android_kernel_motorola_sm6225/arch/sparc64/kernel/pci_fire.c
David S. Miller bbe0b5eb57 [SPARC64]: Kill pci_memspace_mask.
It is totally unnecessary as the needed information is properly
encoded in the resources.

Signed-off-by: David S. Miller <davem@davemloft.net>
2007-10-13 21:53:14 -07:00

530 lines
14 KiB
C

/* pci_fire.c: Sun4u platform PCI-E controller support.
*
* Copyright (C) 2007 David S. Miller (davem@davemloft.net)
*/
#include <linux/kernel.h>
#include <linux/pci.h>
#include <linux/slab.h>
#include <linux/init.h>
#include <linux/msi.h>
#include <linux/irq.h>
#include <asm/oplib.h>
#include <asm/prom.h>
#include <asm/irq.h>
#include "pci_impl.h"
#define fire_read(__reg) \
({ u64 __ret; \
__asm__ __volatile__("ldxa [%1] %2, %0" \
: "=r" (__ret) \
: "r" (__reg), "i" (ASI_PHYS_BYPASS_EC_E) \
: "memory"); \
__ret; \
})
#define fire_write(__reg, __val) \
__asm__ __volatile__("stxa %0, [%1] %2" \
: /* no outputs */ \
: "r" (__val), "r" (__reg), \
"i" (ASI_PHYS_BYPASS_EC_E) \
: "memory")
static void pci_fire_scan_bus(struct pci_pbm_info *pbm)
{
pbm->pci_bus = pci_scan_one_pbm(pbm);
/* XXX register error interrupt handlers XXX */
}
#define FIRE_IOMMU_CONTROL 0x40000UL
#define FIRE_IOMMU_TSBBASE 0x40008UL
#define FIRE_IOMMU_FLUSH 0x40100UL
#define FIRE_IOMMU_FLUSHINV 0x40108UL
static int pci_fire_pbm_iommu_init(struct pci_pbm_info *pbm)
{
struct iommu *iommu = pbm->iommu;
u32 vdma[2], dma_mask;
u64 control;
int tsbsize, err;
/* No virtual-dma property on these guys, use largest size. */
vdma[0] = 0xc0000000; /* base */
vdma[1] = 0x40000000; /* size */
dma_mask = 0xffffffff;
tsbsize = 128;
/* Register addresses. */
iommu->iommu_control = pbm->pbm_regs + FIRE_IOMMU_CONTROL;
iommu->iommu_tsbbase = pbm->pbm_regs + FIRE_IOMMU_TSBBASE;
iommu->iommu_flush = pbm->pbm_regs + FIRE_IOMMU_FLUSH;
iommu->iommu_flushinv = pbm->pbm_regs + FIRE_IOMMU_FLUSHINV;
/* We use the main control/status register of FIRE as the write
* completion register.
*/
iommu->write_complete_reg = pbm->controller_regs + 0x410000UL;
/*
* Invalidate TLB Entries.
*/
fire_write(iommu->iommu_flushinv, ~(u64)0);
err = iommu_table_init(iommu, tsbsize * 8 * 1024, vdma[0], dma_mask);
if (err)
return err;
fire_write(iommu->iommu_tsbbase, __pa(iommu->page_table) | 0x7UL);
control = fire_read(iommu->iommu_control);
control |= (0x00000400 /* TSB cache snoop enable */ |
0x00000300 /* Cache mode */ |
0x00000002 /* Bypass enable */ |
0x00000001 /* Translation enable */);
fire_write(iommu->iommu_control, control);
return 0;
}
#ifdef CONFIG_PCI_MSI
struct pci_msiq_entry {
u64 word0;
#define MSIQ_WORD0_RESV 0x8000000000000000UL
#define MSIQ_WORD0_FMT_TYPE 0x7f00000000000000UL
#define MSIQ_WORD0_FMT_TYPE_SHIFT 56
#define MSIQ_WORD0_LEN 0x00ffc00000000000UL
#define MSIQ_WORD0_LEN_SHIFT 46
#define MSIQ_WORD0_ADDR0 0x00003fff00000000UL
#define MSIQ_WORD0_ADDR0_SHIFT 32
#define MSIQ_WORD0_RID 0x00000000ffff0000UL
#define MSIQ_WORD0_RID_SHIFT 16
#define MSIQ_WORD0_DATA0 0x000000000000ffffUL
#define MSIQ_WORD0_DATA0_SHIFT 0
#define MSIQ_TYPE_MSG 0x6
#define MSIQ_TYPE_MSI32 0xb
#define MSIQ_TYPE_MSI64 0xf
u64 word1;
#define MSIQ_WORD1_ADDR1 0xffffffffffff0000UL
#define MSIQ_WORD1_ADDR1_SHIFT 16
#define MSIQ_WORD1_DATA1 0x000000000000ffffUL
#define MSIQ_WORD1_DATA1_SHIFT 0
u64 resv[6];
};
/* All MSI registers are offset from pbm->pbm_regs */
#define EVENT_QUEUE_BASE_ADDR_REG 0x010000UL
#define EVENT_QUEUE_BASE_ADDR_ALL_ONES 0xfffc000000000000UL
#define EVENT_QUEUE_CONTROL_SET(EQ) (0x011000UL + (EQ) * 0x8UL)
#define EVENT_QUEUE_CONTROL_SET_OFLOW 0x0200000000000000UL
#define EVENT_QUEUE_CONTROL_SET_EN 0x0000100000000000UL
#define EVENT_QUEUE_CONTROL_CLEAR(EQ) (0x011200UL + (EQ) * 0x8UL)
#define EVENT_QUEUE_CONTROL_CLEAR_OF 0x0200000000000000UL
#define EVENT_QUEUE_CONTROL_CLEAR_E2I 0x0000800000000000UL
#define EVENT_QUEUE_CONTROL_CLEAR_DIS 0x0000100000000000UL
#define EVENT_QUEUE_STATE(EQ) (0x011400UL + (EQ) * 0x8UL)
#define EVENT_QUEUE_STATE_MASK 0x0000000000000007UL
#define EVENT_QUEUE_STATE_IDLE 0x0000000000000001UL
#define EVENT_QUEUE_STATE_ACTIVE 0x0000000000000002UL
#define EVENT_QUEUE_STATE_ERROR 0x0000000000000004UL
#define EVENT_QUEUE_TAIL(EQ) (0x011600UL + (EQ) * 0x8UL)
#define EVENT_QUEUE_TAIL_OFLOW 0x0200000000000000UL
#define EVENT_QUEUE_TAIL_VAL 0x000000000000007fUL
#define EVENT_QUEUE_HEAD(EQ) (0x011800UL + (EQ) * 0x8UL)
#define EVENT_QUEUE_HEAD_VAL 0x000000000000007fUL
#define MSI_MAP(MSI) (0x020000UL + (MSI) * 0x8UL)
#define MSI_MAP_VALID 0x8000000000000000UL
#define MSI_MAP_EQWR_N 0x4000000000000000UL
#define MSI_MAP_EQNUM 0x000000000000003fUL
#define MSI_CLEAR(MSI) (0x028000UL + (MSI) * 0x8UL)
#define MSI_CLEAR_EQWR_N 0x4000000000000000UL
#define IMONDO_DATA0 0x02C000UL
#define IMONDO_DATA0_DATA 0xffffffffffffffc0UL
#define IMONDO_DATA1 0x02C008UL
#define IMONDO_DATA1_DATA 0xffffffffffffffffUL
#define MSI_32BIT_ADDR 0x034000UL
#define MSI_32BIT_ADDR_VAL 0x00000000ffff0000UL
#define MSI_64BIT_ADDR 0x034008UL
#define MSI_64BIT_ADDR_VAL 0xffffffffffff0000UL
static int pci_fire_get_head(struct pci_pbm_info *pbm, unsigned long msiqid,
unsigned long *head)
{
*head = fire_read(pbm->pbm_regs + EVENT_QUEUE_HEAD(msiqid));
return 0;
}
static int pci_fire_dequeue_msi(struct pci_pbm_info *pbm, unsigned long msiqid,
unsigned long *head, unsigned long *msi)
{
unsigned long type_fmt, type, msi_num;
struct pci_msiq_entry *base, *ep;
base = (pbm->msi_queues + ((msiqid - pbm->msiq_first) * 8192));
ep = &base[*head];
if ((ep->word0 & MSIQ_WORD0_FMT_TYPE) == 0)
return 0;
type_fmt = ((ep->word0 & MSIQ_WORD0_FMT_TYPE) >>
MSIQ_WORD0_FMT_TYPE_SHIFT);
type = (type_fmt >> 3);
if (unlikely(type != MSIQ_TYPE_MSI32 &&
type != MSIQ_TYPE_MSI64))
return -EINVAL;
*msi = msi_num = ((ep->word0 & MSIQ_WORD0_DATA0) >>
MSIQ_WORD0_DATA0_SHIFT);
fire_write(pbm->pbm_regs + MSI_CLEAR(msi_num),
MSI_CLEAR_EQWR_N);
/* Clear the entry. */
ep->word0 &= ~MSIQ_WORD0_FMT_TYPE;
/* Go to next entry in ring. */
(*head)++;
if (*head >= pbm->msiq_ent_count)
*head = 0;
return 1;
}
static int pci_fire_set_head(struct pci_pbm_info *pbm, unsigned long msiqid,
unsigned long head)
{
fire_write(pbm->pbm_regs + EVENT_QUEUE_HEAD(msiqid), head);
return 0;
}
static int pci_fire_msi_setup(struct pci_pbm_info *pbm, unsigned long msiqid,
unsigned long msi, int is_msi64)
{
u64 val;
val = fire_read(pbm->pbm_regs + MSI_MAP(msi));
val &= ~(MSI_MAP_EQNUM);
val |= msiqid;
fire_write(pbm->pbm_regs + MSI_MAP(msi), val);
fire_write(pbm->pbm_regs + MSI_CLEAR(msi),
MSI_CLEAR_EQWR_N);
val = fire_read(pbm->pbm_regs + MSI_MAP(msi));
val |= MSI_MAP_VALID;
fire_write(pbm->pbm_regs + MSI_MAP(msi), val);
return 0;
}
static int pci_fire_msi_teardown(struct pci_pbm_info *pbm, unsigned long msi)
{
unsigned long msiqid;
u64 val;
val = fire_read(pbm->pbm_regs + MSI_MAP(msi));
msiqid = (val & MSI_MAP_EQNUM);
val &= ~MSI_MAP_VALID;
fire_write(pbm->pbm_regs + MSI_MAP(msi), val);
return 0;
}
static int pci_fire_msiq_alloc(struct pci_pbm_info *pbm)
{
unsigned long pages, order, i;
order = get_order(512 * 1024);
pages = __get_free_pages(GFP_KERNEL | __GFP_COMP, order);
if (pages == 0UL) {
printk(KERN_ERR "MSI: Cannot allocate MSI queues (o=%lu).\n",
order);
return -ENOMEM;
}
memset((char *)pages, 0, PAGE_SIZE << order);
pbm->msi_queues = (void *) pages;
fire_write(pbm->pbm_regs + EVENT_QUEUE_BASE_ADDR_REG,
(EVENT_QUEUE_BASE_ADDR_ALL_ONES |
__pa(pbm->msi_queues)));
fire_write(pbm->pbm_regs + IMONDO_DATA0,
pbm->portid << 6);
fire_write(pbm->pbm_regs + IMONDO_DATA1, 0);
fire_write(pbm->pbm_regs + MSI_32BIT_ADDR,
pbm->msi32_start);
fire_write(pbm->pbm_regs + MSI_64BIT_ADDR,
pbm->msi64_start);
for (i = 0; i < pbm->msiq_num; i++) {
fire_write(pbm->pbm_regs + EVENT_QUEUE_HEAD(i), 0);
fire_write(pbm->pbm_regs + EVENT_QUEUE_TAIL(i), 0);
}
return 0;
}
static void pci_fire_msiq_free(struct pci_pbm_info *pbm)
{
unsigned long pages, order;
order = get_order(512 * 1024);
pages = (unsigned long) pbm->msi_queues;
free_pages(pages, order);
pbm->msi_queues = NULL;
}
static int pci_fire_msiq_build_irq(struct pci_pbm_info *pbm,
unsigned long msiqid,
unsigned long devino)
{
unsigned long cregs = (unsigned long) pbm->pbm_regs;
unsigned long imap_reg, iclr_reg, int_ctrlr;
unsigned int virt_irq;
int fixup;
u64 val;
imap_reg = cregs + (0x001000UL + (devino * 0x08UL));
iclr_reg = cregs + (0x001400UL + (devino * 0x08UL));
/* XXX iterate amongst the 4 IRQ controllers XXX */
int_ctrlr = (1UL << 6);
val = fire_read(imap_reg);
val |= (1UL << 63) | int_ctrlr;
fire_write(imap_reg, val);
fixup = ((pbm->portid << 6) | devino) - int_ctrlr;
virt_irq = build_irq(fixup, iclr_reg, imap_reg);
if (!virt_irq)
return -ENOMEM;
fire_write(pbm->pbm_regs +
EVENT_QUEUE_CONTROL_SET(msiqid),
EVENT_QUEUE_CONTROL_SET_EN);
return virt_irq;
}
static const struct sparc64_msiq_ops pci_fire_msiq_ops = {
.get_head = pci_fire_get_head,
.dequeue_msi = pci_fire_dequeue_msi,
.set_head = pci_fire_set_head,
.msi_setup = pci_fire_msi_setup,
.msi_teardown = pci_fire_msi_teardown,
.msiq_alloc = pci_fire_msiq_alloc,
.msiq_free = pci_fire_msiq_free,
.msiq_build_irq = pci_fire_msiq_build_irq,
};
static void pci_fire_msi_init(struct pci_pbm_info *pbm)
{
sparc64_pbm_msi_init(pbm, &pci_fire_msiq_ops);
}
#else /* CONFIG_PCI_MSI */
static void pci_fire_msi_init(struct pci_pbm_info *pbm)
{
}
#endif /* !(CONFIG_PCI_MSI) */
/* Based at pbm->controller_regs */
#define FIRE_PARITY_CONTROL 0x470010UL
#define FIRE_PARITY_ENAB 0x8000000000000000UL
#define FIRE_FATAL_RESET_CTL 0x471028UL
#define FIRE_FATAL_RESET_SPARE 0x0000000004000000UL
#define FIRE_FATAL_RESET_MB 0x0000000002000000UL
#define FIRE_FATAL_RESET_CPE 0x0000000000008000UL
#define FIRE_FATAL_RESET_APE 0x0000000000004000UL
#define FIRE_FATAL_RESET_PIO 0x0000000000000040UL
#define FIRE_FATAL_RESET_JW 0x0000000000000004UL
#define FIRE_FATAL_RESET_JI 0x0000000000000002UL
#define FIRE_FATAL_RESET_JR 0x0000000000000001UL
#define FIRE_CORE_INTR_ENABLE 0x471800UL
/* Based at pbm->pbm_regs */
#define FIRE_TLU_CTRL 0x80000UL
#define FIRE_TLU_CTRL_TIM 0x00000000da000000UL
#define FIRE_TLU_CTRL_QDET 0x0000000000000100UL
#define FIRE_TLU_CTRL_CFG 0x0000000000000001UL
#define FIRE_TLU_DEV_CTRL 0x90008UL
#define FIRE_TLU_LINK_CTRL 0x90020UL
#define FIRE_TLU_LINK_CTRL_CLK 0x0000000000000040UL
#define FIRE_LPU_RESET 0xe2008UL
#define FIRE_LPU_LLCFG 0xe2200UL
#define FIRE_LPU_LLCFG_VC0 0x0000000000000100UL
#define FIRE_LPU_FCTRL_UCTRL 0xe2240UL
#define FIRE_LPU_FCTRL_UCTRL_N 0x0000000000000002UL
#define FIRE_LPU_FCTRL_UCTRL_P 0x0000000000000001UL
#define FIRE_LPU_TXL_FIFOP 0xe2430UL
#define FIRE_LPU_LTSSM_CFG2 0xe2788UL
#define FIRE_LPU_LTSSM_CFG3 0xe2790UL
#define FIRE_LPU_LTSSM_CFG4 0xe2798UL
#define FIRE_LPU_LTSSM_CFG5 0xe27a0UL
#define FIRE_DMC_IENAB 0x31800UL
#define FIRE_DMC_DBG_SEL_A 0x53000UL
#define FIRE_DMC_DBG_SEL_B 0x53008UL
#define FIRE_PEC_IENAB 0x51800UL
static void pci_fire_hw_init(struct pci_pbm_info *pbm)
{
u64 val;
fire_write(pbm->controller_regs + FIRE_PARITY_CONTROL,
FIRE_PARITY_ENAB);
fire_write(pbm->controller_regs + FIRE_FATAL_RESET_CTL,
(FIRE_FATAL_RESET_SPARE |
FIRE_FATAL_RESET_MB |
FIRE_FATAL_RESET_CPE |
FIRE_FATAL_RESET_APE |
FIRE_FATAL_RESET_PIO |
FIRE_FATAL_RESET_JW |
FIRE_FATAL_RESET_JI |
FIRE_FATAL_RESET_JR));
fire_write(pbm->controller_regs + FIRE_CORE_INTR_ENABLE, ~(u64)0);
val = fire_read(pbm->pbm_regs + FIRE_TLU_CTRL);
val |= (FIRE_TLU_CTRL_TIM |
FIRE_TLU_CTRL_QDET |
FIRE_TLU_CTRL_CFG);
fire_write(pbm->pbm_regs + FIRE_TLU_CTRL, val);
fire_write(pbm->pbm_regs + FIRE_TLU_DEV_CTRL, 0);
fire_write(pbm->pbm_regs + FIRE_TLU_LINK_CTRL,
FIRE_TLU_LINK_CTRL_CLK);
fire_write(pbm->pbm_regs + FIRE_LPU_RESET, 0);
fire_write(pbm->pbm_regs + FIRE_LPU_LLCFG,
FIRE_LPU_LLCFG_VC0);
fire_write(pbm->pbm_regs + FIRE_LPU_FCTRL_UCTRL,
(FIRE_LPU_FCTRL_UCTRL_N |
FIRE_LPU_FCTRL_UCTRL_P));
fire_write(pbm->pbm_regs + FIRE_LPU_TXL_FIFOP,
((0xffff << 16) | (0x0000 << 0)));
fire_write(pbm->pbm_regs + FIRE_LPU_LTSSM_CFG2, 3000000);
fire_write(pbm->pbm_regs + FIRE_LPU_LTSSM_CFG3, 500000);
fire_write(pbm->pbm_regs + FIRE_LPU_LTSSM_CFG4,
(2 << 16) | (140 << 8));
fire_write(pbm->pbm_regs + FIRE_LPU_LTSSM_CFG5, 0);
fire_write(pbm->pbm_regs + FIRE_DMC_IENAB, ~(u64)0);
fire_write(pbm->pbm_regs + FIRE_DMC_DBG_SEL_A, 0);
fire_write(pbm->pbm_regs + FIRE_DMC_DBG_SEL_B, 0);
fire_write(pbm->pbm_regs + FIRE_PEC_IENAB, ~(u64)0);
}
static int pci_fire_pbm_init(struct pci_controller_info *p,
struct device_node *dp, u32 portid)
{
const struct linux_prom64_registers *regs;
struct pci_pbm_info *pbm;
int err;
if ((portid & 1) == 0)
pbm = &p->pbm_A;
else
pbm = &p->pbm_B;
pbm->next = pci_pbm_root;
pci_pbm_root = pbm;
pbm->scan_bus = pci_fire_scan_bus;
pbm->pci_ops = &sun4u_pci_ops;
pbm->config_space_reg_bits = 12;
pbm->index = pci_num_pbms++;
pbm->portid = portid;
pbm->parent = p;
pbm->prom_node = dp;
pbm->name = dp->full_name;
regs = of_get_property(dp, "reg", NULL);
pbm->pbm_regs = regs[0].phys_addr;
pbm->controller_regs = regs[1].phys_addr - 0x410000UL;
printk("%s: SUN4U PCIE Bus Module\n", pbm->name);
pci_determine_mem_io_space(pbm);
pci_get_pbm_props(pbm);
pci_fire_hw_init(pbm);
err = pci_fire_pbm_iommu_init(pbm);
if (err)
return err;
pci_fire_msi_init(pbm);
return 0;
}
static inline int portid_compare(u32 x, u32 y)
{
if (x == (y ^ 1))
return 1;
return 0;
}
void fire_pci_init(struct device_node *dp, const char *model_name)
{
struct pci_controller_info *p;
u32 portid = of_getintprop_default(dp, "portid", 0xff);
struct iommu *iommu;
struct pci_pbm_info *pbm;
for (pbm = pci_pbm_root; pbm; pbm = pbm->next) {
if (portid_compare(pbm->portid, portid)) {
if (pci_fire_pbm_init(pbm->parent, dp, portid))
goto fatal_memory_error;
return;
}
}
p = kzalloc(sizeof(struct pci_controller_info), GFP_ATOMIC);
if (!p)
goto fatal_memory_error;
iommu = kzalloc(sizeof(struct iommu), GFP_ATOMIC);
if (!iommu)
goto fatal_memory_error;
p->pbm_A.iommu = iommu;
iommu = kzalloc(sizeof(struct iommu), GFP_ATOMIC);
if (!iommu)
goto fatal_memory_error;
p->pbm_B.iommu = iommu;
if (pci_fire_pbm_init(p, dp, portid))
goto fatal_memory_error;
return;
fatal_memory_error:
prom_printf("PCI_FIRE: Fatal memory allocation error.\n");
prom_halt();
}