0e91398f2a
This patch implements Xen save/restore and migration. Saving is triggered via xenbus, which is polled in drivers/xen/manage.c. When a suspend request comes in, the kernel prepares itself for saving by: 1 - Freeze all processes. This is primarily to prevent any partially-completed pagetable updates from confusing the suspend process. If CONFIG_PREEMPT isn't defined, then this isn't necessary. 2 - Suspend xenbus and other devices 3 - Stop_machine, to make sure all the other vcpus are quiescent. The Xen tools require the domain to run its save off vcpu0. 4 - Within the stop_machine state, it pins any unpinned pgds (under construction or destruction), performs canonicalizes various other pieces of state (mostly converting mfns to pfns), and finally 5 - Suspend the domain Restore reverses the steps used to save the domain, ending when all the frozen processes are thawed. Signed-off-by: Jeremy Fitzhardinge <jeremy.fitzhardinge@citrix.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
437 lines
9.6 KiB
C
437 lines
9.6 KiB
C
/*
|
|
* Xen SMP support
|
|
*
|
|
* This file implements the Xen versions of smp_ops. SMP under Xen is
|
|
* very straightforward. Bringing a CPU up is simply a matter of
|
|
* loading its initial context and setting it running.
|
|
*
|
|
* IPIs are handled through the Xen event mechanism.
|
|
*
|
|
* Because virtual CPUs can be scheduled onto any real CPU, there's no
|
|
* useful topology information for the kernel to make use of. As a
|
|
* result, all CPUs are treated as if they're single-core and
|
|
* single-threaded.
|
|
*
|
|
* This does not handle HOTPLUG_CPU yet.
|
|
*/
|
|
#include <linux/sched.h>
|
|
#include <linux/err.h>
|
|
#include <linux/smp.h>
|
|
|
|
#include <asm/paravirt.h>
|
|
#include <asm/desc.h>
|
|
#include <asm/pgtable.h>
|
|
#include <asm/cpu.h>
|
|
|
|
#include <xen/interface/xen.h>
|
|
#include <xen/interface/vcpu.h>
|
|
|
|
#include <asm/xen/interface.h>
|
|
#include <asm/xen/hypercall.h>
|
|
|
|
#include <xen/page.h>
|
|
#include <xen/events.h>
|
|
|
|
#include "xen-ops.h"
|
|
#include "mmu.h"
|
|
|
|
cpumask_t xen_cpu_initialized_map;
|
|
static DEFINE_PER_CPU(int, resched_irq) = -1;
|
|
static DEFINE_PER_CPU(int, callfunc_irq) = -1;
|
|
static DEFINE_PER_CPU(int, debug_irq) = -1;
|
|
|
|
/*
|
|
* Structure and data for smp_call_function(). This is designed to minimise
|
|
* static memory requirements. It also looks cleaner.
|
|
*/
|
|
static DEFINE_SPINLOCK(call_lock);
|
|
|
|
struct call_data_struct {
|
|
void (*func) (void *info);
|
|
void *info;
|
|
atomic_t started;
|
|
atomic_t finished;
|
|
int wait;
|
|
};
|
|
|
|
static irqreturn_t xen_call_function_interrupt(int irq, void *dev_id);
|
|
|
|
static struct call_data_struct *call_data;
|
|
|
|
/*
|
|
* Reschedule call back. Nothing to do,
|
|
* all the work is done automatically when
|
|
* we return from the interrupt.
|
|
*/
|
|
static irqreturn_t xen_reschedule_interrupt(int irq, void *dev_id)
|
|
{
|
|
#ifdef CONFIG_X86_32
|
|
__get_cpu_var(irq_stat).irq_resched_count++;
|
|
#else
|
|
add_pda(irq_resched_count, 1);
|
|
#endif
|
|
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
static __cpuinit void cpu_bringup_and_idle(void)
|
|
{
|
|
int cpu = smp_processor_id();
|
|
|
|
cpu_init();
|
|
xen_enable_sysenter();
|
|
|
|
preempt_disable();
|
|
per_cpu(cpu_state, cpu) = CPU_ONLINE;
|
|
|
|
xen_setup_cpu_clockevents();
|
|
|
|
/* We can take interrupts now: we're officially "up". */
|
|
local_irq_enable();
|
|
|
|
wmb(); /* make sure everything is out */
|
|
cpu_idle();
|
|
}
|
|
|
|
static int xen_smp_intr_init(unsigned int cpu)
|
|
{
|
|
int rc;
|
|
const char *resched_name, *callfunc_name, *debug_name;
|
|
|
|
resched_name = kasprintf(GFP_KERNEL, "resched%d", cpu);
|
|
rc = bind_ipi_to_irqhandler(XEN_RESCHEDULE_VECTOR,
|
|
cpu,
|
|
xen_reschedule_interrupt,
|
|
IRQF_DISABLED|IRQF_PERCPU|IRQF_NOBALANCING,
|
|
resched_name,
|
|
NULL);
|
|
if (rc < 0)
|
|
goto fail;
|
|
per_cpu(resched_irq, cpu) = rc;
|
|
|
|
callfunc_name = kasprintf(GFP_KERNEL, "callfunc%d", cpu);
|
|
rc = bind_ipi_to_irqhandler(XEN_CALL_FUNCTION_VECTOR,
|
|
cpu,
|
|
xen_call_function_interrupt,
|
|
IRQF_DISABLED|IRQF_PERCPU|IRQF_NOBALANCING,
|
|
callfunc_name,
|
|
NULL);
|
|
if (rc < 0)
|
|
goto fail;
|
|
per_cpu(callfunc_irq, cpu) = rc;
|
|
|
|
debug_name = kasprintf(GFP_KERNEL, "debug%d", cpu);
|
|
rc = bind_virq_to_irqhandler(VIRQ_DEBUG, cpu, xen_debug_interrupt,
|
|
IRQF_DISABLED | IRQF_PERCPU | IRQF_NOBALANCING,
|
|
debug_name, NULL);
|
|
if (rc < 0)
|
|
goto fail;
|
|
per_cpu(debug_irq, cpu) = rc;
|
|
|
|
return 0;
|
|
|
|
fail:
|
|
if (per_cpu(resched_irq, cpu) >= 0)
|
|
unbind_from_irqhandler(per_cpu(resched_irq, cpu), NULL);
|
|
if (per_cpu(callfunc_irq, cpu) >= 0)
|
|
unbind_from_irqhandler(per_cpu(callfunc_irq, cpu), NULL);
|
|
if (per_cpu(debug_irq, cpu) >= 0)
|
|
unbind_from_irqhandler(per_cpu(debug_irq, cpu), NULL);
|
|
return rc;
|
|
}
|
|
|
|
void __init xen_fill_possible_map(void)
|
|
{
|
|
int i, rc;
|
|
|
|
for (i = 0; i < NR_CPUS; i++) {
|
|
rc = HYPERVISOR_vcpu_op(VCPUOP_is_up, i, NULL);
|
|
if (rc >= 0)
|
|
cpu_set(i, cpu_possible_map);
|
|
}
|
|
}
|
|
|
|
void __init xen_smp_prepare_boot_cpu(void)
|
|
{
|
|
int cpu;
|
|
|
|
BUG_ON(smp_processor_id() != 0);
|
|
native_smp_prepare_boot_cpu();
|
|
|
|
/* We've switched to the "real" per-cpu gdt, so make sure the
|
|
old memory can be recycled */
|
|
make_lowmem_page_readwrite(&per_cpu__gdt_page);
|
|
|
|
for_each_possible_cpu(cpu) {
|
|
cpus_clear(per_cpu(cpu_sibling_map, cpu));
|
|
/*
|
|
* cpu_core_map lives in a per cpu area that is cleared
|
|
* when the per cpu array is allocated.
|
|
*
|
|
* cpus_clear(per_cpu(cpu_core_map, cpu));
|
|
*/
|
|
}
|
|
|
|
xen_setup_vcpu_info_placement();
|
|
}
|
|
|
|
void __init xen_smp_prepare_cpus(unsigned int max_cpus)
|
|
{
|
|
unsigned cpu;
|
|
|
|
for_each_possible_cpu(cpu) {
|
|
cpus_clear(per_cpu(cpu_sibling_map, cpu));
|
|
/*
|
|
* cpu_core_ map will be zeroed when the per
|
|
* cpu area is allocated.
|
|
*
|
|
* cpus_clear(per_cpu(cpu_core_map, cpu));
|
|
*/
|
|
}
|
|
|
|
smp_store_cpu_info(0);
|
|
set_cpu_sibling_map(0);
|
|
|
|
if (xen_smp_intr_init(0))
|
|
BUG();
|
|
|
|
xen_cpu_initialized_map = cpumask_of_cpu(0);
|
|
|
|
/* Restrict the possible_map according to max_cpus. */
|
|
while ((num_possible_cpus() > 1) && (num_possible_cpus() > max_cpus)) {
|
|
for (cpu = NR_CPUS - 1; !cpu_possible(cpu); cpu--)
|
|
continue;
|
|
cpu_clear(cpu, cpu_possible_map);
|
|
}
|
|
|
|
for_each_possible_cpu (cpu) {
|
|
struct task_struct *idle;
|
|
|
|
if (cpu == 0)
|
|
continue;
|
|
|
|
idle = fork_idle(cpu);
|
|
if (IS_ERR(idle))
|
|
panic("failed fork for CPU %d", cpu);
|
|
|
|
cpu_set(cpu, cpu_present_map);
|
|
}
|
|
|
|
//init_xenbus_allowed_cpumask();
|
|
}
|
|
|
|
static __cpuinit int
|
|
cpu_initialize_context(unsigned int cpu, struct task_struct *idle)
|
|
{
|
|
struct vcpu_guest_context *ctxt;
|
|
struct gdt_page *gdt = &per_cpu(gdt_page, cpu);
|
|
|
|
if (cpu_test_and_set(cpu, xen_cpu_initialized_map))
|
|
return 0;
|
|
|
|
ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL);
|
|
if (ctxt == NULL)
|
|
return -ENOMEM;
|
|
|
|
ctxt->flags = VGCF_IN_KERNEL;
|
|
ctxt->user_regs.ds = __USER_DS;
|
|
ctxt->user_regs.es = __USER_DS;
|
|
ctxt->user_regs.fs = __KERNEL_PERCPU;
|
|
ctxt->user_regs.gs = 0;
|
|
ctxt->user_regs.ss = __KERNEL_DS;
|
|
ctxt->user_regs.eip = (unsigned long)cpu_bringup_and_idle;
|
|
ctxt->user_regs.eflags = 0x1000; /* IOPL_RING1 */
|
|
|
|
memset(&ctxt->fpu_ctxt, 0, sizeof(ctxt->fpu_ctxt));
|
|
|
|
xen_copy_trap_info(ctxt->trap_ctxt);
|
|
|
|
ctxt->ldt_ents = 0;
|
|
|
|
BUG_ON((unsigned long)gdt->gdt & ~PAGE_MASK);
|
|
make_lowmem_page_readonly(gdt->gdt);
|
|
|
|
ctxt->gdt_frames[0] = virt_to_mfn(gdt->gdt);
|
|
ctxt->gdt_ents = ARRAY_SIZE(gdt->gdt);
|
|
|
|
ctxt->user_regs.cs = __KERNEL_CS;
|
|
ctxt->user_regs.esp = idle->thread.sp0 - sizeof(struct pt_regs);
|
|
|
|
ctxt->kernel_ss = __KERNEL_DS;
|
|
ctxt->kernel_sp = idle->thread.sp0;
|
|
|
|
ctxt->event_callback_cs = __KERNEL_CS;
|
|
ctxt->event_callback_eip = (unsigned long)xen_hypervisor_callback;
|
|
ctxt->failsafe_callback_cs = __KERNEL_CS;
|
|
ctxt->failsafe_callback_eip = (unsigned long)xen_failsafe_callback;
|
|
|
|
per_cpu(xen_cr3, cpu) = __pa(swapper_pg_dir);
|
|
ctxt->ctrlreg[3] = xen_pfn_to_cr3(virt_to_mfn(swapper_pg_dir));
|
|
|
|
if (HYPERVISOR_vcpu_op(VCPUOP_initialise, cpu, ctxt))
|
|
BUG();
|
|
|
|
kfree(ctxt);
|
|
return 0;
|
|
}
|
|
|
|
int __cpuinit xen_cpu_up(unsigned int cpu)
|
|
{
|
|
struct task_struct *idle = idle_task(cpu);
|
|
int rc;
|
|
|
|
#if 0
|
|
rc = cpu_up_check(cpu);
|
|
if (rc)
|
|
return rc;
|
|
#endif
|
|
|
|
init_gdt(cpu);
|
|
per_cpu(current_task, cpu) = idle;
|
|
irq_ctx_init(cpu);
|
|
xen_setup_timer(cpu);
|
|
|
|
/* make sure interrupts start blocked */
|
|
per_cpu(xen_vcpu, cpu)->evtchn_upcall_mask = 1;
|
|
|
|
rc = cpu_initialize_context(cpu, idle);
|
|
if (rc)
|
|
return rc;
|
|
|
|
if (num_online_cpus() == 1)
|
|
alternatives_smp_switch(1);
|
|
|
|
rc = xen_smp_intr_init(cpu);
|
|
if (rc)
|
|
return rc;
|
|
|
|
smp_store_cpu_info(cpu);
|
|
set_cpu_sibling_map(cpu);
|
|
/* This must be done before setting cpu_online_map */
|
|
wmb();
|
|
|
|
cpu_set(cpu, cpu_online_map);
|
|
|
|
rc = HYPERVISOR_vcpu_op(VCPUOP_up, cpu, NULL);
|
|
BUG_ON(rc);
|
|
|
|
return 0;
|
|
}
|
|
|
|
void xen_smp_cpus_done(unsigned int max_cpus)
|
|
{
|
|
}
|
|
|
|
static void stop_self(void *v)
|
|
{
|
|
int cpu = smp_processor_id();
|
|
|
|
/* make sure we're not pinning something down */
|
|
load_cr3(swapper_pg_dir);
|
|
/* should set up a minimal gdt */
|
|
|
|
HYPERVISOR_vcpu_op(VCPUOP_down, cpu, NULL);
|
|
BUG();
|
|
}
|
|
|
|
void xen_smp_send_stop(void)
|
|
{
|
|
smp_call_function(stop_self, NULL, 0, 0);
|
|
}
|
|
|
|
void xen_smp_send_reschedule(int cpu)
|
|
{
|
|
xen_send_IPI_one(cpu, XEN_RESCHEDULE_VECTOR);
|
|
}
|
|
|
|
|
|
static void xen_send_IPI_mask(cpumask_t mask, enum ipi_vector vector)
|
|
{
|
|
unsigned cpu;
|
|
|
|
cpus_and(mask, mask, cpu_online_map);
|
|
|
|
for_each_cpu_mask(cpu, mask)
|
|
xen_send_IPI_one(cpu, vector);
|
|
}
|
|
|
|
static irqreturn_t xen_call_function_interrupt(int irq, void *dev_id)
|
|
{
|
|
void (*func) (void *info) = call_data->func;
|
|
void *info = call_data->info;
|
|
int wait = call_data->wait;
|
|
|
|
/*
|
|
* Notify initiating CPU that I've grabbed the data and am
|
|
* about to execute the function
|
|
*/
|
|
mb();
|
|
atomic_inc(&call_data->started);
|
|
/*
|
|
* At this point the info structure may be out of scope unless wait==1
|
|
*/
|
|
irq_enter();
|
|
(*func)(info);
|
|
__get_cpu_var(irq_stat).irq_call_count++;
|
|
irq_exit();
|
|
|
|
if (wait) {
|
|
mb(); /* commit everything before setting finished */
|
|
atomic_inc(&call_data->finished);
|
|
}
|
|
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
int xen_smp_call_function_mask(cpumask_t mask, void (*func)(void *),
|
|
void *info, int wait)
|
|
{
|
|
struct call_data_struct data;
|
|
int cpus, cpu;
|
|
bool yield;
|
|
|
|
/* Holding any lock stops cpus from going down. */
|
|
spin_lock(&call_lock);
|
|
|
|
cpu_clear(smp_processor_id(), mask);
|
|
|
|
cpus = cpus_weight(mask);
|
|
if (!cpus) {
|
|
spin_unlock(&call_lock);
|
|
return 0;
|
|
}
|
|
|
|
/* Can deadlock when called with interrupts disabled */
|
|
WARN_ON(irqs_disabled());
|
|
|
|
data.func = func;
|
|
data.info = info;
|
|
atomic_set(&data.started, 0);
|
|
data.wait = wait;
|
|
if (wait)
|
|
atomic_set(&data.finished, 0);
|
|
|
|
call_data = &data;
|
|
mb(); /* write everything before IPI */
|
|
|
|
/* Send a message to other CPUs and wait for them to respond */
|
|
xen_send_IPI_mask(mask, XEN_CALL_FUNCTION_VECTOR);
|
|
|
|
/* Make sure other vcpus get a chance to run if they need to. */
|
|
yield = false;
|
|
for_each_cpu_mask(cpu, mask)
|
|
if (xen_vcpu_stolen(cpu))
|
|
yield = true;
|
|
|
|
if (yield)
|
|
HYPERVISOR_sched_op(SCHEDOP_yield, 0);
|
|
|
|
/* Wait for response */
|
|
while (atomic_read(&data.started) != cpus ||
|
|
(wait && atomic_read(&data.finished) != cpus))
|
|
cpu_relax();
|
|
|
|
spin_unlock(&call_lock);
|
|
|
|
return 0;
|
|
}
|