android_kernel_motorola_sm6225/arch/ia64/mm/contig.c
Chen, Kenneth W dae2806615 [IA64] add init declaration to memory initialization functions
Add init declaration to variables/functions used for memory
initialization.  I don't think they would clash with memory
hotplug.  If they do, please yell.

Signed-off-by: Ken Chen <kenneth.w.chen@intel.com>
Signed-off-by: Tony Luck <tony.luck@intel.com>
2006-03-22 16:54:15 -08:00

302 lines
7.5 KiB
C

/*
* This file is subject to the terms and conditions of the GNU General Public
* License. See the file "COPYING" in the main directory of this archive
* for more details.
*
* Copyright (C) 1998-2003 Hewlett-Packard Co
* David Mosberger-Tang <davidm@hpl.hp.com>
* Stephane Eranian <eranian@hpl.hp.com>
* Copyright (C) 2000, Rohit Seth <rohit.seth@intel.com>
* Copyright (C) 1999 VA Linux Systems
* Copyright (C) 1999 Walt Drummond <drummond@valinux.com>
* Copyright (C) 2003 Silicon Graphics, Inc. All rights reserved.
*
* Routines used by ia64 machines with contiguous (or virtually contiguous)
* memory.
*/
#include <linux/config.h>
#include <linux/bootmem.h>
#include <linux/efi.h>
#include <linux/mm.h>
#include <linux/swap.h>
#include <asm/meminit.h>
#include <asm/pgalloc.h>
#include <asm/pgtable.h>
#include <asm/sections.h>
#include <asm/mca.h>
#ifdef CONFIG_VIRTUAL_MEM_MAP
static unsigned long num_dma_physpages;
#endif
/**
* show_mem - display a memory statistics summary
*
* Just walks the pages in the system and describes where they're allocated.
*/
void
show_mem (void)
{
int i, total = 0, reserved = 0;
int shared = 0, cached = 0;
printk("Mem-info:\n");
show_free_areas();
printk("Free swap: %6ldkB\n", nr_swap_pages<<(PAGE_SHIFT-10));
i = max_mapnr;
while (i-- > 0) {
if (!pfn_valid(i))
continue;
total++;
if (PageReserved(mem_map+i))
reserved++;
else if (PageSwapCache(mem_map+i))
cached++;
else if (page_count(mem_map + i))
shared += page_count(mem_map + i) - 1;
}
printk("%d pages of RAM\n", total);
printk("%d reserved pages\n", reserved);
printk("%d pages shared\n", shared);
printk("%d pages swap cached\n", cached);
printk("%ld pages in page table cache\n",
pgtable_quicklist_total_size());
}
/* physical address where the bootmem map is located */
unsigned long bootmap_start;
/**
* find_max_pfn - adjust the maximum page number callback
* @start: start of range
* @end: end of range
* @arg: address of pointer to global max_pfn variable
*
* Passed as a callback function to efi_memmap_walk() to determine the highest
* available page frame number in the system.
*/
int
find_max_pfn (unsigned long start, unsigned long end, void *arg)
{
unsigned long *max_pfnp = arg, pfn;
pfn = (PAGE_ALIGN(end - 1) - PAGE_OFFSET) >> PAGE_SHIFT;
if (pfn > *max_pfnp)
*max_pfnp = pfn;
return 0;
}
/**
* find_bootmap_location - callback to find a memory area for the bootmap
* @start: start of region
* @end: end of region
* @arg: unused callback data
*
* Find a place to put the bootmap and return its starting address in
* bootmap_start. This address must be page-aligned.
*/
static int __init
find_bootmap_location (unsigned long start, unsigned long end, void *arg)
{
unsigned long needed = *(unsigned long *)arg;
unsigned long range_start, range_end, free_start;
int i;
#if IGNORE_PFN0
if (start == PAGE_OFFSET) {
start += PAGE_SIZE;
if (start >= end)
return 0;
}
#endif
free_start = PAGE_OFFSET;
for (i = 0; i < num_rsvd_regions; i++) {
range_start = max(start, free_start);
range_end = min(end, rsvd_region[i].start & PAGE_MASK);
free_start = PAGE_ALIGN(rsvd_region[i].end);
if (range_end <= range_start)
continue; /* skip over empty range */
if (range_end - range_start >= needed) {
bootmap_start = __pa(range_start);
return -1; /* done */
}
/* nothing more available in this segment */
if (range_end == end)
return 0;
}
return 0;
}
/**
* find_memory - setup memory map
*
* Walk the EFI memory map and find usable memory for the system, taking
* into account reserved areas.
*/
void __init
find_memory (void)
{
unsigned long bootmap_size;
reserve_memory();
/* first find highest page frame number */
max_pfn = 0;
efi_memmap_walk(find_max_pfn, &max_pfn);
/* how many bytes to cover all the pages */
bootmap_size = bootmem_bootmap_pages(max_pfn) << PAGE_SHIFT;
/* look for a location to hold the bootmap */
bootmap_start = ~0UL;
efi_memmap_walk(find_bootmap_location, &bootmap_size);
if (bootmap_start == ~0UL)
panic("Cannot find %ld bytes for bootmap\n", bootmap_size);
bootmap_size = init_bootmem(bootmap_start >> PAGE_SHIFT, max_pfn);
/* Free all available memory, then mark bootmem-map as being in use. */
efi_memmap_walk(filter_rsvd_memory, free_bootmem);
reserve_bootmem(bootmap_start, bootmap_size);
find_initrd();
}
#ifdef CONFIG_SMP
/**
* per_cpu_init - setup per-cpu variables
*
* Allocate and setup per-cpu data areas.
*/
void * __cpuinit
per_cpu_init (void)
{
void *cpu_data;
int cpu;
static int first_time=1;
/*
* get_free_pages() cannot be used before cpu_init() done. BSP
* allocates "NR_CPUS" pages for all CPUs to avoid that AP calls
* get_zeroed_page().
*/
if (first_time) {
first_time=0;
cpu_data = __alloc_bootmem(PERCPU_PAGE_SIZE * NR_CPUS,
PERCPU_PAGE_SIZE, __pa(MAX_DMA_ADDRESS));
for (cpu = 0; cpu < NR_CPUS; cpu++) {
memcpy(cpu_data, __phys_per_cpu_start, __per_cpu_end - __per_cpu_start);
__per_cpu_offset[cpu] = (char *) cpu_data - __per_cpu_start;
cpu_data += PERCPU_PAGE_SIZE;
per_cpu(local_per_cpu_offset, cpu) = __per_cpu_offset[cpu];
}
}
return __per_cpu_start + __per_cpu_offset[smp_processor_id()];
}
#endif /* CONFIG_SMP */
static int
count_pages (u64 start, u64 end, void *arg)
{
unsigned long *count = arg;
*count += (end - start) >> PAGE_SHIFT;
return 0;
}
#ifdef CONFIG_VIRTUAL_MEM_MAP
static int
count_dma_pages (u64 start, u64 end, void *arg)
{
unsigned long *count = arg;
if (start < MAX_DMA_ADDRESS)
*count += (min(end, MAX_DMA_ADDRESS) - start) >> PAGE_SHIFT;
return 0;
}
#endif
/*
* Set up the page tables.
*/
void __init
paging_init (void)
{
unsigned long max_dma;
unsigned long zones_size[MAX_NR_ZONES];
#ifdef CONFIG_VIRTUAL_MEM_MAP
unsigned long zholes_size[MAX_NR_ZONES];
unsigned long max_gap;
#endif
/* initialize mem_map[] */
memset(zones_size, 0, sizeof(zones_size));
num_physpages = 0;
efi_memmap_walk(count_pages, &num_physpages);
max_dma = virt_to_phys((void *) MAX_DMA_ADDRESS) >> PAGE_SHIFT;
#ifdef CONFIG_VIRTUAL_MEM_MAP
memset(zholes_size, 0, sizeof(zholes_size));
num_dma_physpages = 0;
efi_memmap_walk(count_dma_pages, &num_dma_physpages);
if (max_low_pfn < max_dma) {
zones_size[ZONE_DMA] = max_low_pfn;
zholes_size[ZONE_DMA] = max_low_pfn - num_dma_physpages;
} else {
zones_size[ZONE_DMA] = max_dma;
zholes_size[ZONE_DMA] = max_dma - num_dma_physpages;
if (num_physpages > num_dma_physpages) {
zones_size[ZONE_NORMAL] = max_low_pfn - max_dma;
zholes_size[ZONE_NORMAL] =
((max_low_pfn - max_dma) -
(num_physpages - num_dma_physpages));
}
}
max_gap = 0;
efi_memmap_walk(find_largest_hole, (u64 *)&max_gap);
if (max_gap < LARGE_GAP) {
vmem_map = (struct page *) 0;
free_area_init_node(0, NODE_DATA(0), zones_size, 0,
zholes_size);
} else {
unsigned long map_size;
/* allocate virtual_mem_map */
map_size = PAGE_ALIGN(max_low_pfn * sizeof(struct page));
vmalloc_end -= map_size;
vmem_map = (struct page *) vmalloc_end;
efi_memmap_walk(create_mem_map_page_table, NULL);
NODE_DATA(0)->node_mem_map = vmem_map;
free_area_init_node(0, NODE_DATA(0), zones_size,
0, zholes_size);
printk("Virtual mem_map starts at 0x%p\n", mem_map);
}
#else /* !CONFIG_VIRTUAL_MEM_MAP */
if (max_low_pfn < max_dma)
zones_size[ZONE_DMA] = max_low_pfn;
else {
zones_size[ZONE_DMA] = max_dma;
zones_size[ZONE_NORMAL] = max_low_pfn - max_dma;
}
free_area_init(zones_size);
#endif /* !CONFIG_VIRTUAL_MEM_MAP */
zero_page_memmap_ptr = virt_to_page(ia64_imva(empty_zero_page));
}