9b987aeb4a
Impact: fix kprobes crash on 32-bit with RAM above 4G Use phys_addr_t for receiving a physical address argument instead of unsigned long. This allows fixmap to handle pages higher than 4GB on x86-32. Signed-off-by: Masami Hiramatsu <mhiramat@redhat.com> Acked-by: Mathieu Desnoyers <mathieu.desnoyers@polymtl.ca> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Ananth N Mavinakayanahalli <ananth@in.ibm.com> Cc: systemtap-ml <systemtap@sources.redhat.com> Cc: Gary Hade <garyhade@us.ibm.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> LKML-Reference: <49DE3695.6040800@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
352 lines
8.2 KiB
C
352 lines
8.2 KiB
C
#include <linux/mm.h>
|
|
#include <asm/pgalloc.h>
|
|
#include <asm/pgtable.h>
|
|
#include <asm/tlb.h>
|
|
#include <asm/fixmap.h>
|
|
|
|
pte_t *pte_alloc_one_kernel(struct mm_struct *mm, unsigned long address)
|
|
{
|
|
return (pte_t *)__get_free_page(GFP_KERNEL|__GFP_REPEAT|__GFP_ZERO);
|
|
}
|
|
|
|
pgtable_t pte_alloc_one(struct mm_struct *mm, unsigned long address)
|
|
{
|
|
struct page *pte;
|
|
|
|
#ifdef CONFIG_HIGHPTE
|
|
pte = alloc_pages(GFP_KERNEL|__GFP_HIGHMEM|__GFP_REPEAT|__GFP_ZERO, 0);
|
|
#else
|
|
pte = alloc_pages(GFP_KERNEL|__GFP_REPEAT|__GFP_ZERO, 0);
|
|
#endif
|
|
if (pte)
|
|
pgtable_page_ctor(pte);
|
|
return pte;
|
|
}
|
|
|
|
void __pte_free_tlb(struct mmu_gather *tlb, struct page *pte)
|
|
{
|
|
pgtable_page_dtor(pte);
|
|
paravirt_release_pte(page_to_pfn(pte));
|
|
tlb_remove_page(tlb, pte);
|
|
}
|
|
|
|
#if PAGETABLE_LEVELS > 2
|
|
void __pmd_free_tlb(struct mmu_gather *tlb, pmd_t *pmd)
|
|
{
|
|
paravirt_release_pmd(__pa(pmd) >> PAGE_SHIFT);
|
|
tlb_remove_page(tlb, virt_to_page(pmd));
|
|
}
|
|
|
|
#if PAGETABLE_LEVELS > 3
|
|
void __pud_free_tlb(struct mmu_gather *tlb, pud_t *pud)
|
|
{
|
|
paravirt_release_pud(__pa(pud) >> PAGE_SHIFT);
|
|
tlb_remove_page(tlb, virt_to_page(pud));
|
|
}
|
|
#endif /* PAGETABLE_LEVELS > 3 */
|
|
#endif /* PAGETABLE_LEVELS > 2 */
|
|
|
|
static inline void pgd_list_add(pgd_t *pgd)
|
|
{
|
|
struct page *page = virt_to_page(pgd);
|
|
|
|
list_add(&page->lru, &pgd_list);
|
|
}
|
|
|
|
static inline void pgd_list_del(pgd_t *pgd)
|
|
{
|
|
struct page *page = virt_to_page(pgd);
|
|
|
|
list_del(&page->lru);
|
|
}
|
|
|
|
#define UNSHARED_PTRS_PER_PGD \
|
|
(SHARED_KERNEL_PMD ? KERNEL_PGD_BOUNDARY : PTRS_PER_PGD)
|
|
|
|
static void pgd_ctor(pgd_t *pgd)
|
|
{
|
|
/* If the pgd points to a shared pagetable level (either the
|
|
ptes in non-PAE, or shared PMD in PAE), then just copy the
|
|
references from swapper_pg_dir. */
|
|
if (PAGETABLE_LEVELS == 2 ||
|
|
(PAGETABLE_LEVELS == 3 && SHARED_KERNEL_PMD) ||
|
|
PAGETABLE_LEVELS == 4) {
|
|
clone_pgd_range(pgd + KERNEL_PGD_BOUNDARY,
|
|
swapper_pg_dir + KERNEL_PGD_BOUNDARY,
|
|
KERNEL_PGD_PTRS);
|
|
paravirt_alloc_pmd_clone(__pa(pgd) >> PAGE_SHIFT,
|
|
__pa(swapper_pg_dir) >> PAGE_SHIFT,
|
|
KERNEL_PGD_BOUNDARY,
|
|
KERNEL_PGD_PTRS);
|
|
}
|
|
|
|
/* list required to sync kernel mapping updates */
|
|
if (!SHARED_KERNEL_PMD)
|
|
pgd_list_add(pgd);
|
|
}
|
|
|
|
static void pgd_dtor(pgd_t *pgd)
|
|
{
|
|
unsigned long flags; /* can be called from interrupt context */
|
|
|
|
if (SHARED_KERNEL_PMD)
|
|
return;
|
|
|
|
spin_lock_irqsave(&pgd_lock, flags);
|
|
pgd_list_del(pgd);
|
|
spin_unlock_irqrestore(&pgd_lock, flags);
|
|
}
|
|
|
|
/*
|
|
* List of all pgd's needed for non-PAE so it can invalidate entries
|
|
* in both cached and uncached pgd's; not needed for PAE since the
|
|
* kernel pmd is shared. If PAE were not to share the pmd a similar
|
|
* tactic would be needed. This is essentially codepath-based locking
|
|
* against pageattr.c; it is the unique case in which a valid change
|
|
* of kernel pagetables can't be lazily synchronized by vmalloc faults.
|
|
* vmalloc faults work because attached pagetables are never freed.
|
|
* -- wli
|
|
*/
|
|
|
|
#ifdef CONFIG_X86_PAE
|
|
/*
|
|
* In PAE mode, we need to do a cr3 reload (=tlb flush) when
|
|
* updating the top-level pagetable entries to guarantee the
|
|
* processor notices the update. Since this is expensive, and
|
|
* all 4 top-level entries are used almost immediately in a
|
|
* new process's life, we just pre-populate them here.
|
|
*
|
|
* Also, if we're in a paravirt environment where the kernel pmd is
|
|
* not shared between pagetables (!SHARED_KERNEL_PMDS), we allocate
|
|
* and initialize the kernel pmds here.
|
|
*/
|
|
#define PREALLOCATED_PMDS UNSHARED_PTRS_PER_PGD
|
|
|
|
void pud_populate(struct mm_struct *mm, pud_t *pudp, pmd_t *pmd)
|
|
{
|
|
paravirt_alloc_pmd(mm, __pa(pmd) >> PAGE_SHIFT);
|
|
|
|
/* Note: almost everything apart from _PAGE_PRESENT is
|
|
reserved at the pmd (PDPT) level. */
|
|
set_pud(pudp, __pud(__pa(pmd) | _PAGE_PRESENT));
|
|
|
|
/*
|
|
* According to Intel App note "TLBs, Paging-Structure Caches,
|
|
* and Their Invalidation", April 2007, document 317080-001,
|
|
* section 8.1: in PAE mode we explicitly have to flush the
|
|
* TLB via cr3 if the top-level pgd is changed...
|
|
*/
|
|
if (mm == current->active_mm)
|
|
write_cr3(read_cr3());
|
|
}
|
|
#else /* !CONFIG_X86_PAE */
|
|
|
|
/* No need to prepopulate any pagetable entries in non-PAE modes. */
|
|
#define PREALLOCATED_PMDS 0
|
|
|
|
#endif /* CONFIG_X86_PAE */
|
|
|
|
static void free_pmds(pmd_t *pmds[])
|
|
{
|
|
int i;
|
|
|
|
for(i = 0; i < PREALLOCATED_PMDS; i++)
|
|
if (pmds[i])
|
|
free_page((unsigned long)pmds[i]);
|
|
}
|
|
|
|
static int preallocate_pmds(pmd_t *pmds[])
|
|
{
|
|
int i;
|
|
bool failed = false;
|
|
|
|
for(i = 0; i < PREALLOCATED_PMDS; i++) {
|
|
pmd_t *pmd = (pmd_t *)get_zeroed_page(GFP_KERNEL|__GFP_REPEAT);
|
|
if (pmd == NULL)
|
|
failed = true;
|
|
pmds[i] = pmd;
|
|
}
|
|
|
|
if (failed) {
|
|
free_pmds(pmds);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Mop up any pmd pages which may still be attached to the pgd.
|
|
* Normally they will be freed by munmap/exit_mmap, but any pmd we
|
|
* preallocate which never got a corresponding vma will need to be
|
|
* freed manually.
|
|
*/
|
|
static void pgd_mop_up_pmds(struct mm_struct *mm, pgd_t *pgdp)
|
|
{
|
|
int i;
|
|
|
|
for(i = 0; i < PREALLOCATED_PMDS; i++) {
|
|
pgd_t pgd = pgdp[i];
|
|
|
|
if (pgd_val(pgd) != 0) {
|
|
pmd_t *pmd = (pmd_t *)pgd_page_vaddr(pgd);
|
|
|
|
pgdp[i] = native_make_pgd(0);
|
|
|
|
paravirt_release_pmd(pgd_val(pgd) >> PAGE_SHIFT);
|
|
pmd_free(mm, pmd);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void pgd_prepopulate_pmd(struct mm_struct *mm, pgd_t *pgd, pmd_t *pmds[])
|
|
{
|
|
pud_t *pud;
|
|
unsigned long addr;
|
|
int i;
|
|
|
|
if (PREALLOCATED_PMDS == 0) /* Work around gcc-3.4.x bug */
|
|
return;
|
|
|
|
pud = pud_offset(pgd, 0);
|
|
|
|
for (addr = i = 0; i < PREALLOCATED_PMDS;
|
|
i++, pud++, addr += PUD_SIZE) {
|
|
pmd_t *pmd = pmds[i];
|
|
|
|
if (i >= KERNEL_PGD_BOUNDARY)
|
|
memcpy(pmd, (pmd_t *)pgd_page_vaddr(swapper_pg_dir[i]),
|
|
sizeof(pmd_t) * PTRS_PER_PMD);
|
|
|
|
pud_populate(mm, pud, pmd);
|
|
}
|
|
}
|
|
|
|
pgd_t *pgd_alloc(struct mm_struct *mm)
|
|
{
|
|
pgd_t *pgd;
|
|
pmd_t *pmds[PREALLOCATED_PMDS];
|
|
unsigned long flags;
|
|
|
|
pgd = (pgd_t *)__get_free_page(GFP_KERNEL | __GFP_ZERO);
|
|
|
|
if (pgd == NULL)
|
|
goto out;
|
|
|
|
mm->pgd = pgd;
|
|
|
|
if (preallocate_pmds(pmds) != 0)
|
|
goto out_free_pgd;
|
|
|
|
if (paravirt_pgd_alloc(mm) != 0)
|
|
goto out_free_pmds;
|
|
|
|
/*
|
|
* Make sure that pre-populating the pmds is atomic with
|
|
* respect to anything walking the pgd_list, so that they
|
|
* never see a partially populated pgd.
|
|
*/
|
|
spin_lock_irqsave(&pgd_lock, flags);
|
|
|
|
pgd_ctor(pgd);
|
|
pgd_prepopulate_pmd(mm, pgd, pmds);
|
|
|
|
spin_unlock_irqrestore(&pgd_lock, flags);
|
|
|
|
return pgd;
|
|
|
|
out_free_pmds:
|
|
free_pmds(pmds);
|
|
out_free_pgd:
|
|
free_page((unsigned long)pgd);
|
|
out:
|
|
return NULL;
|
|
}
|
|
|
|
void pgd_free(struct mm_struct *mm, pgd_t *pgd)
|
|
{
|
|
pgd_mop_up_pmds(mm, pgd);
|
|
pgd_dtor(pgd);
|
|
paravirt_pgd_free(mm, pgd);
|
|
free_page((unsigned long)pgd);
|
|
}
|
|
|
|
int ptep_set_access_flags(struct vm_area_struct *vma,
|
|
unsigned long address, pte_t *ptep,
|
|
pte_t entry, int dirty)
|
|
{
|
|
int changed = !pte_same(*ptep, entry);
|
|
|
|
if (changed && dirty) {
|
|
*ptep = entry;
|
|
pte_update_defer(vma->vm_mm, address, ptep);
|
|
flush_tlb_page(vma, address);
|
|
}
|
|
|
|
return changed;
|
|
}
|
|
|
|
int ptep_test_and_clear_young(struct vm_area_struct *vma,
|
|
unsigned long addr, pte_t *ptep)
|
|
{
|
|
int ret = 0;
|
|
|
|
if (pte_young(*ptep))
|
|
ret = test_and_clear_bit(_PAGE_BIT_ACCESSED,
|
|
(unsigned long *) &ptep->pte);
|
|
|
|
if (ret)
|
|
pte_update(vma->vm_mm, addr, ptep);
|
|
|
|
return ret;
|
|
}
|
|
|
|
int ptep_clear_flush_young(struct vm_area_struct *vma,
|
|
unsigned long address, pte_t *ptep)
|
|
{
|
|
int young;
|
|
|
|
young = ptep_test_and_clear_young(vma, address, ptep);
|
|
if (young)
|
|
flush_tlb_page(vma, address);
|
|
|
|
return young;
|
|
}
|
|
|
|
/**
|
|
* reserve_top_address - reserves a hole in the top of kernel address space
|
|
* @reserve - size of hole to reserve
|
|
*
|
|
* Can be used to relocate the fixmap area and poke a hole in the top
|
|
* of kernel address space to make room for a hypervisor.
|
|
*/
|
|
void __init reserve_top_address(unsigned long reserve)
|
|
{
|
|
#ifdef CONFIG_X86_32
|
|
BUG_ON(fixmaps_set > 0);
|
|
printk(KERN_INFO "Reserving virtual address space above 0x%08x\n",
|
|
(int)-reserve);
|
|
__FIXADDR_TOP = -reserve - PAGE_SIZE;
|
|
__VMALLOC_RESERVE += reserve;
|
|
#endif
|
|
}
|
|
|
|
int fixmaps_set;
|
|
|
|
void __native_set_fixmap(enum fixed_addresses idx, pte_t pte)
|
|
{
|
|
unsigned long address = __fix_to_virt(idx);
|
|
|
|
if (idx >= __end_of_fixed_addresses) {
|
|
BUG();
|
|
return;
|
|
}
|
|
set_pte_vaddr(address, pte);
|
|
fixmaps_set++;
|
|
}
|
|
|
|
void native_set_fixmap(enum fixed_addresses idx, phys_addr_t phys,
|
|
pgprot_t flags)
|
|
{
|
|
__native_set_fixmap(idx, pfn_pte(phys >> PAGE_SHIFT, flags));
|
|
}
|