android_kernel_motorola_sm6225/include/linux/raid/raid10.h
Linus Torvalds 1da177e4c3 Linux-2.6.12-rc2
Initial git repository build. I'm not bothering with the full history,
even though we have it. We can create a separate "historical" git
archive of that later if we want to, and in the meantime it's about
3.2GB when imported into git - space that would just make the early
git days unnecessarily complicated, when we don't have a lot of good
infrastructure for it.

Let it rip!
2005-04-16 15:20:36 -07:00

103 lines
2.3 KiB
C

#ifndef _RAID10_H
#define _RAID10_H
#include <linux/raid/md.h>
typedef struct mirror_info mirror_info_t;
struct mirror_info {
mdk_rdev_t *rdev;
sector_t head_position;
};
typedef struct r10bio_s r10bio_t;
struct r10_private_data_s {
mddev_t *mddev;
mirror_info_t *mirrors;
int raid_disks;
int working_disks;
spinlock_t device_lock;
/* geometry */
int near_copies; /* number of copies layed out raid0 style */
int far_copies; /* number of copies layed out
* at large strides across drives
*/
int copies; /* near_copies * far_copies.
* must be <= raid_disks
*/
sector_t stride; /* distance between far copies.
* This is size / far_copies
*/
int chunk_shift; /* shift from chunks to sectors */
sector_t chunk_mask;
struct list_head retry_list;
/* for use when syncing mirrors: */
spinlock_t resync_lock;
int nr_pending;
int barrier;
sector_t next_resync;
wait_queue_head_t wait_idle;
wait_queue_head_t wait_resume;
mempool_t *r10bio_pool;
mempool_t *r10buf_pool;
};
typedef struct r10_private_data_s conf_t;
/*
* this is the only point in the RAID code where we violate
* C type safety. mddev->private is an 'opaque' pointer.
*/
#define mddev_to_conf(mddev) ((conf_t *) mddev->private)
/*
* this is our 'private' RAID10 bio.
*
* it contains information about what kind of IO operations were started
* for this RAID10 operation, and about their status:
*/
struct r10bio_s {
atomic_t remaining; /* 'have we finished' count,
* used from IRQ handlers
*/
sector_t sector; /* virtual sector number */
int sectors;
unsigned long state;
mddev_t *mddev;
/*
* original bio going to /dev/mdx
*/
struct bio *master_bio;
/*
* if the IO is in READ direction, then this is where we read
*/
int read_slot;
struct list_head retry_list;
/*
* if the IO is in WRITE direction, then multiple bios are used,
* one for each copy.
* When resyncing we also use one for each copy.
* When reconstructing, we use 2 bios, one for read, one for write.
* We choose the number when they are allocated.
*/
struct {
struct bio *bio;
sector_t addr;
int devnum;
} devs[0];
};
/* bits for r10bio.state */
#define R10BIO_Uptodate 0
#define R10BIO_IsSync 1
#define R10BIO_IsRecover 2
#endif