print_devinfo(ahc, devinfo);
printf("Sending SU\n");
}
#endif
ahc_linux_dv_fill_cmd(ahc, cmd, devinfo);
cmd->sc_data_direction = SCSI_DATA_NONE;
cmd->cmd_len = 6;
cmd->cmnd[0] = START_STOP_UNIT;
cmd->cmnd[4] = le | SSS_START;
}
static int
ahc_linux_fallback(struct ahc_softc *ahc, struct ahc_devinfo *devinfo)
{
struct ahc_linux_target *targ;
struct ahc_initiator_tinfo *tinfo;
struct ahc_transinfo *goal;
struct ahc_tmode_tstate *tstate;
struct ahc_syncrate *syncrate;
u_long s;
u_int width;
u_int period;
u_int offset;
u_int ppr_options;
u_int cur_speed;
u_int wide_speed;
u_int narrow_speed;
u_int fallback_speed;
#ifdef AHC_DEBUG
if (ahc_debug & AHC_SHOW_DV) {
ahc_print_devinfo(ahc, devinfo);
printf("Trying to fallback\n");
}
#endif
ahc_lock(ahc, &s);
targ = ahc->platform_data->targets[devinfo->target_offset];
tinfo = ahc_fetch_transinfo(ahc, devinfo->channel,
devinfo->our_scsiid,
devinfo->target, &tstate);
goal = &tinfo->goal;
width = goal->width;
period = goal->period;
offset = goal->offset;
ppr_options = goal->ppr_options;
if (offset == 0)
period = AHC_ASYNC_XFER_PERIOD;
if (targ->dv_next_narrow_period == 0)
targ->dv_next_narrow_period = MAX(period, AHC_SYNCRATE_ULTRA2);
if (targ->dv_next_wide_period == 0)
targ->dv_next_wide_period = period;
if (targ->dv_max_width == 0)
targ->dv_max_width = width;
if (targ->dv_max_ppr_options == 0)
targ->dv_max_ppr_options = ppr_options;
if (targ->dv_last_ppr_options == 0)
targ->dv_last_ppr_options = ppr_options;
cur_speed = aic_calc_speed(width, period, offset, AHC_SYNCRATE_MIN);
wide_speed = aic_calc_speed(MSG_EXT_WDTR_BUS_16_BIT,
targ->dv_next_wide_period,
MAX_OFFSET,
AHC_SYNCRATE_MIN);
narrow_speed = aic_calc_speed(MSG_EXT_WDTR_BUS_8_BIT,
targ->dv_next_narrow_period,
MAX_OFFSET,
AHC_SYNCRATE_MIN);
fallback_speed = aic_calc_speed(width, period+1, offset,
AHC_SYNCRATE_MIN);
#ifdef AHC_DEBUG
if (ahc_debug & AHC_SHOW_DV) {
printf("cur_speed= %d, wide_speed= %d, narrow_speed= %d, "
"fallback_speed= %d\n", cur_speed, wide_speed,
narrow_speed, fallback_speed);
}
#endif
if (cur_speed > 160000) {
/*
* Paced/DT/IU_REQ only transfer speeds. All we
* can do is fallback in terms of syncrate.
*/
period++;
} else if (cur_speed > 80000) {
if ((ppr_options & MSG_EXT_PPR_IU_REQ) != 0) {
/*
* Try without IU_REQ as it may be confusing
* an expander.
*/
ppr_options &= ~MSG_EXT_PPR_IU_REQ;
} else {
/*
* Paced/DT only transfer speeds. All we
* can do is fallback in terms of syncrate.
*/
period++;
ppr_options = targ->dv_max_ppr_options;
}
} else if (cur_speed > 3300) {
/*
* In this range we the following
* options ordered from highest to
* lowest desireability:
*
* o Wide/DT
* o Wide/non-DT
* o Narrow at a potentally higher sync rate.
*
* All modes are tested with and without IU_REQ
* set since using IUs may confuse an expander.
*/
if ((ppr_options & MSG_EXT_PPR_IU_REQ) != 0) {
ppr_options &= ~MSG_EXT_PPR_IU_REQ;
} else if ((ppr_options & MSG_EXT_PPR_DT_REQ) != 0) {
/*
* Try going non-DT.
*/
ppr_options = targ->dv_max_ppr_options;
ppr_options &= ~MSG_EXT_PPR_DT_REQ;
} else if (targ->dv_last_ppr_options != 0) {
/*
* Try without QAS or any other PPR options.
* We may need a non-PPR message to work with
* an expander. We look at the "last PPR options"
* so we will perform this fallback even if the
* target responded to our PPR negotiation with
* no option bits set.
*/
ppr_options = 0;
} else if (width == MSG_EXT_WDTR_BUS_16_BIT) {
/*
* If the next narrow speed is greater than
* the next wide speed, fallback to narrow.
* Otherwise fallback to the next DT/Wide setting.
* The narrow async speed will always be smaller
* than the wide async speed, so handle this case
* specifically.
*/
ppr_options = targ->dv_max_ppr_options;
if (narrow_speed > fallback_speed
|| period >= AHC_ASYNC_XFER_PERIOD) {
targ->dv_next_wide_period = period+1;
width = MSG_EXT_WDTR_BUS_8_BIT;
period = targ->dv_next_narrow_period;
} else {
period++;
}
} else if ((ahc->features & AHC_WIDE) != 0
&& targ->dv_max_width != 0
&& wide_speed >= fallback_speed
&& (targ->dv_next_wide_period <= AHC_ASYNC_XFER_PERIOD
|| period >= AHC_ASYNC_XFER_PERIOD)) {
/*
* We are narrow. Try falling back
* to the next wide speed with
* all supported ppr options set.
*/
targ->dv_next_narrow_period = period+1;
width = MSG_EXT_WDTR_BUS_16_BIT;
period = targ->dv_next_wide_period;
ppr_options = targ->dv_max_ppr_options;
} else {
/* Only narrow fallback is allowed. */
period++;
ppr_options = targ->dv_max_ppr_options;
}
} else {
ahc_unlock(ahc, &s);
return (-1);
}
offset = MAX_OFFSET;
syncrate = ahc_find_syncrate(ahc, &period, &ppr_options,
AHC_SYNCRATE_DT);
ahc_set_width(ahc, devinfo, width, AHC_TRANS_GOAL, FALSE);
if (period == 0) {
period = 0;
offset = 0;
ppr_options = 0;
if (width == MSG_EXT_WDTR_BUS_8_BIT)
targ->dv_next_narrow_period = AHC_ASYNC_XFER_PERIOD;
else
targ->dv_next_wide_period = AHC_ASYNC_XFER_PERIOD;
}
ahc_set_syncrate(ahc, devinfo, syncrate, period, offset,
ppr_options, AHC_TRANS_GOAL, FALSE);
targ->dv_last_ppr_options = ppr_options;
ahc_unlock(ahc, &s);
return (0);
}
static void
ahc_linux_dv_timeout(struct scsi_cmnd *cmd)
{
struct ahc_softc *ahc;
struct scb *scb;
u_long flags;
ahc = *((struct ahc_softc **)cmd->device->host->hostdata);
ahc_lock(ahc, &flags);
#ifdef AHC_DEBUG
if (ahc_debug & AHC_SHOW_DV) {
printf("%s: Timeout while doing DV command %x.\n",
ahc_name(ahc), cmd->cmnd[0]);
ahc_dump_card_state(ahc);
}
#endif
/*
* Guard against "done race". No action is
* required if we just completed.
*/
if ((scb = (struct scb *)cmd->host_scribble) == NULL) {
ahc_unlock(ahc, &flags);
return;
}
/*
* Command has not completed. Mark this
* SCB as having failing status prior to
* resetting the bus, so we get the correct
* error code.
*/
if ((scb->flags & SCB_SENSE) != 0)
ahc_set_transaction_status(scb, CAM_AUTOSENSE_FAIL);
else
ahc_set_transaction_status(scb, CAM_CMD_TIMEOUT);
ahc_reset_channel(ahc, cmd->device->channel + 'A', /*initiate*/TRUE);
/*
* Add a minimal bus settle delay for devices that are slow to
* respond after bus resets.
*/
ahc_linux_freeze_simq(ahc);
init_timer(&ahc->platform_data->reset_timer);
ahc->platform_data->reset_timer.data = (u_long)ahc;
ahc->platform_data->reset_timer.expires = jiffies + HZ / 2;
ahc->platform_data->reset_timer.function =
(ahc_linux_callback_t *)ahc_linux_release_simq;
add_timer(&ahc->platform_data->reset_timer);
if (ahc_linux_next_device_to_run(ahc) != NULL)
ahc_schedule_runq(ahc);
ahc_linux_run_complete_queue(ahc);
ahc_unlock(ahc, &flags);
}
static void
ahc_linux_dv_complete(struct scsi_cmnd *cmd)
{
struct ahc_softc *ahc;
ahc = *((struct ahc_softc **)cmd->device->host->hostdata);
/* Delete the DV timer before it goes off! */
scsi_delete_timer(cmd);
#ifdef AHC_DEBUG
if (ahc_debug & AHC_SHOW_DV)
printf("%s:%d:%d: Command completed, status= 0x%x\n",
ahc_name(ahc), cmd->device->channel,
cmd->device->id, cmd->result);
#endif
/* Wake up the state machine */
up(&ahc->platform_data->dv_cmd_sem);
}
static void
ahc_linux_generate_dv_pattern(struct ahc_linux_target *targ)
{
uint16_t b;
u_int i;
u_int j;
if (targ->dv_buffer != NULL)
free(targ->dv_buffer, M_DEVBUF);
targ->dv_buffer = malloc(targ->dv_echo_size, M_DEVBUF, M_WAITOK);
if (targ->dv_buffer1 != NULL)
free(targ->dv_buffer1, M_DEVBUF);
targ->dv_buffer1 = malloc(targ->dv_echo_size, M_DEVBUF, M_WAITOK);
i = 0;
b = 0x0001;
for (j = 0 ; i < targ->dv_echo_size; j++) {
if (j < 32) {
/*
* 32bytes of sequential numbers.
*/
targ->dv_buffer[i++] = j & 0xff;
} else if (j < 48) {
/*
* 32bytes of repeating 0x0000, 0xffff.
*/
targ->dv_buffer[i++] = (j & 0x02) ? 0xff : 0x00;
} else if (j < 64) {
/*
* 32bytes of repeating 0x5555, 0xaaaa.
*/
targ->dv_buffer[i++] = (j & 0x02) ? 0xaa : 0x55;
} else {
/*
* Remaining buffer is filled with a repeating
* patter of:
*
* 0xffff
* ~0x0001 << shifted once in each loop.
*/
if (j & 0x02) {
if (j & 0x01) {
targ->dv_buffer[i++] = ~(b >> 8) & 0xff;
b <<= 1;
if (b == 0x0000)
b = 0x0001;
} else {
targ->dv_buffer[i++] = (~b & 0xff);
}
} else {
targ->dv_buffer[i++] = 0xff;
}
}
}
}
static u_int
ahc_linux_user_tagdepth(struct ahc_softc *ahc, struct ahc_devinfo *devinfo)
{
static int warned_user;
u_int tags;
tags = 0;
if ((ahc->user_discenable & devinfo->target_mask) != 0) {
if (ahc->unit >= NUM_ELEMENTS(aic7xxx_tag_info)) {
if (warned_user == 0) {
printf(KERN_WARNING
"aic7xxx: WARNING: Insufficient tag_info instances\n"
"aic7xxx: for installed controllers. Using defaults\n"
"aic7xxx: Please update the aic7xxx_tag_info array in\n"
"aic7xxx: the aic7xxx_osm..c source file.\n");
warned_user++;
}
tags = AHC_MAX_QUEUE;
} else {
adapter_tag_info_t *tag_info;
tag_info = &aic7xxx_tag_info[ahc->unit];
tags = tag_info->tag_commands[devinfo->target_offset];
if (tags > AHC_MAX_QUEUE)
tags = AHC_MAX_QUEUE;
}
}
return (tags);
}
static u_int
ahc_linux_user_dv_setting(struct ahc_softc *ahc)
{
static int warned_user;
int dv;
if (ahc->unit >= NUM_ELEMENTS(aic7xxx_dv_settings)) {
if (warned_user == 0) {
printf(KERN_WARNING
"aic7xxx: WARNING: Insufficient dv settings instances\n"
"aic7xxx: for installed controllers. Using defaults\n"
"aic7xxx: Please update the aic7xxx_dv_settings array\n"
"aic7xxx: in the aic7xxx_osm.c source file.\n");
warned_user++;
}
dv = -1;
} else {
dv = aic7xxx_dv_settings[ahc->unit];
}
if (dv < 0) {
u_long s;
/*
* Apply the default.
*/
/*
* XXX - Enable DV on non-U160 controllers once it
* has been tested there.
*/
ahc_lock(ahc, &s);
dv = (ahc->features & AHC_DT);
if (ahc->seep_config != 0
&& ahc->seep_config->signature >= CFSIGNATURE2)
dv = (ahc->seep_config->adapter_control & CFENABLEDV);
ahc_unlock(ahc, &s);
}
return (dv);
}
/*
* Determines the queue depth for a given device.
*/
static void
ahc_linux_device_queue_depth(struct ahc_softc *ahc,
struct ahc_linux_device *dev)
{
struct ahc_devinfo devinfo;
u_int tags;
ahc_compile_devinfo(&devinfo,
dev->target->channel == 0
? ahc->our_id : ahc->our_id_b,
dev->target->target, dev->lun,
dev->target->channel == 0 ? 'A' : 'B',
ROLE_INITIATOR);
tags = ahc_linux_user_tagdepth(ahc, &devinfo);
if (tags != 0
&& dev->scsi_device != NULL
&& dev->scsi_device->tagged_supported != 0) {
ahc_set_tags(ahc, &devinfo, AHC_QUEUE_TAGGED);
ahc_print_devinfo(ahc, &devinfo);
printf("Tagged Queuing enabled. Depth %d\n", tags);
} else {
ahc_set_tags(ahc, &devinfo, AHC_QUEUE_NONE);
}
}
static void
ahc_linux_run_device_queue(struct ahc_softc *ahc, struct ahc_linux_device *dev)
{
struct ahc_cmd *acmd;
struct scsi_cmnd *cmd;
struct scb *scb;
struct hardware_scb *hscb;
struct ahc_initiator_tinfo *tinfo;
struct ahc_tmode_tstate *tstate;
uint16_t mask;
if ((dev->flags & AHC_DEV_ON_RUN_LIST) != 0)
panic("running device on run list");
while ((acmd = TAILQ_FIRST(&dev->busyq)) != NULL
&& dev->openings > 0 && dev->qfrozen == 0) {
/*
* Schedule us to run later. The only reason we are not
* running is because the whole controller Q is frozen.
*/
if (ahc->platform_data->qfrozen != 0
&& AHC_DV_SIMQ_FROZEN(ahc) == 0) {
TAILQ_INSERT_TAIL(&ahc->platform_data->device_runq,
dev, links);
dev->flags |= AHC_DEV_ON_RUN_LIST;
return;
}
/*
* Get an scb to use.
*/
if ((scb = ahc_get_scb(ahc)) == NULL) {
TAILQ_INSERT_TAIL(&ahc->platform_data->device_runq,
dev, links);
dev->flags |= AHC_DEV_ON_RUN_LIST;
ahc->flags |= AHC_RESOURCE_SHORTAGE;
return;
}
TAILQ_REMOVE(&dev->busyq, acmd, acmd_links.tqe);
cmd = &acmd_scsi_cmd(acmd);
scb->io_ctx = cmd;
scb->platform_data->dev = dev;
hscb = scb->hscb;
cmd->host_scribble = (char *)scb;
/*
* Fill out basics of the HSCB.
*/
hscb->control = 0;
hscb->scsiid = BUILD_SCSIID(ahc, cmd);
hscb->lun = cmd->device->lun;
mask = SCB_GET_TARGET_MASK(ahc, scb);
tinfo = ahc_fetch_transinfo(ahc, SCB_GET_CHANNEL(ahc, scb),
SCB_GET_OUR_ID(scb),
SCB_GET_TARGET(ahc, scb), &tstate);
hscb->scsirate = tinfo->scsirate;
hscb->scsioffset = tinfo->curr.offset;
if ((tstate->ultraenb & mask) != 0)
hscb->control |= ULTRAENB;
if ((ahc->user_discenable & mask) != 0)
hscb->control |= DISCENB;
if (AHC_DV_CMD(cmd) != 0)
scb->flags |= SCB_SILENT;
if ((tstate->auto_negotiate & mask) != 0) {
scb->flags |= SCB_AUTO_NEGOTIATE;
scb->hscb->control |= MK_MESSAGE;
}
if ((dev->flags & (AHC_DEV_Q_TAGGED|AHC_DEV_Q_BASIC)) != 0) {
#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,5,0)
int msg_bytes;
uint8_t tag_msgs[2];
msg_bytes = scsi_populate_tag_msg(cmd, tag_msgs);
if (msg_bytes && tag_msgs[0] != MSG_SIMPLE_TASK) {
hscb->control |= tag_msgs[0];
if (tag_msgs[0] == MSG_ORDERED_TASK)
dev->commands_since_idle_or_otag = 0;
} else
#endif
if (dev->commands_since_idle_or_otag == AHC_OTAG_THRESH
&& (dev->flags & AHC_DEV_Q_TAGGED) != 0) {
hscb->control |= MSG_ORDERED_TASK;
dev->commands_since_idle_or_otag = 0;
} else {
hscb->control |= MSG_SIMPLE_TASK;
}
}
hscb->cdb_len = cmd->cmd_len;
if (hscb->cdb_len <= 12) {
memcpy(hscb->shared_data.cdb, cmd->cmnd, hscb->cdb_len);
} else {
memcpy(hscb->cdb32, cmd->cmnd, hscb->cdb_len);
scb->flags |= SCB_CDB32_PTR;
}
scb->platform_data->xfer_len = 0;
ahc_set_residual(scb, 0);
ahc_set_sense_residual(scb, 0);
scb->sg_count = 0;
if (cmd->use_sg != 0) {
struct ahc_dma_seg *sg;
struct scatterlist *cur_seg;
struct scatterlist *end_seg;
int nseg;
cur_seg = (struct scatterlist *)cmd->request_buffer;
nseg = pci_map_sg(ahc->dev_softc, cur_seg, cmd->use_sg,
scsi_to_pci_dma_dir(cmd->sc_data_direction));
end_seg = cur_seg + nseg;
/* Copy the segments into the SG list. */
sg = scb->sg_list;
/*
* The sg_count may be larger than nseg if
* a transfer crosses a 32bit page.
*/
while (cur_seg < end_seg) {
dma_addr_t addr;
bus_size_t len;
int consumed;
addr = sg_dma_address(cur_seg);
len = sg_dma_len(cur_seg);
consumed = ahc_linux_map_seg(ahc, scb,
sg, addr, len);
sg += consumed;
scb->sg_count += consumed;
cur_seg++;
}
sg--;
sg->len |= ahc_htole32(AHC_DMA_LAST_SEG);
/*
* Reset the sg list pointer.
*/
scb->hscb->sgptr =
ahc_htole32(scb->sg_list_phys | SG_FULL_RESID);
/*
* Copy the first SG into the "current"
* data pointer area.
*/
scb->hscb->dataptr = scb->sg_list->addr;
scb->hscb->datacnt = scb->sg_list->len;
} else if (cmd->request_bufflen != 0) {
struct ahc_dma_seg *sg;
dma_addr_t addr;
sg = scb->sg_list;
addr = pci_map_single(ahc->dev_softc,
cmd->request_buffer,
cmd->request_bufflen,
scsi_to_pci_dma_dir(cmd->sc_data_direction));
scb->platform_data->buf_busaddr = addr;
scb->sg_count = ahc_linux_map_seg(ahc, scb,
sg, addr,
cmd->request_bufflen);
sg->len |= ahc_htole32(AHC_DMA_LAST_SEG);
/*
* Reset the sg list pointer.
*/
scb->hscb->sgptr =
ahc_htole32(scb->sg_list_phys | SG_FULL_RESID);
/*
* Copy the first SG into the "current"
* data pointer area.
*/
scb->hscb->dataptr = sg->addr;
scb->hscb->datacnt = sg->len;
} else {
scb->hscb->sgptr = ahc_htole32(SG_LIST_NULL);
scb->hscb->dataptr = 0;
scb->hscb->datacnt = 0;
scb->sg_count = 0;
}
ahc_sync_sglist(ahc, scb, BUS_DMASYNC_PREWRITE);
LIST_INSERT_HEAD(&ahc->pending_scbs, scb, pending_links);
dev->openings--;
dev->active++;
dev->commands_issued++;
if ((dev->flags & AHC_DEV_PERIODIC_OTAG) != 0)
dev->commands_since_idle_or_otag++;
/*
* We only allow one untagged transaction
* per target in the initiator role unless
* we are storing a full busy target *lun*
* table in SCB space.
*/
if ((scb->hscb->control & (TARGET_SCB|TAG_ENB)) == 0
&& (ahc->features & AHC_SCB_BTT) == 0) {
struct scb_tailq *untagged_q;
int target_offset;
target_offset = SCB_GET_TARGET_OFFSET(ahc, scb);
untagged_q = &(ahc->untagged_queues[target_offset]);
TAILQ_INSERT_TAIL(untagged_q, scb, links.tqe);
scb->flags |= SCB_UNTAGGEDQ;
if (TAILQ_FIRST(untagged_q) != scb)
continue;
}
scb->flags |= SCB_ACTIVE;
ahc_queue_scb(ahc, scb);
}
}
/*
* SCSI controller interrupt handler.
*/
irqreturn_t
ahc_linux_isr(int irq, void *dev_id, struct pt_regs * regs)
{
struct ahc_softc *ahc;
u_long flags;
int ours;
ahc = (struct ahc_softc *) dev_id;
ahc_lock(ahc, &flags);
ours = ahc_intr(ahc);
if (ahc_linux_next_device_to_run(ahc) != NULL)
ahc_schedule_runq(ahc);
ahc_linux_run_complete_queue(ahc);
ahc_unlock(ahc, &flags);
return IRQ_RETVAL(ours);
}
void
ahc_platform_flushwork(struct ahc_softc *ahc)
{
while (ahc_linux_run_complete_queue(ahc) != NULL)
;
}
static struct ahc_linux_target*
ahc_linux_alloc_target(struct ahc_softc *ahc, u_int channel, u_int target)
{
struct ahc_linux_target *targ;
u_int target_offset;
target_offset = target;
if (channel != 0)
target_offset += 8;
targ = malloc(sizeof(*targ), M_DEVBUG, M_NOWAIT);
if (targ == NULL)
return (NULL);
memset(targ, 0, sizeof(*targ));
targ->channel = channel;
targ->target = target;
targ->ahc = ahc;
targ->flags = AHC_DV_REQUIRED;
ahc->platform_data->targets[target_offset] = targ;
return (targ);
}
static void
ahc_linux_free_target(struct ahc_softc *ahc, struct ahc_linux_target *targ)
{
struct ahc_devinfo devinfo;
struct ahc_initiator_tinfo *tinfo;
struct ahc_tmode_tstate *tstate;
u_int our_id;
u_int target_offset;
char channel;
/*
* Force a negotiation to async/narrow on any
* future command to this device unless a bus
* reset occurs between now and that command.
*/
channel = 'A' + targ->channel;
our_id = ahc->our_id;
target_offset = targ->target;
if (targ->channel != 0) {
target_offset += 8;
our_id = ahc->our_id_b;
}
tinfo = ahc_fetch_transinfo(ahc, channel, our_id,
targ->target, &tstate);
ahc_compile_devinfo(&devinfo, our_id, targ->target, CAM_LUN_WILDCARD,
channel, ROLE_INITIATOR);
ahc_set_syncrate(ahc, &devinfo, NULL, 0, 0, 0,
AHC_TRANS_GOAL, /*paused*/FALSE);
ahc_set_width(ahc, &devinfo, MSG_EXT_WDTR_BUS_8_BIT,
AHC_TRANS_GOAL, /*paused*/FALSE);
ahc_update_neg_request(ahc, &devinfo, tstate, tinfo, AHC_NEG_ALWAYS);
ahc->platform_data->targets[target_offset] = NULL;
if (targ->inq_data != NULL)
free(targ->inq_data, M_DEVBUF);
if (targ->dv_buffer != NULL)
free(targ->dv_buffer, M_DEVBUF);
if (targ->dv_buffer1 != NULL)
free(targ->dv_buffer1, M_DEVBUF);
free(targ, M_DEVBUF);
}
static struct ahc_linux_device*
ahc_linux_alloc_device(struct ahc_softc *ahc,
struct ahc_linux_target *targ, u_int lun)
{
struct ahc_linux_device *dev;
dev = malloc(sizeof(*dev), M_DEVBUG, M_NOWAIT);
if (dev == NULL)
return (NULL);
memset(dev, 0, sizeof(*dev));
init_timer(&dev->timer);
TAILQ_INIT(&dev->busyq);
dev->flags = AHC_DEV_UNCONFIGURED;
dev->lun = lun;
dev->target = targ;
/*
* We start out life using untagged
* transactions of which we allow one.
*/
dev->openings = 1;
/*
* Set maxtags to 0. This will be changed if we
* later determine that we are dealing with
* a tagged queuing capable device.
*/
dev->maxtags = 0;
targ->refcount++;
targ->devices[lun] = dev;
return (dev);
}
static void
__ahc_linux_free_device(struct ahc_softc *ahc, struct ahc_linux_device *dev)
{
struct ahc_linux_target *targ;
targ = dev->target;
targ->devices[dev->lun] = NULL;
free(dev, M_DEVBUF);
targ->refcount--;
if (targ->refcount == 0
&& (targ->flags & AHC_DV_REQUIRED) == 0)
ahc_linux_free_target(ahc, targ);
}
static void
ahc_linux_free_device(struct ahc_softc *ahc, struct ahc_linux_device *dev)
{
del_timer_sync(&dev->timer);
__ahc_linux_free_device(ahc, dev);
}
void
ahc_send_async(struct ahc_softc *ahc, char channel,
u_int target, u_int lun, ac_code code, void *arg)
{
switch (code) {
case AC_TRANSFER_NEG:
{
char buf[80];
struct ahc_linux_target *targ;
struct info_str info;
struct ahc_initiator_tinfo *tinfo;
struct ahc_tmode_tstate *tstate;
int target_offset;
info.buffer = buf;
info.length = sizeof(buf);
info.offset = 0;
info.pos = 0;
tinfo = ahc_fetch_transinfo(ahc, channel,
channel == 'A' ? ahc->our_id
: ahc->our_id_b,
target, &tstate);
/*
* Don't bother reporting results while
* negotiations are still pending.
*/
if (tinfo->curr.period != tinfo->goal.period
|| tinfo->curr.width != tinfo->goal.width
|| tinfo->curr.offset != tinfo->goal.offset
|| tinfo->curr.ppr_options != tinfo->goal.ppr_options)
if (bootverbose == 0)
break;
/*
* Don't bother reporting results that
* are identical to those last reported.
*/
target_offset = target;
if (channel == 'B')
target_offset += 8;
targ = ahc->platform_data->targets[target_offset];
if (targ == NULL)
break;
if (tinfo->curr.period == targ->last_tinfo.period
&& tinfo->curr.width == targ->last_tinfo.width
&& tinfo->curr.offset == targ->last_tinfo.offset
&& tinfo->curr.ppr_options == targ->last_tinfo.ppr_options)
if (bootverbose == 0)
break;
targ->last_tinfo.period = tinfo->curr.period;
targ->last_tinfo.width = tinfo->curr.width;
targ->last_tinfo.offset = tinfo->curr.offset;
targ->last_tinfo.ppr_options = tinfo->curr.ppr_options;
printf("(%s:%c:", ahc_name(ahc), channel);
if (target == CAM_TARGET_WILDCARD)
printf("*): ");
else
printf("%d): ", target);
ahc_format_transinfo(&info, &tinfo->curr);
if (info.pos < info.length)
*info.buffer = '\0';
else
buf[info.length - 1] = '\0';
printf("%s", buf);
break;
}
case AC_SENT_BDR:
{
#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,5,0)
WARN_ON(lun != CAM_LUN_WILDCARD);
scsi_report_device_reset(ahc->platform_data->host,
channel - 'A', target);
#else
Scsi_Device *scsi_dev;
/*
* Find the SCSI device associated with this
* request and indicate that a UA is expected.
*/
for (scsi_dev = ahc->platform_data->host->host_queue;
scsi_dev != NULL; scsi_dev = scsi_dev->next) {
if (channel - 'A' == scsi_dev->channel
&& target == scsi_dev->id
&& (lun == CAM_LUN_WILDCARD
|| lun == scsi_dev->lun)) {
scsi_dev->was_reset = 1;
scsi_dev->expecting_cc_ua = 1;
}
}
#endif
break;
}
case AC_BUS_RESET:
if (ahc->platform_data->host != NULL) {
scsi_report_bus_reset(ahc->platform_data->host,
channel - 'A');
}
break;
default:
panic("ahc_send_async: Unexpected async event");
}
}
/*
* Calls the higher level scsi done function and frees the scb.
*/
void
ahc_done(struct ahc_softc *ahc, struct scb *scb)
{
Scsi_Cmnd *cmd;
struct ahc_linux_device *dev;
LIST_REMOVE(scb, pending_links);
if ((scb->flags & SCB_UNTAGGEDQ) != 0) {
struct scb_tailq *untagged_q;
int target_offset;
target_offset = SCB_GET_TARGET_OFFSET(ahc, scb);
untagged_q = &(ahc->untagged_queues[target_offset]);
TAILQ_REMOVE(untagged_q, scb, links.tqe);
ahc_run_untagged_queue(ahc, untagged_q);
}
if ((scb->flags & SCB_ACTIVE) == 0) {
printf("SCB %d done'd twice\n", scb->hscb->tag);
ahc_dump_card_state(ahc);
panic("Stopping for safety");
}
cmd = scb->io_ctx;
dev = scb->platform_data->dev;
dev->active--;
dev->openings++;
if ((cmd->result & (CAM_DEV_QFRZN << 16)) != 0) {
cmd->result &= ~(CAM_DEV_QFRZN << 16);
dev->qfrozen--;
}
ahc_linux_unmap_scb(ahc, scb);
/*
* Guard against stale sense data.
* The Linux mid-layer assumes that sense
* was retrieved anytime the first byte of
* the sense buffer looks "sane".
*/
cmd->sense_buffer[0] = 0;
if (ahc_get_transaction_status(scb) == CAM_REQ_INPROG) {
uint32_t amount_xferred;
amount_xferred =
ahc_get_transfer_length(scb) - ahc_get_residual(scb);
if ((scb->flags & SCB_TRANSMISSION_ERROR) != 0) {
#ifdef AHC_DEBUG
if ((ahc_debug & AHC_SHOW_MISC) != 0) {
ahc_print_path(ahc, scb);
printf("Set CAM_UNCOR_PARITY\n");
}
#endif
ahc_set_transaction_status(scb, CAM_UNCOR_PARITY);
#ifdef AHC_REPORT_UNDERFLOWS
/*
* This code is disabled by default as some
* clients of the SCSI system do not properly
* initialize the underflow parameter. This
* results in spurious termination of commands
* that complete as expected (e.g. underflow is
* allowed as command can return variable amounts
* of data.
*/
} else if (amount_xferred < scb->io_ctx->underflow) {
u_int i;
ahc_print_path(ahc, scb);
printf("CDB:");
for (i = 0; i < scb->io_ctx->cmd_len; i++)
printf(" 0x%x", scb->io_ctx->cmnd[i]);
printf("\n");
ahc_print_path(ahc, scb);
printf("Saw underflow (%ld of %ld bytes). "
"Treated as error\n",
ahc_get_residual(scb),
ahc_get_transfer_length(scb));
ahc_set_transaction_status(scb, CAM_DATA_RUN_ERR);
#endif
} else {
ahc_set_transaction_status(scb, CAM_REQ_CMP);
}
} else if (ahc_get_transaction_status(scb) == CAM_SCSI_STATUS_ERROR) {
ahc_linux_handle_scsi_status(ahc, dev, scb);
} else if (ahc_get_transaction_status(scb) == CAM_SEL_TIMEOUT) {
dev->flags |= AHC_DEV_UNCONFIGURED;
if (AHC_DV_CMD(cmd) == FALSE)
dev->target->flags &= ~AHC_DV_REQUIRED;
}
/*
* Start DV for devices that require it assuming the first command
* sent does not result in a selection timeout.
*/
if (ahc_get_transaction_status(scb) != CAM_SEL_TIMEOUT
&& (dev->target->flags & AHC_DV_REQUIRED) != 0)
ahc_linux_start_dv(ahc);
if (dev->openings == 1
&& ahc_get_transaction_status(scb) == CAM_REQ_CMP
&& ahc_get_scsi_status(scb) != SCSI_STATUS_QUEUE_FULL)
dev->tag_success_count++;
/*
* Some devices deal with temporary internal resource
* shortages by returning queue full. When the queue
* full occurrs, we throttle back. Slowly try to get
* back to our previous queue depth.
*/
if ((dev->openings + dev->active) < dev->maxtags
&& dev->tag_success_count > AHC_TAG_SUCCESS_INTERVAL) {
dev->tag_success_count = 0;
dev->openings++;
}
if (dev->active == 0)
dev->commands_since_idle_or_otag = 0;
if (TAILQ_EMPTY(&dev->busyq)) {
if ((dev->flags & AHC_DEV_UNCONFIGURED) != 0
&& dev->active == 0
&& (dev->flags & AHC_DEV_TIMER_ACTIVE) == 0)
ahc_linux_free_device(ahc, dev);
} else if ((dev->flags & AHC_DEV_ON_RUN_LIST) == 0) {
TAILQ_INSERT_TAIL(&ahc->platform_data->device_runq, dev, links);
dev->flags |= AHC_DEV_ON_RUN_LIST;
}
if ((scb->flags & SCB_RECOVERY_SCB) != 0) {
printf("Recovery SCB completes\n");
if (ahc_get_transaction_status(scb) == CAM_BDR_SENT
|| ahc_get_transaction_status(scb) == CAM_REQ_ABORTED)
ahc_set_transaction_status(scb, CAM_CMD_TIMEOUT);
if ((ahc->platform_data->flags & AHC_UP_EH_SEMAPHORE) != 0) {
ahc->platform_data->flags &= ~AHC_UP_EH_SEMAPHORE;
up(&ahc->platform_data->eh_sem);
}
}
ahc_free_scb(ahc, scb);
ahc_linux_queue_cmd_complete(ahc, cmd);
if ((ahc->platform_data->flags & AHC_DV_WAIT_SIMQ_EMPTY) != 0
&& LIST_FIRST(&ahc->pending_scbs) == NULL) {
ahc->platform_data->flags &= ~AHC_DV_WAIT_SIMQ_EMPTY;
up(&ahc->platform_data->dv_sem);
}
}
static void
ahc_linux_handle_scsi_status(struct ahc_softc *ahc,
struct ahc_linux_device *dev, struct scb *scb)
{
struct ahc_devinfo devinfo;
ahc_compile_devinfo(&devinfo,
ahc->our_id,
dev->target->target, dev->lun,
dev->target->channel == 0 ? 'A' : 'B',
ROLE_INITIATOR);
/*
* We don't currently trust the mid-layer to
* properly deal with queue full or busy. So,
* when one occurs, we tell the mid-layer to
* unconditionally requeue the command to us
* so that we can retry it ourselves. We also
* implement our own throttling mechanism so
* we don't clobber the device with too many
* commands.
*/
switch (ahc_get_scsi_status(scb)) {
default:
break;
case SCSI_STATUS_CHECK_COND:
case SCSI_STATUS_CMD_TERMINATED:
{
Scsi_Cmnd *cmd;
/*
* Copy sense information to the OS's cmd
* structure if it is available.
*/
cmd = scb->io_ctx;
if (scb->flags & SCB_SENSE) {
u_int sense_size;
sense_size = MIN(sizeof(struct scsi_sense_data)
- ahc_get_sense_residual(scb),
sizeof(cmd->sense_buffer));
memcpy(cmd->sense_buffer,
ahc_get_sense_buf(ahc, scb), sense_size);
if (sense_size < sizeof(cmd->sense_buffer))
memset(&cmd->sense_buffer[sense_size], 0,
sizeof(cmd->sense_buffer) - sense_size);
cmd->result |= (DRIVER_SENSE << 24);
#ifdef AHC_DEBUG
if (ahc_debug & AHC_SHOW_SENSE) {
int i;
printf("Copied %d bytes of sense data:",
sense_size);
for (i = 0; i < sense_size; i++) {
if ((i & 0xF) == 0)
printf("\n");
printf("0x%x ", cmd->sense_buffer[i]);
}
printf("\n");
}
#endif
}
break;
}
case SCSI_STATUS_QUEUE_FULL:
{
/*
* By the time the core driver has returned this
* command, all other commands that were queued
* to us but not the device have been returned.
* This ensures that dev->active is equal to
* the number of commands actually queued to
* the device.
*/
dev->tag_success_count = 0;
if (dev->active != 0) {
/*
* Drop our opening count to the number
* of commands currently outstanding.
*/
dev->openings = 0;
/*
ahc_print_path(ahc, scb);
printf("Dropping tag count to %d\n", dev->active);
*/
if (dev->active == dev->tags_on_last_queuefull) {
dev->last_queuefull_same_count++;
/*
* If we repeatedly see a queue full
* at the same queue depth, this
* device has a fixed number of tag
* slots. Lock in this tag depth
* so we stop seeing queue fulls from
* this device.
*/
if (dev->last_queuefull_same_count
== AHC_LOCK_TAGS_COUNT) {
dev->maxtags = dev->active;
ahc_print_path(ahc, scb);
printf("Locking max tag count at %d\n",
dev->active);
}
} else {
dev->tags_on_last_queuefull = dev->active;
dev->last_queuefull_same_count = 0;
}
ahc_set_transaction_status(scb, CAM_REQUEUE_REQ);
ahc_set_scsi_status(scb, SCSI_STATUS_OK);
ahc_platform_set_tags(ahc, &devinfo,
(dev->flags & AHC_DEV_Q_BASIC)
? AHC_QUEUE_BASIC : AHC_QUEUE_TAGGED);
break;
}
/*
* Drop down to a single opening, and treat this
* as if the target returned BUSY SCSI status.
*/
dev->openings = 1;
ahc_set_scsi_status(scb, SCSI_STATUS_BUSY);
ahc_platform_set_tags(ahc, &devinfo,
(dev->flags & AHC_DEV_Q_BASIC)
? AHC_QUEUE_BASIC : AHC_QUEUE_TAGGED);
/* FALLTHROUGH */
}
case SCSI_STATUS_BUSY:
{
/*
* Set a short timer to defer sending commands for
* a bit since Linux will not delay in this case.
*/
if ((dev->flags & AHC_DEV_TIMER_ACTIVE) != 0) {
printf("%s:%c:%d: Device Timer still active during "
"busy processing\n", ahc_name(ahc),
dev->target->channel, dev->target->target);
break;
}
dev->flags |= AHC_DEV_TIMER_ACTIVE;
dev->qfrozen++;
init_timer(&dev->timer);
dev->timer.data = (u_long)dev;
dev->timer.expires = jiffies + (HZ/2);
dev->timer.function = ahc_linux_dev_timed_unfreeze;
add_timer(&dev->timer);
break;
}
}
}
static void
ahc_linux_queue_cmd_complete(struct ahc_softc *ahc, Scsi_Cmnd *cmd)
{
/*
* Typically, the complete queue has very few entries
* queued to it before the queue is emptied by
* ahc_linux_run_complete_queue, so sorting the entries
* by generation number should be inexpensive.
* We perform the sort so that commands that complete
* with an error are retuned in the order origionally
* queued to the controller so that any subsequent retries
* are performed in order. The underlying ahc routines do
* not guarantee the order that aborted commands will be
* returned to us.
*/
struct ahc_completeq *completeq;
struct ahc_cmd *list_cmd;
struct ahc_cmd *acmd;
/*
* Map CAM error codes into Linux Error codes. We
* avoid the conversion so that the DV code has the
* full error information available when making
* state change decisions.
*/
if (AHC_DV_CMD(cmd) == FALSE) {
u_int new_status;
switch (ahc_cmd_get_transaction_status(cmd)) {
case CAM_REQ_INPROG:
case CAM_REQ_CMP:
case CAM_SCSI_STATUS_ERROR:
new_status = DID_OK;
break;
case CAM_REQ_ABORTED:
new_status = DID_ABORT;
break;
case CAM_BUSY:
new_status = DID_BUS_BUSY;
break;
case CAM_REQ_INVALID:
case CAM_PATH_INVALID:
new_status = DID_BAD_TARGET;
break;
case CAM_SEL_TIMEOUT:
new_status = DID_NO_CONNECT;
break;
case CAM_SCSI_BUS_RESET:
case CAM_BDR_SENT:
new_status = DID_RESET;
break;
case CAM_UNCOR_PARITY:
new_status = DID_PARITY;
break;
case CAM_CMD_TIMEOUT:
new_status = DID_TIME_OUT;
break;
case CAM_UA_ABORT:
case CAM_REQ_CMP_ERR:
case CAM_AUTOSENSE_FAIL:
case CAM_NO_HBA:
case CAM_DATA_RUN_ERR:
case CAM_UNEXP_BUSFREE:
case CAM_SEQUENCE_FAIL:
case CAM_CCB_LEN_ERR:
case CAM_PROVIDE_FAIL:
case CAM_REQ_TERMIO:
case CAM_UNREC_HBA_ERROR:
case CAM_REQ_TOO_BIG:
new_status = DID_ERROR;
break;
case CAM_REQUEUE_REQ:
/*
* If we want the request requeued, make sure there
* are sufficent retries. In the old scsi error code,
* we used to be able to specify a result code that
* bypassed the retry count. Now we must use this
* hack. We also "fake" a check condition with
* a sense code of ABORTED COMMAND. This seems to
* evoke a retry even if this command is being sent
* via the eh thread. Ick! Ick! Ick!
*/
if (cmd->retries > 0)
cmd->retries--;
new_status = DID_OK;
ahc_cmd_set_scsi_status(cmd, SCSI_STATUS_CHECK_COND);
cmd->result |= (DRIVER_SENSE << 24);
memset(cmd->sense_buffer, 0,
sizeof(cmd->sense_buffer));
cmd->sense_buffer[0] = SSD_ERRCODE_VALID
| SSD_CURRENT_ERROR;
cmd->sense_buffer[2] = SSD_KEY_ABORTED_COMMAND;
break;
default:
/* We should never get here */
new_status = DID_ERROR;
break;
}
ahc_cmd_set_transaction_status(cmd, new_status);
}
completeq = &ahc->platform_data->completeq;
list_cmd = TAILQ_FIRST(completeq);
acmd = (struct ahc_cmd *)cmd;
while (list_cmd != NULL
&& acmd_scsi_cmd(list_cmd).serial_number
< acmd_scsi_cmd(acmd).serial_number)
list_cmd = TAILQ_NEXT(list_cmd, acmd_links.tqe);
if (list_cmd != NULL)
TAILQ_INSERT_BEFORE(list_cmd, acmd, acmd_links.tqe);
else
TAILQ_INSERT_TAIL(completeq, acmd, acmd_links.tqe);
}
static void
ahc_linux_filter_inquiry(struct ahc_softc *ahc, struct ahc_devinfo *devinfo)
{
struct scsi_inquiry_data *sid;
struct ahc_initiator_tinfo *tinfo;
struct ahc_transinfo *user;
struct ahc_transinfo *goal;
struct ahc_transinfo *curr;
struct ahc_tmode_tstate *tstate;
struct ahc_syncrate *syncrate;
struct ahc_linux_device *dev;
u_int maxsync;
u_int width;
u_int period;
u_int offset;
u_int ppr_options;
u_int trans_version;
u_int prot_version;
/*
* Determine if this lun actually exists. If so,
* hold on to its corresponding device structure.
* If not, make sure we release the device and
* don't bother processing the rest of this inquiry
* command.
*/
dev = ahc_linux_get_device(ahc, devinfo->channel - 'A',
devinfo->target, devinfo->lun,
/*alloc*/TRUE);
sid = (struct scsi_inquiry_data *)dev->target->inq_data;
if (SID_QUAL(sid) == SID_QUAL_LU_CONNECTED) {
dev->flags &= ~AHC_DEV_UNCONFIGURED;
} else {
dev->flags |= AHC_DEV_UNCONFIGURED;
return;
}
/*
* Update our notion of this device's transfer
* negotiation capabilities.
*/
tinfo = ahc_fetch_transinfo(ahc, devinfo->channel,
devinfo->our_scsiid,
devinfo->target, &tstate);
user = &tinfo->user;
goal = &tinfo->goal;
curr = &tinfo->curr;
width = user->width;
period = user->period;
offset = user->offset;
ppr_options = user->ppr_options;
trans_version = user->transport_version;
prot_version = MIN(user->protocol_version, SID_ANSI_REV(sid));
/*
* Only attempt SPI3/4 once we've verified that
* the device claims to support SPI3/4 features.
*/
if (prot_version < SCSI_REV_2)
trans_version = SID_ANSI_REV(sid);
else
trans_version = SCSI_REV_2;
if ((sid->flags & SID_WBus16) == 0)
width = MSG_EXT_WDTR_BUS_8_BIT;
if ((sid->flags & SID_Sync) == 0) {
period = 0;
offset = 0;
ppr_options = 0;
}
if ((sid->spi3data & SID_SPI_QAS) == 0)
ppr_options &= ~MSG_EXT_PPR_QAS_REQ;
if ((sid->spi3data & SID_SPI_CLOCK_DT) == 0)
ppr_options &= MSG_EXT_PPR_QAS_REQ;
if ((sid->spi3data & SID_SPI_IUS) == 0)
ppr_options &= (MSG_EXT_PPR_DT_REQ
| MSG_EXT_PPR_QAS_REQ);
if (prot_version > SCSI_REV_2
&& ppr_options != 0)
trans_version = user->transport_version;
ahc_validate_width(ahc, /*tinfo limit*/NULL, &width, ROLE_UNKNOWN);
if ((ahc->features & AHC_ULTRA2) != 0)
maxsync = AHC_SYNCRATE_DT;
else if ((ahc->features & AHC_ULTRA) != 0)
maxsync = AHC_SYNCRATE_ULTRA;
else
maxsync = AHC_SYNCRATE_FAST;
syncrate = ahc_find_syncrate(ahc, &period, &ppr_options, maxsync);
ahc_validate_offset(ahc, /*tinfo limit*/NULL, syncrate,
&offset, width, ROLE_UNKNOWN);
if (offset == 0 || period == 0) {
period = 0;
offset = 0;
ppr_options = 0;
}
/* Apply our filtered user settings. */
curr->transport_version = trans_version;
curr->protocol_version = prot_version;
ahc_set_width(ahc, devinfo, width, AHC_TRANS_GOAL, /*paused*/FALSE);
ahc_set_syncrate(ahc, devinfo, syncrate, period,
offset, ppr_options, AHC_TRANS_GOAL,
/*paused*/FALSE);
}
static void
ahc_linux_sem_timeout(u_long arg)
{
struct ahc_softc *ahc;
u_long s;
ahc = (struct ahc_softc *)arg;
ahc_lock(ahc, &s);
if ((ahc->platform_data->flags & AHC_UP_EH_SEMAPHORE) != 0) {
ahc->platform_data->flags &= ~AHC_UP_EH_SEMAPHORE;
up(&ahc->platform_data->eh_sem);
}
ahc_unlock(ahc, &s);
}
static void
ahc_linux_freeze_simq(struct ahc_softc *ahc)
{
ahc->platform_data->qfrozen++;
if (ahc->platform_data->qfrozen == 1) {
scsi_block_requests(ahc->platform_data->host);
/* XXX What about Twin channels? */
ahc_platform_abort_scbs(ahc, CAM_TARGET_WILDCARD, ALL_CHANNELS,
CAM_LUN_WILDCARD, SCB_LIST_NULL,
ROLE_INITIATOR, CAM_REQUEUE_REQ);
}
}
static void
ahc_linux_release_simq(u_long arg)
{
struct ahc_softc *ahc;
u_long s;
int unblock_reqs;
ahc = (struct ahc_softc *)arg;
unblock_reqs = 0;
ahc_lock(ahc, &s);
if (ahc->platform_data->qfrozen > 0)
ahc->platform_data->qfrozen--;
if (ahc->platform_data->qfrozen == 0)
unblock_reqs = 1;
if (AHC_DV_SIMQ_FROZEN(ahc)
&& ((ahc->platform_data->flags & AHC_DV_WAIT_SIMQ_RELEASE) != 0)) {
ahc->platform_data->flags &= ~AHC_DV_WAIT_SIMQ_RELEASE;
up(&ahc->platform_data->dv_sem);
}
ahc_schedule_runq(ahc);
ahc_unlock(ahc, &s);
/*
* There is still a race here. The mid-layer
* should keep its own freeze count and use
* a bottom half handler to run the queues
* so we can unblock with our own lock held.
*/
if (unblock_reqs)
scsi_unblock_requests(ahc->platform_data->host);
}
static void
ahc_linux_dev_timed_unfreeze(u_long arg)
{
struct ahc_linux_device *dev;
struct ahc_softc *ahc;
u_long s;
dev = (struct ahc_linux_device *)arg;
ahc = dev->target->ahc;
ahc_lock(ahc, &s);
dev->flags &= ~AHC_DEV_TIMER_ACTIVE;
if (dev->qfrozen > 0)
dev->qfrozen--;
if (dev->qfrozen == 0
&& (dev->flags & AHC_DEV_ON_RUN_LIST) == 0)
ahc_linux_run_device_queue(ahc, dev);
if (TAILQ_EMPTY(&dev->busyq)
&& dev->active == 0)
__ahc_linux_free_device(ahc, dev);
ahc_unlock(ahc, &s);
}
static int
ahc_linux_queue_recovery_cmd(Scsi_Cmnd *cmd, scb_flag flag)
{
struct ahc_softc *ahc;
struct ahc_cmd *acmd;
struct ahc_cmd *list_acmd;
struct ahc_linux_device *dev;
struct scb *pending_scb;
u_long s;
u_int saved_scbptr;
u_int active_scb_index;
u_int last_phase;
u_int saved_scsiid;
u_int cdb_byte;
int retval;
int was_paused;
int paused;
int wait;
int disconnected;
pending_scb = NULL;
paused = FALSE;
wait = FALSE;
ahc = *(struct ahc_softc **)cmd->device->host->hostdata;
acmd = (struct ahc_cmd *)cmd;
printf("%s:%d:%d:%d: Attempting to queue a%s message\n",
ahc_name(ahc), cmd->device->channel,
cmd->device->id, cmd->device->lun,
flag == SCB_ABORT ? "n ABORT" : " TARGET RESET");
printf("CDB:");
for (cdb_byte = 0; cdb_byte < cmd->cmd_len; cdb_byte++)
printf(" 0x%x", cmd->cmnd[cdb_byte]);
printf("\n");
/*
* In all versions of Linux, we have to work around
* a major flaw in how the mid-layer is locked down
* if we are to sleep successfully in our error handler
* while allowing our interrupt handler to run. Since
* the midlayer acquires either the io_request_lock or
* our lock prior to calling us, we must use the
* spin_unlock_irq() method for unlocking our lock.
* This will force interrupts to be enabled on the
* current CPU. Since the EH thread should not have
* been running with CPU interrupts disabled other than
* by acquiring either the io_request_lock or our own
* lock, this *should* be safe.
*/
ahc_midlayer_entrypoint_lock(ahc, &s);
/*
* First determine if we currently own this command.
* Start by searching the device queue. If not found
* there, check the pending_scb list. If not found
* at all, and the system wanted us to just abort the
* command, return success.
*/
dev = ahc_linux_get_device(ahc, cmd->device->channel, cmd->device->id,
cmd->device->lun, /*alloc*/FALSE);
if (dev == NULL) {
/*
* No target device for this command exists,
* so we must not still own the command.
*/
printf("%s:%d:%d:%d: Is not an active device\n",
ahc_name(ahc), cmd->device->channel, cmd->device->id,
cmd->device->lun);
retval = SUCCESS;
goto no_cmd;
}
TAILQ_FOREACH(list_acmd, &dev->busyq, acmd_links.tqe) {
if (list_acmd == acmd)
break;
}
if (list_acmd != NULL) {
printf("%s:%d:%d:%d: Command found on device queue\n",
ahc_name(ahc), cmd->device->channel, cmd->device->id,
cmd->device->lun);
if (flag == SCB_ABORT) {
TAILQ_REMOVE(&dev->busyq, list_acmd, acmd_links.tqe);
cmd->result = DID_ABORT << 16;
ahc_linux_queue_cmd_complete(ahc, cmd);
retval = SUCCESS;
goto done;
}
}
if ((dev->flags & (AHC_DEV_Q_BASIC|AHC_DEV_Q_TAGGED)) == 0
&& ahc_search_untagged_queues(ahc, cmd, cmd->device->id,
cmd->device->channel + 'A',
cmd->device->lun,
CAM_REQ_ABORTED, SEARCH_COMPLETE) != 0) {
printf("%s:%d:%d:%d: Command found on untagged queue\n",
ahc_name(ahc), cmd->device->channel, cmd->device->id,
cmd->device->lun);
retval = SUCCESS;
goto done;
}
/*
* See if we can find a matching cmd in the pending list.
*/
LIST_FOREACH(pending_scb, &ahc->pending_scbs, pending_links) {
if (pending_scb->io_ctx == cmd)
break;
}
if (pending_scb == NULL && flag == SCB_DEVICE_RESET) {
/* Any SCB for this device will do for a target reset */
LIST_FOREACH(pending_scb, &ahc->pending_scbs, pending_links) {
if (ahc_match_scb(ahc, pending_scb, cmd->device->id,
cmd->device->channel + 'A',
CAM_LUN_WILDCARD,
SCB_LIST_NULL, ROLE_INITIATOR) == 0)
break;
}
}
if (pending_scb == NULL) {
printf("%s:%d:%d:%d: Command not found\n",
ahc_name(ahc), cmd->device->channel, cmd->device->id,
cmd->device->lun);
goto no_cmd;
}
if ((pending_scb->flags & SCB_RECOVERY_SCB) != 0) {
/*
* We can't queue two recovery actions using the same SCB
*/
retval = FAILED;
goto done;
}
/*
* Ensure that the card doesn't do anything
* behind our back and that we didn't "just" miss
* an interrupt that would affect this cmd.
*/
was_paused = ahc_is_paused(ahc);
ahc_pause_and_flushwork(ahc);
paused = TRUE;
if ((pending_scb->flags & SCB_ACTIVE) == 0) {
printf("%s:%d:%d:%d: Command already completed\n",
ahc_name(ahc), cmd->device->channel, cmd->device->id,
cmd->device->lun);
goto no_cmd;
}
printf("%s: At time of recovery, card was %spaused\n",
ahc_name(ahc), was_paused ? "" : "not ");
ahc_dump_card_state(ahc);
disconnected = TRUE;
if (flag == SCB_ABORT) {
if (ahc_search_qinfifo(ahc, cmd->device->id,
cmd->device->channel + 'A',
cmd->device->lun,
pending_scb->hscb->tag,
ROLE_INITIATOR, CAM_REQ_ABORTED,
SEARCH_COMPLETE) > 0) {
printf("%s:%d:%d:%d: Cmd aborted from QINFIFO\n",
ahc_name(ahc), cmd->device->channel,
cmd->device->id, cmd->device->lun);
retval = SUCCESS;
goto done;
}
} else if (ahc_search_qinfifo(ahc, cmd->device->id,
cmd->device->channel + 'A',
cmd->device->lun, pending_scb->hscb->tag,
ROLE_INITIATOR, /*status*/0,
SEARCH_COUNT) > 0) {
disconnected = FALSE;
}
if (disconnected && (ahc_inb(ahc, SEQ_FLAGS) & NOT_IDENTIFIED) == 0) {
struct scb *bus_scb;
bus_scb = ahc_lookup_scb(ahc, ahc_inb(ahc, SCB_TAG));
if (bus_scb == pending_scb)
disconnected = FALSE;
else if (flag != SCB_ABORT
&& ahc_inb(ahc, SAVED_SCSIID) == pending_scb->hscb->scsiid
&& ahc_inb(ahc, SAVED_LUN) == SCB_GET_LUN(pending_scb))
disconnected = FALSE;
}
/*
* At this point, pending_scb is the scb associated with the
* passed in command. That command is currently active on the
* bus, is in the disconnected state, or we're hoping to find
* a command for the same target active on the bus to abuse to
* send a BDR. Queue the appropriate message based on which of
* these states we are in.
*/
last_phase = ahc_inb(ahc, LASTPHASE);
saved_scbptr = ahc_inb(ahc, SCBPTR);
active_scb_index = ahc_inb(ahc, SCB_TAG);
saved_scsiid = ahc_inb(ahc, SAVED_SCSIID);
if (last_phase != P_BUSFREE
&& (pending_scb->hscb->tag == active_scb_index
|| (flag == SCB_DEVICE_RESET
&& SCSIID_TARGET(ahc, saved_scsiid) == cmd->device->id))) {
/*
* We're active on the bus, so assert ATN
* and hope that the target responds.
*/
pending_scb = ahc_lookup_scb(ahc, active_scb_index);
pending_scb->flags |= SCB_RECOVERY_SCB|flag;
ahc_outb(ahc, MSG_OUT, HOST_MSG);
ahc_outb(ahc, SCSISIGO, last_phase|ATNO);
printf("%s:%d:%d:%d: Device is active, asserting ATN\n",
ahc_name(ahc), cmd->device->channel, cmd->device->id,
cmd->device->lun);
wait = TRUE;
} else if (disconnected) {
/*
* Actually re-queue this SCB in an attempt
* to select the device before it reconnects.
* In either case (selection or reselection),
* we will now issue the approprate message
* to the timed-out device.
*
* Set the MK_MESSAGE control bit indicating
* that we desire to send a message. We
* also set the disconnected flag since
* in the paging case there is no guarantee
* that our SCB control byte matches the
* version on the card. We don't want the
* sequencer to abort the command thinking
* an unsolicited reselection occurred.
*/
pending_scb->hscb->control |= MK_MESSAGE|DISCONNECTED;
pending_scb->flags |= SCB_RECOVERY_SCB|flag;
/*
* Remove any cached copy of this SCB in the
* disconnected list in preparation for the
* queuing of our abort SCB. We use the
* same element in the SCB, SCB_NEXT, for
* both the qinfifo and the disconnected list.
*/
ahc_search_disc_list(ahc, cmd->device->id,
cmd->device->channel + 'A',
cmd->device->lun, pending_scb->hscb->tag,
/*stop_on_first*/TRUE,
/*remove*/TRUE,
/*save_state*/FALSE);
/*
* In the non-paging case, the sequencer will
* never re-reference the in-core SCB.
* To make sure we are notified during
* reslection, set the MK_MESSAGE flag in
* the card's copy of the SCB.
*/
if ((ahc->flags & AHC_PAGESCBS) == 0) {
ahc_outb(ahc, SCBPTR, pending_scb->hscb->tag);
ahc_outb(ahc, SCB_CONTROL,
ahc_inb(ahc, SCB_CONTROL)|MK_MESSAGE);
}
/*
* Clear out any entries in the QINFIFO first
* so we are the next SCB for this target
* to run.
*/
ahc_search_qinfifo(ahc, cmd->device->id,
cmd->device->channel + 'A',
cmd->device->lun, SCB_LIST_NULL,
ROLE_INITIATOR, CAM_REQUEUE_REQ,
SEARCH_COMPLETE);
ahc_qinfifo_requeue_tail(ahc, pending_scb);
ahc_outb(ahc, SCBPTR, saved_scbptr);
ahc_print_path(ahc, pending_scb);
printf("Device is disconnected, re-queuing SCB\n");
wait = TRUE;
} else {
printf("%s:%d:%d:%d: Unable to deliver message\n",
ahc_name(ahc), cmd->device->channel, cmd->device->id,
cmd->device->lun);
retval = FAILED;
goto done;
}
no_cmd:
/*
* Our assumption is that if we don't have the command, no
* recovery action was required, so we return success. Again,
* the semantics of the mid-layer recovery engine are not
* well defined, so this may change in time.
*/
retval = SUCCESS;
done:
if (paused)
ahc_unpause(ahc);
if (wait) {
struct timer_list timer;
int ret;
ahc->platform_data->flags |= AHC_UP_EH_SEMAPHORE;
spin_unlock_irq(&ahc->platform_data->spin_lock);
init_timer(&timer);
timer.data = (u_long)ahc;
timer.expires = jiffies + (5 * HZ);
timer.function = ahc_linux_sem_timeout;
add_timer(&timer);
printf("Recovery code sleeping\n");
down(&ahc->platform_data->eh_sem);
printf("Recovery code awake\n");
ret = del_timer_sync(&timer);
if (ret == 0) {
printf("Timer Expired\n");
retval = FAILED;
}
spin_lock_irq(&ahc->platform_data->spin_lock);
}
ahc_schedule_runq(ahc);
ahc_linux_run_complete_queue(ahc);
ahc_midlayer_entrypoint_unlock(ahc, &s);
return (retval);
}
void
ahc_platform_dump_card_state(struct ahc_softc *ahc)
{
struct ahc_linux_device *dev;
int channel;
int maxchannel;
int target;
int maxtarget;
int lun;
int i;
maxchannel = (ahc->features & AHC_TWIN) ? 1 : 0;
maxtarget = (ahc->features & AHC_WIDE) ? 15 : 7;
for (channel = 0; channel <= maxchannel; channel++) {
for (target = 0; target <=maxtarget; target++) {
for (lun = 0; lun < AHC_NUM_LUNS; lun++) {
struct ahc_cmd *acmd;
dev = ahc_linux_get_device(ahc, channel, target,
lun, /*alloc*/FALSE);
if (dev == NULL)
continue;
printf("DevQ(%d:%d:%d): ",
channel, target, lun);
i = 0;
TAILQ_FOREACH(acmd, &dev->busyq,
acmd_links.tqe) {
if (i++ > AHC_SCB_MAX)
break;
}
printf("%d waiting\n", i);
}
}
}
}
static void ahc_linux_exit(void);
static int __init
ahc_linux_init(void)
{
#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,5,0)
int rc = ahc_linux_detect(&aic7xxx_driver_template);
if (rc)
return rc;
ahc_linux_exit();
return -ENODEV;
#else
scsi_register_module(MODULE_SCSI_HA, &aic7xxx_driver_template);
if (aic7xxx_driver_template.present == 0) {
scsi_unregister_module(MODULE_SCSI_HA,
&aic7xxx_driver_template);
return (-ENODEV);
}
return (0);
#endif
}
static void
ahc_linux_exit(void)
{
struct ahc_softc *ahc;
/*
* Shutdown DV threads before going into the SCSI mid-layer.
* This avoids situations where the mid-layer locks the entire
* kernel so that waiting for our DV threads to exit leads
* to deadlock.
*/
TAILQ_FOREACH(ahc, &ahc_tailq, links) {
ahc_linux_kill_dv_thread(ahc);
}
#if LINUX_VERSION_CODE < KERNEL_VERSION(2,5,0)
/*
* In 2.4 we have to unregister from the PCI core _after_
* unregistering from the scsi midlayer to avoid dangling
* references.
*/
scsi_unregister_module(MODULE_SCSI_HA, &aic7xxx_driver_template);
#endif
ahc_linux_pci_exit();
ahc_linux_eisa_exit();
}
module_init(ahc_linux_init);
module_exit(ahc_linux_exit);