android_kernel_motorola_sm6225/drivers/i2c/busses/i2c-nomadik.c
Rabin Vincent 1df3ab1b91 i2c-nomadik: fix operator precedence warning
Fix this warning:
i2c-nomadik.c:707: warning: suggest parentheses around operand of '!' or change '&' to '&&' or '!' to '~'

Acked-by: Linus Walleij <linus.walleij@stericsson.com>
Acked-by: Srinidhi Kasagar <srinidhi.kasagar@stericsson.com>
Signed-off-by: Rabin Vincent <rabin.vincent@stericsson.com>
Signed-off-by: Ben Dooks <ben-linux@fluff.org>
2010-05-20 00:19:00 +01:00

964 lines
24 KiB
C

/*
* Copyright (C) 2009 ST-Ericsson
* Copyright (C) 2009 STMicroelectronics
*
* I2C master mode controller driver, used in Nomadik 8815
* and Ux500 platforms.
*
* Author: Srinidhi Kasagar <srinidhi.kasagar@stericsson.com>
* Author: Sachin Verma <sachin.verma@st.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2, as
* published by the Free Software Foundation.
*/
#include <linux/init.h>
#include <linux/module.h>
#include <linux/platform_device.h>
#include <linux/delay.h>
#include <linux/slab.h>
#include <linux/interrupt.h>
#include <linux/i2c.h>
#include <linux/err.h>
#include <linux/clk.h>
#include <linux/io.h>
#include <plat/i2c.h>
#define DRIVER_NAME "nmk-i2c"
/* I2C Controller register offsets */
#define I2C_CR (0x000)
#define I2C_SCR (0x004)
#define I2C_HSMCR (0x008)
#define I2C_MCR (0x00C)
#define I2C_TFR (0x010)
#define I2C_SR (0x014)
#define I2C_RFR (0x018)
#define I2C_TFTR (0x01C)
#define I2C_RFTR (0x020)
#define I2C_DMAR (0x024)
#define I2C_BRCR (0x028)
#define I2C_IMSCR (0x02C)
#define I2C_RISR (0x030)
#define I2C_MISR (0x034)
#define I2C_ICR (0x038)
/* Control registers */
#define I2C_CR_PE (0x1 << 0) /* Peripheral Enable */
#define I2C_CR_OM (0x3 << 1) /* Operating mode */
#define I2C_CR_SAM (0x1 << 3) /* Slave addressing mode */
#define I2C_CR_SM (0x3 << 4) /* Speed mode */
#define I2C_CR_SGCM (0x1 << 6) /* Slave general call mode */
#define I2C_CR_FTX (0x1 << 7) /* Flush Transmit */
#define I2C_CR_FRX (0x1 << 8) /* Flush Receive */
#define I2C_CR_DMA_TX_EN (0x1 << 9) /* DMA Tx enable */
#define I2C_CR_DMA_RX_EN (0x1 << 10) /* DMA Rx Enable */
#define I2C_CR_DMA_SLE (0x1 << 11) /* DMA sync. logic enable */
#define I2C_CR_LM (0x1 << 12) /* Loopback mode */
#define I2C_CR_FON (0x3 << 13) /* Filtering on */
#define I2C_CR_FS (0x3 << 15) /* Force stop enable */
/* Master controller (MCR) register */
#define I2C_MCR_OP (0x1 << 0) /* Operation */
#define I2C_MCR_A7 (0x7f << 1) /* 7-bit address */
#define I2C_MCR_EA10 (0x7 << 8) /* 10-bit Extended address */
#define I2C_MCR_SB (0x1 << 11) /* Extended address */
#define I2C_MCR_AM (0x3 << 12) /* Address type */
#define I2C_MCR_STOP (0x1 << 14) /* Stop condition */
#define I2C_MCR_LENGTH (0x7ff << 15) /* Transaction length */
/* Status register (SR) */
#define I2C_SR_OP (0x3 << 0) /* Operation */
#define I2C_SR_STATUS (0x3 << 2) /* controller status */
#define I2C_SR_CAUSE (0x7 << 4) /* Abort cause */
#define I2C_SR_TYPE (0x3 << 7) /* Receive type */
#define I2C_SR_LENGTH (0x7ff << 9) /* Transfer length */
/* Interrupt mask set/clear (IMSCR) bits */
#define I2C_IT_TXFE (0x1 << 0)
#define I2C_IT_TXFNE (0x1 << 1)
#define I2C_IT_TXFF (0x1 << 2)
#define I2C_IT_TXFOVR (0x1 << 3)
#define I2C_IT_RXFE (0x1 << 4)
#define I2C_IT_RXFNF (0x1 << 5)
#define I2C_IT_RXFF (0x1 << 6)
#define I2C_IT_RFSR (0x1 << 16)
#define I2C_IT_RFSE (0x1 << 17)
#define I2C_IT_WTSR (0x1 << 18)
#define I2C_IT_MTD (0x1 << 19)
#define I2C_IT_STD (0x1 << 20)
#define I2C_IT_MAL (0x1 << 24)
#define I2C_IT_BERR (0x1 << 25)
#define I2C_IT_MTDWS (0x1 << 28)
#define GEN_MASK(val, mask, sb) (((val) << (sb)) & (mask))
/* some bits in ICR are reserved */
#define I2C_CLEAR_ALL_INTS 0x131f007f
/* first three msb bits are reserved */
#define IRQ_MASK(mask) (mask & 0x1fffffff)
/* maximum threshold value */
#define MAX_I2C_FIFO_THRESHOLD 15
enum i2c_status {
I2C_NOP,
I2C_ON_GOING,
I2C_OK,
I2C_ABORT
};
/* operation */
enum i2c_operation {
I2C_NO_OPERATION = 0xff,
I2C_WRITE = 0x00,
I2C_READ = 0x01
};
/* controller response timeout in ms */
#define I2C_TIMEOUT_MS 500
/**
* struct i2c_nmk_client - client specific data
* @slave_adr: 7-bit slave address
* @count: no. bytes to be transfered
* @buffer: client data buffer
* @xfer_bytes: bytes transfered till now
* @operation: current I2C operation
*/
struct i2c_nmk_client {
unsigned short slave_adr;
unsigned long count;
unsigned char *buffer;
unsigned long xfer_bytes;
enum i2c_operation operation;
};
/**
* struct nmk_i2c_dev - private data structure of the controller
* @pdev: parent platform device
* @adap: corresponding I2C adapter
* @irq: interrupt line for the controller
* @virtbase: virtual io memory area
* @clk: hardware i2c block clock
* @cfg: machine provided controller configuration
* @cli: holder of client specific data
* @stop: stop condition
* @xfer_complete: acknowledge completion for a I2C message
* @result: controller propogated result
*/
struct nmk_i2c_dev {
struct platform_device *pdev;
struct i2c_adapter adap;
int irq;
void __iomem *virtbase;
struct clk *clk;
struct nmk_i2c_controller cfg;
struct i2c_nmk_client cli;
int stop;
struct completion xfer_complete;
int result;
};
/* controller's abort causes */
static const char *abort_causes[] = {
"no ack received after address transmission",
"no ack received during data phase",
"ack received after xmission of master code",
"master lost arbitration",
"slave restarts",
"slave reset",
"overflow, maxsize is 2047 bytes",
};
static inline void i2c_set_bit(void __iomem *reg, u32 mask)
{
writel(readl(reg) | mask, reg);
}
static inline void i2c_clr_bit(void __iomem *reg, u32 mask)
{
writel(readl(reg) & ~mask, reg);
}
/**
* flush_i2c_fifo() - This function flushes the I2C FIFO
* @dev: private data of I2C Driver
*
* This function flushes the I2C Tx and Rx FIFOs. It returns
* 0 on successful flushing of FIFO
*/
static int flush_i2c_fifo(struct nmk_i2c_dev *dev)
{
#define LOOP_ATTEMPTS 10
int i;
unsigned long timeout;
/*
* flush the transmit and receive FIFO. The flushing
* operation takes several cycles before to be completed.
* On the completion, the I2C internal logic clears these
* bits, until then no one must access Tx, Rx FIFO and
* should poll on these bits waiting for the completion.
*/
writel((I2C_CR_FTX | I2C_CR_FRX), dev->virtbase + I2C_CR);
for (i = 0; i < LOOP_ATTEMPTS; i++) {
timeout = jiffies + msecs_to_jiffies(I2C_TIMEOUT_MS);
while (!time_after(jiffies, timeout)) {
if ((readl(dev->virtbase + I2C_CR) &
(I2C_CR_FTX | I2C_CR_FRX)) == 0)
return 0;
}
}
dev_err(&dev->pdev->dev, "flushing operation timed out "
"giving up after %d attempts", LOOP_ATTEMPTS);
return -ETIMEDOUT;
}
/**
* disable_all_interrupts() - Disable all interrupts of this I2c Bus
* @dev: private data of I2C Driver
*/
static void disable_all_interrupts(struct nmk_i2c_dev *dev)
{
u32 mask = IRQ_MASK(0);
writel(mask, dev->virtbase + I2C_IMSCR);
}
/**
* clear_all_interrupts() - Clear all interrupts of I2C Controller
* @dev: private data of I2C Driver
*/
static void clear_all_interrupts(struct nmk_i2c_dev *dev)
{
u32 mask;
mask = IRQ_MASK(I2C_CLEAR_ALL_INTS);
writel(mask, dev->virtbase + I2C_ICR);
}
/**
* init_hw() - initialize the I2C hardware
* @dev: private data of I2C Driver
*/
static int init_hw(struct nmk_i2c_dev *dev)
{
int stat;
stat = flush_i2c_fifo(dev);
if (stat)
return stat;
/* disable the controller */
i2c_clr_bit(dev->virtbase + I2C_CR , I2C_CR_PE);
disable_all_interrupts(dev);
clear_all_interrupts(dev);
dev->cli.operation = I2C_NO_OPERATION;
return 0;
}
/* enable peripheral, master mode operation */
#define DEFAULT_I2C_REG_CR ((1 << 1) | I2C_CR_PE)
/**
* load_i2c_mcr_reg() - load the MCR register
* @dev: private data of controller
*/
static u32 load_i2c_mcr_reg(struct nmk_i2c_dev *dev)
{
u32 mcr = 0;
/* 7-bit address transaction */
mcr |= GEN_MASK(1, I2C_MCR_AM, 12);
mcr |= GEN_MASK(dev->cli.slave_adr, I2C_MCR_A7, 1);
/* start byte procedure not applied */
mcr |= GEN_MASK(0, I2C_MCR_SB, 11);
/* check the operation, master read/write? */
if (dev->cli.operation == I2C_WRITE)
mcr |= GEN_MASK(I2C_WRITE, I2C_MCR_OP, 0);
else
mcr |= GEN_MASK(I2C_READ, I2C_MCR_OP, 0);
/* stop or repeated start? */
if (dev->stop)
mcr |= GEN_MASK(1, I2C_MCR_STOP, 14);
else
mcr &= ~(GEN_MASK(1, I2C_MCR_STOP, 14));
mcr |= GEN_MASK(dev->cli.count, I2C_MCR_LENGTH, 15);
return mcr;
}
/**
* setup_i2c_controller() - setup the controller
* @dev: private data of controller
*/
static void setup_i2c_controller(struct nmk_i2c_dev *dev)
{
u32 brcr1, brcr2;
u32 i2c_clk, div;
writel(0x0, dev->virtbase + I2C_CR);
writel(0x0, dev->virtbase + I2C_HSMCR);
writel(0x0, dev->virtbase + I2C_TFTR);
writel(0x0, dev->virtbase + I2C_RFTR);
writel(0x0, dev->virtbase + I2C_DMAR);
/*
* set the slsu:
*
* slsu defines the data setup time after SCL clock
* stretching in terms of i2c clk cycles. The
* needed setup time for the three modes are 250ns,
* 100ns, 10ns repectively thus leading to the values
* of 14, 6, 2 for a 48 MHz i2c clk.
*/
writel(dev->cfg.slsu << 16, dev->virtbase + I2C_SCR);
i2c_clk = clk_get_rate(dev->clk);
/* fallback to std. mode if machine has not provided it */
if (dev->cfg.clk_freq == 0)
dev->cfg.clk_freq = 100000;
/*
* The spec says, in case of std. mode the divider is
* 2 whereas it is 3 for fast and fastplus mode of
* operation. TODO - high speed support.
*/
div = (dev->cfg.clk_freq > 100000) ? 3 : 2;
/*
* generate the mask for baud rate counters. The controller
* has two baud rate counters. One is used for High speed
* operation, and the other is for std, fast mode, fast mode
* plus operation. Currently we do not supprt high speed mode
* so set brcr1 to 0.
*/
brcr1 = 0 << 16;
brcr2 = (i2c_clk/(dev->cfg.clk_freq * div)) & 0xffff;
/* set the baud rate counter register */
writel((brcr1 | brcr2), dev->virtbase + I2C_BRCR);
/*
* set the speed mode. Currently we support
* only standard and fast mode of operation
* TODO - support for fast mode plus (upto 1Mb/s)
* and high speed (up to 3.4 Mb/s)
*/
if (dev->cfg.sm > I2C_FREQ_MODE_FAST) {
dev_err(&dev->pdev->dev, "do not support this mode "
"defaulting to std. mode\n");
brcr2 = i2c_clk/(100000 * 2) & 0xffff;
writel((brcr1 | brcr2), dev->virtbase + I2C_BRCR);
writel(I2C_FREQ_MODE_STANDARD << 4,
dev->virtbase + I2C_CR);
}
writel(dev->cfg.sm << 4, dev->virtbase + I2C_CR);
/* set the Tx and Rx FIFO threshold */
writel(dev->cfg.tft, dev->virtbase + I2C_TFTR);
writel(dev->cfg.rft, dev->virtbase + I2C_RFTR);
}
/**
* read_i2c() - Read from I2C client device
* @dev: private data of I2C Driver
*
* This function reads from i2c client device when controller is in
* master mode. There is a completion timeout. If there is no transfer
* before timeout error is returned.
*/
static int read_i2c(struct nmk_i2c_dev *dev)
{
u32 status = 0;
u32 mcr;
u32 irq_mask = 0;
int timeout;
mcr = load_i2c_mcr_reg(dev);
writel(mcr, dev->virtbase + I2C_MCR);
/* load the current CR value */
writel(readl(dev->virtbase + I2C_CR) | DEFAULT_I2C_REG_CR,
dev->virtbase + I2C_CR);
/* enable the controller */
i2c_set_bit(dev->virtbase + I2C_CR, I2C_CR_PE);
init_completion(&dev->xfer_complete);
/* enable interrupts by setting the mask */
irq_mask = (I2C_IT_RXFNF | I2C_IT_RXFF |
I2C_IT_MAL | I2C_IT_BERR);
if (dev->stop)
irq_mask |= I2C_IT_MTD;
else
irq_mask |= I2C_IT_MTDWS;
irq_mask = I2C_CLEAR_ALL_INTS & IRQ_MASK(irq_mask);
writel(readl(dev->virtbase + I2C_IMSCR) | irq_mask,
dev->virtbase + I2C_IMSCR);
timeout = wait_for_completion_interruptible_timeout(
&dev->xfer_complete, msecs_to_jiffies(I2C_TIMEOUT_MS));
if (timeout < 0) {
dev_err(&dev->pdev->dev,
"wait_for_completion_interruptible_timeout"
"returned %d waiting for event\n", timeout);
status = timeout;
}
if (timeout == 0) {
/* controler has timedout, re-init the h/w */
dev_err(&dev->pdev->dev, "controller timed out, re-init h/w\n");
(void) init_hw(dev);
status = -ETIMEDOUT;
}
return status;
}
/**
* write_i2c() - Write data to I2C client.
* @dev: private data of I2C Driver
*
* This function writes data to I2C client
*/
static int write_i2c(struct nmk_i2c_dev *dev)
{
u32 status = 0;
u32 mcr;
u32 irq_mask = 0;
int timeout;
mcr = load_i2c_mcr_reg(dev);
writel(mcr, dev->virtbase + I2C_MCR);
/* load the current CR value */
writel(readl(dev->virtbase + I2C_CR) | DEFAULT_I2C_REG_CR,
dev->virtbase + I2C_CR);
/* enable the controller */
i2c_set_bit(dev->virtbase + I2C_CR , I2C_CR_PE);
init_completion(&dev->xfer_complete);
/* enable interrupts by settings the masks */
irq_mask = (I2C_IT_TXFNE | I2C_IT_TXFOVR |
I2C_IT_MAL | I2C_IT_BERR);
/*
* check if we want to transfer a single or multiple bytes, if so
* set the MTDWS bit (Master Transaction Done Without Stop)
* to start repeated start operation
*/
if (dev->stop)
irq_mask |= I2C_IT_MTD;
else
irq_mask |= I2C_IT_MTDWS;
irq_mask = I2C_CLEAR_ALL_INTS & IRQ_MASK(irq_mask);
writel(readl(dev->virtbase + I2C_IMSCR) | irq_mask,
dev->virtbase + I2C_IMSCR);
timeout = wait_for_completion_interruptible_timeout(
&dev->xfer_complete, msecs_to_jiffies(I2C_TIMEOUT_MS));
if (timeout < 0) {
dev_err(&dev->pdev->dev,
"wait_for_completion_interruptible_timeout"
"returned %d waiting for event\n", timeout);
status = timeout;
}
if (timeout == 0) {
/* controler has timedout, re-init the h/w */
dev_err(&dev->pdev->dev, "controller timed out, re-init h/w\n");
(void) init_hw(dev);
status = -ETIMEDOUT;
}
return status;
}
/**
* nmk_i2c_xfer() - I2C transfer function used by kernel framework
* @i2c_adap - Adapter pointer to the controller
* @msgs[] - Pointer to data to be written.
* @num_msgs - Number of messages to be executed
*
* This is the function called by the generic kernel i2c_transfer()
* or i2c_smbus...() API calls. Note that this code is protected by the
* semaphore set in the kernel i2c_transfer() function.
*
* NOTE:
* READ TRANSFER : We impose a restriction of the first message to be the
* index message for any read transaction.
* - a no index is coded as '0',
* - 2byte big endian index is coded as '3'
* !!! msg[0].buf holds the actual index.
* This is compatible with generic messages of smbus emulator
* that send a one byte index.
* eg. a I2C transation to read 2 bytes from index 0
* idx = 0;
* msg[0].addr = client->addr;
* msg[0].flags = 0x0;
* msg[0].len = 1;
* msg[0].buf = &idx;
*
* msg[1].addr = client->addr;
* msg[1].flags = I2C_M_RD;
* msg[1].len = 2;
* msg[1].buf = rd_buff
* i2c_transfer(adap, msg, 2);
*
* WRITE TRANSFER : The I2C standard interface interprets all data as payload.
* If you want to emulate an SMBUS write transaction put the
* index as first byte(or first and second) in the payload.
* eg. a I2C transation to write 2 bytes from index 1
* wr_buff[0] = 0x1;
* wr_buff[1] = 0x23;
* wr_buff[2] = 0x46;
* msg[0].flags = 0x0;
* msg[0].len = 3;
* msg[0].buf = wr_buff;
* i2c_transfer(adap, msg, 1);
*
* To read or write a block of data (multiple bytes) using SMBUS emulation
* please use the i2c_smbus_read_i2c_block_data()
* or i2c_smbus_write_i2c_block_data() API
*/
static int nmk_i2c_xfer(struct i2c_adapter *i2c_adap,
struct i2c_msg msgs[], int num_msgs)
{
int status;
int i;
u32 cause;
struct nmk_i2c_dev *dev = i2c_get_adapdata(i2c_adap);
status = init_hw(dev);
if (status)
return status;
/* setup the i2c controller */
setup_i2c_controller(dev);
for (i = 0; i < num_msgs; i++) {
if (unlikely(msgs[i].flags & I2C_M_TEN)) {
dev_err(&dev->pdev->dev, "10 bit addressing"
"not supported\n");
return -EINVAL;
}
dev->cli.slave_adr = msgs[i].addr;
dev->cli.buffer = msgs[i].buf;
dev->cli.count = msgs[i].len;
dev->stop = (i < (num_msgs - 1)) ? 0 : 1;
dev->result = 0;
if (msgs[i].flags & I2C_M_RD) {
/* it is a read operation */
dev->cli.operation = I2C_READ;
status = read_i2c(dev);
} else {
/* write operation */
dev->cli.operation = I2C_WRITE;
status = write_i2c(dev);
}
if (status || (dev->result)) {
/* get the abort cause */
cause = (readl(dev->virtbase + I2C_SR) >> 4) & 0x7;
dev_err(&dev->pdev->dev, "error during I2C"
"message xfer: %d\n", cause);
dev_err(&dev->pdev->dev, "%s\n",
cause >= ARRAY_SIZE(abort_causes)
? "unknown reason" : abort_causes[cause]);
return status;
}
mdelay(1);
}
/* return the no. messages processed */
if (status)
return status;
else
return num_msgs;
}
/**
* disable_interrupts() - disable the interrupts
* @dev: private data of controller
*/
static int disable_interrupts(struct nmk_i2c_dev *dev, u32 irq)
{
irq = IRQ_MASK(irq);
writel(readl(dev->virtbase + I2C_IMSCR) & ~(I2C_CLEAR_ALL_INTS & irq),
dev->virtbase + I2C_IMSCR);
return 0;
}
/**
* i2c_irq_handler() - interrupt routine
* @irq: interrupt number
* @arg: data passed to the handler
*
* This is the interrupt handler for the i2c driver. Currently
* it handles the major interrupts like Rx & Tx FIFO management
* interrupts, master transaction interrupts, arbitration and
* bus error interrupts. The rest of the interrupts are treated as
* unhandled.
*/
static irqreturn_t i2c_irq_handler(int irq, void *arg)
{
struct nmk_i2c_dev *dev = arg;
u32 tft, rft;
u32 count;
u32 misr;
u32 src = 0;
/* load Tx FIFO and Rx FIFO threshold values */
tft = readl(dev->virtbase + I2C_TFTR);
rft = readl(dev->virtbase + I2C_RFTR);
/* read interrupt status register */
misr = readl(dev->virtbase + I2C_MISR);
src = __ffs(misr);
switch ((1 << src)) {
/* Transmit FIFO nearly empty interrupt */
case I2C_IT_TXFNE:
{
if (dev->cli.operation == I2C_READ) {
/*
* in read operation why do we care for writing?
* so disable the Transmit FIFO interrupt
*/
disable_interrupts(dev, I2C_IT_TXFNE);
} else {
for (count = (MAX_I2C_FIFO_THRESHOLD - tft - 2);
(count > 0) &&
(dev->cli.count != 0);
count--) {
/* write to the Tx FIFO */
writeb(*dev->cli.buffer,
dev->virtbase + I2C_TFR);
dev->cli.buffer++;
dev->cli.count--;
dev->cli.xfer_bytes++;
}
/*
* if done, close the transfer by disabling the
* corresponding TXFNE interrupt
*/
if (dev->cli.count == 0)
disable_interrupts(dev, I2C_IT_TXFNE);
}
}
break;
/*
* Rx FIFO nearly full interrupt.
* This is set when the numer of entries in Rx FIFO is
* greater or equal than the threshold value programmed
* in RFT
*/
case I2C_IT_RXFNF:
for (count = rft; count > 0; count--) {
/* Read the Rx FIFO */
*dev->cli.buffer = readb(dev->virtbase + I2C_RFR);
dev->cli.buffer++;
}
dev->cli.count -= rft;
dev->cli.xfer_bytes += rft;
break;
/* Rx FIFO full */
case I2C_IT_RXFF:
for (count = MAX_I2C_FIFO_THRESHOLD; count > 0; count--) {
*dev->cli.buffer = readb(dev->virtbase + I2C_RFR);
dev->cli.buffer++;
}
dev->cli.count -= MAX_I2C_FIFO_THRESHOLD;
dev->cli.xfer_bytes += MAX_I2C_FIFO_THRESHOLD;
break;
/* Master Transaction Done with/without stop */
case I2C_IT_MTD:
case I2C_IT_MTDWS:
if (dev->cli.operation == I2C_READ) {
while (!(readl(dev->virtbase + I2C_RISR)
& I2C_IT_RXFE)) {
if (dev->cli.count == 0)
break;
*dev->cli.buffer =
readb(dev->virtbase + I2C_RFR);
dev->cli.buffer++;
dev->cli.count--;
dev->cli.xfer_bytes++;
}
}
i2c_set_bit(dev->virtbase + I2C_ICR, I2C_IT_MTD);
i2c_set_bit(dev->virtbase + I2C_ICR, I2C_IT_MTDWS);
disable_interrupts(dev,
(I2C_IT_TXFNE | I2C_IT_TXFE | I2C_IT_TXFF
| I2C_IT_TXFOVR | I2C_IT_RXFNF
| I2C_IT_RXFF | I2C_IT_RXFE));
if (dev->cli.count) {
dev->result = -1;
dev_err(&dev->pdev->dev, "%lu bytes still remain to be"
"xfered\n", dev->cli.count);
(void) init_hw(dev);
}
complete(&dev->xfer_complete);
break;
/* Master Arbitration lost interrupt */
case I2C_IT_MAL:
dev->result = -1;
(void) init_hw(dev);
i2c_set_bit(dev->virtbase + I2C_ICR, I2C_IT_MAL);
complete(&dev->xfer_complete);
break;
/*
* Bus Error interrupt.
* This happens when an unexpected start/stop condition occurs
* during the transaction.
*/
case I2C_IT_BERR:
dev->result = -1;
/* get the status */
if (((readl(dev->virtbase + I2C_SR) >> 2) & 0x3) == I2C_ABORT)
(void) init_hw(dev);
i2c_set_bit(dev->virtbase + I2C_ICR, I2C_IT_BERR);
complete(&dev->xfer_complete);
break;
/*
* Tx FIFO overrun interrupt.
* This is set when a write operation in Tx FIFO is performed and
* the Tx FIFO is full.
*/
case I2C_IT_TXFOVR:
dev->result = -1;
(void) init_hw(dev);
dev_err(&dev->pdev->dev, "Tx Fifo Over run\n");
complete(&dev->xfer_complete);
break;
/* unhandled interrupts by this driver - TODO*/
case I2C_IT_TXFE:
case I2C_IT_TXFF:
case I2C_IT_RXFE:
case I2C_IT_RFSR:
case I2C_IT_RFSE:
case I2C_IT_WTSR:
case I2C_IT_STD:
dev_err(&dev->pdev->dev, "unhandled Interrupt\n");
break;
default:
dev_err(&dev->pdev->dev, "spurious Interrupt..\n");
break;
}
return IRQ_HANDLED;
}
static unsigned int nmk_i2c_functionality(struct i2c_adapter *adap)
{
return I2C_FUNC_I2C
| I2C_FUNC_SMBUS_BYTE_DATA
| I2C_FUNC_SMBUS_WORD_DATA
| I2C_FUNC_SMBUS_I2C_BLOCK;
}
static const struct i2c_algorithm nmk_i2c_algo = {
.master_xfer = nmk_i2c_xfer,
.functionality = nmk_i2c_functionality
};
static int __devinit nmk_i2c_probe(struct platform_device *pdev)
{
int ret = 0;
struct resource *res;
struct nmk_i2c_controller *pdata =
pdev->dev.platform_data;
struct nmk_i2c_dev *dev;
struct i2c_adapter *adap;
dev = kzalloc(sizeof(struct nmk_i2c_dev), GFP_KERNEL);
if (!dev) {
dev_err(&pdev->dev, "cannot allocate memory\n");
ret = -ENOMEM;
goto err_no_mem;
}
dev->pdev = pdev;
platform_set_drvdata(pdev, dev);
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
if (!res) {
ret = -ENOENT;
goto err_no_resource;
}
if (request_mem_region(res->start, resource_size(res),
DRIVER_NAME "I/O region") == NULL) {
ret = -EBUSY;
goto err_no_region;
}
dev->virtbase = ioremap(res->start, resource_size(res));
if (!dev->virtbase) {
ret = -ENOMEM;
goto err_no_ioremap;
}
dev->irq = platform_get_irq(pdev, 0);
ret = request_irq(dev->irq, i2c_irq_handler, IRQF_DISABLED,
DRIVER_NAME, dev);
if (ret) {
dev_err(&pdev->dev, "cannot claim the irq %d\n", dev->irq);
goto err_irq;
}
dev->clk = clk_get(&pdev->dev, NULL);
if (IS_ERR(dev->clk)) {
dev_err(&pdev->dev, "could not get i2c clock\n");
ret = PTR_ERR(dev->clk);
goto err_no_clk;
}
clk_enable(dev->clk);
adap = &dev->adap;
adap->dev.parent = &pdev->dev;
adap->owner = THIS_MODULE;
adap->class = I2C_CLASS_HWMON | I2C_CLASS_SPD;
adap->algo = &nmk_i2c_algo;
/* fetch the controller id */
adap->nr = pdev->id;
/* fetch the controller configuration from machine */
dev->cfg.clk_freq = pdata->clk_freq;
dev->cfg.slsu = pdata->slsu;
dev->cfg.tft = pdata->tft;
dev->cfg.rft = pdata->rft;
dev->cfg.sm = pdata->sm;
i2c_set_adapdata(adap, dev);
ret = init_hw(dev);
if (ret != 0) {
dev_err(&pdev->dev, "error in initializing i2c hardware\n");
goto err_init_hw;
}
dev_dbg(&pdev->dev, "initialize I2C%d bus on virtual "
"base %p\n", pdev->id, dev->virtbase);
ret = i2c_add_numbered_adapter(adap);
if (ret) {
dev_err(&pdev->dev, "failed to add adapter\n");
goto err_add_adap;
}
return 0;
err_init_hw:
clk_disable(dev->clk);
err_add_adap:
clk_put(dev->clk);
err_no_clk:
free_irq(dev->irq, dev);
err_irq:
iounmap(dev->virtbase);
err_no_ioremap:
release_mem_region(res->start, resource_size(res));
err_no_region:
platform_set_drvdata(pdev, NULL);
err_no_resource:
kfree(dev);
err_no_mem:
return ret;
}
static int __devexit nmk_i2c_remove(struct platform_device *pdev)
{
struct resource *res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
struct nmk_i2c_dev *dev = platform_get_drvdata(pdev);
i2c_del_adapter(&dev->adap);
flush_i2c_fifo(dev);
disable_all_interrupts(dev);
clear_all_interrupts(dev);
/* disable the controller */
i2c_clr_bit(dev->virtbase + I2C_CR, I2C_CR_PE);
free_irq(dev->irq, dev);
iounmap(dev->virtbase);
if (res)
release_mem_region(res->start, resource_size(res));
clk_disable(dev->clk);
clk_put(dev->clk);
platform_set_drvdata(pdev, NULL);
kfree(dev);
return 0;
}
static struct platform_driver nmk_i2c_driver = {
.driver = {
.owner = THIS_MODULE,
.name = DRIVER_NAME,
},
.probe = nmk_i2c_probe,
.remove = __devexit_p(nmk_i2c_remove),
};
static int __init nmk_i2c_init(void)
{
return platform_driver_register(&nmk_i2c_driver);
}
static void __exit nmk_i2c_exit(void)
{
platform_driver_unregister(&nmk_i2c_driver);
}
subsys_initcall(nmk_i2c_init);
module_exit(nmk_i2c_exit);
MODULE_AUTHOR("Sachin Verma, Srinidhi KASAGAR");
MODULE_DESCRIPTION("Nomadik/Ux500 I2C driver");
MODULE_LICENSE("GPL");
MODULE_ALIAS("platform:" DRIVER_NAME);