827 lines
20 KiB
C
827 lines
20 KiB
C
|
/*
|
||
|
* pci.c - Low-Level PCI Access in IA-64
|
||
|
*
|
||
|
* Derived from bios32.c of i386 tree.
|
||
|
*
|
||
|
* (c) Copyright 2002, 2005 Hewlett-Packard Development Company, L.P.
|
||
|
* David Mosberger-Tang <davidm@hpl.hp.com>
|
||
|
* Bjorn Helgaas <bjorn.helgaas@hp.com>
|
||
|
* Copyright (C) 2004 Silicon Graphics, Inc.
|
||
|
*
|
||
|
* Note: Above list of copyright holders is incomplete...
|
||
|
*/
|
||
|
|
||
|
#include <linux/acpi.h>
|
||
|
#include <linux/types.h>
|
||
|
#include <linux/kernel.h>
|
||
|
#include <linux/pci.h>
|
||
|
#include <linux/pci-acpi.h>
|
||
|
#include <linux/init.h>
|
||
|
#include <linux/ioport.h>
|
||
|
#include <linux/slab.h>
|
||
|
#include <linux/spinlock.h>
|
||
|
#include <linux/bootmem.h>
|
||
|
#include <linux/export.h>
|
||
|
|
||
|
#include <asm/machvec.h>
|
||
|
#include <asm/page.h>
|
||
|
#include <asm/io.h>
|
||
|
#include <asm/sal.h>
|
||
|
#include <asm/smp.h>
|
||
|
#include <asm/irq.h>
|
||
|
#include <asm/hw_irq.h>
|
||
|
|
||
|
/*
|
||
|
* Low-level SAL-based PCI configuration access functions. Note that SAL
|
||
|
* calls are already serialized (via sal_lock), so we don't need another
|
||
|
* synchronization mechanism here.
|
||
|
*/
|
||
|
|
||
|
#define PCI_SAL_ADDRESS(seg, bus, devfn, reg) \
|
||
|
(((u64) seg << 24) | (bus << 16) | (devfn << 8) | (reg))
|
||
|
|
||
|
/* SAL 3.2 adds support for extended config space. */
|
||
|
|
||
|
#define PCI_SAL_EXT_ADDRESS(seg, bus, devfn, reg) \
|
||
|
(((u64) seg << 28) | (bus << 20) | (devfn << 12) | (reg))
|
||
|
|
||
|
int raw_pci_read(unsigned int seg, unsigned int bus, unsigned int devfn,
|
||
|
int reg, int len, u32 *value)
|
||
|
{
|
||
|
u64 addr, data = 0;
|
||
|
int mode, result;
|
||
|
|
||
|
if (!value || (seg > 65535) || (bus > 255) || (devfn > 255) || (reg > 4095))
|
||
|
return -EINVAL;
|
||
|
|
||
|
if ((seg | reg) <= 255) {
|
||
|
addr = PCI_SAL_ADDRESS(seg, bus, devfn, reg);
|
||
|
mode = 0;
|
||
|
} else if (sal_revision >= SAL_VERSION_CODE(3,2)) {
|
||
|
addr = PCI_SAL_EXT_ADDRESS(seg, bus, devfn, reg);
|
||
|
mode = 1;
|
||
|
} else {
|
||
|
return -EINVAL;
|
||
|
}
|
||
|
|
||
|
result = ia64_sal_pci_config_read(addr, mode, len, &data);
|
||
|
if (result != 0)
|
||
|
return -EINVAL;
|
||
|
|
||
|
*value = (u32) data;
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
int raw_pci_write(unsigned int seg, unsigned int bus, unsigned int devfn,
|
||
|
int reg, int len, u32 value)
|
||
|
{
|
||
|
u64 addr;
|
||
|
int mode, result;
|
||
|
|
||
|
if ((seg > 65535) || (bus > 255) || (devfn > 255) || (reg > 4095))
|
||
|
return -EINVAL;
|
||
|
|
||
|
if ((seg | reg) <= 255) {
|
||
|
addr = PCI_SAL_ADDRESS(seg, bus, devfn, reg);
|
||
|
mode = 0;
|
||
|
} else if (sal_revision >= SAL_VERSION_CODE(3,2)) {
|
||
|
addr = PCI_SAL_EXT_ADDRESS(seg, bus, devfn, reg);
|
||
|
mode = 1;
|
||
|
} else {
|
||
|
return -EINVAL;
|
||
|
}
|
||
|
result = ia64_sal_pci_config_write(addr, mode, len, value);
|
||
|
if (result != 0)
|
||
|
return -EINVAL;
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static int pci_read(struct pci_bus *bus, unsigned int devfn, int where,
|
||
|
int size, u32 *value)
|
||
|
{
|
||
|
return raw_pci_read(pci_domain_nr(bus), bus->number,
|
||
|
devfn, where, size, value);
|
||
|
}
|
||
|
|
||
|
static int pci_write(struct pci_bus *bus, unsigned int devfn, int where,
|
||
|
int size, u32 value)
|
||
|
{
|
||
|
return raw_pci_write(pci_domain_nr(bus), bus->number,
|
||
|
devfn, where, size, value);
|
||
|
}
|
||
|
|
||
|
struct pci_ops pci_root_ops = {
|
||
|
.read = pci_read,
|
||
|
.write = pci_write,
|
||
|
};
|
||
|
|
||
|
/* Called by ACPI when it finds a new root bus. */
|
||
|
|
||
|
static struct pci_controller *alloc_pci_controller(int seg)
|
||
|
{
|
||
|
struct pci_controller *controller;
|
||
|
|
||
|
controller = kzalloc(sizeof(*controller), GFP_KERNEL);
|
||
|
if (!controller)
|
||
|
return NULL;
|
||
|
|
||
|
controller->segment = seg;
|
||
|
return controller;
|
||
|
}
|
||
|
|
||
|
struct pci_root_info {
|
||
|
struct acpi_device *bridge;
|
||
|
struct pci_controller *controller;
|
||
|
struct list_head resources;
|
||
|
struct resource *res;
|
||
|
resource_size_t *res_offset;
|
||
|
unsigned int res_num;
|
||
|
struct list_head io_resources;
|
||
|
char *name;
|
||
|
};
|
||
|
|
||
|
static unsigned int
|
||
|
new_space (u64 phys_base, int sparse)
|
||
|
{
|
||
|
u64 mmio_base;
|
||
|
int i;
|
||
|
|
||
|
if (phys_base == 0)
|
||
|
return 0; /* legacy I/O port space */
|
||
|
|
||
|
mmio_base = (u64) ioremap(phys_base, 0);
|
||
|
for (i = 0; i < num_io_spaces; i++)
|
||
|
if (io_space[i].mmio_base == mmio_base &&
|
||
|
io_space[i].sparse == sparse)
|
||
|
return i;
|
||
|
|
||
|
if (num_io_spaces == MAX_IO_SPACES) {
|
||
|
pr_err("PCI: Too many IO port spaces "
|
||
|
"(MAX_IO_SPACES=%lu)\n", MAX_IO_SPACES);
|
||
|
return ~0;
|
||
|
}
|
||
|
|
||
|
i = num_io_spaces++;
|
||
|
io_space[i].mmio_base = mmio_base;
|
||
|
io_space[i].sparse = sparse;
|
||
|
|
||
|
return i;
|
||
|
}
|
||
|
|
||
|
static u64 add_io_space(struct pci_root_info *info,
|
||
|
struct acpi_resource_address64 *addr)
|
||
|
{
|
||
|
struct iospace_resource *iospace;
|
||
|
struct resource *resource;
|
||
|
char *name;
|
||
|
unsigned long base, min, max, base_port;
|
||
|
unsigned int sparse = 0, space_nr, len;
|
||
|
|
||
|
len = strlen(info->name) + 32;
|
||
|
iospace = kzalloc(sizeof(*iospace) + len, GFP_KERNEL);
|
||
|
if (!iospace) {
|
||
|
dev_err(&info->bridge->dev,
|
||
|
"PCI: No memory for %s I/O port space\n",
|
||
|
info->name);
|
||
|
goto out;
|
||
|
}
|
||
|
|
||
|
name = (char *)(iospace + 1);
|
||
|
|
||
|
min = addr->minimum;
|
||
|
max = min + addr->address_length - 1;
|
||
|
if (addr->info.io.translation_type == ACPI_SPARSE_TRANSLATION)
|
||
|
sparse = 1;
|
||
|
|
||
|
space_nr = new_space(addr->translation_offset, sparse);
|
||
|
if (space_nr == ~0)
|
||
|
goto free_resource;
|
||
|
|
||
|
base = __pa(io_space[space_nr].mmio_base);
|
||
|
base_port = IO_SPACE_BASE(space_nr);
|
||
|
snprintf(name, len, "%s I/O Ports %08lx-%08lx", info->name,
|
||
|
base_port + min, base_port + max);
|
||
|
|
||
|
/*
|
||
|
* The SDM guarantees the legacy 0-64K space is sparse, but if the
|
||
|
* mapping is done by the processor (not the bridge), ACPI may not
|
||
|
* mark it as sparse.
|
||
|
*/
|
||
|
if (space_nr == 0)
|
||
|
sparse = 1;
|
||
|
|
||
|
resource = &iospace->res;
|
||
|
resource->name = name;
|
||
|
resource->flags = IORESOURCE_MEM;
|
||
|
resource->start = base + (sparse ? IO_SPACE_SPARSE_ENCODING(min) : min);
|
||
|
resource->end = base + (sparse ? IO_SPACE_SPARSE_ENCODING(max) : max);
|
||
|
if (insert_resource(&iomem_resource, resource)) {
|
||
|
dev_err(&info->bridge->dev,
|
||
|
"can't allocate host bridge io space resource %pR\n",
|
||
|
resource);
|
||
|
goto free_resource;
|
||
|
}
|
||
|
|
||
|
list_add_tail(&iospace->list, &info->io_resources);
|
||
|
return base_port;
|
||
|
|
||
|
free_resource:
|
||
|
kfree(iospace);
|
||
|
out:
|
||
|
return ~0;
|
||
|
}
|
||
|
|
||
|
static acpi_status resource_to_window(struct acpi_resource *resource,
|
||
|
struct acpi_resource_address64 *addr)
|
||
|
{
|
||
|
acpi_status status;
|
||
|
|
||
|
/*
|
||
|
* We're only interested in _CRS descriptors that are
|
||
|
* - address space descriptors for memory or I/O space
|
||
|
* - non-zero size
|
||
|
* - producers, i.e., the address space is routed downstream,
|
||
|
* not consumed by the bridge itself
|
||
|
*/
|
||
|
status = acpi_resource_to_address64(resource, addr);
|
||
|
if (ACPI_SUCCESS(status) &&
|
||
|
(addr->resource_type == ACPI_MEMORY_RANGE ||
|
||
|
addr->resource_type == ACPI_IO_RANGE) &&
|
||
|
addr->address_length &&
|
||
|
addr->producer_consumer == ACPI_PRODUCER)
|
||
|
return AE_OK;
|
||
|
|
||
|
return AE_ERROR;
|
||
|
}
|
||
|
|
||
|
static acpi_status count_window(struct acpi_resource *resource, void *data)
|
||
|
{
|
||
|
unsigned int *windows = (unsigned int *) data;
|
||
|
struct acpi_resource_address64 addr;
|
||
|
acpi_status status;
|
||
|
|
||
|
status = resource_to_window(resource, &addr);
|
||
|
if (ACPI_SUCCESS(status))
|
||
|
(*windows)++;
|
||
|
|
||
|
return AE_OK;
|
||
|
}
|
||
|
|
||
|
static acpi_status add_window(struct acpi_resource *res, void *data)
|
||
|
{
|
||
|
struct pci_root_info *info = data;
|
||
|
struct resource *resource;
|
||
|
struct acpi_resource_address64 addr;
|
||
|
acpi_status status;
|
||
|
unsigned long flags, offset = 0;
|
||
|
struct resource *root;
|
||
|
|
||
|
/* Return AE_OK for non-window resources to keep scanning for more */
|
||
|
status = resource_to_window(res, &addr);
|
||
|
if (!ACPI_SUCCESS(status))
|
||
|
return AE_OK;
|
||
|
|
||
|
if (addr.resource_type == ACPI_MEMORY_RANGE) {
|
||
|
flags = IORESOURCE_MEM;
|
||
|
root = &iomem_resource;
|
||
|
offset = addr.translation_offset;
|
||
|
} else if (addr.resource_type == ACPI_IO_RANGE) {
|
||
|
flags = IORESOURCE_IO;
|
||
|
root = &ioport_resource;
|
||
|
offset = add_io_space(info, &addr);
|
||
|
if (offset == ~0)
|
||
|
return AE_OK;
|
||
|
} else
|
||
|
return AE_OK;
|
||
|
|
||
|
resource = &info->res[info->res_num];
|
||
|
resource->name = info->name;
|
||
|
resource->flags = flags;
|
||
|
resource->start = addr.minimum + offset;
|
||
|
resource->end = resource->start + addr.address_length - 1;
|
||
|
info->res_offset[info->res_num] = offset;
|
||
|
|
||
|
if (insert_resource(root, resource)) {
|
||
|
dev_err(&info->bridge->dev,
|
||
|
"can't allocate host bridge window %pR\n",
|
||
|
resource);
|
||
|
} else {
|
||
|
if (offset)
|
||
|
dev_info(&info->bridge->dev, "host bridge window %pR "
|
||
|
"(PCI address [%#llx-%#llx])\n",
|
||
|
resource,
|
||
|
resource->start - offset,
|
||
|
resource->end - offset);
|
||
|
else
|
||
|
dev_info(&info->bridge->dev,
|
||
|
"host bridge window %pR\n", resource);
|
||
|
}
|
||
|
/* HP's firmware has a hack to work around a Windows bug.
|
||
|
* Ignore these tiny memory ranges */
|
||
|
if (!((resource->flags & IORESOURCE_MEM) &&
|
||
|
(resource->end - resource->start < 16)))
|
||
|
pci_add_resource_offset(&info->resources, resource,
|
||
|
info->res_offset[info->res_num]);
|
||
|
|
||
|
info->res_num++;
|
||
|
return AE_OK;
|
||
|
}
|
||
|
|
||
|
static void free_pci_root_info_res(struct pci_root_info *info)
|
||
|
{
|
||
|
struct iospace_resource *iospace, *tmp;
|
||
|
|
||
|
list_for_each_entry_safe(iospace, tmp, &info->io_resources, list)
|
||
|
kfree(iospace);
|
||
|
|
||
|
kfree(info->name);
|
||
|
kfree(info->res);
|
||
|
info->res = NULL;
|
||
|
kfree(info->res_offset);
|
||
|
info->res_offset = NULL;
|
||
|
info->res_num = 0;
|
||
|
kfree(info->controller);
|
||
|
info->controller = NULL;
|
||
|
}
|
||
|
|
||
|
static void __release_pci_root_info(struct pci_root_info *info)
|
||
|
{
|
||
|
int i;
|
||
|
struct resource *res;
|
||
|
struct iospace_resource *iospace;
|
||
|
|
||
|
list_for_each_entry(iospace, &info->io_resources, list)
|
||
|
release_resource(&iospace->res);
|
||
|
|
||
|
for (i = 0; i < info->res_num; i++) {
|
||
|
res = &info->res[i];
|
||
|
|
||
|
if (!res->parent)
|
||
|
continue;
|
||
|
|
||
|
if (!(res->flags & (IORESOURCE_MEM | IORESOURCE_IO)))
|
||
|
continue;
|
||
|
|
||
|
release_resource(res);
|
||
|
}
|
||
|
|
||
|
free_pci_root_info_res(info);
|
||
|
kfree(info);
|
||
|
}
|
||
|
|
||
|
static void release_pci_root_info(struct pci_host_bridge *bridge)
|
||
|
{
|
||
|
struct pci_root_info *info = bridge->release_data;
|
||
|
|
||
|
__release_pci_root_info(info);
|
||
|
}
|
||
|
|
||
|
static int
|
||
|
probe_pci_root_info(struct pci_root_info *info, struct acpi_device *device,
|
||
|
int busnum, int domain)
|
||
|
{
|
||
|
char *name;
|
||
|
|
||
|
name = kmalloc(16, GFP_KERNEL);
|
||
|
if (!name)
|
||
|
return -ENOMEM;
|
||
|
|
||
|
sprintf(name, "PCI Bus %04x:%02x", domain, busnum);
|
||
|
info->bridge = device;
|
||
|
info->name = name;
|
||
|
|
||
|
acpi_walk_resources(device->handle, METHOD_NAME__CRS, count_window,
|
||
|
&info->res_num);
|
||
|
if (info->res_num) {
|
||
|
info->res =
|
||
|
kzalloc_node(sizeof(*info->res) * info->res_num,
|
||
|
GFP_KERNEL, info->controller->node);
|
||
|
if (!info->res) {
|
||
|
kfree(name);
|
||
|
return -ENOMEM;
|
||
|
}
|
||
|
|
||
|
info->res_offset =
|
||
|
kzalloc_node(sizeof(*info->res_offset) * info->res_num,
|
||
|
GFP_KERNEL, info->controller->node);
|
||
|
if (!info->res_offset) {
|
||
|
kfree(name);
|
||
|
kfree(info->res);
|
||
|
info->res = NULL;
|
||
|
return -ENOMEM;
|
||
|
}
|
||
|
|
||
|
info->res_num = 0;
|
||
|
acpi_walk_resources(device->handle, METHOD_NAME__CRS,
|
||
|
add_window, info);
|
||
|
} else
|
||
|
kfree(name);
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
struct pci_bus *pci_acpi_scan_root(struct acpi_pci_root *root)
|
||
|
{
|
||
|
struct acpi_device *device = root->device;
|
||
|
int domain = root->segment;
|
||
|
int bus = root->secondary.start;
|
||
|
struct pci_controller *controller;
|
||
|
struct pci_root_info *info = NULL;
|
||
|
int busnum = root->secondary.start;
|
||
|
struct pci_bus *pbus;
|
||
|
int ret;
|
||
|
|
||
|
controller = alloc_pci_controller(domain);
|
||
|
if (!controller)
|
||
|
return NULL;
|
||
|
|
||
|
controller->companion = device;
|
||
|
controller->node = acpi_get_node(device->handle);
|
||
|
|
||
|
info = kzalloc(sizeof(*info), GFP_KERNEL);
|
||
|
if (!info) {
|
||
|
dev_err(&device->dev,
|
||
|
"pci_bus %04x:%02x: ignored (out of memory)\n",
|
||
|
domain, busnum);
|
||
|
kfree(controller);
|
||
|
return NULL;
|
||
|
}
|
||
|
|
||
|
info->controller = controller;
|
||
|
INIT_LIST_HEAD(&info->io_resources);
|
||
|
INIT_LIST_HEAD(&info->resources);
|
||
|
|
||
|
ret = probe_pci_root_info(info, device, busnum, domain);
|
||
|
if (ret) {
|
||
|
kfree(info->controller);
|
||
|
kfree(info);
|
||
|
return NULL;
|
||
|
}
|
||
|
/* insert busn resource at first */
|
||
|
pci_add_resource(&info->resources, &root->secondary);
|
||
|
/*
|
||
|
* See arch/x86/pci/acpi.c.
|
||
|
* The desired pci bus might already be scanned in a quirk. We
|
||
|
* should handle the case here, but it appears that IA64 hasn't
|
||
|
* such quirk. So we just ignore the case now.
|
||
|
*/
|
||
|
pbus = pci_create_root_bus(NULL, bus, &pci_root_ops, controller,
|
||
|
&info->resources);
|
||
|
if (!pbus) {
|
||
|
pci_free_resource_list(&info->resources);
|
||
|
__release_pci_root_info(info);
|
||
|
return NULL;
|
||
|
}
|
||
|
|
||
|
pci_set_host_bridge_release(to_pci_host_bridge(pbus->bridge),
|
||
|
release_pci_root_info, info);
|
||
|
pci_scan_child_bus(pbus);
|
||
|
return pbus;
|
||
|
}
|
||
|
|
||
|
int pcibios_root_bridge_prepare(struct pci_host_bridge *bridge)
|
||
|
{
|
||
|
struct pci_controller *controller = bridge->bus->sysdata;
|
||
|
|
||
|
ACPI_COMPANION_SET(&bridge->dev, controller->companion);
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static int is_valid_resource(struct pci_dev *dev, int idx)
|
||
|
{
|
||
|
unsigned int i, type_mask = IORESOURCE_IO | IORESOURCE_MEM;
|
||
|
struct resource *devr = &dev->resource[idx], *busr;
|
||
|
|
||
|
if (!dev->bus)
|
||
|
return 0;
|
||
|
|
||
|
pci_bus_for_each_resource(dev->bus, busr, i) {
|
||
|
if (!busr || ((busr->flags ^ devr->flags) & type_mask))
|
||
|
continue;
|
||
|
if ((devr->start) && (devr->start >= busr->start) &&
|
||
|
(devr->end <= busr->end))
|
||
|
return 1;
|
||
|
}
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static void pcibios_fixup_resources(struct pci_dev *dev, int start, int limit)
|
||
|
{
|
||
|
int i;
|
||
|
|
||
|
for (i = start; i < limit; i++) {
|
||
|
if (!dev->resource[i].flags)
|
||
|
continue;
|
||
|
if ((is_valid_resource(dev, i)))
|
||
|
pci_claim_resource(dev, i);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void pcibios_fixup_device_resources(struct pci_dev *dev)
|
||
|
{
|
||
|
pcibios_fixup_resources(dev, 0, PCI_BRIDGE_RESOURCES);
|
||
|
}
|
||
|
EXPORT_SYMBOL_GPL(pcibios_fixup_device_resources);
|
||
|
|
||
|
static void pcibios_fixup_bridge_resources(struct pci_dev *dev)
|
||
|
{
|
||
|
pcibios_fixup_resources(dev, PCI_BRIDGE_RESOURCES, PCI_NUM_RESOURCES);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Called after each bus is probed, but before its children are examined.
|
||
|
*/
|
||
|
void pcibios_fixup_bus(struct pci_bus *b)
|
||
|
{
|
||
|
struct pci_dev *dev;
|
||
|
|
||
|
if (b->self) {
|
||
|
pci_read_bridge_bases(b);
|
||
|
pcibios_fixup_bridge_resources(b->self);
|
||
|
}
|
||
|
list_for_each_entry(dev, &b->devices, bus_list)
|
||
|
pcibios_fixup_device_resources(dev);
|
||
|
platform_pci_fixup_bus(b);
|
||
|
}
|
||
|
|
||
|
void pcibios_add_bus(struct pci_bus *bus)
|
||
|
{
|
||
|
acpi_pci_add_bus(bus);
|
||
|
}
|
||
|
|
||
|
void pcibios_remove_bus(struct pci_bus *bus)
|
||
|
{
|
||
|
acpi_pci_remove_bus(bus);
|
||
|
}
|
||
|
|
||
|
void pcibios_set_master (struct pci_dev *dev)
|
||
|
{
|
||
|
/* No special bus mastering setup handling */
|
||
|
}
|
||
|
|
||
|
int
|
||
|
pcibios_enable_device (struct pci_dev *dev, int mask)
|
||
|
{
|
||
|
int ret;
|
||
|
|
||
|
ret = pci_enable_resources(dev, mask);
|
||
|
if (ret < 0)
|
||
|
return ret;
|
||
|
|
||
|
if (!dev->msi_enabled)
|
||
|
return acpi_pci_irq_enable(dev);
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
void
|
||
|
pcibios_disable_device (struct pci_dev *dev)
|
||
|
{
|
||
|
BUG_ON(atomic_read(&dev->enable_cnt));
|
||
|
if (!dev->msi_enabled)
|
||
|
acpi_pci_irq_disable(dev);
|
||
|
}
|
||
|
|
||
|
resource_size_t
|
||
|
pcibios_align_resource (void *data, const struct resource *res,
|
||
|
resource_size_t size, resource_size_t align)
|
||
|
{
|
||
|
return res->start;
|
||
|
}
|
||
|
|
||
|
int
|
||
|
pci_mmap_page_range (struct pci_dev *dev, struct vm_area_struct *vma,
|
||
|
enum pci_mmap_state mmap_state, int write_combine)
|
||
|
{
|
||
|
unsigned long size = vma->vm_end - vma->vm_start;
|
||
|
pgprot_t prot;
|
||
|
|
||
|
/*
|
||
|
* I/O space cannot be accessed via normal processor loads and
|
||
|
* stores on this platform.
|
||
|
*/
|
||
|
if (mmap_state == pci_mmap_io)
|
||
|
/*
|
||
|
* XXX we could relax this for I/O spaces for which ACPI
|
||
|
* indicates that the space is 1-to-1 mapped. But at the
|
||
|
* moment, we don't support multiple PCI address spaces and
|
||
|
* the legacy I/O space is not 1-to-1 mapped, so this is moot.
|
||
|
*/
|
||
|
return -EINVAL;
|
||
|
|
||
|
if (!valid_mmap_phys_addr_range(vma->vm_pgoff, size))
|
||
|
return -EINVAL;
|
||
|
|
||
|
prot = phys_mem_access_prot(NULL, vma->vm_pgoff, size,
|
||
|
vma->vm_page_prot);
|
||
|
|
||
|
/*
|
||
|
* If the user requested WC, the kernel uses UC or WC for this region,
|
||
|
* and the chipset supports WC, we can use WC. Otherwise, we have to
|
||
|
* use the same attribute the kernel uses.
|
||
|
*/
|
||
|
if (write_combine &&
|
||
|
((pgprot_val(prot) & _PAGE_MA_MASK) == _PAGE_MA_UC ||
|
||
|
(pgprot_val(prot) & _PAGE_MA_MASK) == _PAGE_MA_WC) &&
|
||
|
efi_range_is_wc(vma->vm_start, vma->vm_end - vma->vm_start))
|
||
|
vma->vm_page_prot = pgprot_writecombine(vma->vm_page_prot);
|
||
|
else
|
||
|
vma->vm_page_prot = prot;
|
||
|
|
||
|
if (remap_pfn_range(vma, vma->vm_start, vma->vm_pgoff,
|
||
|
vma->vm_end - vma->vm_start, vma->vm_page_prot))
|
||
|
return -EAGAIN;
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* ia64_pci_get_legacy_mem - generic legacy mem routine
|
||
|
* @bus: bus to get legacy memory base address for
|
||
|
*
|
||
|
* Find the base of legacy memory for @bus. This is typically the first
|
||
|
* megabyte of bus address space for @bus or is simply 0 on platforms whose
|
||
|
* chipsets support legacy I/O and memory routing. Returns the base address
|
||
|
* or an error pointer if an error occurred.
|
||
|
*
|
||
|
* This is the ia64 generic version of this routine. Other platforms
|
||
|
* are free to override it with a machine vector.
|
||
|
*/
|
||
|
char *ia64_pci_get_legacy_mem(struct pci_bus *bus)
|
||
|
{
|
||
|
return (char *)__IA64_UNCACHED_OFFSET;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* pci_mmap_legacy_page_range - map legacy memory space to userland
|
||
|
* @bus: bus whose legacy space we're mapping
|
||
|
* @vma: vma passed in by mmap
|
||
|
*
|
||
|
* Map legacy memory space for this device back to userspace using a machine
|
||
|
* vector to get the base address.
|
||
|
*/
|
||
|
int
|
||
|
pci_mmap_legacy_page_range(struct pci_bus *bus, struct vm_area_struct *vma,
|
||
|
enum pci_mmap_state mmap_state)
|
||
|
{
|
||
|
unsigned long size = vma->vm_end - vma->vm_start;
|
||
|
pgprot_t prot;
|
||
|
char *addr;
|
||
|
|
||
|
/* We only support mmap'ing of legacy memory space */
|
||
|
if (mmap_state != pci_mmap_mem)
|
||
|
return -ENOSYS;
|
||
|
|
||
|
/*
|
||
|
* Avoid attribute aliasing. See Documentation/ia64/aliasing.txt
|
||
|
* for more details.
|
||
|
*/
|
||
|
if (!valid_mmap_phys_addr_range(vma->vm_pgoff, size))
|
||
|
return -EINVAL;
|
||
|
prot = phys_mem_access_prot(NULL, vma->vm_pgoff, size,
|
||
|
vma->vm_page_prot);
|
||
|
|
||
|
addr = pci_get_legacy_mem(bus);
|
||
|
if (IS_ERR(addr))
|
||
|
return PTR_ERR(addr);
|
||
|
|
||
|
vma->vm_pgoff += (unsigned long)addr >> PAGE_SHIFT;
|
||
|
vma->vm_page_prot = prot;
|
||
|
|
||
|
if (remap_pfn_range(vma, vma->vm_start, vma->vm_pgoff,
|
||
|
size, vma->vm_page_prot))
|
||
|
return -EAGAIN;
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* ia64_pci_legacy_read - read from legacy I/O space
|
||
|
* @bus: bus to read
|
||
|
* @port: legacy port value
|
||
|
* @val: caller allocated storage for returned value
|
||
|
* @size: number of bytes to read
|
||
|
*
|
||
|
* Simply reads @size bytes from @port and puts the result in @val.
|
||
|
*
|
||
|
* Again, this (and the write routine) are generic versions that can be
|
||
|
* overridden by the platform. This is necessary on platforms that don't
|
||
|
* support legacy I/O routing or that hard fail on legacy I/O timeouts.
|
||
|
*/
|
||
|
int ia64_pci_legacy_read(struct pci_bus *bus, u16 port, u32 *val, u8 size)
|
||
|
{
|
||
|
int ret = size;
|
||
|
|
||
|
switch (size) {
|
||
|
case 1:
|
||
|
*val = inb(port);
|
||
|
break;
|
||
|
case 2:
|
||
|
*val = inw(port);
|
||
|
break;
|
||
|
case 4:
|
||
|
*val = inl(port);
|
||
|
break;
|
||
|
default:
|
||
|
ret = -EINVAL;
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* ia64_pci_legacy_write - perform a legacy I/O write
|
||
|
* @bus: bus pointer
|
||
|
* @port: port to write
|
||
|
* @val: value to write
|
||
|
* @size: number of bytes to write from @val
|
||
|
*
|
||
|
* Simply writes @size bytes of @val to @port.
|
||
|
*/
|
||
|
int ia64_pci_legacy_write(struct pci_bus *bus, u16 port, u32 val, u8 size)
|
||
|
{
|
||
|
int ret = size;
|
||
|
|
||
|
switch (size) {
|
||
|
case 1:
|
||
|
outb(val, port);
|
||
|
break;
|
||
|
case 2:
|
||
|
outw(val, port);
|
||
|
break;
|
||
|
case 4:
|
||
|
outl(val, port);
|
||
|
break;
|
||
|
default:
|
||
|
ret = -EINVAL;
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* set_pci_cacheline_size - determine cacheline size for PCI devices
|
||
|
*
|
||
|
* We want to use the line-size of the outer-most cache. We assume
|
||
|
* that this line-size is the same for all CPUs.
|
||
|
*
|
||
|
* Code mostly taken from arch/ia64/kernel/palinfo.c:cache_info().
|
||
|
*/
|
||
|
static void __init set_pci_dfl_cacheline_size(void)
|
||
|
{
|
||
|
unsigned long levels, unique_caches;
|
||
|
long status;
|
||
|
pal_cache_config_info_t cci;
|
||
|
|
||
|
status = ia64_pal_cache_summary(&levels, &unique_caches);
|
||
|
if (status != 0) {
|
||
|
pr_err("%s: ia64_pal_cache_summary() failed "
|
||
|
"(status=%ld)\n", __func__, status);
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
status = ia64_pal_cache_config_info(levels - 1,
|
||
|
/* cache_type (data_or_unified)= */ 2, &cci);
|
||
|
if (status != 0) {
|
||
|
pr_err("%s: ia64_pal_cache_config_info() failed "
|
||
|
"(status=%ld)\n", __func__, status);
|
||
|
return;
|
||
|
}
|
||
|
pci_dfl_cache_line_size = (1 << cci.pcci_line_size) / 4;
|
||
|
}
|
||
|
|
||
|
u64 ia64_dma_get_required_mask(struct device *dev)
|
||
|
{
|
||
|
u32 low_totalram = ((max_pfn - 1) << PAGE_SHIFT);
|
||
|
u32 high_totalram = ((max_pfn - 1) >> (32 - PAGE_SHIFT));
|
||
|
u64 mask;
|
||
|
|
||
|
if (!high_totalram) {
|
||
|
/* convert to mask just covering totalram */
|
||
|
low_totalram = (1 << (fls(low_totalram) - 1));
|
||
|
low_totalram += low_totalram - 1;
|
||
|
mask = low_totalram;
|
||
|
} else {
|
||
|
high_totalram = (1 << (fls(high_totalram) - 1));
|
||
|
high_totalram += high_totalram - 1;
|
||
|
mask = (((u64)high_totalram) << 32) + 0xffffffff;
|
||
|
}
|
||
|
return mask;
|
||
|
}
|
||
|
EXPORT_SYMBOL_GPL(ia64_dma_get_required_mask);
|
||
|
|
||
|
u64 dma_get_required_mask(struct device *dev)
|
||
|
{
|
||
|
return platform_dma_get_required_mask(dev);
|
||
|
}
|
||
|
EXPORT_SYMBOL_GPL(dma_get_required_mask);
|
||
|
|
||
|
static int __init pcibios_init(void)
|
||
|
{
|
||
|
set_pci_dfl_cacheline_size();
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
subsys_initcall(pcibios_init);
|