android_kernel_motorola_sm6225/net/sunrpc/xprtrdma/rpc_rdma.c
2008-10-15 15:54:56 -04:00

880 lines
27 KiB
C

/*
* Copyright (c) 2003-2007 Network Appliance, Inc. All rights reserved.
*
* This software is available to you under a choice of one of two
* licenses. You may choose to be licensed under the terms of the GNU
* General Public License (GPL) Version 2, available from the file
* COPYING in the main directory of this source tree, or the BSD-type
* license below:
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials provided
* with the distribution.
*
* Neither the name of the Network Appliance, Inc. nor the names of
* its contributors may be used to endorse or promote products
* derived from this software without specific prior written
* permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/*
* rpc_rdma.c
*
* This file contains the guts of the RPC RDMA protocol, and
* does marshaling/unmarshaling, etc. It is also where interfacing
* to the Linux RPC framework lives.
*/
#include "xprt_rdma.h"
#include <linux/highmem.h>
#ifdef RPC_DEBUG
# define RPCDBG_FACILITY RPCDBG_TRANS
#endif
enum rpcrdma_chunktype {
rpcrdma_noch = 0,
rpcrdma_readch,
rpcrdma_areadch,
rpcrdma_writech,
rpcrdma_replych
};
#ifdef RPC_DEBUG
static const char transfertypes[][12] = {
"pure inline", /* no chunks */
" read chunk", /* some argument via rdma read */
"*read chunk", /* entire request via rdma read */
"write chunk", /* some result via rdma write */
"reply chunk" /* entire reply via rdma write */
};
#endif
/*
* Chunk assembly from upper layer xdr_buf.
*
* Prepare the passed-in xdr_buf into representation as RPC/RDMA chunk
* elements. Segments are then coalesced when registered, if possible
* within the selected memreg mode.
*
* Note, this routine is never called if the connection's memory
* registration strategy is 0 (bounce buffers).
*/
static int
rpcrdma_convert_iovs(struct xdr_buf *xdrbuf, unsigned int pos,
enum rpcrdma_chunktype type, struct rpcrdma_mr_seg *seg, int nsegs)
{
int len, n = 0, p;
if (pos == 0 && xdrbuf->head[0].iov_len) {
seg[n].mr_page = NULL;
seg[n].mr_offset = xdrbuf->head[0].iov_base;
seg[n].mr_len = xdrbuf->head[0].iov_len;
++n;
}
if (xdrbuf->page_len && (xdrbuf->pages[0] != NULL)) {
if (n == nsegs)
return 0;
seg[n].mr_page = xdrbuf->pages[0];
seg[n].mr_offset = (void *)(unsigned long) xdrbuf->page_base;
seg[n].mr_len = min_t(u32,
PAGE_SIZE - xdrbuf->page_base, xdrbuf->page_len);
len = xdrbuf->page_len - seg[n].mr_len;
++n;
p = 1;
while (len > 0) {
if (n == nsegs)
return 0;
seg[n].mr_page = xdrbuf->pages[p];
seg[n].mr_offset = NULL;
seg[n].mr_len = min_t(u32, PAGE_SIZE, len);
len -= seg[n].mr_len;
++n;
++p;
}
}
if (xdrbuf->tail[0].iov_len) {
/* the rpcrdma protocol allows us to omit any trailing
* xdr pad bytes, saving the server an RDMA operation. */
if (xdrbuf->tail[0].iov_len < 4 && xprt_rdma_pad_optimize)
return n;
if (n == nsegs)
return 0;
seg[n].mr_page = NULL;
seg[n].mr_offset = xdrbuf->tail[0].iov_base;
seg[n].mr_len = xdrbuf->tail[0].iov_len;
++n;
}
return n;
}
/*
* Create read/write chunk lists, and reply chunks, for RDMA
*
* Assume check against THRESHOLD has been done, and chunks are required.
* Assume only encoding one list entry for read|write chunks. The NFSv3
* protocol is simple enough to allow this as it only has a single "bulk
* result" in each procedure - complicated NFSv4 COMPOUNDs are not. (The
* RDMA/Sessions NFSv4 proposal addresses this for future v4 revs.)
*
* When used for a single reply chunk (which is a special write
* chunk used for the entire reply, rather than just the data), it
* is used primarily for READDIR and READLINK which would otherwise
* be severely size-limited by a small rdma inline read max. The server
* response will come back as an RDMA Write, followed by a message
* of type RDMA_NOMSG carrying the xid and length. As a result, reply
* chunks do not provide data alignment, however they do not require
* "fixup" (moving the response to the upper layer buffer) either.
*
* Encoding key for single-list chunks (HLOO = Handle32 Length32 Offset64):
*
* Read chunklist (a linked list):
* N elements, position P (same P for all chunks of same arg!):
* 1 - PHLOO - 1 - PHLOO - ... - 1 - PHLOO - 0
*
* Write chunklist (a list of (one) counted array):
* N elements:
* 1 - N - HLOO - HLOO - ... - HLOO - 0
*
* Reply chunk (a counted array):
* N elements:
* 1 - N - HLOO - HLOO - ... - HLOO
*/
static unsigned int
rpcrdma_create_chunks(struct rpc_rqst *rqst, struct xdr_buf *target,
struct rpcrdma_msg *headerp, enum rpcrdma_chunktype type)
{
struct rpcrdma_req *req = rpcr_to_rdmar(rqst);
struct rpcrdma_xprt *r_xprt = rpcx_to_rdmax(rqst->rq_task->tk_xprt);
int nsegs, nchunks = 0;
unsigned int pos;
struct rpcrdma_mr_seg *seg = req->rl_segments;
struct rpcrdma_read_chunk *cur_rchunk = NULL;
struct rpcrdma_write_array *warray = NULL;
struct rpcrdma_write_chunk *cur_wchunk = NULL;
__be32 *iptr = headerp->rm_body.rm_chunks;
if (type == rpcrdma_readch || type == rpcrdma_areadch) {
/* a read chunk - server will RDMA Read our memory */
cur_rchunk = (struct rpcrdma_read_chunk *) iptr;
} else {
/* a write or reply chunk - server will RDMA Write our memory */
*iptr++ = xdr_zero; /* encode a NULL read chunk list */
if (type == rpcrdma_replych)
*iptr++ = xdr_zero; /* a NULL write chunk list */
warray = (struct rpcrdma_write_array *) iptr;
cur_wchunk = (struct rpcrdma_write_chunk *) (warray + 1);
}
if (type == rpcrdma_replych || type == rpcrdma_areadch)
pos = 0;
else
pos = target->head[0].iov_len;
nsegs = rpcrdma_convert_iovs(target, pos, type, seg, RPCRDMA_MAX_SEGS);
if (nsegs == 0)
return 0;
do {
/* bind/register the memory, then build chunk from result. */
int n = rpcrdma_register_external(seg, nsegs,
cur_wchunk != NULL, r_xprt);
if (n <= 0)
goto out;
if (cur_rchunk) { /* read */
cur_rchunk->rc_discrim = xdr_one;
/* all read chunks have the same "position" */
cur_rchunk->rc_position = htonl(pos);
cur_rchunk->rc_target.rs_handle = htonl(seg->mr_rkey);
cur_rchunk->rc_target.rs_length = htonl(seg->mr_len);
xdr_encode_hyper(
(__be32 *)&cur_rchunk->rc_target.rs_offset,
seg->mr_base);
dprintk("RPC: %s: read chunk "
"elem %d@0x%llx:0x%x pos %u (%s)\n", __func__,
seg->mr_len, (unsigned long long)seg->mr_base,
seg->mr_rkey, pos, n < nsegs ? "more" : "last");
cur_rchunk++;
r_xprt->rx_stats.read_chunk_count++;
} else { /* write/reply */
cur_wchunk->wc_target.rs_handle = htonl(seg->mr_rkey);
cur_wchunk->wc_target.rs_length = htonl(seg->mr_len);
xdr_encode_hyper(
(__be32 *)&cur_wchunk->wc_target.rs_offset,
seg->mr_base);
dprintk("RPC: %s: %s chunk "
"elem %d@0x%llx:0x%x (%s)\n", __func__,
(type == rpcrdma_replych) ? "reply" : "write",
seg->mr_len, (unsigned long long)seg->mr_base,
seg->mr_rkey, n < nsegs ? "more" : "last");
cur_wchunk++;
if (type == rpcrdma_replych)
r_xprt->rx_stats.reply_chunk_count++;
else
r_xprt->rx_stats.write_chunk_count++;
r_xprt->rx_stats.total_rdma_request += seg->mr_len;
}
nchunks++;
seg += n;
nsegs -= n;
} while (nsegs);
/* success. all failures return above */
req->rl_nchunks = nchunks;
BUG_ON(nchunks == 0);
/*
* finish off header. If write, marshal discrim and nchunks.
*/
if (cur_rchunk) {
iptr = (__be32 *) cur_rchunk;
*iptr++ = xdr_zero; /* finish the read chunk list */
*iptr++ = xdr_zero; /* encode a NULL write chunk list */
*iptr++ = xdr_zero; /* encode a NULL reply chunk */
} else {
warray->wc_discrim = xdr_one;
warray->wc_nchunks = htonl(nchunks);
iptr = (__be32 *) cur_wchunk;
if (type == rpcrdma_writech) {
*iptr++ = xdr_zero; /* finish the write chunk list */
*iptr++ = xdr_zero; /* encode a NULL reply chunk */
}
}
/*
* Return header size.
*/
return (unsigned char *)iptr - (unsigned char *)headerp;
out:
for (pos = 0; nchunks--;)
pos += rpcrdma_deregister_external(
&req->rl_segments[pos], r_xprt, NULL);
return 0;
}
/*
* Copy write data inline.
* This function is used for "small" requests. Data which is passed
* to RPC via iovecs (or page list) is copied directly into the
* pre-registered memory buffer for this request. For small amounts
* of data, this is efficient. The cutoff value is tunable.
*/
static int
rpcrdma_inline_pullup(struct rpc_rqst *rqst, int pad)
{
int i, npages, curlen;
int copy_len;
unsigned char *srcp, *destp;
struct rpcrdma_xprt *r_xprt = rpcx_to_rdmax(rqst->rq_xprt);
destp = rqst->rq_svec[0].iov_base;
curlen = rqst->rq_svec[0].iov_len;
destp += curlen;
/*
* Do optional padding where it makes sense. Alignment of write
* payload can help the server, if our setting is accurate.
*/
pad -= (curlen + 36/*sizeof(struct rpcrdma_msg_padded)*/);
if (pad < 0 || rqst->rq_slen - curlen < RPCRDMA_INLINE_PAD_THRESH)
pad = 0; /* don't pad this request */
dprintk("RPC: %s: pad %d destp 0x%p len %d hdrlen %d\n",
__func__, pad, destp, rqst->rq_slen, curlen);
copy_len = rqst->rq_snd_buf.page_len;
r_xprt->rx_stats.pullup_copy_count += copy_len;
npages = PAGE_ALIGN(rqst->rq_snd_buf.page_base+copy_len) >> PAGE_SHIFT;
for (i = 0; copy_len && i < npages; i++) {
if (i == 0)
curlen = PAGE_SIZE - rqst->rq_snd_buf.page_base;
else
curlen = PAGE_SIZE;
if (curlen > copy_len)
curlen = copy_len;
dprintk("RPC: %s: page %d destp 0x%p len %d curlen %d\n",
__func__, i, destp, copy_len, curlen);
srcp = kmap_atomic(rqst->rq_snd_buf.pages[i],
KM_SKB_SUNRPC_DATA);
if (i == 0)
memcpy(destp, srcp+rqst->rq_snd_buf.page_base, curlen);
else
memcpy(destp, srcp, curlen);
kunmap_atomic(srcp, KM_SKB_SUNRPC_DATA);
rqst->rq_svec[0].iov_len += curlen;
destp += curlen;
copy_len -= curlen;
}
if (rqst->rq_snd_buf.tail[0].iov_len) {
curlen = rqst->rq_snd_buf.tail[0].iov_len;
if (destp != rqst->rq_snd_buf.tail[0].iov_base) {
memcpy(destp,
rqst->rq_snd_buf.tail[0].iov_base, curlen);
r_xprt->rx_stats.pullup_copy_count += curlen;
}
dprintk("RPC: %s: tail destp 0x%p len %d curlen %d\n",
__func__, destp, copy_len, curlen);
rqst->rq_svec[0].iov_len += curlen;
}
/* header now contains entire send message */
return pad;
}
/*
* Marshal a request: the primary job of this routine is to choose
* the transfer modes. See comments below.
*
* Uses multiple RDMA IOVs for a request:
* [0] -- RPC RDMA header, which uses memory from the *start* of the
* preregistered buffer that already holds the RPC data in
* its middle.
* [1] -- the RPC header/data, marshaled by RPC and the NFS protocol.
* [2] -- optional padding.
* [3] -- if padded, header only in [1] and data here.
*/
int
rpcrdma_marshal_req(struct rpc_rqst *rqst)
{
struct rpc_xprt *xprt = rqst->rq_task->tk_xprt;
struct rpcrdma_xprt *r_xprt = rpcx_to_rdmax(xprt);
struct rpcrdma_req *req = rpcr_to_rdmar(rqst);
char *base;
size_t hdrlen, rpclen, padlen;
enum rpcrdma_chunktype rtype, wtype;
struct rpcrdma_msg *headerp;
/*
* rpclen gets amount of data in first buffer, which is the
* pre-registered buffer.
*/
base = rqst->rq_svec[0].iov_base;
rpclen = rqst->rq_svec[0].iov_len;
/* build RDMA header in private area at front */
headerp = (struct rpcrdma_msg *) req->rl_base;
/* don't htonl XID, it's already done in request */
headerp->rm_xid = rqst->rq_xid;
headerp->rm_vers = xdr_one;
headerp->rm_credit = htonl(r_xprt->rx_buf.rb_max_requests);
headerp->rm_type = htonl(RDMA_MSG);
/*
* Chunks needed for results?
*
* o If the expected result is under the inline threshold, all ops
* return as inline (but see later).
* o Large non-read ops return as a single reply chunk.
* o Large read ops return data as write chunk(s), header as inline.
*
* Note: the NFS code sending down multiple result segments implies
* the op is one of read, readdir[plus], readlink or NFSv4 getacl.
*/
/*
* This code can handle read chunks, write chunks OR reply
* chunks -- only one type. If the request is too big to fit
* inline, then we will choose read chunks. If the request is
* a READ, then use write chunks to separate the file data
* into pages; otherwise use reply chunks.
*/
if (rqst->rq_rcv_buf.buflen <= RPCRDMA_INLINE_READ_THRESHOLD(rqst))
wtype = rpcrdma_noch;
else if (rqst->rq_rcv_buf.page_len == 0)
wtype = rpcrdma_replych;
else if (rqst->rq_rcv_buf.flags & XDRBUF_READ)
wtype = rpcrdma_writech;
else
wtype = rpcrdma_replych;
/*
* Chunks needed for arguments?
*
* o If the total request is under the inline threshold, all ops
* are sent as inline.
* o Large non-write ops are sent with the entire message as a
* single read chunk (protocol 0-position special case).
* o Large write ops transmit data as read chunk(s), header as
* inline.
*
* Note: the NFS code sending down multiple argument segments
* implies the op is a write.
* TBD check NFSv4 setacl
*/
if (rqst->rq_snd_buf.len <= RPCRDMA_INLINE_WRITE_THRESHOLD(rqst))
rtype = rpcrdma_noch;
else if (rqst->rq_snd_buf.page_len == 0)
rtype = rpcrdma_areadch;
else
rtype = rpcrdma_readch;
/* The following simplification is not true forever */
if (rtype != rpcrdma_noch && wtype == rpcrdma_replych)
wtype = rpcrdma_noch;
BUG_ON(rtype != rpcrdma_noch && wtype != rpcrdma_noch);
if (r_xprt->rx_ia.ri_memreg_strategy == RPCRDMA_BOUNCEBUFFERS &&
(rtype != rpcrdma_noch || wtype != rpcrdma_noch)) {
/* forced to "pure inline"? */
dprintk("RPC: %s: too much data (%d/%d) for inline\n",
__func__, rqst->rq_rcv_buf.len, rqst->rq_snd_buf.len);
return -1;
}
hdrlen = 28; /*sizeof *headerp;*/
padlen = 0;
/*
* Pull up any extra send data into the preregistered buffer.
* When padding is in use and applies to the transfer, insert
* it and change the message type.
*/
if (rtype == rpcrdma_noch) {
padlen = rpcrdma_inline_pullup(rqst,
RPCRDMA_INLINE_PAD_VALUE(rqst));
if (padlen) {
headerp->rm_type = htonl(RDMA_MSGP);
headerp->rm_body.rm_padded.rm_align =
htonl(RPCRDMA_INLINE_PAD_VALUE(rqst));
headerp->rm_body.rm_padded.rm_thresh =
htonl(RPCRDMA_INLINE_PAD_THRESH);
headerp->rm_body.rm_padded.rm_pempty[0] = xdr_zero;
headerp->rm_body.rm_padded.rm_pempty[1] = xdr_zero;
headerp->rm_body.rm_padded.rm_pempty[2] = xdr_zero;
hdrlen += 2 * sizeof(u32); /* extra words in padhdr */
BUG_ON(wtype != rpcrdma_noch);
} else {
headerp->rm_body.rm_nochunks.rm_empty[0] = xdr_zero;
headerp->rm_body.rm_nochunks.rm_empty[1] = xdr_zero;
headerp->rm_body.rm_nochunks.rm_empty[2] = xdr_zero;
/* new length after pullup */
rpclen = rqst->rq_svec[0].iov_len;
/*
* Currently we try to not actually use read inline.
* Reply chunks have the desirable property that
* they land, packed, directly in the target buffers
* without headers, so they require no fixup. The
* additional RDMA Write op sends the same amount
* of data, streams on-the-wire and adds no overhead
* on receive. Therefore, we request a reply chunk
* for non-writes wherever feasible and efficient.
*/
if (wtype == rpcrdma_noch &&
r_xprt->rx_ia.ri_memreg_strategy > RPCRDMA_REGISTER)
wtype = rpcrdma_replych;
}
}
/*
* Marshal chunks. This routine will return the header length
* consumed by marshaling.
*/
if (rtype != rpcrdma_noch) {
hdrlen = rpcrdma_create_chunks(rqst,
&rqst->rq_snd_buf, headerp, rtype);
wtype = rtype; /* simplify dprintk */
} else if (wtype != rpcrdma_noch) {
hdrlen = rpcrdma_create_chunks(rqst,
&rqst->rq_rcv_buf, headerp, wtype);
}
if (hdrlen == 0)
return -1;
dprintk("RPC: %s: %s: hdrlen %zd rpclen %zd padlen %zd"
" headerp 0x%p base 0x%p lkey 0x%x\n",
__func__, transfertypes[wtype], hdrlen, rpclen, padlen,
headerp, base, req->rl_iov.lkey);
/*
* initialize send_iov's - normally only two: rdma chunk header and
* single preregistered RPC header buffer, but if padding is present,
* then use a preregistered (and zeroed) pad buffer between the RPC
* header and any write data. In all non-rdma cases, any following
* data has been copied into the RPC header buffer.
*/
req->rl_send_iov[0].addr = req->rl_iov.addr;
req->rl_send_iov[0].length = hdrlen;
req->rl_send_iov[0].lkey = req->rl_iov.lkey;
req->rl_send_iov[1].addr = req->rl_iov.addr + (base - req->rl_base);
req->rl_send_iov[1].length = rpclen;
req->rl_send_iov[1].lkey = req->rl_iov.lkey;
req->rl_niovs = 2;
if (padlen) {
struct rpcrdma_ep *ep = &r_xprt->rx_ep;
req->rl_send_iov[2].addr = ep->rep_pad.addr;
req->rl_send_iov[2].length = padlen;
req->rl_send_iov[2].lkey = ep->rep_pad.lkey;
req->rl_send_iov[3].addr = req->rl_send_iov[1].addr + rpclen;
req->rl_send_iov[3].length = rqst->rq_slen - rpclen;
req->rl_send_iov[3].lkey = req->rl_iov.lkey;
req->rl_niovs = 4;
}
return 0;
}
/*
* Chase down a received write or reply chunklist to get length
* RDMA'd by server. See map at rpcrdma_create_chunks()! :-)
*/
static int
rpcrdma_count_chunks(struct rpcrdma_rep *rep, unsigned int max, int wrchunk, __be32 **iptrp)
{
unsigned int i, total_len;
struct rpcrdma_write_chunk *cur_wchunk;
i = ntohl(**iptrp); /* get array count */
if (i > max)
return -1;
cur_wchunk = (struct rpcrdma_write_chunk *) (*iptrp + 1);
total_len = 0;
while (i--) {
struct rpcrdma_segment *seg = &cur_wchunk->wc_target;
ifdebug(FACILITY) {
u64 off;
xdr_decode_hyper((__be32 *)&seg->rs_offset, &off);
dprintk("RPC: %s: chunk %d@0x%llx:0x%x\n",
__func__,
ntohl(seg->rs_length),
(unsigned long long)off,
ntohl(seg->rs_handle));
}
total_len += ntohl(seg->rs_length);
++cur_wchunk;
}
/* check and adjust for properly terminated write chunk */
if (wrchunk) {
__be32 *w = (__be32 *) cur_wchunk;
if (*w++ != xdr_zero)
return -1;
cur_wchunk = (struct rpcrdma_write_chunk *) w;
}
if ((char *) cur_wchunk > rep->rr_base + rep->rr_len)
return -1;
*iptrp = (__be32 *) cur_wchunk;
return total_len;
}
/*
* Scatter inline received data back into provided iov's.
*/
static void
rpcrdma_inline_fixup(struct rpc_rqst *rqst, char *srcp, int copy_len, int pad)
{
int i, npages, curlen, olen;
char *destp;
curlen = rqst->rq_rcv_buf.head[0].iov_len;
if (curlen > copy_len) { /* write chunk header fixup */
curlen = copy_len;
rqst->rq_rcv_buf.head[0].iov_len = curlen;
}
dprintk("RPC: %s: srcp 0x%p len %d hdrlen %d\n",
__func__, srcp, copy_len, curlen);
/* Shift pointer for first receive segment only */
rqst->rq_rcv_buf.head[0].iov_base = srcp;
srcp += curlen;
copy_len -= curlen;
olen = copy_len;
i = 0;
rpcx_to_rdmax(rqst->rq_xprt)->rx_stats.fixup_copy_count += olen;
if (copy_len && rqst->rq_rcv_buf.page_len) {
npages = PAGE_ALIGN(rqst->rq_rcv_buf.page_base +
rqst->rq_rcv_buf.page_len) >> PAGE_SHIFT;
for (; i < npages; i++) {
if (i == 0)
curlen = PAGE_SIZE - rqst->rq_rcv_buf.page_base;
else
curlen = PAGE_SIZE;
if (curlen > copy_len)
curlen = copy_len;
dprintk("RPC: %s: page %d"
" srcp 0x%p len %d curlen %d\n",
__func__, i, srcp, copy_len, curlen);
destp = kmap_atomic(rqst->rq_rcv_buf.pages[i],
KM_SKB_SUNRPC_DATA);
if (i == 0)
memcpy(destp + rqst->rq_rcv_buf.page_base,
srcp, curlen);
else
memcpy(destp, srcp, curlen);
flush_dcache_page(rqst->rq_rcv_buf.pages[i]);
kunmap_atomic(destp, KM_SKB_SUNRPC_DATA);
srcp += curlen;
copy_len -= curlen;
if (copy_len == 0)
break;
}
rqst->rq_rcv_buf.page_len = olen - copy_len;
} else
rqst->rq_rcv_buf.page_len = 0;
if (copy_len && rqst->rq_rcv_buf.tail[0].iov_len) {
curlen = copy_len;
if (curlen > rqst->rq_rcv_buf.tail[0].iov_len)
curlen = rqst->rq_rcv_buf.tail[0].iov_len;
if (rqst->rq_rcv_buf.tail[0].iov_base != srcp)
memcpy(rqst->rq_rcv_buf.tail[0].iov_base, srcp, curlen);
dprintk("RPC: %s: tail srcp 0x%p len %d curlen %d\n",
__func__, srcp, copy_len, curlen);
rqst->rq_rcv_buf.tail[0].iov_len = curlen;
copy_len -= curlen; ++i;
} else
rqst->rq_rcv_buf.tail[0].iov_len = 0;
if (pad) {
/* implicit padding on terminal chunk */
unsigned char *p = rqst->rq_rcv_buf.tail[0].iov_base;
while (pad--)
p[rqst->rq_rcv_buf.tail[0].iov_len++] = 0;
}
if (copy_len)
dprintk("RPC: %s: %d bytes in"
" %d extra segments (%d lost)\n",
__func__, olen, i, copy_len);
/* TBD avoid a warning from call_decode() */
rqst->rq_private_buf = rqst->rq_rcv_buf;
}
/*
* This function is called when an async event is posted to
* the connection which changes the connection state. All it
* does at this point is mark the connection up/down, the rpc
* timers do the rest.
*/
void
rpcrdma_conn_func(struct rpcrdma_ep *ep)
{
struct rpc_xprt *xprt = ep->rep_xprt;
spin_lock_bh(&xprt->transport_lock);
if (++xprt->connect_cookie == 0) /* maintain a reserved value */
++xprt->connect_cookie;
if (ep->rep_connected > 0) {
if (!xprt_test_and_set_connected(xprt))
xprt_wake_pending_tasks(xprt, 0);
} else {
if (xprt_test_and_clear_connected(xprt))
xprt_wake_pending_tasks(xprt, -ENOTCONN);
}
spin_unlock_bh(&xprt->transport_lock);
}
/*
* This function is called when memory window unbind which we are waiting
* for completes. Just use rr_func (zeroed by upcall) to signal completion.
*/
static void
rpcrdma_unbind_func(struct rpcrdma_rep *rep)
{
wake_up(&rep->rr_unbind);
}
/*
* Called as a tasklet to do req/reply match and complete a request
* Errors must result in the RPC task either being awakened, or
* allowed to timeout, to discover the errors at that time.
*/
void
rpcrdma_reply_handler(struct rpcrdma_rep *rep)
{
struct rpcrdma_msg *headerp;
struct rpcrdma_req *req;
struct rpc_rqst *rqst;
struct rpc_xprt *xprt = rep->rr_xprt;
struct rpcrdma_xprt *r_xprt = rpcx_to_rdmax(xprt);
__be32 *iptr;
int i, rdmalen, status;
/* Check status. If bad, signal disconnect and return rep to pool */
if (rep->rr_len == ~0U) {
rpcrdma_recv_buffer_put(rep);
if (r_xprt->rx_ep.rep_connected == 1) {
r_xprt->rx_ep.rep_connected = -EIO;
rpcrdma_conn_func(&r_xprt->rx_ep);
}
return;
}
if (rep->rr_len < 28) {
dprintk("RPC: %s: short/invalid reply\n", __func__);
goto repost;
}
headerp = (struct rpcrdma_msg *) rep->rr_base;
if (headerp->rm_vers != xdr_one) {
dprintk("RPC: %s: invalid version %d\n",
__func__, ntohl(headerp->rm_vers));
goto repost;
}
/* Get XID and try for a match. */
spin_lock(&xprt->transport_lock);
rqst = xprt_lookup_rqst(xprt, headerp->rm_xid);
if (rqst == NULL) {
spin_unlock(&xprt->transport_lock);
dprintk("RPC: %s: reply 0x%p failed "
"to match any request xid 0x%08x len %d\n",
__func__, rep, headerp->rm_xid, rep->rr_len);
repost:
r_xprt->rx_stats.bad_reply_count++;
rep->rr_func = rpcrdma_reply_handler;
if (rpcrdma_ep_post_recv(&r_xprt->rx_ia, &r_xprt->rx_ep, rep))
rpcrdma_recv_buffer_put(rep);
return;
}
/* get request object */
req = rpcr_to_rdmar(rqst);
dprintk("RPC: %s: reply 0x%p completes request 0x%p\n"
" RPC request 0x%p xid 0x%08x\n",
__func__, rep, req, rqst, headerp->rm_xid);
BUG_ON(!req || req->rl_reply);
/* from here on, the reply is no longer an orphan */
req->rl_reply = rep;
/* check for expected message types */
/* The order of some of these tests is important. */
switch (headerp->rm_type) {
case htonl(RDMA_MSG):
/* never expect read chunks */
/* never expect reply chunks (two ways to check) */
/* never expect write chunks without having offered RDMA */
if (headerp->rm_body.rm_chunks[0] != xdr_zero ||
(headerp->rm_body.rm_chunks[1] == xdr_zero &&
headerp->rm_body.rm_chunks[2] != xdr_zero) ||
(headerp->rm_body.rm_chunks[1] != xdr_zero &&
req->rl_nchunks == 0))
goto badheader;
if (headerp->rm_body.rm_chunks[1] != xdr_zero) {
/* count any expected write chunks in read reply */
/* start at write chunk array count */
iptr = &headerp->rm_body.rm_chunks[2];
rdmalen = rpcrdma_count_chunks(rep,
req->rl_nchunks, 1, &iptr);
/* check for validity, and no reply chunk after */
if (rdmalen < 0 || *iptr++ != xdr_zero)
goto badheader;
rep->rr_len -=
((unsigned char *)iptr - (unsigned char *)headerp);
status = rep->rr_len + rdmalen;
r_xprt->rx_stats.total_rdma_reply += rdmalen;
/* special case - last chunk may omit padding */
if (rdmalen &= 3) {
rdmalen = 4 - rdmalen;
status += rdmalen;
}
} else {
/* else ordinary inline */
rdmalen = 0;
iptr = (__be32 *)((unsigned char *)headerp + 28);
rep->rr_len -= 28; /*sizeof *headerp;*/
status = rep->rr_len;
}
/* Fix up the rpc results for upper layer */
rpcrdma_inline_fixup(rqst, (char *)iptr, rep->rr_len, rdmalen);
break;
case htonl(RDMA_NOMSG):
/* never expect read or write chunks, always reply chunks */
if (headerp->rm_body.rm_chunks[0] != xdr_zero ||
headerp->rm_body.rm_chunks[1] != xdr_zero ||
headerp->rm_body.rm_chunks[2] != xdr_one ||
req->rl_nchunks == 0)
goto badheader;
iptr = (__be32 *)((unsigned char *)headerp + 28);
rdmalen = rpcrdma_count_chunks(rep, req->rl_nchunks, 0, &iptr);
if (rdmalen < 0)
goto badheader;
r_xprt->rx_stats.total_rdma_reply += rdmalen;
/* Reply chunk buffer already is the reply vector - no fixup. */
status = rdmalen;
break;
badheader:
default:
dprintk("%s: invalid rpcrdma reply header (type %d):"
" chunks[012] == %d %d %d"
" expected chunks <= %d\n",
__func__, ntohl(headerp->rm_type),
headerp->rm_body.rm_chunks[0],
headerp->rm_body.rm_chunks[1],
headerp->rm_body.rm_chunks[2],
req->rl_nchunks);
status = -EIO;
r_xprt->rx_stats.bad_reply_count++;
break;
}
/* If using mw bind, start the deregister process now. */
/* (Note: if mr_free(), cannot perform it here, in tasklet context) */
if (req->rl_nchunks) switch (r_xprt->rx_ia.ri_memreg_strategy) {
case RPCRDMA_MEMWINDOWS:
for (i = 0; req->rl_nchunks-- > 1;)
i += rpcrdma_deregister_external(
&req->rl_segments[i], r_xprt, NULL);
/* Optionally wait (not here) for unbinds to complete */
rep->rr_func = rpcrdma_unbind_func;
(void) rpcrdma_deregister_external(&req->rl_segments[i],
r_xprt, rep);
break;
case RPCRDMA_MEMWINDOWS_ASYNC:
for (i = 0; req->rl_nchunks--;)
i += rpcrdma_deregister_external(&req->rl_segments[i],
r_xprt, NULL);
break;
default:
break;
}
dprintk("RPC: %s: xprt_complete_rqst(0x%p, 0x%p, %d)\n",
__func__, xprt, rqst, status);
xprt_complete_rqst(rqst->rq_task, status);
spin_unlock(&xprt->transport_lock);
}