android_kernel_motorola_sm6225/fs/jffs2/nodelist.c
David Woodhouse 15953580e7 [JFFS2] Improve getdents vs. f_pos handling on NOR flash.
Commit a491486a20 started obliterating
dirents directly on the medium, when jffs2_can_mark_obsolete(). Removing
them immediately from the f->dents list, however, screws up handling of
f_pos within a directory -- because the offset is equivalent to the
number of entries through the list we are, and the existence of
deletion dirents served to provide 'placeholders' for unlinked
entries. Now, 'rm -r' doesn't even manage to unlink everything in the
directory.

Revert to keeping 'deletion' dirents in the list, at least in memory
even though we no longer write anything to the medium.

Spotted, debugged and mostly fixed by Joakim Tjernlund

Signed-off-by: David Woodhouse <dwmw2@infradead.org>
2007-11-01 16:25:56 -04:00

772 lines
22 KiB
C

/*
* JFFS2 -- Journalling Flash File System, Version 2.
*
* Copyright © 2001-2007 Red Hat, Inc.
*
* Created by David Woodhouse <dwmw2@infradead.org>
*
* For licensing information, see the file 'LICENCE' in this directory.
*
*/
#include <linux/kernel.h>
#include <linux/sched.h>
#include <linux/fs.h>
#include <linux/mtd/mtd.h>
#include <linux/rbtree.h>
#include <linux/crc32.h>
#include <linux/slab.h>
#include <linux/pagemap.h>
#include "nodelist.h"
static void jffs2_obsolete_node_frag(struct jffs2_sb_info *c,
struct jffs2_node_frag *this);
void jffs2_add_fd_to_list(struct jffs2_sb_info *c, struct jffs2_full_dirent *new, struct jffs2_full_dirent **list)
{
struct jffs2_full_dirent **prev = list;
dbg_dentlist("add dirent \"%s\", ino #%u\n", new->name, new->ino);
while ((*prev) && (*prev)->nhash <= new->nhash) {
if ((*prev)->nhash == new->nhash && !strcmp((*prev)->name, new->name)) {
/* Duplicate. Free one */
if (new->version < (*prev)->version) {
dbg_dentlist("Eep! Marking new dirent node obsolete, old is \"%s\", ino #%u\n",
(*prev)->name, (*prev)->ino);
jffs2_mark_node_obsolete(c, new->raw);
jffs2_free_full_dirent(new);
} else {
dbg_dentlist("marking old dirent \"%s\", ino #%u obsolete\n",
(*prev)->name, (*prev)->ino);
new->next = (*prev)->next;
/* It may have been a 'placeholder' deletion dirent,
if jffs2_can_mark_obsolete() (see jffs2_do_unlink()) */
if ((*prev)->raw)
jffs2_mark_node_obsolete(c, ((*prev)->raw));
jffs2_free_full_dirent(*prev);
*prev = new;
}
return;
}
prev = &((*prev)->next);
}
new->next = *prev;
*prev = new;
}
uint32_t jffs2_truncate_fragtree(struct jffs2_sb_info *c, struct rb_root *list, uint32_t size)
{
struct jffs2_node_frag *frag = jffs2_lookup_node_frag(list, size);
dbg_fragtree("truncating fragtree to 0x%08x bytes\n", size);
/* We know frag->ofs <= size. That's what lookup does for us */
if (frag && frag->ofs != size) {
if (frag->ofs+frag->size > size) {
frag->size = size - frag->ofs;
}
frag = frag_next(frag);
}
while (frag && frag->ofs >= size) {
struct jffs2_node_frag *next = frag_next(frag);
frag_erase(frag, list);
jffs2_obsolete_node_frag(c, frag);
frag = next;
}
if (size == 0)
return 0;
frag = frag_last(list);
/* Sanity check for truncation to longer than we started with... */
if (!frag)
return 0;
if (frag->ofs + frag->size < size)
return frag->ofs + frag->size;
/* If the last fragment starts at the RAM page boundary, it is
* REF_PRISTINE irrespective of its size. */
if (frag->node && (frag->ofs & (PAGE_CACHE_SIZE - 1)) == 0) {
dbg_fragtree2("marking the last fragment 0x%08x-0x%08x REF_PRISTINE.\n",
frag->ofs, frag->ofs + frag->size);
frag->node->raw->flash_offset = ref_offset(frag->node->raw) | REF_PRISTINE;
}
return size;
}
static void jffs2_obsolete_node_frag(struct jffs2_sb_info *c,
struct jffs2_node_frag *this)
{
if (this->node) {
this->node->frags--;
if (!this->node->frags) {
/* The node has no valid frags left. It's totally obsoleted */
dbg_fragtree2("marking old node @0x%08x (0x%04x-0x%04x) obsolete\n",
ref_offset(this->node->raw), this->node->ofs, this->node->ofs+this->node->size);
jffs2_mark_node_obsolete(c, this->node->raw);
jffs2_free_full_dnode(this->node);
} else {
dbg_fragtree2("marking old node @0x%08x (0x%04x-0x%04x) REF_NORMAL. frags is %d\n",
ref_offset(this->node->raw), this->node->ofs, this->node->ofs+this->node->size, this->node->frags);
mark_ref_normal(this->node->raw);
}
}
jffs2_free_node_frag(this);
}
static void jffs2_fragtree_insert(struct jffs2_node_frag *newfrag, struct jffs2_node_frag *base)
{
struct rb_node *parent = &base->rb;
struct rb_node **link = &parent;
dbg_fragtree2("insert frag (0x%04x-0x%04x)\n", newfrag->ofs, newfrag->ofs + newfrag->size);
while (*link) {
parent = *link;
base = rb_entry(parent, struct jffs2_node_frag, rb);
if (newfrag->ofs > base->ofs)
link = &base->rb.rb_right;
else if (newfrag->ofs < base->ofs)
link = &base->rb.rb_left;
else {
JFFS2_ERROR("duplicate frag at %08x (%p,%p)\n", newfrag->ofs, newfrag, base);
BUG();
}
}
rb_link_node(&newfrag->rb, &base->rb, link);
}
/*
* Allocate and initializes a new fragment.
*/
static struct jffs2_node_frag * new_fragment(struct jffs2_full_dnode *fn, uint32_t ofs, uint32_t size)
{
struct jffs2_node_frag *newfrag;
newfrag = jffs2_alloc_node_frag();
if (likely(newfrag)) {
newfrag->ofs = ofs;
newfrag->size = size;
newfrag->node = fn;
} else {
JFFS2_ERROR("cannot allocate a jffs2_node_frag object\n");
}
return newfrag;
}
/*
* Called when there is no overlapping fragment exist. Inserts a hole before the new
* fragment and inserts the new fragment to the fragtree.
*/
static int no_overlapping_node(struct jffs2_sb_info *c, struct rb_root *root,
struct jffs2_node_frag *newfrag,
struct jffs2_node_frag *this, uint32_t lastend)
{
if (lastend < newfrag->node->ofs) {
/* put a hole in before the new fragment */
struct jffs2_node_frag *holefrag;
holefrag= new_fragment(NULL, lastend, newfrag->node->ofs - lastend);
if (unlikely(!holefrag)) {
jffs2_free_node_frag(newfrag);
return -ENOMEM;
}
if (this) {
/* By definition, the 'this' node has no right-hand child,
because there are no frags with offset greater than it.
So that's where we want to put the hole */
dbg_fragtree2("add hole frag %#04x-%#04x on the right of the new frag.\n",
holefrag->ofs, holefrag->ofs + holefrag->size);
rb_link_node(&holefrag->rb, &this->rb, &this->rb.rb_right);
} else {
dbg_fragtree2("Add hole frag %#04x-%#04x to the root of the tree.\n",
holefrag->ofs, holefrag->ofs + holefrag->size);
rb_link_node(&holefrag->rb, NULL, &root->rb_node);
}
rb_insert_color(&holefrag->rb, root);
this = holefrag;
}
if (this) {
/* By definition, the 'this' node has no right-hand child,
because there are no frags with offset greater than it.
So that's where we want to put new fragment */
dbg_fragtree2("add the new node at the right\n");
rb_link_node(&newfrag->rb, &this->rb, &this->rb.rb_right);
} else {
dbg_fragtree2("insert the new node at the root of the tree\n");
rb_link_node(&newfrag->rb, NULL, &root->rb_node);
}
rb_insert_color(&newfrag->rb, root);
return 0;
}
/* Doesn't set inode->i_size */
static int jffs2_add_frag_to_fragtree(struct jffs2_sb_info *c, struct rb_root *root, struct jffs2_node_frag *newfrag)
{
struct jffs2_node_frag *this;
uint32_t lastend;
/* Skip all the nodes which are completed before this one starts */
this = jffs2_lookup_node_frag(root, newfrag->node->ofs);
if (this) {
dbg_fragtree2("lookup gave frag 0x%04x-0x%04x; phys 0x%08x (*%p)\n",
this->ofs, this->ofs+this->size, this->node?(ref_offset(this->node->raw)):0xffffffff, this);
lastend = this->ofs + this->size;
} else {
dbg_fragtree2("lookup gave no frag\n");
lastend = 0;
}
/* See if we ran off the end of the fragtree */
if (lastend <= newfrag->ofs) {
/* We did */
/* Check if 'this' node was on the same page as the new node.
If so, both 'this' and the new node get marked REF_NORMAL so
the GC can take a look.
*/
if (lastend && (lastend-1) >> PAGE_CACHE_SHIFT == newfrag->ofs >> PAGE_CACHE_SHIFT) {
if (this->node)
mark_ref_normal(this->node->raw);
mark_ref_normal(newfrag->node->raw);
}
return no_overlapping_node(c, root, newfrag, this, lastend);
}
if (this->node)
dbg_fragtree2("dealing with frag %u-%u, phys %#08x(%d).\n",
this->ofs, this->ofs + this->size,
ref_offset(this->node->raw), ref_flags(this->node->raw));
else
dbg_fragtree2("dealing with hole frag %u-%u.\n",
this->ofs, this->ofs + this->size);
/* OK. 'this' is pointing at the first frag that newfrag->ofs at least partially obsoletes,
* - i.e. newfrag->ofs < this->ofs+this->size && newfrag->ofs >= this->ofs
*/
if (newfrag->ofs > this->ofs) {
/* This node isn't completely obsoleted. The start of it remains valid */
/* Mark the new node and the partially covered node REF_NORMAL -- let
the GC take a look at them */
mark_ref_normal(newfrag->node->raw);
if (this->node)
mark_ref_normal(this->node->raw);
if (this->ofs + this->size > newfrag->ofs + newfrag->size) {
/* The new node splits 'this' frag into two */
struct jffs2_node_frag *newfrag2;
if (this->node)
dbg_fragtree2("split old frag 0x%04x-0x%04x, phys 0x%08x\n",
this->ofs, this->ofs+this->size, ref_offset(this->node->raw));
else
dbg_fragtree2("split old hole frag 0x%04x-0x%04x\n",
this->ofs, this->ofs+this->size);
/* New second frag pointing to this's node */
newfrag2 = new_fragment(this->node, newfrag->ofs + newfrag->size,
this->ofs + this->size - newfrag->ofs - newfrag->size);
if (unlikely(!newfrag2))
return -ENOMEM;
if (this->node)
this->node->frags++;
/* Adjust size of original 'this' */
this->size = newfrag->ofs - this->ofs;
/* Now, we know there's no node with offset
greater than this->ofs but smaller than
newfrag2->ofs or newfrag->ofs, for obvious
reasons. So we can do a tree insert from
'this' to insert newfrag, and a tree insert
from newfrag to insert newfrag2. */
jffs2_fragtree_insert(newfrag, this);
rb_insert_color(&newfrag->rb, root);
jffs2_fragtree_insert(newfrag2, newfrag);
rb_insert_color(&newfrag2->rb, root);
return 0;
}
/* New node just reduces 'this' frag in size, doesn't split it */
this->size = newfrag->ofs - this->ofs;
/* Again, we know it lives down here in the tree */
jffs2_fragtree_insert(newfrag, this);
rb_insert_color(&newfrag->rb, root);
} else {
/* New frag starts at the same point as 'this' used to. Replace
it in the tree without doing a delete and insertion */
dbg_fragtree2("inserting newfrag (*%p),%d-%d in before 'this' (*%p),%d-%d\n",
newfrag, newfrag->ofs, newfrag->ofs+newfrag->size, this, this->ofs, this->ofs+this->size);
rb_replace_node(&this->rb, &newfrag->rb, root);
if (newfrag->ofs + newfrag->size >= this->ofs+this->size) {
dbg_fragtree2("obsoleting node frag %p (%x-%x)\n", this, this->ofs, this->ofs+this->size);
jffs2_obsolete_node_frag(c, this);
} else {
this->ofs += newfrag->size;
this->size -= newfrag->size;
jffs2_fragtree_insert(this, newfrag);
rb_insert_color(&this->rb, root);
return 0;
}
}
/* OK, now we have newfrag added in the correct place in the tree, but
frag_next(newfrag) may be a fragment which is overlapped by it
*/
while ((this = frag_next(newfrag)) && newfrag->ofs + newfrag->size >= this->ofs + this->size) {
/* 'this' frag is obsoleted completely. */
dbg_fragtree2("obsoleting node frag %p (%x-%x) and removing from tree\n",
this, this->ofs, this->ofs+this->size);
rb_erase(&this->rb, root);
jffs2_obsolete_node_frag(c, this);
}
/* Now we're pointing at the first frag which isn't totally obsoleted by
the new frag */
if (!this || newfrag->ofs + newfrag->size == this->ofs)
return 0;
/* Still some overlap but we don't need to move it in the tree */
this->size = (this->ofs + this->size) - (newfrag->ofs + newfrag->size);
this->ofs = newfrag->ofs + newfrag->size;
/* And mark them REF_NORMAL so the GC takes a look at them */
if (this->node)
mark_ref_normal(this->node->raw);
mark_ref_normal(newfrag->node->raw);
return 0;
}
/*
* Given an inode, probably with existing tree of fragments, add the new node
* to the fragment tree.
*/
int jffs2_add_full_dnode_to_inode(struct jffs2_sb_info *c, struct jffs2_inode_info *f, struct jffs2_full_dnode *fn)
{
int ret;
struct jffs2_node_frag *newfrag;
if (unlikely(!fn->size))
return 0;
newfrag = new_fragment(fn, fn->ofs, fn->size);
if (unlikely(!newfrag))
return -ENOMEM;
newfrag->node->frags = 1;
dbg_fragtree("adding node %#04x-%#04x @0x%08x on flash, newfrag *%p\n",
fn->ofs, fn->ofs+fn->size, ref_offset(fn->raw), newfrag);
ret = jffs2_add_frag_to_fragtree(c, &f->fragtree, newfrag);
if (unlikely(ret))
return ret;
/* If we now share a page with other nodes, mark either previous
or next node REF_NORMAL, as appropriate. */
if (newfrag->ofs & (PAGE_CACHE_SIZE-1)) {
struct jffs2_node_frag *prev = frag_prev(newfrag);
mark_ref_normal(fn->raw);
/* If we don't start at zero there's _always_ a previous */
if (prev->node)
mark_ref_normal(prev->node->raw);
}
if ((newfrag->ofs+newfrag->size) & (PAGE_CACHE_SIZE-1)) {
struct jffs2_node_frag *next = frag_next(newfrag);
if (next) {
mark_ref_normal(fn->raw);
if (next->node)
mark_ref_normal(next->node->raw);
}
}
jffs2_dbg_fragtree_paranoia_check_nolock(f);
return 0;
}
void jffs2_set_inocache_state(struct jffs2_sb_info *c, struct jffs2_inode_cache *ic, int state)
{
spin_lock(&c->inocache_lock);
ic->state = state;
wake_up(&c->inocache_wq);
spin_unlock(&c->inocache_lock);
}
/* During mount, this needs no locking. During normal operation, its
callers want to do other stuff while still holding the inocache_lock.
Rather than introducing special case get_ino_cache functions or
callbacks, we just let the caller do the locking itself. */
struct jffs2_inode_cache *jffs2_get_ino_cache(struct jffs2_sb_info *c, uint32_t ino)
{
struct jffs2_inode_cache *ret;
ret = c->inocache_list[ino % INOCACHE_HASHSIZE];
while (ret && ret->ino < ino) {
ret = ret->next;
}
if (ret && ret->ino != ino)
ret = NULL;
return ret;
}
void jffs2_add_ino_cache (struct jffs2_sb_info *c, struct jffs2_inode_cache *new)
{
struct jffs2_inode_cache **prev;
spin_lock(&c->inocache_lock);
if (!new->ino)
new->ino = ++c->highest_ino;
dbg_inocache("add %p (ino #%u)\n", new, new->ino);
prev = &c->inocache_list[new->ino % INOCACHE_HASHSIZE];
while ((*prev) && (*prev)->ino < new->ino) {
prev = &(*prev)->next;
}
new->next = *prev;
*prev = new;
spin_unlock(&c->inocache_lock);
}
void jffs2_del_ino_cache(struct jffs2_sb_info *c, struct jffs2_inode_cache *old)
{
struct jffs2_inode_cache **prev;
#ifdef CONFIG_JFFS2_FS_XATTR
BUG_ON(old->xref);
#endif
dbg_inocache("del %p (ino #%u)\n", old, old->ino);
spin_lock(&c->inocache_lock);
prev = &c->inocache_list[old->ino % INOCACHE_HASHSIZE];
while ((*prev) && (*prev)->ino < old->ino) {
prev = &(*prev)->next;
}
if ((*prev) == old) {
*prev = old->next;
}
/* Free it now unless it's in READING or CLEARING state, which
are the transitions upon read_inode() and clear_inode(). The
rest of the time we know nobody else is looking at it, and
if it's held by read_inode() or clear_inode() they'll free it
for themselves. */
if (old->state != INO_STATE_READING && old->state != INO_STATE_CLEARING)
jffs2_free_inode_cache(old);
spin_unlock(&c->inocache_lock);
}
void jffs2_free_ino_caches(struct jffs2_sb_info *c)
{
int i;
struct jffs2_inode_cache *this, *next;
for (i=0; i<INOCACHE_HASHSIZE; i++) {
this = c->inocache_list[i];
while (this) {
next = this->next;
jffs2_xattr_free_inode(c, this);
jffs2_free_inode_cache(this);
this = next;
}
c->inocache_list[i] = NULL;
}
}
void jffs2_free_raw_node_refs(struct jffs2_sb_info *c)
{
int i;
struct jffs2_raw_node_ref *this, *next;
for (i=0; i<c->nr_blocks; i++) {
this = c->blocks[i].first_node;
while (this) {
if (this[REFS_PER_BLOCK].flash_offset == REF_LINK_NODE)
next = this[REFS_PER_BLOCK].next_in_ino;
else
next = NULL;
jffs2_free_refblock(this);
this = next;
}
c->blocks[i].first_node = c->blocks[i].last_node = NULL;
}
}
struct jffs2_node_frag *jffs2_lookup_node_frag(struct rb_root *fragtree, uint32_t offset)
{
/* The common case in lookup is that there will be a node
which precisely matches. So we go looking for that first */
struct rb_node *next;
struct jffs2_node_frag *prev = NULL;
struct jffs2_node_frag *frag = NULL;
dbg_fragtree2("root %p, offset %d\n", fragtree, offset);
next = fragtree->rb_node;
while(next) {
frag = rb_entry(next, struct jffs2_node_frag, rb);
if (frag->ofs + frag->size <= offset) {
/* Remember the closest smaller match on the way down */
if (!prev || frag->ofs > prev->ofs)
prev = frag;
next = frag->rb.rb_right;
} else if (frag->ofs > offset) {
next = frag->rb.rb_left;
} else {
return frag;
}
}
/* Exact match not found. Go back up looking at each parent,
and return the closest smaller one */
if (prev)
dbg_fragtree2("no match. Returning frag %#04x-%#04x, closest previous\n",
prev->ofs, prev->ofs+prev->size);
else
dbg_fragtree2("returning NULL, empty fragtree\n");
return prev;
}
/* Pass 'c' argument to indicate that nodes should be marked obsolete as
they're killed. */
void jffs2_kill_fragtree(struct rb_root *root, struct jffs2_sb_info *c)
{
struct jffs2_node_frag *frag;
struct jffs2_node_frag *parent;
if (!root->rb_node)
return;
dbg_fragtree("killing\n");
frag = (rb_entry(root->rb_node, struct jffs2_node_frag, rb));
while(frag) {
if (frag->rb.rb_left) {
frag = frag_left(frag);
continue;
}
if (frag->rb.rb_right) {
frag = frag_right(frag);
continue;
}
if (frag->node && !(--frag->node->frags)) {
/* Not a hole, and it's the final remaining frag
of this node. Free the node */
if (c)
jffs2_mark_node_obsolete(c, frag->node->raw);
jffs2_free_full_dnode(frag->node);
}
parent = frag_parent(frag);
if (parent) {
if (frag_left(parent) == frag)
parent->rb.rb_left = NULL;
else
parent->rb.rb_right = NULL;
}
jffs2_free_node_frag(frag);
frag = parent;
cond_resched();
}
}
struct jffs2_raw_node_ref *jffs2_link_node_ref(struct jffs2_sb_info *c,
struct jffs2_eraseblock *jeb,
uint32_t ofs, uint32_t len,
struct jffs2_inode_cache *ic)
{
struct jffs2_raw_node_ref *ref;
BUG_ON(!jeb->allocated_refs);
jeb->allocated_refs--;
ref = jeb->last_node;
dbg_noderef("Last node at %p is (%08x,%p)\n", ref, ref->flash_offset,
ref->next_in_ino);
while (ref->flash_offset != REF_EMPTY_NODE) {
if (ref->flash_offset == REF_LINK_NODE)
ref = ref->next_in_ino;
else
ref++;
}
dbg_noderef("New ref is %p (%08x becomes %08x,%p) len 0x%x\n", ref,
ref->flash_offset, ofs, ref->next_in_ino, len);
ref->flash_offset = ofs;
if (!jeb->first_node) {
jeb->first_node = ref;
BUG_ON(ref_offset(ref) != jeb->offset);
} else if (unlikely(ref_offset(ref) != jeb->offset + c->sector_size - jeb->free_size)) {
uint32_t last_len = ref_totlen(c, jeb, jeb->last_node);
JFFS2_ERROR("Adding new ref %p at (0x%08x-0x%08x) not immediately after previous (0x%08x-0x%08x)\n",
ref, ref_offset(ref), ref_offset(ref)+len,
ref_offset(jeb->last_node),
ref_offset(jeb->last_node)+last_len);
BUG();
}
jeb->last_node = ref;
if (ic) {
ref->next_in_ino = ic->nodes;
ic->nodes = ref;
} else {
ref->next_in_ino = NULL;
}
switch(ref_flags(ref)) {
case REF_UNCHECKED:
c->unchecked_size += len;
jeb->unchecked_size += len;
break;
case REF_NORMAL:
case REF_PRISTINE:
c->used_size += len;
jeb->used_size += len;
break;
case REF_OBSOLETE:
c->dirty_size += len;
jeb->dirty_size += len;
break;
}
c->free_size -= len;
jeb->free_size -= len;
#ifdef TEST_TOTLEN
/* Set (and test) __totlen field... for now */
ref->__totlen = len;
ref_totlen(c, jeb, ref);
#endif
return ref;
}
/* No locking, no reservation of 'ref'. Do not use on a live file system */
int jffs2_scan_dirty_space(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb,
uint32_t size)
{
if (!size)
return 0;
if (unlikely(size > jeb->free_size)) {
printk(KERN_CRIT "Dirty space 0x%x larger then free_size 0x%x (wasted 0x%x)\n",
size, jeb->free_size, jeb->wasted_size);
BUG();
}
/* REF_EMPTY_NODE is !obsolete, so that works OK */
if (jeb->last_node && ref_obsolete(jeb->last_node)) {
#ifdef TEST_TOTLEN
jeb->last_node->__totlen += size;
#endif
c->dirty_size += size;
c->free_size -= size;
jeb->dirty_size += size;
jeb->free_size -= size;
} else {
uint32_t ofs = jeb->offset + c->sector_size - jeb->free_size;
ofs |= REF_OBSOLETE;
jffs2_link_node_ref(c, jeb, ofs, size, NULL);
}
return 0;
}
/* Calculate totlen from surrounding nodes or eraseblock */
static inline uint32_t __ref_totlen(struct jffs2_sb_info *c,
struct jffs2_eraseblock *jeb,
struct jffs2_raw_node_ref *ref)
{
uint32_t ref_end;
struct jffs2_raw_node_ref *next_ref = ref_next(ref);
if (next_ref)
ref_end = ref_offset(next_ref);
else {
if (!jeb)
jeb = &c->blocks[ref->flash_offset / c->sector_size];
/* Last node in block. Use free_space */
if (unlikely(ref != jeb->last_node)) {
printk(KERN_CRIT "ref %p @0x%08x is not jeb->last_node (%p @0x%08x)\n",
ref, ref_offset(ref), jeb->last_node, jeb->last_node?ref_offset(jeb->last_node):0);
BUG();
}
ref_end = jeb->offset + c->sector_size - jeb->free_size;
}
return ref_end - ref_offset(ref);
}
uint32_t __jffs2_ref_totlen(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb,
struct jffs2_raw_node_ref *ref)
{
uint32_t ret;
ret = __ref_totlen(c, jeb, ref);
#ifdef TEST_TOTLEN
if (unlikely(ret != ref->__totlen)) {
if (!jeb)
jeb = &c->blocks[ref->flash_offset / c->sector_size];
printk(KERN_CRIT "Totlen for ref at %p (0x%08x-0x%08x) miscalculated as 0x%x instead of %x\n",
ref, ref_offset(ref), ref_offset(ref)+ref->__totlen,
ret, ref->__totlen);
if (ref_next(ref)) {
printk(KERN_CRIT "next %p (0x%08x-0x%08x)\n", ref_next(ref), ref_offset(ref_next(ref)),
ref_offset(ref_next(ref))+ref->__totlen);
} else
printk(KERN_CRIT "No next ref. jeb->last_node is %p\n", jeb->last_node);
printk(KERN_CRIT "jeb->wasted_size %x, dirty_size %x, used_size %x, free_size %x\n", jeb->wasted_size, jeb->dirty_size, jeb->used_size, jeb->free_size);
#if defined(JFFS2_DBG_DUMPS) || defined(JFFS2_DBG_PARANOIA_CHECKS)
__jffs2_dbg_dump_node_refs_nolock(c, jeb);
#endif
WARN_ON(1);
ret = ref->__totlen;
}
#endif /* TEST_TOTLEN */
return ret;
}