android_kernel_motorola_sm6225/drivers/crypto/hifn_795x.c
Yang Hongyang 284901a90a dma-mapping: replace all DMA_32BIT_MASK macro with DMA_BIT_MASK(32)
Replace all DMA_32BIT_MASK macro with DMA_BIT_MASK(32)

Signed-off-by: Yang Hongyang<yanghy@cn.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-04-07 08:31:11 -07:00

2805 lines
77 KiB
C

/*
* 2007+ Copyright (c) Evgeniy Polyakov <johnpol@2ka.mipt.ru>
* All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/moduleparam.h>
#include <linux/mod_devicetable.h>
#include <linux/interrupt.h>
#include <linux/pci.h>
#include <linux/slab.h>
#include <linux/delay.h>
#include <linux/mm.h>
#include <linux/dma-mapping.h>
#include <linux/scatterlist.h>
#include <linux/highmem.h>
#include <linux/crypto.h>
#include <linux/hw_random.h>
#include <linux/ktime.h>
#include <crypto/algapi.h>
#include <crypto/des.h>
#include <asm/kmap_types.h>
//#define HIFN_DEBUG
#ifdef HIFN_DEBUG
#define dprintk(f, a...) printk(f, ##a)
#else
#define dprintk(f, a...) do {} while (0)
#endif
static char hifn_pll_ref[sizeof("extNNN")] = "ext";
module_param_string(hifn_pll_ref, hifn_pll_ref, sizeof(hifn_pll_ref), 0444);
MODULE_PARM_DESC(hifn_pll_ref,
"PLL reference clock (pci[freq] or ext[freq], default ext)");
static atomic_t hifn_dev_number;
#define ACRYPTO_OP_DECRYPT 0
#define ACRYPTO_OP_ENCRYPT 1
#define ACRYPTO_OP_HMAC 2
#define ACRYPTO_OP_RNG 3
#define ACRYPTO_MODE_ECB 0
#define ACRYPTO_MODE_CBC 1
#define ACRYPTO_MODE_CFB 2
#define ACRYPTO_MODE_OFB 3
#define ACRYPTO_TYPE_AES_128 0
#define ACRYPTO_TYPE_AES_192 1
#define ACRYPTO_TYPE_AES_256 2
#define ACRYPTO_TYPE_3DES 3
#define ACRYPTO_TYPE_DES 4
#define PCI_VENDOR_ID_HIFN 0x13A3
#define PCI_DEVICE_ID_HIFN_7955 0x0020
#define PCI_DEVICE_ID_HIFN_7956 0x001d
/* I/O region sizes */
#define HIFN_BAR0_SIZE 0x1000
#define HIFN_BAR1_SIZE 0x2000
#define HIFN_BAR2_SIZE 0x8000
/* DMA registres */
#define HIFN_DMA_CRA 0x0C /* DMA Command Ring Address */
#define HIFN_DMA_SDRA 0x1C /* DMA Source Data Ring Address */
#define HIFN_DMA_RRA 0x2C /* DMA Result Ring Address */
#define HIFN_DMA_DDRA 0x3C /* DMA Destination Data Ring Address */
#define HIFN_DMA_STCTL 0x40 /* DMA Status and Control */
#define HIFN_DMA_INTREN 0x44 /* DMA Interrupt Enable */
#define HIFN_DMA_CFG1 0x48 /* DMA Configuration #1 */
#define HIFN_DMA_CFG2 0x6C /* DMA Configuration #2 */
#define HIFN_CHIP_ID 0x98 /* Chip ID */
/*
* Processing Unit Registers (offset from BASEREG0)
*/
#define HIFN_0_PUDATA 0x00 /* Processing Unit Data */
#define HIFN_0_PUCTRL 0x04 /* Processing Unit Control */
#define HIFN_0_PUISR 0x08 /* Processing Unit Interrupt Status */
#define HIFN_0_PUCNFG 0x0c /* Processing Unit Configuration */
#define HIFN_0_PUIER 0x10 /* Processing Unit Interrupt Enable */
#define HIFN_0_PUSTAT 0x14 /* Processing Unit Status/Chip ID */
#define HIFN_0_FIFOSTAT 0x18 /* FIFO Status */
#define HIFN_0_FIFOCNFG 0x1c /* FIFO Configuration */
#define HIFN_0_SPACESIZE 0x20 /* Register space size */
/* Processing Unit Control Register (HIFN_0_PUCTRL) */
#define HIFN_PUCTRL_CLRSRCFIFO 0x0010 /* clear source fifo */
#define HIFN_PUCTRL_STOP 0x0008 /* stop pu */
#define HIFN_PUCTRL_LOCKRAM 0x0004 /* lock ram */
#define HIFN_PUCTRL_DMAENA 0x0002 /* enable dma */
#define HIFN_PUCTRL_RESET 0x0001 /* Reset processing unit */
/* Processing Unit Interrupt Status Register (HIFN_0_PUISR) */
#define HIFN_PUISR_CMDINVAL 0x8000 /* Invalid command interrupt */
#define HIFN_PUISR_DATAERR 0x4000 /* Data error interrupt */
#define HIFN_PUISR_SRCFIFO 0x2000 /* Source FIFO ready interrupt */
#define HIFN_PUISR_DSTFIFO 0x1000 /* Destination FIFO ready interrupt */
#define HIFN_PUISR_DSTOVER 0x0200 /* Destination overrun interrupt */
#define HIFN_PUISR_SRCCMD 0x0080 /* Source command interrupt */
#define HIFN_PUISR_SRCCTX 0x0040 /* Source context interrupt */
#define HIFN_PUISR_SRCDATA 0x0020 /* Source data interrupt */
#define HIFN_PUISR_DSTDATA 0x0010 /* Destination data interrupt */
#define HIFN_PUISR_DSTRESULT 0x0004 /* Destination result interrupt */
/* Processing Unit Configuration Register (HIFN_0_PUCNFG) */
#define HIFN_PUCNFG_DRAMMASK 0xe000 /* DRAM size mask */
#define HIFN_PUCNFG_DSZ_256K 0x0000 /* 256k dram */
#define HIFN_PUCNFG_DSZ_512K 0x2000 /* 512k dram */
#define HIFN_PUCNFG_DSZ_1M 0x4000 /* 1m dram */
#define HIFN_PUCNFG_DSZ_2M 0x6000 /* 2m dram */
#define HIFN_PUCNFG_DSZ_4M 0x8000 /* 4m dram */
#define HIFN_PUCNFG_DSZ_8M 0xa000 /* 8m dram */
#define HIFN_PUNCFG_DSZ_16M 0xc000 /* 16m dram */
#define HIFN_PUCNFG_DSZ_32M 0xe000 /* 32m dram */
#define HIFN_PUCNFG_DRAMREFRESH 0x1800 /* DRAM refresh rate mask */
#define HIFN_PUCNFG_DRFR_512 0x0000 /* 512 divisor of ECLK */
#define HIFN_PUCNFG_DRFR_256 0x0800 /* 256 divisor of ECLK */
#define HIFN_PUCNFG_DRFR_128 0x1000 /* 128 divisor of ECLK */
#define HIFN_PUCNFG_TCALLPHASES 0x0200 /* your guess is as good as mine... */
#define HIFN_PUCNFG_TCDRVTOTEM 0x0100 /* your guess is as good as mine... */
#define HIFN_PUCNFG_BIGENDIAN 0x0080 /* DMA big endian mode */
#define HIFN_PUCNFG_BUS32 0x0040 /* Bus width 32bits */
#define HIFN_PUCNFG_BUS16 0x0000 /* Bus width 16 bits */
#define HIFN_PUCNFG_CHIPID 0x0020 /* Allow chipid from PUSTAT */
#define HIFN_PUCNFG_DRAM 0x0010 /* Context RAM is DRAM */
#define HIFN_PUCNFG_SRAM 0x0000 /* Context RAM is SRAM */
#define HIFN_PUCNFG_COMPSING 0x0004 /* Enable single compression context */
#define HIFN_PUCNFG_ENCCNFG 0x0002 /* Encryption configuration */
/* Processing Unit Interrupt Enable Register (HIFN_0_PUIER) */
#define HIFN_PUIER_CMDINVAL 0x8000 /* Invalid command interrupt */
#define HIFN_PUIER_DATAERR 0x4000 /* Data error interrupt */
#define HIFN_PUIER_SRCFIFO 0x2000 /* Source FIFO ready interrupt */
#define HIFN_PUIER_DSTFIFO 0x1000 /* Destination FIFO ready interrupt */
#define HIFN_PUIER_DSTOVER 0x0200 /* Destination overrun interrupt */
#define HIFN_PUIER_SRCCMD 0x0080 /* Source command interrupt */
#define HIFN_PUIER_SRCCTX 0x0040 /* Source context interrupt */
#define HIFN_PUIER_SRCDATA 0x0020 /* Source data interrupt */
#define HIFN_PUIER_DSTDATA 0x0010 /* Destination data interrupt */
#define HIFN_PUIER_DSTRESULT 0x0004 /* Destination result interrupt */
/* Processing Unit Status Register/Chip ID (HIFN_0_PUSTAT) */
#define HIFN_PUSTAT_CMDINVAL 0x8000 /* Invalid command interrupt */
#define HIFN_PUSTAT_DATAERR 0x4000 /* Data error interrupt */
#define HIFN_PUSTAT_SRCFIFO 0x2000 /* Source FIFO ready interrupt */
#define HIFN_PUSTAT_DSTFIFO 0x1000 /* Destination FIFO ready interrupt */
#define HIFN_PUSTAT_DSTOVER 0x0200 /* Destination overrun interrupt */
#define HIFN_PUSTAT_SRCCMD 0x0080 /* Source command interrupt */
#define HIFN_PUSTAT_SRCCTX 0x0040 /* Source context interrupt */
#define HIFN_PUSTAT_SRCDATA 0x0020 /* Source data interrupt */
#define HIFN_PUSTAT_DSTDATA 0x0010 /* Destination data interrupt */
#define HIFN_PUSTAT_DSTRESULT 0x0004 /* Destination result interrupt */
#define HIFN_PUSTAT_CHIPREV 0x00ff /* Chip revision mask */
#define HIFN_PUSTAT_CHIPENA 0xff00 /* Chip enabled mask */
#define HIFN_PUSTAT_ENA_2 0x1100 /* Level 2 enabled */
#define HIFN_PUSTAT_ENA_1 0x1000 /* Level 1 enabled */
#define HIFN_PUSTAT_ENA_0 0x3000 /* Level 0 enabled */
#define HIFN_PUSTAT_REV_2 0x0020 /* 7751 PT6/2 */
#define HIFN_PUSTAT_REV_3 0x0030 /* 7751 PT6/3 */
/* FIFO Status Register (HIFN_0_FIFOSTAT) */
#define HIFN_FIFOSTAT_SRC 0x7f00 /* Source FIFO available */
#define HIFN_FIFOSTAT_DST 0x007f /* Destination FIFO available */
/* FIFO Configuration Register (HIFN_0_FIFOCNFG) */
#define HIFN_FIFOCNFG_THRESHOLD 0x0400 /* must be written as 1 */
/*
* DMA Interface Registers (offset from BASEREG1)
*/
#define HIFN_1_DMA_CRAR 0x0c /* DMA Command Ring Address */
#define HIFN_1_DMA_SRAR 0x1c /* DMA Source Ring Address */
#define HIFN_1_DMA_RRAR 0x2c /* DMA Result Ring Address */
#define HIFN_1_DMA_DRAR 0x3c /* DMA Destination Ring Address */
#define HIFN_1_DMA_CSR 0x40 /* DMA Status and Control */
#define HIFN_1_DMA_IER 0x44 /* DMA Interrupt Enable */
#define HIFN_1_DMA_CNFG 0x48 /* DMA Configuration */
#define HIFN_1_PLL 0x4c /* 795x: PLL config */
#define HIFN_1_7811_RNGENA 0x60 /* 7811: rng enable */
#define HIFN_1_7811_RNGCFG 0x64 /* 7811: rng config */
#define HIFN_1_7811_RNGDAT 0x68 /* 7811: rng data */
#define HIFN_1_7811_RNGSTS 0x6c /* 7811: rng status */
#define HIFN_1_7811_MIPSRST 0x94 /* 7811: MIPS reset */
#define HIFN_1_REVID 0x98 /* Revision ID */
#define HIFN_1_UNLOCK_SECRET1 0xf4
#define HIFN_1_UNLOCK_SECRET2 0xfc
#define HIFN_1_PUB_RESET 0x204 /* Public/RNG Reset */
#define HIFN_1_PUB_BASE 0x300 /* Public Base Address */
#define HIFN_1_PUB_OPLEN 0x304 /* Public Operand Length */
#define HIFN_1_PUB_OP 0x308 /* Public Operand */
#define HIFN_1_PUB_STATUS 0x30c /* Public Status */
#define HIFN_1_PUB_IEN 0x310 /* Public Interrupt enable */
#define HIFN_1_RNG_CONFIG 0x314 /* RNG config */
#define HIFN_1_RNG_DATA 0x318 /* RNG data */
#define HIFN_1_PUB_MEM 0x400 /* start of Public key memory */
#define HIFN_1_PUB_MEMEND 0xbff /* end of Public key memory */
/* DMA Status and Control Register (HIFN_1_DMA_CSR) */
#define HIFN_DMACSR_D_CTRLMASK 0xc0000000 /* Destinition Ring Control */
#define HIFN_DMACSR_D_CTRL_NOP 0x00000000 /* Dest. Control: no-op */
#define HIFN_DMACSR_D_CTRL_DIS 0x40000000 /* Dest. Control: disable */
#define HIFN_DMACSR_D_CTRL_ENA 0x80000000 /* Dest. Control: enable */
#define HIFN_DMACSR_D_ABORT 0x20000000 /* Destinition Ring PCIAbort */
#define HIFN_DMACSR_D_DONE 0x10000000 /* Destinition Ring Done */
#define HIFN_DMACSR_D_LAST 0x08000000 /* Destinition Ring Last */
#define HIFN_DMACSR_D_WAIT 0x04000000 /* Destinition Ring Waiting */
#define HIFN_DMACSR_D_OVER 0x02000000 /* Destinition Ring Overflow */
#define HIFN_DMACSR_R_CTRL 0x00c00000 /* Result Ring Control */
#define HIFN_DMACSR_R_CTRL_NOP 0x00000000 /* Result Control: no-op */
#define HIFN_DMACSR_R_CTRL_DIS 0x00400000 /* Result Control: disable */
#define HIFN_DMACSR_R_CTRL_ENA 0x00800000 /* Result Control: enable */
#define HIFN_DMACSR_R_ABORT 0x00200000 /* Result Ring PCI Abort */
#define HIFN_DMACSR_R_DONE 0x00100000 /* Result Ring Done */
#define HIFN_DMACSR_R_LAST 0x00080000 /* Result Ring Last */
#define HIFN_DMACSR_R_WAIT 0x00040000 /* Result Ring Waiting */
#define HIFN_DMACSR_R_OVER 0x00020000 /* Result Ring Overflow */
#define HIFN_DMACSR_S_CTRL 0x0000c000 /* Source Ring Control */
#define HIFN_DMACSR_S_CTRL_NOP 0x00000000 /* Source Control: no-op */
#define HIFN_DMACSR_S_CTRL_DIS 0x00004000 /* Source Control: disable */
#define HIFN_DMACSR_S_CTRL_ENA 0x00008000 /* Source Control: enable */
#define HIFN_DMACSR_S_ABORT 0x00002000 /* Source Ring PCI Abort */
#define HIFN_DMACSR_S_DONE 0x00001000 /* Source Ring Done */
#define HIFN_DMACSR_S_LAST 0x00000800 /* Source Ring Last */
#define HIFN_DMACSR_S_WAIT 0x00000400 /* Source Ring Waiting */
#define HIFN_DMACSR_ILLW 0x00000200 /* Illegal write (7811 only) */
#define HIFN_DMACSR_ILLR 0x00000100 /* Illegal read (7811 only) */
#define HIFN_DMACSR_C_CTRL 0x000000c0 /* Command Ring Control */
#define HIFN_DMACSR_C_CTRL_NOP 0x00000000 /* Command Control: no-op */
#define HIFN_DMACSR_C_CTRL_DIS 0x00000040 /* Command Control: disable */
#define HIFN_DMACSR_C_CTRL_ENA 0x00000080 /* Command Control: enable */
#define HIFN_DMACSR_C_ABORT 0x00000020 /* Command Ring PCI Abort */
#define HIFN_DMACSR_C_DONE 0x00000010 /* Command Ring Done */
#define HIFN_DMACSR_C_LAST 0x00000008 /* Command Ring Last */
#define HIFN_DMACSR_C_WAIT 0x00000004 /* Command Ring Waiting */
#define HIFN_DMACSR_PUBDONE 0x00000002 /* Public op done (7951 only) */
#define HIFN_DMACSR_ENGINE 0x00000001 /* Command Ring Engine IRQ */
/* DMA Interrupt Enable Register (HIFN_1_DMA_IER) */
#define HIFN_DMAIER_D_ABORT 0x20000000 /* Destination Ring PCIAbort */
#define HIFN_DMAIER_D_DONE 0x10000000 /* Destination Ring Done */
#define HIFN_DMAIER_D_LAST 0x08000000 /* Destination Ring Last */
#define HIFN_DMAIER_D_WAIT 0x04000000 /* Destination Ring Waiting */
#define HIFN_DMAIER_D_OVER 0x02000000 /* Destination Ring Overflow */
#define HIFN_DMAIER_R_ABORT 0x00200000 /* Result Ring PCI Abort */
#define HIFN_DMAIER_R_DONE 0x00100000 /* Result Ring Done */
#define HIFN_DMAIER_R_LAST 0x00080000 /* Result Ring Last */
#define HIFN_DMAIER_R_WAIT 0x00040000 /* Result Ring Waiting */
#define HIFN_DMAIER_R_OVER 0x00020000 /* Result Ring Overflow */
#define HIFN_DMAIER_S_ABORT 0x00002000 /* Source Ring PCI Abort */
#define HIFN_DMAIER_S_DONE 0x00001000 /* Source Ring Done */
#define HIFN_DMAIER_S_LAST 0x00000800 /* Source Ring Last */
#define HIFN_DMAIER_S_WAIT 0x00000400 /* Source Ring Waiting */
#define HIFN_DMAIER_ILLW 0x00000200 /* Illegal write (7811 only) */
#define HIFN_DMAIER_ILLR 0x00000100 /* Illegal read (7811 only) */
#define HIFN_DMAIER_C_ABORT 0x00000020 /* Command Ring PCI Abort */
#define HIFN_DMAIER_C_DONE 0x00000010 /* Command Ring Done */
#define HIFN_DMAIER_C_LAST 0x00000008 /* Command Ring Last */
#define HIFN_DMAIER_C_WAIT 0x00000004 /* Command Ring Waiting */
#define HIFN_DMAIER_PUBDONE 0x00000002 /* public op done (7951 only) */
#define HIFN_DMAIER_ENGINE 0x00000001 /* Engine IRQ */
/* DMA Configuration Register (HIFN_1_DMA_CNFG) */
#define HIFN_DMACNFG_BIGENDIAN 0x10000000 /* big endian mode */
#define HIFN_DMACNFG_POLLFREQ 0x00ff0000 /* Poll frequency mask */
#define HIFN_DMACNFG_UNLOCK 0x00000800
#define HIFN_DMACNFG_POLLINVAL 0x00000700 /* Invalid Poll Scalar */
#define HIFN_DMACNFG_LAST 0x00000010 /* Host control LAST bit */
#define HIFN_DMACNFG_MODE 0x00000004 /* DMA mode */
#define HIFN_DMACNFG_DMARESET 0x00000002 /* DMA Reset # */
#define HIFN_DMACNFG_MSTRESET 0x00000001 /* Master Reset # */
/* PLL configuration register */
#define HIFN_PLL_REF_CLK_HBI 0x00000000 /* HBI reference clock */
#define HIFN_PLL_REF_CLK_PLL 0x00000001 /* PLL reference clock */
#define HIFN_PLL_BP 0x00000002 /* Reference clock bypass */
#define HIFN_PLL_PK_CLK_HBI 0x00000000 /* PK engine HBI clock */
#define HIFN_PLL_PK_CLK_PLL 0x00000008 /* PK engine PLL clock */
#define HIFN_PLL_PE_CLK_HBI 0x00000000 /* PE engine HBI clock */
#define HIFN_PLL_PE_CLK_PLL 0x00000010 /* PE engine PLL clock */
#define HIFN_PLL_RESERVED_1 0x00000400 /* Reserved bit, must be 1 */
#define HIFN_PLL_ND_SHIFT 11 /* Clock multiplier shift */
#define HIFN_PLL_ND_MULT_2 0x00000000 /* PLL clock multiplier 2 */
#define HIFN_PLL_ND_MULT_4 0x00000800 /* PLL clock multiplier 4 */
#define HIFN_PLL_ND_MULT_6 0x00001000 /* PLL clock multiplier 6 */
#define HIFN_PLL_ND_MULT_8 0x00001800 /* PLL clock multiplier 8 */
#define HIFN_PLL_ND_MULT_10 0x00002000 /* PLL clock multiplier 10 */
#define HIFN_PLL_ND_MULT_12 0x00002800 /* PLL clock multiplier 12 */
#define HIFN_PLL_IS_1_8 0x00000000 /* charge pump (mult. 1-8) */
#define HIFN_PLL_IS_9_12 0x00010000 /* charge pump (mult. 9-12) */
#define HIFN_PLL_FCK_MAX 266 /* Maximum PLL frequency */
/* Public key reset register (HIFN_1_PUB_RESET) */
#define HIFN_PUBRST_RESET 0x00000001 /* reset public/rng unit */
/* Public base address register (HIFN_1_PUB_BASE) */
#define HIFN_PUBBASE_ADDR 0x00003fff /* base address */
/* Public operand length register (HIFN_1_PUB_OPLEN) */
#define HIFN_PUBOPLEN_MOD_M 0x0000007f /* modulus length mask */
#define HIFN_PUBOPLEN_MOD_S 0 /* modulus length shift */
#define HIFN_PUBOPLEN_EXP_M 0x0003ff80 /* exponent length mask */
#define HIFN_PUBOPLEN_EXP_S 7 /* exponent lenght shift */
#define HIFN_PUBOPLEN_RED_M 0x003c0000 /* reducend length mask */
#define HIFN_PUBOPLEN_RED_S 18 /* reducend length shift */
/* Public operation register (HIFN_1_PUB_OP) */
#define HIFN_PUBOP_AOFFSET_M 0x0000007f /* A offset mask */
#define HIFN_PUBOP_AOFFSET_S 0 /* A offset shift */
#define HIFN_PUBOP_BOFFSET_M 0x00000f80 /* B offset mask */
#define HIFN_PUBOP_BOFFSET_S 7 /* B offset shift */
#define HIFN_PUBOP_MOFFSET_M 0x0003f000 /* M offset mask */
#define HIFN_PUBOP_MOFFSET_S 12 /* M offset shift */
#define HIFN_PUBOP_OP_MASK 0x003c0000 /* Opcode: */
#define HIFN_PUBOP_OP_NOP 0x00000000 /* NOP */
#define HIFN_PUBOP_OP_ADD 0x00040000 /* ADD */
#define HIFN_PUBOP_OP_ADDC 0x00080000 /* ADD w/carry */
#define HIFN_PUBOP_OP_SUB 0x000c0000 /* SUB */
#define HIFN_PUBOP_OP_SUBC 0x00100000 /* SUB w/carry */
#define HIFN_PUBOP_OP_MODADD 0x00140000 /* Modular ADD */
#define HIFN_PUBOP_OP_MODSUB 0x00180000 /* Modular SUB */
#define HIFN_PUBOP_OP_INCA 0x001c0000 /* INC A */
#define HIFN_PUBOP_OP_DECA 0x00200000 /* DEC A */
#define HIFN_PUBOP_OP_MULT 0x00240000 /* MULT */
#define HIFN_PUBOP_OP_MODMULT 0x00280000 /* Modular MULT */
#define HIFN_PUBOP_OP_MODRED 0x002c0000 /* Modular RED */
#define HIFN_PUBOP_OP_MODEXP 0x00300000 /* Modular EXP */
/* Public status register (HIFN_1_PUB_STATUS) */
#define HIFN_PUBSTS_DONE 0x00000001 /* operation done */
#define HIFN_PUBSTS_CARRY 0x00000002 /* carry */
/* Public interrupt enable register (HIFN_1_PUB_IEN) */
#define HIFN_PUBIEN_DONE 0x00000001 /* operation done interrupt */
/* Random number generator config register (HIFN_1_RNG_CONFIG) */
#define HIFN_RNGCFG_ENA 0x00000001 /* enable rng */
#define HIFN_NAMESIZE 32
#define HIFN_MAX_RESULT_ORDER 5
#define HIFN_D_CMD_RSIZE 24*1
#define HIFN_D_SRC_RSIZE 80*1
#define HIFN_D_DST_RSIZE 80*1
#define HIFN_D_RES_RSIZE 24*1
#define HIFN_D_DST_DALIGN 4
#define HIFN_QUEUE_LENGTH (HIFN_D_CMD_RSIZE - 1)
#define AES_MIN_KEY_SIZE 16
#define AES_MAX_KEY_SIZE 32
#define HIFN_DES_KEY_LENGTH 8
#define HIFN_3DES_KEY_LENGTH 24
#define HIFN_MAX_CRYPT_KEY_LENGTH AES_MAX_KEY_SIZE
#define HIFN_IV_LENGTH 8
#define HIFN_AES_IV_LENGTH 16
#define HIFN_MAX_IV_LENGTH HIFN_AES_IV_LENGTH
#define HIFN_MAC_KEY_LENGTH 64
#define HIFN_MD5_LENGTH 16
#define HIFN_SHA1_LENGTH 20
#define HIFN_MAC_TRUNC_LENGTH 12
#define HIFN_MAX_COMMAND (8 + 8 + 8 + 64 + 260)
#define HIFN_MAX_RESULT (8 + 4 + 4 + 20 + 4)
#define HIFN_USED_RESULT 12
struct hifn_desc
{
volatile __le32 l;
volatile __le32 p;
};
struct hifn_dma {
struct hifn_desc cmdr[HIFN_D_CMD_RSIZE+1];
struct hifn_desc srcr[HIFN_D_SRC_RSIZE+1];
struct hifn_desc dstr[HIFN_D_DST_RSIZE+1];
struct hifn_desc resr[HIFN_D_RES_RSIZE+1];
u8 command_bufs[HIFN_D_CMD_RSIZE][HIFN_MAX_COMMAND];
u8 result_bufs[HIFN_D_CMD_RSIZE][HIFN_MAX_RESULT];
/*
* Our current positions for insertion and removal from the descriptor
* rings.
*/
volatile int cmdi, srci, dsti, resi;
volatile int cmdu, srcu, dstu, resu;
int cmdk, srck, dstk, resk;
};
#define HIFN_FLAG_CMD_BUSY (1<<0)
#define HIFN_FLAG_SRC_BUSY (1<<1)
#define HIFN_FLAG_DST_BUSY (1<<2)
#define HIFN_FLAG_RES_BUSY (1<<3)
#define HIFN_FLAG_OLD_KEY (1<<4)
#define HIFN_DEFAULT_ACTIVE_NUM 5
struct hifn_device
{
char name[HIFN_NAMESIZE];
int irq;
struct pci_dev *pdev;
void __iomem *bar[3];
void *desc_virt;
dma_addr_t desc_dma;
u32 dmareg;
void *sa[HIFN_D_RES_RSIZE];
spinlock_t lock;
u32 flags;
int active, started;
struct delayed_work work;
unsigned long reset;
unsigned long success;
unsigned long prev_success;
u8 snum;
struct tasklet_struct tasklet;
struct crypto_queue queue;
struct list_head alg_list;
unsigned int pk_clk_freq;
#ifdef CONFIG_CRYPTO_DEV_HIFN_795X_RNG
unsigned int rng_wait_time;
ktime_t rngtime;
struct hwrng rng;
#endif
};
#define HIFN_D_LENGTH 0x0000ffff
#define HIFN_D_NOINVALID 0x01000000
#define HIFN_D_MASKDONEIRQ 0x02000000
#define HIFN_D_DESTOVER 0x04000000
#define HIFN_D_OVER 0x08000000
#define HIFN_D_LAST 0x20000000
#define HIFN_D_JUMP 0x40000000
#define HIFN_D_VALID 0x80000000
struct hifn_base_command
{
volatile __le16 masks;
volatile __le16 session_num;
volatile __le16 total_source_count;
volatile __le16 total_dest_count;
};
#define HIFN_BASE_CMD_COMP 0x0100 /* enable compression engine */
#define HIFN_BASE_CMD_PAD 0x0200 /* enable padding engine */
#define HIFN_BASE_CMD_MAC 0x0400 /* enable MAC engine */
#define HIFN_BASE_CMD_CRYPT 0x0800 /* enable crypt engine */
#define HIFN_BASE_CMD_DECODE 0x2000
#define HIFN_BASE_CMD_SRCLEN_M 0xc000
#define HIFN_BASE_CMD_SRCLEN_S 14
#define HIFN_BASE_CMD_DSTLEN_M 0x3000
#define HIFN_BASE_CMD_DSTLEN_S 12
#define HIFN_BASE_CMD_LENMASK_HI 0x30000
#define HIFN_BASE_CMD_LENMASK_LO 0x0ffff
/*
* Structure to help build up the command data structure.
*/
struct hifn_crypt_command
{
volatile __le16 masks;
volatile __le16 header_skip;
volatile __le16 source_count;
volatile __le16 reserved;
};
#define HIFN_CRYPT_CMD_ALG_MASK 0x0003 /* algorithm: */
#define HIFN_CRYPT_CMD_ALG_DES 0x0000 /* DES */
#define HIFN_CRYPT_CMD_ALG_3DES 0x0001 /* 3DES */
#define HIFN_CRYPT_CMD_ALG_RC4 0x0002 /* RC4 */
#define HIFN_CRYPT_CMD_ALG_AES 0x0003 /* AES */
#define HIFN_CRYPT_CMD_MODE_MASK 0x0018 /* Encrypt mode: */
#define HIFN_CRYPT_CMD_MODE_ECB 0x0000 /* ECB */
#define HIFN_CRYPT_CMD_MODE_CBC 0x0008 /* CBC */
#define HIFN_CRYPT_CMD_MODE_CFB 0x0010 /* CFB */
#define HIFN_CRYPT_CMD_MODE_OFB 0x0018 /* OFB */
#define HIFN_CRYPT_CMD_CLR_CTX 0x0040 /* clear context */
#define HIFN_CRYPT_CMD_KSZ_MASK 0x0600 /* AES key size: */
#define HIFN_CRYPT_CMD_KSZ_128 0x0000 /* 128 bit */
#define HIFN_CRYPT_CMD_KSZ_192 0x0200 /* 192 bit */
#define HIFN_CRYPT_CMD_KSZ_256 0x0400 /* 256 bit */
#define HIFN_CRYPT_CMD_NEW_KEY 0x0800 /* expect new key */
#define HIFN_CRYPT_CMD_NEW_IV 0x1000 /* expect new iv */
#define HIFN_CRYPT_CMD_SRCLEN_M 0xc000
#define HIFN_CRYPT_CMD_SRCLEN_S 14
/*
* Structure to help build up the command data structure.
*/
struct hifn_mac_command
{
volatile __le16 masks;
volatile __le16 header_skip;
volatile __le16 source_count;
volatile __le16 reserved;
};
#define HIFN_MAC_CMD_ALG_MASK 0x0001
#define HIFN_MAC_CMD_ALG_SHA1 0x0000
#define HIFN_MAC_CMD_ALG_MD5 0x0001
#define HIFN_MAC_CMD_MODE_MASK 0x000c
#define HIFN_MAC_CMD_MODE_HMAC 0x0000
#define HIFN_MAC_CMD_MODE_SSL_MAC 0x0004
#define HIFN_MAC_CMD_MODE_HASH 0x0008
#define HIFN_MAC_CMD_MODE_FULL 0x0004
#define HIFN_MAC_CMD_TRUNC 0x0010
#define HIFN_MAC_CMD_RESULT 0x0020
#define HIFN_MAC_CMD_APPEND 0x0040
#define HIFN_MAC_CMD_SRCLEN_M 0xc000
#define HIFN_MAC_CMD_SRCLEN_S 14
/*
* MAC POS IPsec initiates authentication after encryption on encodes
* and before decryption on decodes.
*/
#define HIFN_MAC_CMD_POS_IPSEC 0x0200
#define HIFN_MAC_CMD_NEW_KEY 0x0800
struct hifn_comp_command
{
volatile __le16 masks;
volatile __le16 header_skip;
volatile __le16 source_count;
volatile __le16 reserved;
};
#define HIFN_COMP_CMD_SRCLEN_M 0xc000
#define HIFN_COMP_CMD_SRCLEN_S 14
#define HIFN_COMP_CMD_ONE 0x0100 /* must be one */
#define HIFN_COMP_CMD_CLEARHIST 0x0010 /* clear history */
#define HIFN_COMP_CMD_UPDATEHIST 0x0008 /* update history */
#define HIFN_COMP_CMD_LZS_STRIP0 0x0004 /* LZS: strip zero */
#define HIFN_COMP_CMD_MPPC_RESTART 0x0004 /* MPPC: restart */
#define HIFN_COMP_CMD_ALG_MASK 0x0001 /* compression mode: */
#define HIFN_COMP_CMD_ALG_MPPC 0x0001 /* MPPC */
#define HIFN_COMP_CMD_ALG_LZS 0x0000 /* LZS */
struct hifn_base_result
{
volatile __le16 flags;
volatile __le16 session;
volatile __le16 src_cnt; /* 15:0 of source count */
volatile __le16 dst_cnt; /* 15:0 of dest count */
};
#define HIFN_BASE_RES_DSTOVERRUN 0x0200 /* destination overrun */
#define HIFN_BASE_RES_SRCLEN_M 0xc000 /* 17:16 of source count */
#define HIFN_BASE_RES_SRCLEN_S 14
#define HIFN_BASE_RES_DSTLEN_M 0x3000 /* 17:16 of dest count */
#define HIFN_BASE_RES_DSTLEN_S 12
struct hifn_comp_result
{
volatile __le16 flags;
volatile __le16 crc;
};
#define HIFN_COMP_RES_LCB_M 0xff00 /* longitudinal check byte */
#define HIFN_COMP_RES_LCB_S 8
#define HIFN_COMP_RES_RESTART 0x0004 /* MPPC: restart */
#define HIFN_COMP_RES_ENDMARKER 0x0002 /* LZS: end marker seen */
#define HIFN_COMP_RES_SRC_NOTZERO 0x0001 /* source expired */
struct hifn_mac_result
{
volatile __le16 flags;
volatile __le16 reserved;
/* followed by 0, 6, 8, or 10 u16's of the MAC, then crypt */
};
#define HIFN_MAC_RES_MISCOMPARE 0x0002 /* compare failed */
#define HIFN_MAC_RES_SRC_NOTZERO 0x0001 /* source expired */
struct hifn_crypt_result
{
volatile __le16 flags;
volatile __le16 reserved;
};
#define HIFN_CRYPT_RES_SRC_NOTZERO 0x0001 /* source expired */
#ifndef HIFN_POLL_FREQUENCY
#define HIFN_POLL_FREQUENCY 0x1
#endif
#ifndef HIFN_POLL_SCALAR
#define HIFN_POLL_SCALAR 0x0
#endif
#define HIFN_MAX_SEGLEN 0xffff /* maximum dma segment len */
#define HIFN_MAX_DMALEN 0x3ffff /* maximum dma length */
struct hifn_crypto_alg
{
struct list_head entry;
struct crypto_alg alg;
struct hifn_device *dev;
};
#define ASYNC_SCATTERLIST_CACHE 16
#define ASYNC_FLAGS_MISALIGNED (1<<0)
struct ablkcipher_walk
{
struct scatterlist cache[ASYNC_SCATTERLIST_CACHE];
u32 flags;
int num;
};
struct hifn_context
{
u8 key[HIFN_MAX_CRYPT_KEY_LENGTH];
struct hifn_device *dev;
unsigned int keysize;
};
struct hifn_request_context
{
u8 *iv;
unsigned int ivsize;
u8 op, type, mode, unused;
struct ablkcipher_walk walk;
};
#define crypto_alg_to_hifn(a) container_of(a, struct hifn_crypto_alg, alg)
static inline u32 hifn_read_0(struct hifn_device *dev, u32 reg)
{
u32 ret;
ret = readl(dev->bar[0] + reg);
return ret;
}
static inline u32 hifn_read_1(struct hifn_device *dev, u32 reg)
{
u32 ret;
ret = readl(dev->bar[1] + reg);
return ret;
}
static inline void hifn_write_0(struct hifn_device *dev, u32 reg, u32 val)
{
writel((__force u32)cpu_to_le32(val), dev->bar[0] + reg);
}
static inline void hifn_write_1(struct hifn_device *dev, u32 reg, u32 val)
{
writel((__force u32)cpu_to_le32(val), dev->bar[1] + reg);
}
static void hifn_wait_puc(struct hifn_device *dev)
{
int i;
u32 ret;
for (i=10000; i > 0; --i) {
ret = hifn_read_0(dev, HIFN_0_PUCTRL);
if (!(ret & HIFN_PUCTRL_RESET))
break;
udelay(1);
}
if (!i)
dprintk("%s: Failed to reset PUC unit.\n", dev->name);
}
static void hifn_reset_puc(struct hifn_device *dev)
{
hifn_write_0(dev, HIFN_0_PUCTRL, HIFN_PUCTRL_DMAENA);
hifn_wait_puc(dev);
}
static void hifn_stop_device(struct hifn_device *dev)
{
hifn_write_1(dev, HIFN_1_DMA_CSR,
HIFN_DMACSR_D_CTRL_DIS | HIFN_DMACSR_R_CTRL_DIS |
HIFN_DMACSR_S_CTRL_DIS | HIFN_DMACSR_C_CTRL_DIS);
hifn_write_0(dev, HIFN_0_PUIER, 0);
hifn_write_1(dev, HIFN_1_DMA_IER, 0);
}
static void hifn_reset_dma(struct hifn_device *dev, int full)
{
hifn_stop_device(dev);
/*
* Setting poll frequency and others to 0.
*/
hifn_write_1(dev, HIFN_1_DMA_CNFG, HIFN_DMACNFG_MSTRESET |
HIFN_DMACNFG_DMARESET | HIFN_DMACNFG_MODE);
mdelay(1);
/*
* Reset DMA.
*/
if (full) {
hifn_write_1(dev, HIFN_1_DMA_CNFG, HIFN_DMACNFG_MODE);
mdelay(1);
} else {
hifn_write_1(dev, HIFN_1_DMA_CNFG, HIFN_DMACNFG_MODE |
HIFN_DMACNFG_MSTRESET);
hifn_reset_puc(dev);
}
hifn_write_1(dev, HIFN_1_DMA_CNFG, HIFN_DMACNFG_MSTRESET |
HIFN_DMACNFG_DMARESET | HIFN_DMACNFG_MODE);
hifn_reset_puc(dev);
}
static u32 hifn_next_signature(u_int32_t a, u_int cnt)
{
int i;
u32 v;
for (i = 0; i < cnt; i++) {
/* get the parity */
v = a & 0x80080125;
v ^= v >> 16;
v ^= v >> 8;
v ^= v >> 4;
v ^= v >> 2;
v ^= v >> 1;
a = (v & 1) ^ (a << 1);
}
return a;
}
static struct pci2id {
u_short pci_vendor;
u_short pci_prod;
char card_id[13];
} pci2id[] = {
{
PCI_VENDOR_ID_HIFN,
PCI_DEVICE_ID_HIFN_7955,
{ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00 }
},
{
PCI_VENDOR_ID_HIFN,
PCI_DEVICE_ID_HIFN_7956,
{ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00 }
}
};
#ifdef CONFIG_CRYPTO_DEV_HIFN_795X_RNG
static int hifn_rng_data_present(struct hwrng *rng, int wait)
{
struct hifn_device *dev = (struct hifn_device *)rng->priv;
s64 nsec;
nsec = ktime_to_ns(ktime_sub(ktime_get(), dev->rngtime));
nsec -= dev->rng_wait_time;
if (nsec <= 0)
return 1;
if (!wait)
return 0;
ndelay(nsec);
return 1;
}
static int hifn_rng_data_read(struct hwrng *rng, u32 *data)
{
struct hifn_device *dev = (struct hifn_device *)rng->priv;
*data = hifn_read_1(dev, HIFN_1_RNG_DATA);
dev->rngtime = ktime_get();
return 4;
}
static int hifn_register_rng(struct hifn_device *dev)
{
/*
* We must wait at least 256 Pk_clk cycles between two reads of the rng.
*/
dev->rng_wait_time = DIV_ROUND_UP(NSEC_PER_SEC, dev->pk_clk_freq) *
256;
dev->rng.name = dev->name;
dev->rng.data_present = hifn_rng_data_present,
dev->rng.data_read = hifn_rng_data_read,
dev->rng.priv = (unsigned long)dev;
return hwrng_register(&dev->rng);
}
static void hifn_unregister_rng(struct hifn_device *dev)
{
hwrng_unregister(&dev->rng);
}
#else
#define hifn_register_rng(dev) 0
#define hifn_unregister_rng(dev)
#endif
static int hifn_init_pubrng(struct hifn_device *dev)
{
int i;
hifn_write_1(dev, HIFN_1_PUB_RESET, hifn_read_1(dev, HIFN_1_PUB_RESET) |
HIFN_PUBRST_RESET);
for (i=100; i > 0; --i) {
mdelay(1);
if ((hifn_read_1(dev, HIFN_1_PUB_RESET) & HIFN_PUBRST_RESET) == 0)
break;
}
if (!i)
dprintk("Chip %s: Failed to initialise public key engine.\n",
dev->name);
else {
hifn_write_1(dev, HIFN_1_PUB_IEN, HIFN_PUBIEN_DONE);
dev->dmareg |= HIFN_DMAIER_PUBDONE;
hifn_write_1(dev, HIFN_1_DMA_IER, dev->dmareg);
dprintk("Chip %s: Public key engine has been sucessfully "
"initialised.\n", dev->name);
}
/*
* Enable RNG engine.
*/
hifn_write_1(dev, HIFN_1_RNG_CONFIG,
hifn_read_1(dev, HIFN_1_RNG_CONFIG) | HIFN_RNGCFG_ENA);
dprintk("Chip %s: RNG engine has been successfully initialised.\n",
dev->name);
#ifdef CONFIG_CRYPTO_DEV_HIFN_795X_RNG
/* First value must be discarded */
hifn_read_1(dev, HIFN_1_RNG_DATA);
dev->rngtime = ktime_get();
#endif
return 0;
}
static int hifn_enable_crypto(struct hifn_device *dev)
{
u32 dmacfg, addr;
char *offtbl = NULL;
int i;
for (i = 0; i < ARRAY_SIZE(pci2id); i++) {
if (pci2id[i].pci_vendor == dev->pdev->vendor &&
pci2id[i].pci_prod == dev->pdev->device) {
offtbl = pci2id[i].card_id;
break;
}
}
if (offtbl == NULL) {
dprintk("Chip %s: Unknown card!\n", dev->name);
return -ENODEV;
}
dmacfg = hifn_read_1(dev, HIFN_1_DMA_CNFG);
hifn_write_1(dev, HIFN_1_DMA_CNFG,
HIFN_DMACNFG_UNLOCK | HIFN_DMACNFG_MSTRESET |
HIFN_DMACNFG_DMARESET | HIFN_DMACNFG_MODE);
mdelay(1);
addr = hifn_read_1(dev, HIFN_1_UNLOCK_SECRET1);
mdelay(1);
hifn_write_1(dev, HIFN_1_UNLOCK_SECRET2, 0);
mdelay(1);
for (i=0; i<12; ++i) {
addr = hifn_next_signature(addr, offtbl[i] + 0x101);
hifn_write_1(dev, HIFN_1_UNLOCK_SECRET2, addr);
mdelay(1);
}
hifn_write_1(dev, HIFN_1_DMA_CNFG, dmacfg);
dprintk("Chip %s: %s.\n", dev->name, pci_name(dev->pdev));
return 0;
}
static void hifn_init_dma(struct hifn_device *dev)
{
struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
u32 dptr = dev->desc_dma;
int i;
for (i=0; i<HIFN_D_CMD_RSIZE; ++i)
dma->cmdr[i].p = __cpu_to_le32(dptr +
offsetof(struct hifn_dma, command_bufs[i][0]));
for (i=0; i<HIFN_D_RES_RSIZE; ++i)
dma->resr[i].p = __cpu_to_le32(dptr +
offsetof(struct hifn_dma, result_bufs[i][0]));
/*
* Setup LAST descriptors.
*/
dma->cmdr[HIFN_D_CMD_RSIZE].p = __cpu_to_le32(dptr +
offsetof(struct hifn_dma, cmdr[0]));
dma->srcr[HIFN_D_SRC_RSIZE].p = __cpu_to_le32(dptr +
offsetof(struct hifn_dma, srcr[0]));
dma->dstr[HIFN_D_DST_RSIZE].p = __cpu_to_le32(dptr +
offsetof(struct hifn_dma, dstr[0]));
dma->resr[HIFN_D_RES_RSIZE].p = __cpu_to_le32(dptr +
offsetof(struct hifn_dma, resr[0]));
dma->cmdu = dma->srcu = dma->dstu = dma->resu = 0;
dma->cmdi = dma->srci = dma->dsti = dma->resi = 0;
dma->cmdk = dma->srck = dma->dstk = dma->resk = 0;
}
/*
* Initialize the PLL. We need to know the frequency of the reference clock
* to calculate the optimal multiplier. For PCI we assume 66MHz, since that
* allows us to operate without the risk of overclocking the chip. If it
* actually uses 33MHz, the chip will operate at half the speed, this can be
* overriden by specifying the frequency as module parameter (pci33).
*
* Unfortunately the PCI clock is not very suitable since the HIFN needs a
* stable clock and the PCI clock frequency may vary, so the default is the
* external clock. There is no way to find out its frequency, we default to
* 66MHz since according to Mike Ham of HiFn, almost every board in existence
* has an external crystal populated at 66MHz.
*/
static void hifn_init_pll(struct hifn_device *dev)
{
unsigned int freq, m;
u32 pllcfg;
pllcfg = HIFN_1_PLL | HIFN_PLL_RESERVED_1;
if (strncmp(hifn_pll_ref, "ext", 3) == 0)
pllcfg |= HIFN_PLL_REF_CLK_PLL;
else
pllcfg |= HIFN_PLL_REF_CLK_HBI;
if (hifn_pll_ref[3] != '\0')
freq = simple_strtoul(hifn_pll_ref + 3, NULL, 10);
else {
freq = 66;
printk(KERN_INFO "hifn795x: assuming %uMHz clock speed, "
"override with hifn_pll_ref=%.3s<frequency>\n",
freq, hifn_pll_ref);
}
m = HIFN_PLL_FCK_MAX / freq;
pllcfg |= (m / 2 - 1) << HIFN_PLL_ND_SHIFT;
if (m <= 8)
pllcfg |= HIFN_PLL_IS_1_8;
else
pllcfg |= HIFN_PLL_IS_9_12;
/* Select clock source and enable clock bypass */
hifn_write_1(dev, HIFN_1_PLL, pllcfg |
HIFN_PLL_PK_CLK_HBI | HIFN_PLL_PE_CLK_HBI | HIFN_PLL_BP);
/* Let the chip lock to the input clock */
mdelay(10);
/* Disable clock bypass */
hifn_write_1(dev, HIFN_1_PLL, pllcfg |
HIFN_PLL_PK_CLK_HBI | HIFN_PLL_PE_CLK_HBI);
/* Switch the engines to the PLL */
hifn_write_1(dev, HIFN_1_PLL, pllcfg |
HIFN_PLL_PK_CLK_PLL | HIFN_PLL_PE_CLK_PLL);
/*
* The Fpk_clk runs at half the total speed. Its frequency is needed to
* calculate the minimum time between two reads of the rng. Since 33MHz
* is actually 33.333... we overestimate the frequency here, resulting
* in slightly larger intervals.
*/
dev->pk_clk_freq = 1000000 * (freq + 1) * m / 2;
}
static void hifn_init_registers(struct hifn_device *dev)
{
u32 dptr = dev->desc_dma;
/* Initialization magic... */
hifn_write_0(dev, HIFN_0_PUCTRL, HIFN_PUCTRL_DMAENA);
hifn_write_0(dev, HIFN_0_FIFOCNFG, HIFN_FIFOCNFG_THRESHOLD);
hifn_write_0(dev, HIFN_0_PUIER, HIFN_PUIER_DSTOVER);
/* write all 4 ring address registers */
hifn_write_1(dev, HIFN_1_DMA_CRAR, dptr +
offsetof(struct hifn_dma, cmdr[0]));
hifn_write_1(dev, HIFN_1_DMA_SRAR, dptr +
offsetof(struct hifn_dma, srcr[0]));
hifn_write_1(dev, HIFN_1_DMA_DRAR, dptr +
offsetof(struct hifn_dma, dstr[0]));
hifn_write_1(dev, HIFN_1_DMA_RRAR, dptr +
offsetof(struct hifn_dma, resr[0]));
mdelay(2);
#if 0
hifn_write_1(dev, HIFN_1_DMA_CSR,
HIFN_DMACSR_D_CTRL_DIS | HIFN_DMACSR_R_CTRL_DIS |
HIFN_DMACSR_S_CTRL_DIS | HIFN_DMACSR_C_CTRL_DIS |
HIFN_DMACSR_D_ABORT | HIFN_DMACSR_D_DONE | HIFN_DMACSR_D_LAST |
HIFN_DMACSR_D_WAIT | HIFN_DMACSR_D_OVER |
HIFN_DMACSR_R_ABORT | HIFN_DMACSR_R_DONE | HIFN_DMACSR_R_LAST |
HIFN_DMACSR_R_WAIT | HIFN_DMACSR_R_OVER |
HIFN_DMACSR_S_ABORT | HIFN_DMACSR_S_DONE | HIFN_DMACSR_S_LAST |
HIFN_DMACSR_S_WAIT |
HIFN_DMACSR_C_ABORT | HIFN_DMACSR_C_DONE | HIFN_DMACSR_C_LAST |
HIFN_DMACSR_C_WAIT |
HIFN_DMACSR_ENGINE |
HIFN_DMACSR_PUBDONE);
#else
hifn_write_1(dev, HIFN_1_DMA_CSR,
HIFN_DMACSR_C_CTRL_ENA | HIFN_DMACSR_S_CTRL_ENA |
HIFN_DMACSR_D_CTRL_ENA | HIFN_DMACSR_R_CTRL_ENA |
HIFN_DMACSR_D_ABORT | HIFN_DMACSR_D_DONE | HIFN_DMACSR_D_LAST |
HIFN_DMACSR_D_WAIT | HIFN_DMACSR_D_OVER |
HIFN_DMACSR_R_ABORT | HIFN_DMACSR_R_DONE | HIFN_DMACSR_R_LAST |
HIFN_DMACSR_R_WAIT | HIFN_DMACSR_R_OVER |
HIFN_DMACSR_S_ABORT | HIFN_DMACSR_S_DONE | HIFN_DMACSR_S_LAST |
HIFN_DMACSR_S_WAIT |
HIFN_DMACSR_C_ABORT | HIFN_DMACSR_C_DONE | HIFN_DMACSR_C_LAST |
HIFN_DMACSR_C_WAIT |
HIFN_DMACSR_ENGINE |
HIFN_DMACSR_PUBDONE);
#endif
hifn_read_1(dev, HIFN_1_DMA_CSR);
dev->dmareg |= HIFN_DMAIER_R_DONE | HIFN_DMAIER_C_ABORT |
HIFN_DMAIER_D_OVER | HIFN_DMAIER_R_OVER |
HIFN_DMAIER_S_ABORT | HIFN_DMAIER_D_ABORT | HIFN_DMAIER_R_ABORT |
HIFN_DMAIER_ENGINE;
dev->dmareg &= ~HIFN_DMAIER_C_WAIT;
hifn_write_1(dev, HIFN_1_DMA_IER, dev->dmareg);
hifn_read_1(dev, HIFN_1_DMA_IER);
#if 0
hifn_write_0(dev, HIFN_0_PUCNFG, HIFN_PUCNFG_ENCCNFG |
HIFN_PUCNFG_DRFR_128 | HIFN_PUCNFG_TCALLPHASES |
HIFN_PUCNFG_TCDRVTOTEM | HIFN_PUCNFG_BUS32 |
HIFN_PUCNFG_DRAM);
#else
hifn_write_0(dev, HIFN_0_PUCNFG, 0x10342);
#endif
hifn_init_pll(dev);
hifn_write_0(dev, HIFN_0_PUISR, HIFN_PUISR_DSTOVER);
hifn_write_1(dev, HIFN_1_DMA_CNFG, HIFN_DMACNFG_MSTRESET |
HIFN_DMACNFG_DMARESET | HIFN_DMACNFG_MODE | HIFN_DMACNFG_LAST |
((HIFN_POLL_FREQUENCY << 16 ) & HIFN_DMACNFG_POLLFREQ) |
((HIFN_POLL_SCALAR << 8) & HIFN_DMACNFG_POLLINVAL));
}
static int hifn_setup_base_command(struct hifn_device *dev, u8 *buf,
unsigned dlen, unsigned slen, u16 mask, u8 snum)
{
struct hifn_base_command *base_cmd;
u8 *buf_pos = buf;
base_cmd = (struct hifn_base_command *)buf_pos;
base_cmd->masks = __cpu_to_le16(mask);
base_cmd->total_source_count =
__cpu_to_le16(slen & HIFN_BASE_CMD_LENMASK_LO);
base_cmd->total_dest_count =
__cpu_to_le16(dlen & HIFN_BASE_CMD_LENMASK_LO);
dlen >>= 16;
slen >>= 16;
base_cmd->session_num = __cpu_to_le16(snum |
((slen << HIFN_BASE_CMD_SRCLEN_S) & HIFN_BASE_CMD_SRCLEN_M) |
((dlen << HIFN_BASE_CMD_DSTLEN_S) & HIFN_BASE_CMD_DSTLEN_M));
return sizeof(struct hifn_base_command);
}
static int hifn_setup_crypto_command(struct hifn_device *dev,
u8 *buf, unsigned dlen, unsigned slen,
u8 *key, int keylen, u8 *iv, int ivsize, u16 mode)
{
struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
struct hifn_crypt_command *cry_cmd;
u8 *buf_pos = buf;
u16 cmd_len;
cry_cmd = (struct hifn_crypt_command *)buf_pos;
cry_cmd->source_count = __cpu_to_le16(dlen & 0xffff);
dlen >>= 16;
cry_cmd->masks = __cpu_to_le16(mode |
((dlen << HIFN_CRYPT_CMD_SRCLEN_S) &
HIFN_CRYPT_CMD_SRCLEN_M));
cry_cmd->header_skip = 0;
cry_cmd->reserved = 0;
buf_pos += sizeof(struct hifn_crypt_command);
dma->cmdu++;
if (dma->cmdu > 1) {
dev->dmareg |= HIFN_DMAIER_C_WAIT;
hifn_write_1(dev, HIFN_1_DMA_IER, dev->dmareg);
}
if (keylen) {
memcpy(buf_pos, key, keylen);
buf_pos += keylen;
}
if (ivsize) {
memcpy(buf_pos, iv, ivsize);
buf_pos += ivsize;
}
cmd_len = buf_pos - buf;
return cmd_len;
}
static int hifn_setup_cmd_desc(struct hifn_device *dev,
struct hifn_context *ctx, struct hifn_request_context *rctx,
void *priv, unsigned int nbytes)
{
struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
int cmd_len, sa_idx;
u8 *buf, *buf_pos;
u16 mask;
sa_idx = dma->cmdi;
buf_pos = buf = dma->command_bufs[dma->cmdi];
mask = 0;
switch (rctx->op) {
case ACRYPTO_OP_DECRYPT:
mask = HIFN_BASE_CMD_CRYPT | HIFN_BASE_CMD_DECODE;
break;
case ACRYPTO_OP_ENCRYPT:
mask = HIFN_BASE_CMD_CRYPT;
break;
case ACRYPTO_OP_HMAC:
mask = HIFN_BASE_CMD_MAC;
break;
default:
goto err_out;
}
buf_pos += hifn_setup_base_command(dev, buf_pos, nbytes,
nbytes, mask, dev->snum);
if (rctx->op == ACRYPTO_OP_ENCRYPT || rctx->op == ACRYPTO_OP_DECRYPT) {
u16 md = 0;
if (ctx->keysize)
md |= HIFN_CRYPT_CMD_NEW_KEY;
if (rctx->iv && rctx->mode != ACRYPTO_MODE_ECB)
md |= HIFN_CRYPT_CMD_NEW_IV;
switch (rctx->mode) {
case ACRYPTO_MODE_ECB:
md |= HIFN_CRYPT_CMD_MODE_ECB;
break;
case ACRYPTO_MODE_CBC:
md |= HIFN_CRYPT_CMD_MODE_CBC;
break;
case ACRYPTO_MODE_CFB:
md |= HIFN_CRYPT_CMD_MODE_CFB;
break;
case ACRYPTO_MODE_OFB:
md |= HIFN_CRYPT_CMD_MODE_OFB;
break;
default:
goto err_out;
}
switch (rctx->type) {
case ACRYPTO_TYPE_AES_128:
if (ctx->keysize != 16)
goto err_out;
md |= HIFN_CRYPT_CMD_KSZ_128 |
HIFN_CRYPT_CMD_ALG_AES;
break;
case ACRYPTO_TYPE_AES_192:
if (ctx->keysize != 24)
goto err_out;
md |= HIFN_CRYPT_CMD_KSZ_192 |
HIFN_CRYPT_CMD_ALG_AES;
break;
case ACRYPTO_TYPE_AES_256:
if (ctx->keysize != 32)
goto err_out;
md |= HIFN_CRYPT_CMD_KSZ_256 |
HIFN_CRYPT_CMD_ALG_AES;
break;
case ACRYPTO_TYPE_3DES:
if (ctx->keysize != 24)
goto err_out;
md |= HIFN_CRYPT_CMD_ALG_3DES;
break;
case ACRYPTO_TYPE_DES:
if (ctx->keysize != 8)
goto err_out;
md |= HIFN_CRYPT_CMD_ALG_DES;
break;
default:
goto err_out;
}
buf_pos += hifn_setup_crypto_command(dev, buf_pos,
nbytes, nbytes, ctx->key, ctx->keysize,
rctx->iv, rctx->ivsize, md);
}
dev->sa[sa_idx] = priv;
dev->started++;
cmd_len = buf_pos - buf;
dma->cmdr[dma->cmdi].l = __cpu_to_le32(cmd_len | HIFN_D_VALID |
HIFN_D_LAST | HIFN_D_MASKDONEIRQ);
if (++dma->cmdi == HIFN_D_CMD_RSIZE) {
dma->cmdr[dma->cmdi].l = __cpu_to_le32(
HIFN_D_VALID | HIFN_D_LAST |
HIFN_D_MASKDONEIRQ | HIFN_D_JUMP);
dma->cmdi = 0;
} else
dma->cmdr[dma->cmdi-1].l |= __cpu_to_le32(HIFN_D_VALID);
if (!(dev->flags & HIFN_FLAG_CMD_BUSY)) {
hifn_write_1(dev, HIFN_1_DMA_CSR, HIFN_DMACSR_C_CTRL_ENA);
dev->flags |= HIFN_FLAG_CMD_BUSY;
}
return 0;
err_out:
return -EINVAL;
}
static int hifn_setup_src_desc(struct hifn_device *dev, struct page *page,
unsigned int offset, unsigned int size, int last)
{
struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
int idx;
dma_addr_t addr;
addr = pci_map_page(dev->pdev, page, offset, size, PCI_DMA_TODEVICE);
idx = dma->srci;
dma->srcr[idx].p = __cpu_to_le32(addr);
dma->srcr[idx].l = __cpu_to_le32(size | HIFN_D_VALID |
HIFN_D_MASKDONEIRQ | (last ? HIFN_D_LAST : 0));
if (++idx == HIFN_D_SRC_RSIZE) {
dma->srcr[idx].l = __cpu_to_le32(HIFN_D_VALID |
HIFN_D_JUMP | HIFN_D_MASKDONEIRQ |
(last ? HIFN_D_LAST : 0));
idx = 0;
}
dma->srci = idx;
dma->srcu++;
if (!(dev->flags & HIFN_FLAG_SRC_BUSY)) {
hifn_write_1(dev, HIFN_1_DMA_CSR, HIFN_DMACSR_S_CTRL_ENA);
dev->flags |= HIFN_FLAG_SRC_BUSY;
}
return size;
}
static void hifn_setup_res_desc(struct hifn_device *dev)
{
struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
dma->resr[dma->resi].l = __cpu_to_le32(HIFN_USED_RESULT |
HIFN_D_VALID | HIFN_D_LAST);
/*
* dma->resr[dma->resi].l = __cpu_to_le32(HIFN_MAX_RESULT | HIFN_D_VALID |
* HIFN_D_LAST);
*/
if (++dma->resi == HIFN_D_RES_RSIZE) {
dma->resr[HIFN_D_RES_RSIZE].l = __cpu_to_le32(HIFN_D_VALID |
HIFN_D_JUMP | HIFN_D_MASKDONEIRQ | HIFN_D_LAST);
dma->resi = 0;
}
dma->resu++;
if (!(dev->flags & HIFN_FLAG_RES_BUSY)) {
hifn_write_1(dev, HIFN_1_DMA_CSR, HIFN_DMACSR_R_CTRL_ENA);
dev->flags |= HIFN_FLAG_RES_BUSY;
}
}
static void hifn_setup_dst_desc(struct hifn_device *dev, struct page *page,
unsigned offset, unsigned size, int last)
{
struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
int idx;
dma_addr_t addr;
addr = pci_map_page(dev->pdev, page, offset, size, PCI_DMA_FROMDEVICE);
idx = dma->dsti;
dma->dstr[idx].p = __cpu_to_le32(addr);
dma->dstr[idx].l = __cpu_to_le32(size | HIFN_D_VALID |
HIFN_D_MASKDONEIRQ | (last ? HIFN_D_LAST : 0));
if (++idx == HIFN_D_DST_RSIZE) {
dma->dstr[idx].l = __cpu_to_le32(HIFN_D_VALID |
HIFN_D_JUMP | HIFN_D_MASKDONEIRQ |
(last ? HIFN_D_LAST : 0));
idx = 0;
}
dma->dsti = idx;
dma->dstu++;
if (!(dev->flags & HIFN_FLAG_DST_BUSY)) {
hifn_write_1(dev, HIFN_1_DMA_CSR, HIFN_DMACSR_D_CTRL_ENA);
dev->flags |= HIFN_FLAG_DST_BUSY;
}
}
static int hifn_setup_dma(struct hifn_device *dev,
struct hifn_context *ctx, struct hifn_request_context *rctx,
struct scatterlist *src, struct scatterlist *dst,
unsigned int nbytes, void *priv)
{
struct scatterlist *t;
struct page *spage, *dpage;
unsigned int soff, doff;
unsigned int n, len;
n = nbytes;
while (n) {
spage = sg_page(src);
soff = src->offset;
len = min(src->length, n);
hifn_setup_src_desc(dev, spage, soff, len, n - len == 0);
src++;
n -= len;
}
t = &rctx->walk.cache[0];
n = nbytes;
while (n) {
if (t->length && rctx->walk.flags & ASYNC_FLAGS_MISALIGNED) {
BUG_ON(!sg_page(t));
dpage = sg_page(t);
doff = 0;
len = t->length;
} else {
BUG_ON(!sg_page(dst));
dpage = sg_page(dst);
doff = dst->offset;
len = dst->length;
}
len = min(len, n);
hifn_setup_dst_desc(dev, dpage, doff, len, n - len == 0);
dst++;
t++;
n -= len;
}
hifn_setup_cmd_desc(dev, ctx, rctx, priv, nbytes);
hifn_setup_res_desc(dev);
return 0;
}
static int ablkcipher_walk_init(struct ablkcipher_walk *w,
int num, gfp_t gfp_flags)
{
int i;
num = min(ASYNC_SCATTERLIST_CACHE, num);
sg_init_table(w->cache, num);
w->num = 0;
for (i=0; i<num; ++i) {
struct page *page = alloc_page(gfp_flags);
struct scatterlist *s;
if (!page)
break;
s = &w->cache[i];
sg_set_page(s, page, PAGE_SIZE, 0);
w->num++;
}
return i;
}
static void ablkcipher_walk_exit(struct ablkcipher_walk *w)
{
int i;
for (i=0; i<w->num; ++i) {
struct scatterlist *s = &w->cache[i];
__free_page(sg_page(s));
s->length = 0;
}
w->num = 0;
}
static int ablkcipher_add(unsigned int *drestp, struct scatterlist *dst,
unsigned int size, unsigned int *nbytesp)
{
unsigned int copy, drest = *drestp, nbytes = *nbytesp;
int idx = 0;
if (drest < size || size > nbytes)
return -EINVAL;
while (size) {
copy = min(drest, min(size, dst->length));
size -= copy;
drest -= copy;
nbytes -= copy;
dprintk("%s: copy: %u, size: %u, drest: %u, nbytes: %u.\n",
__func__, copy, size, drest, nbytes);
dst++;
idx++;
}
*nbytesp = nbytes;
*drestp = drest;
return idx;
}
static int ablkcipher_walk(struct ablkcipher_request *req,
struct ablkcipher_walk *w)
{
struct scatterlist *dst, *t;
unsigned int nbytes = req->nbytes, offset, copy, diff;
int idx, tidx, err;
tidx = idx = 0;
offset = 0;
while (nbytes) {
if (idx >= w->num && (w->flags & ASYNC_FLAGS_MISALIGNED))
return -EINVAL;
dst = &req->dst[idx];
dprintk("\n%s: dlen: %u, doff: %u, offset: %u, nbytes: %u.\n",
__func__, dst->length, dst->offset, offset, nbytes);
if (!IS_ALIGNED(dst->offset, HIFN_D_DST_DALIGN) ||
!IS_ALIGNED(dst->length, HIFN_D_DST_DALIGN) ||
offset) {
unsigned slen = min(dst->length - offset, nbytes);
unsigned dlen = PAGE_SIZE;
t = &w->cache[idx];
err = ablkcipher_add(&dlen, dst, slen, &nbytes);
if (err < 0)
return err;
idx += err;
copy = slen & ~(HIFN_D_DST_DALIGN - 1);
diff = slen & (HIFN_D_DST_DALIGN - 1);
if (dlen < nbytes) {
/*
* Destination page does not have enough space
* to put there additional blocksized chunk,
* so we mark that page as containing only
* blocksize aligned chunks:
* t->length = (slen & ~(HIFN_D_DST_DALIGN - 1));
* and increase number of bytes to be processed
* in next chunk:
* nbytes += diff;
*/
nbytes += diff;
/*
* Temporary of course...
* Kick author if you will catch this one.
*/
printk(KERN_ERR "%s: dlen: %u, nbytes: %u,"
"slen: %u, offset: %u.\n",
__func__, dlen, nbytes, slen, offset);
printk(KERN_ERR "%s: please contact author to fix this "
"issue, generally you should not catch "
"this path under any condition but who "
"knows how did you use crypto code.\n"
"Thank you.\n", __func__);
BUG();
} else {
copy += diff + nbytes;
dst = &req->dst[idx];
err = ablkcipher_add(&dlen, dst, nbytes, &nbytes);
if (err < 0)
return err;
idx += err;
}
t->length = copy;
t->offset = offset;
} else {
nbytes -= min(dst->length, nbytes);
idx++;
}
tidx++;
}
return tidx;
}
static int hifn_setup_session(struct ablkcipher_request *req)
{
struct hifn_context *ctx = crypto_tfm_ctx(req->base.tfm);
struct hifn_request_context *rctx = ablkcipher_request_ctx(req);
struct hifn_device *dev = ctx->dev;
unsigned long dlen, flags;
unsigned int nbytes = req->nbytes, idx = 0;
int err = -EINVAL, sg_num;
struct scatterlist *dst;
if (rctx->iv && !rctx->ivsize && rctx->mode != ACRYPTO_MODE_ECB)
goto err_out_exit;
rctx->walk.flags = 0;
while (nbytes) {
dst = &req->dst[idx];
dlen = min(dst->length, nbytes);
if (!IS_ALIGNED(dst->offset, HIFN_D_DST_DALIGN) ||
!IS_ALIGNED(dlen, HIFN_D_DST_DALIGN))
rctx->walk.flags |= ASYNC_FLAGS_MISALIGNED;
nbytes -= dlen;
idx++;
}
if (rctx->walk.flags & ASYNC_FLAGS_MISALIGNED) {
err = ablkcipher_walk_init(&rctx->walk, idx, GFP_ATOMIC);
if (err < 0)
return err;
}
sg_num = ablkcipher_walk(req, &rctx->walk);
if (sg_num < 0) {
err = sg_num;
goto err_out_exit;
}
spin_lock_irqsave(&dev->lock, flags);
if (dev->started + sg_num > HIFN_QUEUE_LENGTH) {
err = -EAGAIN;
goto err_out;
}
err = hifn_setup_dma(dev, ctx, rctx, req->src, req->dst, req->nbytes, req);
if (err)
goto err_out;
dev->snum++;
dev->active = HIFN_DEFAULT_ACTIVE_NUM;
spin_unlock_irqrestore(&dev->lock, flags);
return 0;
err_out:
spin_unlock_irqrestore(&dev->lock, flags);
err_out_exit:
if (err) {
printk("%s: iv: %p [%d], key: %p [%d], mode: %u, op: %u, "
"type: %u, err: %d.\n",
dev->name, rctx->iv, rctx->ivsize,
ctx->key, ctx->keysize,
rctx->mode, rctx->op, rctx->type, err);
}
return err;
}
static int hifn_test(struct hifn_device *dev, int encdec, u8 snum)
{
int n, err;
u8 src[16];
struct hifn_context ctx;
struct hifn_request_context rctx;
u8 fips_aes_ecb_from_zero[16] = {
0x66, 0xE9, 0x4B, 0xD4,
0xEF, 0x8A, 0x2C, 0x3B,
0x88, 0x4C, 0xFA, 0x59,
0xCA, 0x34, 0x2B, 0x2E};
struct scatterlist sg;
memset(src, 0, sizeof(src));
memset(ctx.key, 0, sizeof(ctx.key));
ctx.dev = dev;
ctx.keysize = 16;
rctx.ivsize = 0;
rctx.iv = NULL;
rctx.op = (encdec)?ACRYPTO_OP_ENCRYPT:ACRYPTO_OP_DECRYPT;
rctx.mode = ACRYPTO_MODE_ECB;
rctx.type = ACRYPTO_TYPE_AES_128;
rctx.walk.cache[0].length = 0;
sg_init_one(&sg, &src, sizeof(src));
err = hifn_setup_dma(dev, &ctx, &rctx, &sg, &sg, sizeof(src), NULL);
if (err)
goto err_out;
dev->started = 0;
msleep(200);
dprintk("%s: decoded: ", dev->name);
for (n=0; n<sizeof(src); ++n)
dprintk("%02x ", src[n]);
dprintk("\n");
dprintk("%s: FIPS : ", dev->name);
for (n=0; n<sizeof(fips_aes_ecb_from_zero); ++n)
dprintk("%02x ", fips_aes_ecb_from_zero[n]);
dprintk("\n");
if (!memcmp(src, fips_aes_ecb_from_zero, sizeof(fips_aes_ecb_from_zero))) {
printk(KERN_INFO "%s: AES 128 ECB test has been successfully "
"passed.\n", dev->name);
return 0;
}
err_out:
printk(KERN_INFO "%s: AES 128 ECB test has been failed.\n", dev->name);
return -1;
}
static int hifn_start_device(struct hifn_device *dev)
{
int err;
dev->started = dev->active = 0;
hifn_reset_dma(dev, 1);
err = hifn_enable_crypto(dev);
if (err)
return err;
hifn_reset_puc(dev);
hifn_init_dma(dev);
hifn_init_registers(dev);
hifn_init_pubrng(dev);
return 0;
}
static int ablkcipher_get(void *saddr, unsigned int *srestp, unsigned int offset,
struct scatterlist *dst, unsigned int size, unsigned int *nbytesp)
{
unsigned int srest = *srestp, nbytes = *nbytesp, copy;
void *daddr;
int idx = 0;
if (srest < size || size > nbytes)
return -EINVAL;
while (size) {
copy = min(srest, min(dst->length, size));
daddr = kmap_atomic(sg_page(dst), KM_IRQ0);
memcpy(daddr + dst->offset + offset, saddr, copy);
kunmap_atomic(daddr, KM_IRQ0);
nbytes -= copy;
size -= copy;
srest -= copy;
saddr += copy;
offset = 0;
dprintk("%s: copy: %u, size: %u, srest: %u, nbytes: %u.\n",
__func__, copy, size, srest, nbytes);
dst++;
idx++;
}
*nbytesp = nbytes;
*srestp = srest;
return idx;
}
static inline void hifn_complete_sa(struct hifn_device *dev, int i)
{
unsigned long flags;
spin_lock_irqsave(&dev->lock, flags);
dev->sa[i] = NULL;
dev->started--;
if (dev->started < 0)
printk("%s: started: %d.\n", __func__, dev->started);
spin_unlock_irqrestore(&dev->lock, flags);
BUG_ON(dev->started < 0);
}
static void hifn_process_ready(struct ablkcipher_request *req, int error)
{
struct hifn_request_context *rctx = ablkcipher_request_ctx(req);
if (rctx->walk.flags & ASYNC_FLAGS_MISALIGNED) {
unsigned int nbytes = req->nbytes;
int idx = 0, err;
struct scatterlist *dst, *t;
void *saddr;
while (nbytes) {
t = &rctx->walk.cache[idx];
dst = &req->dst[idx];
dprintk("\n%s: sg_page(t): %p, t->length: %u, "
"sg_page(dst): %p, dst->length: %u, "
"nbytes: %u.\n",
__func__, sg_page(t), t->length,
sg_page(dst), dst->length, nbytes);
if (!t->length) {
nbytes -= min(dst->length, nbytes);
idx++;
continue;
}
saddr = kmap_atomic(sg_page(t), KM_SOFTIRQ0);
err = ablkcipher_get(saddr, &t->length, t->offset,
dst, nbytes, &nbytes);
if (err < 0) {
kunmap_atomic(saddr, KM_SOFTIRQ0);
break;
}
idx += err;
kunmap_atomic(saddr, KM_SOFTIRQ0);
}
ablkcipher_walk_exit(&rctx->walk);
}
req->base.complete(&req->base, error);
}
static void hifn_clear_rings(struct hifn_device *dev, int error)
{
struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
int i, u;
dprintk("%s: ring cleanup 1: i: %d.%d.%d.%d, u: %d.%d.%d.%d, "
"k: %d.%d.%d.%d.\n",
dev->name,
dma->cmdi, dma->srci, dma->dsti, dma->resi,
dma->cmdu, dma->srcu, dma->dstu, dma->resu,
dma->cmdk, dma->srck, dma->dstk, dma->resk);
i = dma->resk; u = dma->resu;
while (u != 0) {
if (dma->resr[i].l & __cpu_to_le32(HIFN_D_VALID))
break;
if (dev->sa[i]) {
dev->success++;
dev->reset = 0;
hifn_process_ready(dev->sa[i], error);
hifn_complete_sa(dev, i);
}
if (++i == HIFN_D_RES_RSIZE)
i = 0;
u--;
}
dma->resk = i; dma->resu = u;
i = dma->srck; u = dma->srcu;
while (u != 0) {
if (dma->srcr[i].l & __cpu_to_le32(HIFN_D_VALID))
break;
if (++i == HIFN_D_SRC_RSIZE)
i = 0;
u--;
}
dma->srck = i; dma->srcu = u;
i = dma->cmdk; u = dma->cmdu;
while (u != 0) {
if (dma->cmdr[i].l & __cpu_to_le32(HIFN_D_VALID))
break;
if (++i == HIFN_D_CMD_RSIZE)
i = 0;
u--;
}
dma->cmdk = i; dma->cmdu = u;
i = dma->dstk; u = dma->dstu;
while (u != 0) {
if (dma->dstr[i].l & __cpu_to_le32(HIFN_D_VALID))
break;
if (++i == HIFN_D_DST_RSIZE)
i = 0;
u--;
}
dma->dstk = i; dma->dstu = u;
dprintk("%s: ring cleanup 2: i: %d.%d.%d.%d, u: %d.%d.%d.%d, "
"k: %d.%d.%d.%d.\n",
dev->name,
dma->cmdi, dma->srci, dma->dsti, dma->resi,
dma->cmdu, dma->srcu, dma->dstu, dma->resu,
dma->cmdk, dma->srck, dma->dstk, dma->resk);
}
static void hifn_work(struct work_struct *work)
{
struct delayed_work *dw = to_delayed_work(work);
struct hifn_device *dev = container_of(dw, struct hifn_device, work);
unsigned long flags;
int reset = 0;
u32 r = 0;
spin_lock_irqsave(&dev->lock, flags);
if (dev->active == 0) {
struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
if (dma->cmdu == 0 && (dev->flags & HIFN_FLAG_CMD_BUSY)) {
dev->flags &= ~HIFN_FLAG_CMD_BUSY;
r |= HIFN_DMACSR_C_CTRL_DIS;
}
if (dma->srcu == 0 && (dev->flags & HIFN_FLAG_SRC_BUSY)) {
dev->flags &= ~HIFN_FLAG_SRC_BUSY;
r |= HIFN_DMACSR_S_CTRL_DIS;
}
if (dma->dstu == 0 && (dev->flags & HIFN_FLAG_DST_BUSY)) {
dev->flags &= ~HIFN_FLAG_DST_BUSY;
r |= HIFN_DMACSR_D_CTRL_DIS;
}
if (dma->resu == 0 && (dev->flags & HIFN_FLAG_RES_BUSY)) {
dev->flags &= ~HIFN_FLAG_RES_BUSY;
r |= HIFN_DMACSR_R_CTRL_DIS;
}
if (r)
hifn_write_1(dev, HIFN_1_DMA_CSR, r);
} else
dev->active--;
if ((dev->prev_success == dev->success) && dev->started)
reset = 1;
dev->prev_success = dev->success;
spin_unlock_irqrestore(&dev->lock, flags);
if (reset) {
if (++dev->reset >= 5) {
int i;
struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
printk("%s: r: %08x, active: %d, started: %d, "
"success: %lu: qlen: %u/%u, reset: %d.\n",
dev->name, r, dev->active, dev->started,
dev->success, dev->queue.qlen, dev->queue.max_qlen,
reset);
printk("%s: res: ", __func__);
for (i=0; i<HIFN_D_RES_RSIZE; ++i) {
printk("%x.%p ", dma->resr[i].l, dev->sa[i]);
if (dev->sa[i]) {
hifn_process_ready(dev->sa[i], -ENODEV);
hifn_complete_sa(dev, i);
}
}
printk("\n");
hifn_reset_dma(dev, 1);
hifn_stop_device(dev);
hifn_start_device(dev);
dev->reset = 0;
}
tasklet_schedule(&dev->tasklet);
}
schedule_delayed_work(&dev->work, HZ);
}
static irqreturn_t hifn_interrupt(int irq, void *data)
{
struct hifn_device *dev = (struct hifn_device *)data;
struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
u32 dmacsr, restart;
dmacsr = hifn_read_1(dev, HIFN_1_DMA_CSR);
dprintk("%s: 1 dmacsr: %08x, dmareg: %08x, res: %08x [%d], "
"i: %d.%d.%d.%d, u: %d.%d.%d.%d.\n",
dev->name, dmacsr, dev->dmareg, dmacsr & dev->dmareg, dma->cmdi,
dma->cmdi, dma->srci, dma->dsti, dma->resi,
dma->cmdu, dma->srcu, dma->dstu, dma->resu);
if ((dmacsr & dev->dmareg) == 0)
return IRQ_NONE;
hifn_write_1(dev, HIFN_1_DMA_CSR, dmacsr & dev->dmareg);
if (dmacsr & HIFN_DMACSR_ENGINE)
hifn_write_0(dev, HIFN_0_PUISR, hifn_read_0(dev, HIFN_0_PUISR));
if (dmacsr & HIFN_DMACSR_PUBDONE)
hifn_write_1(dev, HIFN_1_PUB_STATUS,
hifn_read_1(dev, HIFN_1_PUB_STATUS) | HIFN_PUBSTS_DONE);
restart = dmacsr & (HIFN_DMACSR_R_OVER | HIFN_DMACSR_D_OVER);
if (restart) {
u32 puisr = hifn_read_0(dev, HIFN_0_PUISR);
printk(KERN_WARNING "%s: overflow: r: %d, d: %d, puisr: %08x, d: %u.\n",
dev->name, !!(dmacsr & HIFN_DMACSR_R_OVER),
!!(dmacsr & HIFN_DMACSR_D_OVER),
puisr, !!(puisr & HIFN_PUISR_DSTOVER));
if (!!(puisr & HIFN_PUISR_DSTOVER))
hifn_write_0(dev, HIFN_0_PUISR, HIFN_PUISR_DSTOVER);
hifn_write_1(dev, HIFN_1_DMA_CSR, dmacsr & (HIFN_DMACSR_R_OVER |
HIFN_DMACSR_D_OVER));
}
restart = dmacsr & (HIFN_DMACSR_C_ABORT | HIFN_DMACSR_S_ABORT |
HIFN_DMACSR_D_ABORT | HIFN_DMACSR_R_ABORT);
if (restart) {
printk(KERN_WARNING "%s: abort: c: %d, s: %d, d: %d, r: %d.\n",
dev->name, !!(dmacsr & HIFN_DMACSR_C_ABORT),
!!(dmacsr & HIFN_DMACSR_S_ABORT),
!!(dmacsr & HIFN_DMACSR_D_ABORT),
!!(dmacsr & HIFN_DMACSR_R_ABORT));
hifn_reset_dma(dev, 1);
hifn_init_dma(dev);
hifn_init_registers(dev);
}
if ((dmacsr & HIFN_DMACSR_C_WAIT) && (dma->cmdu == 0)) {
dprintk("%s: wait on command.\n", dev->name);
dev->dmareg &= ~(HIFN_DMAIER_C_WAIT);
hifn_write_1(dev, HIFN_1_DMA_IER, dev->dmareg);
}
tasklet_schedule(&dev->tasklet);
return IRQ_HANDLED;
}
static void hifn_flush(struct hifn_device *dev)
{
unsigned long flags;
struct crypto_async_request *async_req;
struct hifn_context *ctx;
struct ablkcipher_request *req;
struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
int i;
for (i=0; i<HIFN_D_RES_RSIZE; ++i) {
struct hifn_desc *d = &dma->resr[i];
if (dev->sa[i]) {
hifn_process_ready(dev->sa[i],
(d->l & __cpu_to_le32(HIFN_D_VALID))?-ENODEV:0);
hifn_complete_sa(dev, i);
}
}
spin_lock_irqsave(&dev->lock, flags);
while ((async_req = crypto_dequeue_request(&dev->queue))) {
ctx = crypto_tfm_ctx(async_req->tfm);
req = container_of(async_req, struct ablkcipher_request, base);
spin_unlock_irqrestore(&dev->lock, flags);
hifn_process_ready(req, -ENODEV);
spin_lock_irqsave(&dev->lock, flags);
}
spin_unlock_irqrestore(&dev->lock, flags);
}
static int hifn_setkey(struct crypto_ablkcipher *cipher, const u8 *key,
unsigned int len)
{
struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher);
struct hifn_context *ctx = crypto_tfm_ctx(tfm);
struct hifn_device *dev = ctx->dev;
if (len > HIFN_MAX_CRYPT_KEY_LENGTH) {
crypto_ablkcipher_set_flags(cipher, CRYPTO_TFM_RES_BAD_KEY_LEN);
return -1;
}
if (len == HIFN_DES_KEY_LENGTH) {
u32 tmp[DES_EXPKEY_WORDS];
int ret = des_ekey(tmp, key);
if (unlikely(ret == 0) && (tfm->crt_flags & CRYPTO_TFM_REQ_WEAK_KEY)) {
tfm->crt_flags |= CRYPTO_TFM_RES_WEAK_KEY;
return -EINVAL;
}
}
dev->flags &= ~HIFN_FLAG_OLD_KEY;
memcpy(ctx->key, key, len);
ctx->keysize = len;
return 0;
}
static int hifn_handle_req(struct ablkcipher_request *req)
{
struct hifn_context *ctx = crypto_tfm_ctx(req->base.tfm);
struct hifn_device *dev = ctx->dev;
int err = -EAGAIN;
if (dev->started + DIV_ROUND_UP(req->nbytes, PAGE_SIZE) <= HIFN_QUEUE_LENGTH)
err = hifn_setup_session(req);
if (err == -EAGAIN) {
unsigned long flags;
spin_lock_irqsave(&dev->lock, flags);
err = ablkcipher_enqueue_request(&dev->queue, req);
spin_unlock_irqrestore(&dev->lock, flags);
}
return err;
}
static int hifn_setup_crypto_req(struct ablkcipher_request *req, u8 op,
u8 type, u8 mode)
{
struct hifn_context *ctx = crypto_tfm_ctx(req->base.tfm);
struct hifn_request_context *rctx = ablkcipher_request_ctx(req);
unsigned ivsize;
ivsize = crypto_ablkcipher_ivsize(crypto_ablkcipher_reqtfm(req));
if (req->info && mode != ACRYPTO_MODE_ECB) {
if (type == ACRYPTO_TYPE_AES_128)
ivsize = HIFN_AES_IV_LENGTH;
else if (type == ACRYPTO_TYPE_DES)
ivsize = HIFN_DES_KEY_LENGTH;
else if (type == ACRYPTO_TYPE_3DES)
ivsize = HIFN_3DES_KEY_LENGTH;
}
if (ctx->keysize != 16 && type == ACRYPTO_TYPE_AES_128) {
if (ctx->keysize == 24)
type = ACRYPTO_TYPE_AES_192;
else if (ctx->keysize == 32)
type = ACRYPTO_TYPE_AES_256;
}
rctx->op = op;
rctx->mode = mode;
rctx->type = type;
rctx->iv = req->info;
rctx->ivsize = ivsize;
/*
* HEAVY TODO: needs to kick Herbert XU to write documentation.
* HEAVY TODO: needs to kick Herbert XU to write documentation.
* HEAVY TODO: needs to kick Herbert XU to write documentation.
*/
return hifn_handle_req(req);
}
static int hifn_process_queue(struct hifn_device *dev)
{
struct crypto_async_request *async_req, *backlog;
struct hifn_context *ctx;
struct ablkcipher_request *req;
unsigned long flags;
int err = 0;
while (dev->started < HIFN_QUEUE_LENGTH) {
spin_lock_irqsave(&dev->lock, flags);
backlog = crypto_get_backlog(&dev->queue);
async_req = crypto_dequeue_request(&dev->queue);
spin_unlock_irqrestore(&dev->lock, flags);
if (!async_req)
break;
if (backlog)
backlog->complete(backlog, -EINPROGRESS);
ctx = crypto_tfm_ctx(async_req->tfm);
req = container_of(async_req, struct ablkcipher_request, base);
err = hifn_handle_req(req);
if (err)
break;
}
return err;
}
static int hifn_setup_crypto(struct ablkcipher_request *req, u8 op,
u8 type, u8 mode)
{
int err;
struct hifn_context *ctx = crypto_tfm_ctx(req->base.tfm);
struct hifn_device *dev = ctx->dev;
err = hifn_setup_crypto_req(req, op, type, mode);
if (err)
return err;
if (dev->started < HIFN_QUEUE_LENGTH && dev->queue.qlen)
hifn_process_queue(dev);
return -EINPROGRESS;
}
/*
* AES ecryption functions.
*/
static inline int hifn_encrypt_aes_ecb(struct ablkcipher_request *req)
{
return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_ECB);
}
static inline int hifn_encrypt_aes_cbc(struct ablkcipher_request *req)
{
return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_CBC);
}
static inline int hifn_encrypt_aes_cfb(struct ablkcipher_request *req)
{
return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_CFB);
}
static inline int hifn_encrypt_aes_ofb(struct ablkcipher_request *req)
{
return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_OFB);
}
/*
* AES decryption functions.
*/
static inline int hifn_decrypt_aes_ecb(struct ablkcipher_request *req)
{
return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_ECB);
}
static inline int hifn_decrypt_aes_cbc(struct ablkcipher_request *req)
{
return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_CBC);
}
static inline int hifn_decrypt_aes_cfb(struct ablkcipher_request *req)
{
return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_CFB);
}
static inline int hifn_decrypt_aes_ofb(struct ablkcipher_request *req)
{
return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_OFB);
}
/*
* DES ecryption functions.
*/
static inline int hifn_encrypt_des_ecb(struct ablkcipher_request *req)
{
return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
ACRYPTO_TYPE_DES, ACRYPTO_MODE_ECB);
}
static inline int hifn_encrypt_des_cbc(struct ablkcipher_request *req)
{
return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
ACRYPTO_TYPE_DES, ACRYPTO_MODE_CBC);
}
static inline int hifn_encrypt_des_cfb(struct ablkcipher_request *req)
{
return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
ACRYPTO_TYPE_DES, ACRYPTO_MODE_CFB);
}
static inline int hifn_encrypt_des_ofb(struct ablkcipher_request *req)
{
return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
ACRYPTO_TYPE_DES, ACRYPTO_MODE_OFB);
}
/*
* DES decryption functions.
*/
static inline int hifn_decrypt_des_ecb(struct ablkcipher_request *req)
{
return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
ACRYPTO_TYPE_DES, ACRYPTO_MODE_ECB);
}
static inline int hifn_decrypt_des_cbc(struct ablkcipher_request *req)
{
return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
ACRYPTO_TYPE_DES, ACRYPTO_MODE_CBC);
}
static inline int hifn_decrypt_des_cfb(struct ablkcipher_request *req)
{
return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
ACRYPTO_TYPE_DES, ACRYPTO_MODE_CFB);
}
static inline int hifn_decrypt_des_ofb(struct ablkcipher_request *req)
{
return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
ACRYPTO_TYPE_DES, ACRYPTO_MODE_OFB);
}
/*
* 3DES ecryption functions.
*/
static inline int hifn_encrypt_3des_ecb(struct ablkcipher_request *req)
{
return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
ACRYPTO_TYPE_3DES, ACRYPTO_MODE_ECB);
}
static inline int hifn_encrypt_3des_cbc(struct ablkcipher_request *req)
{
return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
ACRYPTO_TYPE_3DES, ACRYPTO_MODE_CBC);
}
static inline int hifn_encrypt_3des_cfb(struct ablkcipher_request *req)
{
return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
ACRYPTO_TYPE_3DES, ACRYPTO_MODE_CFB);
}
static inline int hifn_encrypt_3des_ofb(struct ablkcipher_request *req)
{
return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
ACRYPTO_TYPE_3DES, ACRYPTO_MODE_OFB);
}
/*
* 3DES decryption functions.
*/
static inline int hifn_decrypt_3des_ecb(struct ablkcipher_request *req)
{
return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
ACRYPTO_TYPE_3DES, ACRYPTO_MODE_ECB);
}
static inline int hifn_decrypt_3des_cbc(struct ablkcipher_request *req)
{
return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
ACRYPTO_TYPE_3DES, ACRYPTO_MODE_CBC);
}
static inline int hifn_decrypt_3des_cfb(struct ablkcipher_request *req)
{
return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
ACRYPTO_TYPE_3DES, ACRYPTO_MODE_CFB);
}
static inline int hifn_decrypt_3des_ofb(struct ablkcipher_request *req)
{
return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
ACRYPTO_TYPE_3DES, ACRYPTO_MODE_OFB);
}
struct hifn_alg_template
{
char name[CRYPTO_MAX_ALG_NAME];
char drv_name[CRYPTO_MAX_ALG_NAME];
unsigned int bsize;
struct ablkcipher_alg ablkcipher;
};
static struct hifn_alg_template hifn_alg_templates[] = {
/*
* 3DES ECB, CBC, CFB and OFB modes.
*/
{
.name = "cfb(des3_ede)", .drv_name = "cfb-3des", .bsize = 8,
.ablkcipher = {
.min_keysize = HIFN_3DES_KEY_LENGTH,
.max_keysize = HIFN_3DES_KEY_LENGTH,
.setkey = hifn_setkey,
.encrypt = hifn_encrypt_3des_cfb,
.decrypt = hifn_decrypt_3des_cfb,
},
},
{
.name = "ofb(des3_ede)", .drv_name = "ofb-3des", .bsize = 8,
.ablkcipher = {
.min_keysize = HIFN_3DES_KEY_LENGTH,
.max_keysize = HIFN_3DES_KEY_LENGTH,
.setkey = hifn_setkey,
.encrypt = hifn_encrypt_3des_ofb,
.decrypt = hifn_decrypt_3des_ofb,
},
},
{
.name = "cbc(des3_ede)", .drv_name = "cbc-3des", .bsize = 8,
.ablkcipher = {
.ivsize = HIFN_IV_LENGTH,
.min_keysize = HIFN_3DES_KEY_LENGTH,
.max_keysize = HIFN_3DES_KEY_LENGTH,
.setkey = hifn_setkey,
.encrypt = hifn_encrypt_3des_cbc,
.decrypt = hifn_decrypt_3des_cbc,
},
},
{
.name = "ecb(des3_ede)", .drv_name = "ecb-3des", .bsize = 8,
.ablkcipher = {
.min_keysize = HIFN_3DES_KEY_LENGTH,
.max_keysize = HIFN_3DES_KEY_LENGTH,
.setkey = hifn_setkey,
.encrypt = hifn_encrypt_3des_ecb,
.decrypt = hifn_decrypt_3des_ecb,
},
},
/*
* DES ECB, CBC, CFB and OFB modes.
*/
{
.name = "cfb(des)", .drv_name = "cfb-des", .bsize = 8,
.ablkcipher = {
.min_keysize = HIFN_DES_KEY_LENGTH,
.max_keysize = HIFN_DES_KEY_LENGTH,
.setkey = hifn_setkey,
.encrypt = hifn_encrypt_des_cfb,
.decrypt = hifn_decrypt_des_cfb,
},
},
{
.name = "ofb(des)", .drv_name = "ofb-des", .bsize = 8,
.ablkcipher = {
.min_keysize = HIFN_DES_KEY_LENGTH,
.max_keysize = HIFN_DES_KEY_LENGTH,
.setkey = hifn_setkey,
.encrypt = hifn_encrypt_des_ofb,
.decrypt = hifn_decrypt_des_ofb,
},
},
{
.name = "cbc(des)", .drv_name = "cbc-des", .bsize = 8,
.ablkcipher = {
.ivsize = HIFN_IV_LENGTH,
.min_keysize = HIFN_DES_KEY_LENGTH,
.max_keysize = HIFN_DES_KEY_LENGTH,
.setkey = hifn_setkey,
.encrypt = hifn_encrypt_des_cbc,
.decrypt = hifn_decrypt_des_cbc,
},
},
{
.name = "ecb(des)", .drv_name = "ecb-des", .bsize = 8,
.ablkcipher = {
.min_keysize = HIFN_DES_KEY_LENGTH,
.max_keysize = HIFN_DES_KEY_LENGTH,
.setkey = hifn_setkey,
.encrypt = hifn_encrypt_des_ecb,
.decrypt = hifn_decrypt_des_ecb,
},
},
/*
* AES ECB, CBC, CFB and OFB modes.
*/
{
.name = "ecb(aes)", .drv_name = "ecb-aes", .bsize = 16,
.ablkcipher = {
.min_keysize = AES_MIN_KEY_SIZE,
.max_keysize = AES_MAX_KEY_SIZE,
.setkey = hifn_setkey,
.encrypt = hifn_encrypt_aes_ecb,
.decrypt = hifn_decrypt_aes_ecb,
},
},
{
.name = "cbc(aes)", .drv_name = "cbc-aes", .bsize = 16,
.ablkcipher = {
.ivsize = HIFN_AES_IV_LENGTH,
.min_keysize = AES_MIN_KEY_SIZE,
.max_keysize = AES_MAX_KEY_SIZE,
.setkey = hifn_setkey,
.encrypt = hifn_encrypt_aes_cbc,
.decrypt = hifn_decrypt_aes_cbc,
},
},
{
.name = "cfb(aes)", .drv_name = "cfb-aes", .bsize = 16,
.ablkcipher = {
.min_keysize = AES_MIN_KEY_SIZE,
.max_keysize = AES_MAX_KEY_SIZE,
.setkey = hifn_setkey,
.encrypt = hifn_encrypt_aes_cfb,
.decrypt = hifn_decrypt_aes_cfb,
},
},
{
.name = "ofb(aes)", .drv_name = "ofb-aes", .bsize = 16,
.ablkcipher = {
.min_keysize = AES_MIN_KEY_SIZE,
.max_keysize = AES_MAX_KEY_SIZE,
.setkey = hifn_setkey,
.encrypt = hifn_encrypt_aes_ofb,
.decrypt = hifn_decrypt_aes_ofb,
},
},
};
static int hifn_cra_init(struct crypto_tfm *tfm)
{
struct crypto_alg *alg = tfm->__crt_alg;
struct hifn_crypto_alg *ha = crypto_alg_to_hifn(alg);
struct hifn_context *ctx = crypto_tfm_ctx(tfm);
ctx->dev = ha->dev;
tfm->crt_ablkcipher.reqsize = sizeof(struct hifn_request_context);
return 0;
}
static int hifn_alg_alloc(struct hifn_device *dev, struct hifn_alg_template *t)
{
struct hifn_crypto_alg *alg;
int err;
alg = kzalloc(sizeof(struct hifn_crypto_alg), GFP_KERNEL);
if (!alg)
return -ENOMEM;
snprintf(alg->alg.cra_name, CRYPTO_MAX_ALG_NAME, "%s", t->name);
snprintf(alg->alg.cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s-%s",
t->drv_name, dev->name);
alg->alg.cra_priority = 300;
alg->alg.cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC;
alg->alg.cra_blocksize = t->bsize;
alg->alg.cra_ctxsize = sizeof(struct hifn_context);
alg->alg.cra_alignmask = 0;
alg->alg.cra_type = &crypto_ablkcipher_type;
alg->alg.cra_module = THIS_MODULE;
alg->alg.cra_u.ablkcipher = t->ablkcipher;
alg->alg.cra_init = hifn_cra_init;
alg->dev = dev;
list_add_tail(&alg->entry, &dev->alg_list);
err = crypto_register_alg(&alg->alg);
if (err) {
list_del(&alg->entry);
kfree(alg);
}
return err;
}
static void hifn_unregister_alg(struct hifn_device *dev)
{
struct hifn_crypto_alg *a, *n;
list_for_each_entry_safe(a, n, &dev->alg_list, entry) {
list_del(&a->entry);
crypto_unregister_alg(&a->alg);
kfree(a);
}
}
static int hifn_register_alg(struct hifn_device *dev)
{
int i, err;
for (i=0; i<ARRAY_SIZE(hifn_alg_templates); ++i) {
err = hifn_alg_alloc(dev, &hifn_alg_templates[i]);
if (err)
goto err_out_exit;
}
return 0;
err_out_exit:
hifn_unregister_alg(dev);
return err;
}
static void hifn_tasklet_callback(unsigned long data)
{
struct hifn_device *dev = (struct hifn_device *)data;
/*
* This is ok to call this without lock being held,
* althogh it modifies some parameters used in parallel,
* (like dev->success), but they are used in process
* context or update is atomic (like setting dev->sa[i] to NULL).
*/
hifn_clear_rings(dev, 0);
if (dev->started < HIFN_QUEUE_LENGTH && dev->queue.qlen)
hifn_process_queue(dev);
}
static int hifn_probe(struct pci_dev *pdev, const struct pci_device_id *id)
{
int err, i;
struct hifn_device *dev;
char name[8];
err = pci_enable_device(pdev);
if (err)
return err;
pci_set_master(pdev);
err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
if (err)
goto err_out_disable_pci_device;
snprintf(name, sizeof(name), "hifn%d",
atomic_inc_return(&hifn_dev_number)-1);
err = pci_request_regions(pdev, name);
if (err)
goto err_out_disable_pci_device;
if (pci_resource_len(pdev, 0) < HIFN_BAR0_SIZE ||
pci_resource_len(pdev, 1) < HIFN_BAR1_SIZE ||
pci_resource_len(pdev, 2) < HIFN_BAR2_SIZE) {
dprintk("%s: Broken hardware - I/O regions are too small.\n",
pci_name(pdev));
err = -ENODEV;
goto err_out_free_regions;
}
dev = kzalloc(sizeof(struct hifn_device) + sizeof(struct crypto_alg),
GFP_KERNEL);
if (!dev) {
err = -ENOMEM;
goto err_out_free_regions;
}
INIT_LIST_HEAD(&dev->alg_list);
snprintf(dev->name, sizeof(dev->name), "%s", name);
spin_lock_init(&dev->lock);
for (i=0; i<3; ++i) {
unsigned long addr, size;
addr = pci_resource_start(pdev, i);
size = pci_resource_len(pdev, i);
dev->bar[i] = ioremap_nocache(addr, size);
if (!dev->bar[i])
goto err_out_unmap_bars;
}
dev->desc_virt = pci_alloc_consistent(pdev, sizeof(struct hifn_dma),
&dev->desc_dma);
if (!dev->desc_virt) {
dprintk("Failed to allocate descriptor rings.\n");
goto err_out_unmap_bars;
}
memset(dev->desc_virt, 0, sizeof(struct hifn_dma));
dev->pdev = pdev;
dev->irq = pdev->irq;
for (i=0; i<HIFN_D_RES_RSIZE; ++i)
dev->sa[i] = NULL;
pci_set_drvdata(pdev, dev);
tasklet_init(&dev->tasklet, hifn_tasklet_callback, (unsigned long)dev);
crypto_init_queue(&dev->queue, 1);
err = request_irq(dev->irq, hifn_interrupt, IRQF_SHARED, dev->name, dev);
if (err) {
dprintk("Failed to request IRQ%d: err: %d.\n", dev->irq, err);
dev->irq = 0;
goto err_out_free_desc;
}
err = hifn_start_device(dev);
if (err)
goto err_out_free_irq;
err = hifn_test(dev, 1, 0);
if (err)
goto err_out_stop_device;
err = hifn_register_rng(dev);
if (err)
goto err_out_stop_device;
err = hifn_register_alg(dev);
if (err)
goto err_out_unregister_rng;
INIT_DELAYED_WORK(&dev->work, hifn_work);
schedule_delayed_work(&dev->work, HZ);
dprintk("HIFN crypto accelerator card at %s has been "
"successfully registered as %s.\n",
pci_name(pdev), dev->name);
return 0;
err_out_unregister_rng:
hifn_unregister_rng(dev);
err_out_stop_device:
hifn_reset_dma(dev, 1);
hifn_stop_device(dev);
err_out_free_irq:
free_irq(dev->irq, dev->name);
tasklet_kill(&dev->tasklet);
err_out_free_desc:
pci_free_consistent(pdev, sizeof(struct hifn_dma),
dev->desc_virt, dev->desc_dma);
err_out_unmap_bars:
for (i=0; i<3; ++i)
if (dev->bar[i])
iounmap(dev->bar[i]);
err_out_free_regions:
pci_release_regions(pdev);
err_out_disable_pci_device:
pci_disable_device(pdev);
return err;
}
static void hifn_remove(struct pci_dev *pdev)
{
int i;
struct hifn_device *dev;
dev = pci_get_drvdata(pdev);
if (dev) {
cancel_delayed_work(&dev->work);
flush_scheduled_work();
hifn_unregister_rng(dev);
hifn_unregister_alg(dev);
hifn_reset_dma(dev, 1);
hifn_stop_device(dev);
free_irq(dev->irq, dev->name);
tasklet_kill(&dev->tasklet);
hifn_flush(dev);
pci_free_consistent(pdev, sizeof(struct hifn_dma),
dev->desc_virt, dev->desc_dma);
for (i=0; i<3; ++i)
if (dev->bar[i])
iounmap(dev->bar[i]);
kfree(dev);
}
pci_release_regions(pdev);
pci_disable_device(pdev);
}
static struct pci_device_id hifn_pci_tbl[] = {
{ PCI_DEVICE(PCI_VENDOR_ID_HIFN, PCI_DEVICE_ID_HIFN_7955) },
{ PCI_DEVICE(PCI_VENDOR_ID_HIFN, PCI_DEVICE_ID_HIFN_7956) },
{ 0 }
};
MODULE_DEVICE_TABLE(pci, hifn_pci_tbl);
static struct pci_driver hifn_pci_driver = {
.name = "hifn795x",
.id_table = hifn_pci_tbl,
.probe = hifn_probe,
.remove = __devexit_p(hifn_remove),
};
static int __devinit hifn_init(void)
{
unsigned int freq;
int err;
if (sizeof(dma_addr_t) > 4) {
printk(KERN_INFO "HIFN supports only 32-bit addresses.\n");
return -EINVAL;
}
if (strncmp(hifn_pll_ref, "ext", 3) &&
strncmp(hifn_pll_ref, "pci", 3)) {
printk(KERN_ERR "hifn795x: invalid hifn_pll_ref clock, "
"must be pci or ext");
return -EINVAL;
}
/*
* For the 7955/7956 the reference clock frequency must be in the
* range of 20MHz-100MHz. For the 7954 the upper bound is 66.67MHz,
* but this chip is currently not supported.
*/
if (hifn_pll_ref[3] != '\0') {
freq = simple_strtoul(hifn_pll_ref + 3, NULL, 10);
if (freq < 20 || freq > 100) {
printk(KERN_ERR "hifn795x: invalid hifn_pll_ref "
"frequency, must be in the range "
"of 20-100");
return -EINVAL;
}
}
err = pci_register_driver(&hifn_pci_driver);
if (err < 0) {
dprintk("Failed to register PCI driver for %s device.\n",
hifn_pci_driver.name);
return -ENODEV;
}
printk(KERN_INFO "Driver for HIFN 795x crypto accelerator chip "
"has been successfully registered.\n");
return 0;
}
static void __devexit hifn_fini(void)
{
pci_unregister_driver(&hifn_pci_driver);
printk(KERN_INFO "Driver for HIFN 795x crypto accelerator chip "
"has been successfully unregistered.\n");
}
module_init(hifn_init);
module_exit(hifn_fini);
MODULE_LICENSE("GPL");
MODULE_AUTHOR("Evgeniy Polyakov <johnpol@2ka.mipt.ru>");
MODULE_DESCRIPTION("Driver for HIFN 795x crypto accelerator chip.");