android_kernel_motorola_sm6225/drivers/net/phy/phy.c
David Decotigny 7073949720 ethtool: cosmetic: Use ethtool ethtool_cmd_speed API
This updates the network drivers so that they don't access the
ethtool_cmd::speed field directly, but use ethtool_cmd_speed()
instead.

For most of the drivers, these changes are purely cosmetic and don't
fix any problem, such as for those 1GbE/10GbE drivers that indirectly
call their own ethtool get_settings()/mii_ethtool_gset(). The changes
are meant to enforce code consistency and provide robustness with
future larger throughputs, at the expense of a few CPU cycles for each
ethtool operation.

All drivers compiled with make allyesconfig ion x86_64 have been
updated.

Tested: make allyesconfig on x86_64 + e1000e/bnx2x work
Signed-off-by: David Decotigny <decot@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2011-04-29 14:03:01 -07:00

970 lines
23 KiB
C

/*
* drivers/net/phy/phy.c
*
* Framework for configuring and reading PHY devices
* Based on code in sungem_phy.c and gianfar_phy.c
*
* Author: Andy Fleming
*
* Copyright (c) 2004 Freescale Semiconductor, Inc.
* Copyright (c) 2006, 2007 Maciej W. Rozycki
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation; either version 2 of the License, or (at your
* option) any later version.
*
*/
#include <linux/kernel.h>
#include <linux/string.h>
#include <linux/errno.h>
#include <linux/unistd.h>
#include <linux/interrupt.h>
#include <linux/init.h>
#include <linux/delay.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/skbuff.h>
#include <linux/mm.h>
#include <linux/module.h>
#include <linux/mii.h>
#include <linux/ethtool.h>
#include <linux/phy.h>
#include <linux/timer.h>
#include <linux/workqueue.h>
#include <asm/atomic.h>
#include <asm/io.h>
#include <asm/irq.h>
#include <asm/uaccess.h>
/**
* phy_print_status - Convenience function to print out the current phy status
* @phydev: the phy_device struct
*/
void phy_print_status(struct phy_device *phydev)
{
pr_info("PHY: %s - Link is %s", dev_name(&phydev->dev),
phydev->link ? "Up" : "Down");
if (phydev->link)
printk(KERN_CONT " - %d/%s", phydev->speed,
DUPLEX_FULL == phydev->duplex ?
"Full" : "Half");
printk(KERN_CONT "\n");
}
EXPORT_SYMBOL(phy_print_status);
/**
* phy_clear_interrupt - Ack the phy device's interrupt
* @phydev: the phy_device struct
*
* If the @phydev driver has an ack_interrupt function, call it to
* ack and clear the phy device's interrupt.
*
* Returns 0 on success on < 0 on error.
*/
static int phy_clear_interrupt(struct phy_device *phydev)
{
int err = 0;
if (phydev->drv->ack_interrupt)
err = phydev->drv->ack_interrupt(phydev);
return err;
}
/**
* phy_config_interrupt - configure the PHY device for the requested interrupts
* @phydev: the phy_device struct
* @interrupts: interrupt flags to configure for this @phydev
*
* Returns 0 on success on < 0 on error.
*/
static int phy_config_interrupt(struct phy_device *phydev, u32 interrupts)
{
int err = 0;
phydev->interrupts = interrupts;
if (phydev->drv->config_intr)
err = phydev->drv->config_intr(phydev);
return err;
}
/**
* phy_aneg_done - return auto-negotiation status
* @phydev: target phy_device struct
*
* Description: Reads the status register and returns 0 either if
* auto-negotiation is incomplete, or if there was an error.
* Returns BMSR_ANEGCOMPLETE if auto-negotiation is done.
*/
static inline int phy_aneg_done(struct phy_device *phydev)
{
int retval;
retval = phy_read(phydev, MII_BMSR);
return (retval < 0) ? retval : (retval & BMSR_ANEGCOMPLETE);
}
/* A structure for mapping a particular speed and duplex
* combination to a particular SUPPORTED and ADVERTISED value */
struct phy_setting {
int speed;
int duplex;
u32 setting;
};
/* A mapping of all SUPPORTED settings to speed/duplex */
static const struct phy_setting settings[] = {
{
.speed = 10000,
.duplex = DUPLEX_FULL,
.setting = SUPPORTED_10000baseT_Full,
},
{
.speed = SPEED_1000,
.duplex = DUPLEX_FULL,
.setting = SUPPORTED_1000baseT_Full,
},
{
.speed = SPEED_1000,
.duplex = DUPLEX_HALF,
.setting = SUPPORTED_1000baseT_Half,
},
{
.speed = SPEED_100,
.duplex = DUPLEX_FULL,
.setting = SUPPORTED_100baseT_Full,
},
{
.speed = SPEED_100,
.duplex = DUPLEX_HALF,
.setting = SUPPORTED_100baseT_Half,
},
{
.speed = SPEED_10,
.duplex = DUPLEX_FULL,
.setting = SUPPORTED_10baseT_Full,
},
{
.speed = SPEED_10,
.duplex = DUPLEX_HALF,
.setting = SUPPORTED_10baseT_Half,
},
};
#define MAX_NUM_SETTINGS ARRAY_SIZE(settings)
/**
* phy_find_setting - find a PHY settings array entry that matches speed & duplex
* @speed: speed to match
* @duplex: duplex to match
*
* Description: Searches the settings array for the setting which
* matches the desired speed and duplex, and returns the index
* of that setting. Returns the index of the last setting if
* none of the others match.
*/
static inline int phy_find_setting(int speed, int duplex)
{
int idx = 0;
while (idx < ARRAY_SIZE(settings) &&
(settings[idx].speed != speed ||
settings[idx].duplex != duplex))
idx++;
return idx < MAX_NUM_SETTINGS ? idx : MAX_NUM_SETTINGS - 1;
}
/**
* phy_find_valid - find a PHY setting that matches the requested features mask
* @idx: The first index in settings[] to search
* @features: A mask of the valid settings
*
* Description: Returns the index of the first valid setting less
* than or equal to the one pointed to by idx, as determined by
* the mask in features. Returns the index of the last setting
* if nothing else matches.
*/
static inline int phy_find_valid(int idx, u32 features)
{
while (idx < MAX_NUM_SETTINGS && !(settings[idx].setting & features))
idx++;
return idx < MAX_NUM_SETTINGS ? idx : MAX_NUM_SETTINGS - 1;
}
/**
* phy_sanitize_settings - make sure the PHY is set to supported speed and duplex
* @phydev: the target phy_device struct
*
* Description: Make sure the PHY is set to supported speeds and
* duplexes. Drop down by one in this order: 1000/FULL,
* 1000/HALF, 100/FULL, 100/HALF, 10/FULL, 10/HALF.
*/
static void phy_sanitize_settings(struct phy_device *phydev)
{
u32 features = phydev->supported;
int idx;
/* Sanitize settings based on PHY capabilities */
if ((features & SUPPORTED_Autoneg) == 0)
phydev->autoneg = AUTONEG_DISABLE;
idx = phy_find_valid(phy_find_setting(phydev->speed, phydev->duplex),
features);
phydev->speed = settings[idx].speed;
phydev->duplex = settings[idx].duplex;
}
/**
* phy_ethtool_sset - generic ethtool sset function, handles all the details
* @phydev: target phy_device struct
* @cmd: ethtool_cmd
*
* A few notes about parameter checking:
* - We don't set port or transceiver, so we don't care what they
* were set to.
* - phy_start_aneg() will make sure forced settings are sane, and
* choose the next best ones from the ones selected, so we don't
* care if ethtool tries to give us bad values.
*/
int phy_ethtool_sset(struct phy_device *phydev, struct ethtool_cmd *cmd)
{
u32 speed = ethtool_cmd_speed(cmd);
if (cmd->phy_address != phydev->addr)
return -EINVAL;
/* We make sure that we don't pass unsupported
* values in to the PHY */
cmd->advertising &= phydev->supported;
/* Verify the settings we care about. */
if (cmd->autoneg != AUTONEG_ENABLE && cmd->autoneg != AUTONEG_DISABLE)
return -EINVAL;
if (cmd->autoneg == AUTONEG_ENABLE && cmd->advertising == 0)
return -EINVAL;
if (cmd->autoneg == AUTONEG_DISABLE &&
((speed != SPEED_1000 &&
speed != SPEED_100 &&
speed != SPEED_10) ||
(cmd->duplex != DUPLEX_HALF &&
cmd->duplex != DUPLEX_FULL)))
return -EINVAL;
phydev->autoneg = cmd->autoneg;
phydev->speed = speed;
phydev->advertising = cmd->advertising;
if (AUTONEG_ENABLE == cmd->autoneg)
phydev->advertising |= ADVERTISED_Autoneg;
else
phydev->advertising &= ~ADVERTISED_Autoneg;
phydev->duplex = cmd->duplex;
/* Restart the PHY */
phy_start_aneg(phydev);
return 0;
}
EXPORT_SYMBOL(phy_ethtool_sset);
int phy_ethtool_gset(struct phy_device *phydev, struct ethtool_cmd *cmd)
{
cmd->supported = phydev->supported;
cmd->advertising = phydev->advertising;
ethtool_cmd_speed_set(cmd, phydev->speed);
cmd->duplex = phydev->duplex;
cmd->port = PORT_MII;
cmd->phy_address = phydev->addr;
cmd->transceiver = XCVR_EXTERNAL;
cmd->autoneg = phydev->autoneg;
return 0;
}
EXPORT_SYMBOL(phy_ethtool_gset);
/**
* phy_mii_ioctl - generic PHY MII ioctl interface
* @phydev: the phy_device struct
* @ifr: &struct ifreq for socket ioctl's
* @cmd: ioctl cmd to execute
*
* Note that this function is currently incompatible with the
* PHYCONTROL layer. It changes registers without regard to
* current state. Use at own risk.
*/
int phy_mii_ioctl(struct phy_device *phydev,
struct ifreq *ifr, int cmd)
{
struct mii_ioctl_data *mii_data = if_mii(ifr);
u16 val = mii_data->val_in;
switch (cmd) {
case SIOCGMIIPHY:
mii_data->phy_id = phydev->addr;
/* fall through */
case SIOCGMIIREG:
mii_data->val_out = mdiobus_read(phydev->bus, mii_data->phy_id,
mii_data->reg_num);
break;
case SIOCSMIIREG:
if (mii_data->phy_id == phydev->addr) {
switch(mii_data->reg_num) {
case MII_BMCR:
if ((val & (BMCR_RESET|BMCR_ANENABLE)) == 0)
phydev->autoneg = AUTONEG_DISABLE;
else
phydev->autoneg = AUTONEG_ENABLE;
if ((!phydev->autoneg) && (val & BMCR_FULLDPLX))
phydev->duplex = DUPLEX_FULL;
else
phydev->duplex = DUPLEX_HALF;
if ((!phydev->autoneg) &&
(val & BMCR_SPEED1000))
phydev->speed = SPEED_1000;
else if ((!phydev->autoneg) &&
(val & BMCR_SPEED100))
phydev->speed = SPEED_100;
break;
case MII_ADVERTISE:
phydev->advertising = val;
break;
default:
/* do nothing */
break;
}
}
mdiobus_write(phydev->bus, mii_data->phy_id,
mii_data->reg_num, val);
if (mii_data->reg_num == MII_BMCR &&
val & BMCR_RESET &&
phydev->drv->config_init) {
phy_scan_fixups(phydev);
phydev->drv->config_init(phydev);
}
break;
case SIOCSHWTSTAMP:
if (phydev->drv->hwtstamp)
return phydev->drv->hwtstamp(phydev, ifr);
/* fall through */
default:
return -EOPNOTSUPP;
}
return 0;
}
EXPORT_SYMBOL(phy_mii_ioctl);
/**
* phy_start_aneg - start auto-negotiation for this PHY device
* @phydev: the phy_device struct
*
* Description: Sanitizes the settings (if we're not autonegotiating
* them), and then calls the driver's config_aneg function.
* If the PHYCONTROL Layer is operating, we change the state to
* reflect the beginning of Auto-negotiation or forcing.
*/
int phy_start_aneg(struct phy_device *phydev)
{
int err;
mutex_lock(&phydev->lock);
if (AUTONEG_DISABLE == phydev->autoneg)
phy_sanitize_settings(phydev);
err = phydev->drv->config_aneg(phydev);
if (err < 0)
goto out_unlock;
if (phydev->state != PHY_HALTED) {
if (AUTONEG_ENABLE == phydev->autoneg) {
phydev->state = PHY_AN;
phydev->link_timeout = PHY_AN_TIMEOUT;
} else {
phydev->state = PHY_FORCING;
phydev->link_timeout = PHY_FORCE_TIMEOUT;
}
}
out_unlock:
mutex_unlock(&phydev->lock);
return err;
}
EXPORT_SYMBOL(phy_start_aneg);
static void phy_change(struct work_struct *work);
/**
* phy_start_machine - start PHY state machine tracking
* @phydev: the phy_device struct
* @handler: callback function for state change notifications
*
* Description: The PHY infrastructure can run a state machine
* which tracks whether the PHY is starting up, negotiating,
* etc. This function starts the timer which tracks the state
* of the PHY. If you want to be notified when the state changes,
* pass in the callback @handler, otherwise, pass NULL. If you
* want to maintain your own state machine, do not call this
* function.
*/
void phy_start_machine(struct phy_device *phydev,
void (*handler)(struct net_device *))
{
phydev->adjust_state = handler;
schedule_delayed_work(&phydev->state_queue, HZ);
}
/**
* phy_stop_machine - stop the PHY state machine tracking
* @phydev: target phy_device struct
*
* Description: Stops the state machine timer, sets the state to UP
* (unless it wasn't up yet). This function must be called BEFORE
* phy_detach.
*/
void phy_stop_machine(struct phy_device *phydev)
{
cancel_delayed_work_sync(&phydev->state_queue);
mutex_lock(&phydev->lock);
if (phydev->state > PHY_UP)
phydev->state = PHY_UP;
mutex_unlock(&phydev->lock);
phydev->adjust_state = NULL;
}
/**
* phy_force_reduction - reduce PHY speed/duplex settings by one step
* @phydev: target phy_device struct
*
* Description: Reduces the speed/duplex settings by one notch,
* in this order--
* 1000/FULL, 1000/HALF, 100/FULL, 100/HALF, 10/FULL, 10/HALF.
* The function bottoms out at 10/HALF.
*/
static void phy_force_reduction(struct phy_device *phydev)
{
int idx;
idx = phy_find_setting(phydev->speed, phydev->duplex);
idx++;
idx = phy_find_valid(idx, phydev->supported);
phydev->speed = settings[idx].speed;
phydev->duplex = settings[idx].duplex;
pr_info("Trying %d/%s\n", phydev->speed,
DUPLEX_FULL == phydev->duplex ?
"FULL" : "HALF");
}
/**
* phy_error - enter HALTED state for this PHY device
* @phydev: target phy_device struct
*
* Moves the PHY to the HALTED state in response to a read
* or write error, and tells the controller the link is down.
* Must not be called from interrupt context, or while the
* phydev->lock is held.
*/
static void phy_error(struct phy_device *phydev)
{
mutex_lock(&phydev->lock);
phydev->state = PHY_HALTED;
mutex_unlock(&phydev->lock);
}
/**
* phy_interrupt - PHY interrupt handler
* @irq: interrupt line
* @phy_dat: phy_device pointer
*
* Description: When a PHY interrupt occurs, the handler disables
* interrupts, and schedules a work task to clear the interrupt.
*/
static irqreturn_t phy_interrupt(int irq, void *phy_dat)
{
struct phy_device *phydev = phy_dat;
if (PHY_HALTED == phydev->state)
return IRQ_NONE; /* It can't be ours. */
/* The MDIO bus is not allowed to be written in interrupt
* context, so we need to disable the irq here. A work
* queue will write the PHY to disable and clear the
* interrupt, and then reenable the irq line. */
disable_irq_nosync(irq);
atomic_inc(&phydev->irq_disable);
schedule_work(&phydev->phy_queue);
return IRQ_HANDLED;
}
/**
* phy_enable_interrupts - Enable the interrupts from the PHY side
* @phydev: target phy_device struct
*/
static int phy_enable_interrupts(struct phy_device *phydev)
{
int err;
err = phy_clear_interrupt(phydev);
if (err < 0)
return err;
err = phy_config_interrupt(phydev, PHY_INTERRUPT_ENABLED);
return err;
}
/**
* phy_disable_interrupts - Disable the PHY interrupts from the PHY side
* @phydev: target phy_device struct
*/
static int phy_disable_interrupts(struct phy_device *phydev)
{
int err;
/* Disable PHY interrupts */
err = phy_config_interrupt(phydev, PHY_INTERRUPT_DISABLED);
if (err)
goto phy_err;
/* Clear the interrupt */
err = phy_clear_interrupt(phydev);
if (err)
goto phy_err;
return 0;
phy_err:
phy_error(phydev);
return err;
}
/**
* phy_start_interrupts - request and enable interrupts for a PHY device
* @phydev: target phy_device struct
*
* Description: Request the interrupt for the given PHY.
* If this fails, then we set irq to PHY_POLL.
* Otherwise, we enable the interrupts in the PHY.
* This should only be called with a valid IRQ number.
* Returns 0 on success or < 0 on error.
*/
int phy_start_interrupts(struct phy_device *phydev)
{
int err = 0;
INIT_WORK(&phydev->phy_queue, phy_change);
atomic_set(&phydev->irq_disable, 0);
if (request_irq(phydev->irq, phy_interrupt,
IRQF_SHARED,
"phy_interrupt",
phydev) < 0) {
printk(KERN_WARNING "%s: Can't get IRQ %d (PHY)\n",
phydev->bus->name,
phydev->irq);
phydev->irq = PHY_POLL;
return 0;
}
err = phy_enable_interrupts(phydev);
return err;
}
EXPORT_SYMBOL(phy_start_interrupts);
/**
* phy_stop_interrupts - disable interrupts from a PHY device
* @phydev: target phy_device struct
*/
int phy_stop_interrupts(struct phy_device *phydev)
{
int err;
err = phy_disable_interrupts(phydev);
if (err)
phy_error(phydev);
free_irq(phydev->irq, phydev);
/*
* Cannot call flush_scheduled_work() here as desired because
* of rtnl_lock(), but we do not really care about what would
* be done, except from enable_irq(), so cancel any work
* possibly pending and take care of the matter below.
*/
cancel_work_sync(&phydev->phy_queue);
/*
* If work indeed has been cancelled, disable_irq() will have
* been left unbalanced from phy_interrupt() and enable_irq()
* has to be called so that other devices on the line work.
*/
while (atomic_dec_return(&phydev->irq_disable) >= 0)
enable_irq(phydev->irq);
return err;
}
EXPORT_SYMBOL(phy_stop_interrupts);
/**
* phy_change - Scheduled by the phy_interrupt/timer to handle PHY changes
* @work: work_struct that describes the work to be done
*/
static void phy_change(struct work_struct *work)
{
int err;
struct phy_device *phydev =
container_of(work, struct phy_device, phy_queue);
if (phydev->drv->did_interrupt &&
!phydev->drv->did_interrupt(phydev))
goto ignore;
err = phy_disable_interrupts(phydev);
if (err)
goto phy_err;
mutex_lock(&phydev->lock);
if ((PHY_RUNNING == phydev->state) || (PHY_NOLINK == phydev->state))
phydev->state = PHY_CHANGELINK;
mutex_unlock(&phydev->lock);
atomic_dec(&phydev->irq_disable);
enable_irq(phydev->irq);
/* Reenable interrupts */
if (PHY_HALTED != phydev->state)
err = phy_config_interrupt(phydev, PHY_INTERRUPT_ENABLED);
if (err)
goto irq_enable_err;
/* reschedule state queue work to run as soon as possible */
cancel_delayed_work_sync(&phydev->state_queue);
schedule_delayed_work(&phydev->state_queue, 0);
return;
ignore:
atomic_dec(&phydev->irq_disable);
enable_irq(phydev->irq);
return;
irq_enable_err:
disable_irq(phydev->irq);
atomic_inc(&phydev->irq_disable);
phy_err:
phy_error(phydev);
}
/**
* phy_stop - Bring down the PHY link, and stop checking the status
* @phydev: target phy_device struct
*/
void phy_stop(struct phy_device *phydev)
{
mutex_lock(&phydev->lock);
if (PHY_HALTED == phydev->state)
goto out_unlock;
if (phydev->irq != PHY_POLL) {
/* Disable PHY Interrupts */
phy_config_interrupt(phydev, PHY_INTERRUPT_DISABLED);
/* Clear any pending interrupts */
phy_clear_interrupt(phydev);
}
phydev->state = PHY_HALTED;
out_unlock:
mutex_unlock(&phydev->lock);
/*
* Cannot call flush_scheduled_work() here as desired because
* of rtnl_lock(), but PHY_HALTED shall guarantee phy_change()
* will not reenable interrupts.
*/
}
/**
* phy_start - start or restart a PHY device
* @phydev: target phy_device struct
*
* Description: Indicates the attached device's readiness to
* handle PHY-related work. Used during startup to start the
* PHY, and after a call to phy_stop() to resume operation.
* Also used to indicate the MDIO bus has cleared an error
* condition.
*/
void phy_start(struct phy_device *phydev)
{
mutex_lock(&phydev->lock);
switch (phydev->state) {
case PHY_STARTING:
phydev->state = PHY_PENDING;
break;
case PHY_READY:
phydev->state = PHY_UP;
break;
case PHY_HALTED:
phydev->state = PHY_RESUMING;
default:
break;
}
mutex_unlock(&phydev->lock);
}
EXPORT_SYMBOL(phy_stop);
EXPORT_SYMBOL(phy_start);
/**
* phy_state_machine - Handle the state machine
* @work: work_struct that describes the work to be done
*/
void phy_state_machine(struct work_struct *work)
{
struct delayed_work *dwork = to_delayed_work(work);
struct phy_device *phydev =
container_of(dwork, struct phy_device, state_queue);
int needs_aneg = 0;
int err = 0;
mutex_lock(&phydev->lock);
if (phydev->adjust_state)
phydev->adjust_state(phydev->attached_dev);
switch(phydev->state) {
case PHY_DOWN:
case PHY_STARTING:
case PHY_READY:
case PHY_PENDING:
break;
case PHY_UP:
needs_aneg = 1;
phydev->link_timeout = PHY_AN_TIMEOUT;
break;
case PHY_AN:
err = phy_read_status(phydev);
if (err < 0)
break;
/* If the link is down, give up on
* negotiation for now */
if (!phydev->link) {
phydev->state = PHY_NOLINK;
netif_carrier_off(phydev->attached_dev);
phydev->adjust_link(phydev->attached_dev);
break;
}
/* Check if negotiation is done. Break
* if there's an error */
err = phy_aneg_done(phydev);
if (err < 0)
break;
/* If AN is done, we're running */
if (err > 0) {
phydev->state = PHY_RUNNING;
netif_carrier_on(phydev->attached_dev);
phydev->adjust_link(phydev->attached_dev);
} else if (0 == phydev->link_timeout--) {
int idx;
needs_aneg = 1;
/* If we have the magic_aneg bit,
* we try again */
if (phydev->drv->flags & PHY_HAS_MAGICANEG)
break;
/* The timer expired, and we still
* don't have a setting, so we try
* forcing it until we find one that
* works, starting from the fastest speed,
* and working our way down */
idx = phy_find_valid(0, phydev->supported);
phydev->speed = settings[idx].speed;
phydev->duplex = settings[idx].duplex;
phydev->autoneg = AUTONEG_DISABLE;
pr_info("Trying %d/%s\n", phydev->speed,
DUPLEX_FULL ==
phydev->duplex ?
"FULL" : "HALF");
}
break;
case PHY_NOLINK:
err = phy_read_status(phydev);
if (err)
break;
if (phydev->link) {
phydev->state = PHY_RUNNING;
netif_carrier_on(phydev->attached_dev);
phydev->adjust_link(phydev->attached_dev);
}
break;
case PHY_FORCING:
err = genphy_update_link(phydev);
if (err)
break;
if (phydev->link) {
phydev->state = PHY_RUNNING;
netif_carrier_on(phydev->attached_dev);
} else {
if (0 == phydev->link_timeout--) {
phy_force_reduction(phydev);
needs_aneg = 1;
}
}
phydev->adjust_link(phydev->attached_dev);
break;
case PHY_RUNNING:
/* Only register a CHANGE if we are
* polling */
if (PHY_POLL == phydev->irq)
phydev->state = PHY_CHANGELINK;
break;
case PHY_CHANGELINK:
err = phy_read_status(phydev);
if (err)
break;
if (phydev->link) {
phydev->state = PHY_RUNNING;
netif_carrier_on(phydev->attached_dev);
} else {
phydev->state = PHY_NOLINK;
netif_carrier_off(phydev->attached_dev);
}
phydev->adjust_link(phydev->attached_dev);
if (PHY_POLL != phydev->irq)
err = phy_config_interrupt(phydev,
PHY_INTERRUPT_ENABLED);
break;
case PHY_HALTED:
if (phydev->link) {
phydev->link = 0;
netif_carrier_off(phydev->attached_dev);
phydev->adjust_link(phydev->attached_dev);
}
break;
case PHY_RESUMING:
err = phy_clear_interrupt(phydev);
if (err)
break;
err = phy_config_interrupt(phydev,
PHY_INTERRUPT_ENABLED);
if (err)
break;
if (AUTONEG_ENABLE == phydev->autoneg) {
err = phy_aneg_done(phydev);
if (err < 0)
break;
/* err > 0 if AN is done.
* Otherwise, it's 0, and we're
* still waiting for AN */
if (err > 0) {
err = phy_read_status(phydev);
if (err)
break;
if (phydev->link) {
phydev->state = PHY_RUNNING;
netif_carrier_on(phydev->attached_dev);
} else
phydev->state = PHY_NOLINK;
phydev->adjust_link(phydev->attached_dev);
} else {
phydev->state = PHY_AN;
phydev->link_timeout = PHY_AN_TIMEOUT;
}
} else {
err = phy_read_status(phydev);
if (err)
break;
if (phydev->link) {
phydev->state = PHY_RUNNING;
netif_carrier_on(phydev->attached_dev);
} else
phydev->state = PHY_NOLINK;
phydev->adjust_link(phydev->attached_dev);
}
break;
}
mutex_unlock(&phydev->lock);
if (needs_aneg)
err = phy_start_aneg(phydev);
if (err < 0)
phy_error(phydev);
schedule_delayed_work(&phydev->state_queue, PHY_STATE_TIME * HZ);
}