361 lines
9.6 KiB
C
361 lines
9.6 KiB
C
|
/*
|
||
|
* Copyright (C) 2013 Freescale Semiconductor, Inc.
|
||
|
*
|
||
|
* This program is free software; you can redistribute it and/or modify
|
||
|
* it under the terms of the GNU General Public License version 2 as
|
||
|
* published by the Free Software Foundation.
|
||
|
*/
|
||
|
|
||
|
#include <linux/clk.h>
|
||
|
#include <linux/cpu.h>
|
||
|
#include <linux/cpufreq.h>
|
||
|
#include <linux/err.h>
|
||
|
#include <linux/module.h>
|
||
|
#include <linux/of.h>
|
||
|
#include <linux/pm_opp.h>
|
||
|
#include <linux/platform_device.h>
|
||
|
#include <linux/regulator/consumer.h>
|
||
|
|
||
|
#define PU_SOC_VOLTAGE_NORMAL 1250000
|
||
|
#define PU_SOC_VOLTAGE_HIGH 1275000
|
||
|
#define FREQ_1P2_GHZ 1200000000
|
||
|
|
||
|
static struct regulator *arm_reg;
|
||
|
static struct regulator *pu_reg;
|
||
|
static struct regulator *soc_reg;
|
||
|
|
||
|
static struct clk *arm_clk;
|
||
|
static struct clk *pll1_sys_clk;
|
||
|
static struct clk *pll1_sw_clk;
|
||
|
static struct clk *step_clk;
|
||
|
static struct clk *pll2_pfd2_396m_clk;
|
||
|
|
||
|
static struct device *cpu_dev;
|
||
|
static struct cpufreq_frequency_table *freq_table;
|
||
|
static unsigned int transition_latency;
|
||
|
|
||
|
static u32 *imx6_soc_volt;
|
||
|
static u32 soc_opp_count;
|
||
|
|
||
|
static int imx6q_set_target(struct cpufreq_policy *policy, unsigned int index)
|
||
|
{
|
||
|
struct dev_pm_opp *opp;
|
||
|
unsigned long freq_hz, volt, volt_old;
|
||
|
unsigned int old_freq, new_freq;
|
||
|
int ret;
|
||
|
|
||
|
new_freq = freq_table[index].frequency;
|
||
|
freq_hz = new_freq * 1000;
|
||
|
old_freq = clk_get_rate(arm_clk) / 1000;
|
||
|
|
||
|
rcu_read_lock();
|
||
|
opp = dev_pm_opp_find_freq_ceil(cpu_dev, &freq_hz);
|
||
|
if (IS_ERR(opp)) {
|
||
|
rcu_read_unlock();
|
||
|
dev_err(cpu_dev, "failed to find OPP for %ld\n", freq_hz);
|
||
|
return PTR_ERR(opp);
|
||
|
}
|
||
|
|
||
|
volt = dev_pm_opp_get_voltage(opp);
|
||
|
rcu_read_unlock();
|
||
|
volt_old = regulator_get_voltage(arm_reg);
|
||
|
|
||
|
dev_dbg(cpu_dev, "%u MHz, %ld mV --> %u MHz, %ld mV\n",
|
||
|
old_freq / 1000, volt_old / 1000,
|
||
|
new_freq / 1000, volt / 1000);
|
||
|
|
||
|
/* scaling up? scale voltage before frequency */
|
||
|
if (new_freq > old_freq) {
|
||
|
if (!IS_ERR(pu_reg)) {
|
||
|
ret = regulator_set_voltage_tol(pu_reg, imx6_soc_volt[index], 0);
|
||
|
if (ret) {
|
||
|
dev_err(cpu_dev, "failed to scale vddpu up: %d\n", ret);
|
||
|
return ret;
|
||
|
}
|
||
|
}
|
||
|
ret = regulator_set_voltage_tol(soc_reg, imx6_soc_volt[index], 0);
|
||
|
if (ret) {
|
||
|
dev_err(cpu_dev, "failed to scale vddsoc up: %d\n", ret);
|
||
|
return ret;
|
||
|
}
|
||
|
ret = regulator_set_voltage_tol(arm_reg, volt, 0);
|
||
|
if (ret) {
|
||
|
dev_err(cpu_dev,
|
||
|
"failed to scale vddarm up: %d\n", ret);
|
||
|
return ret;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* The setpoints are selected per PLL/PDF frequencies, so we need to
|
||
|
* reprogram PLL for frequency scaling. The procedure of reprogramming
|
||
|
* PLL1 is as below.
|
||
|
*
|
||
|
* - Enable pll2_pfd2_396m_clk and reparent pll1_sw_clk to it
|
||
|
* - Reprogram pll1_sys_clk and reparent pll1_sw_clk back to it
|
||
|
* - Disable pll2_pfd2_396m_clk
|
||
|
*/
|
||
|
clk_set_parent(step_clk, pll2_pfd2_396m_clk);
|
||
|
clk_set_parent(pll1_sw_clk, step_clk);
|
||
|
if (freq_hz > clk_get_rate(pll2_pfd2_396m_clk)) {
|
||
|
clk_set_rate(pll1_sys_clk, new_freq * 1000);
|
||
|
clk_set_parent(pll1_sw_clk, pll1_sys_clk);
|
||
|
}
|
||
|
|
||
|
/* Ensure the arm clock divider is what we expect */
|
||
|
ret = clk_set_rate(arm_clk, new_freq * 1000);
|
||
|
if (ret) {
|
||
|
dev_err(cpu_dev, "failed to set clock rate: %d\n", ret);
|
||
|
regulator_set_voltage_tol(arm_reg, volt_old, 0);
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
/* scaling down? scale voltage after frequency */
|
||
|
if (new_freq < old_freq) {
|
||
|
ret = regulator_set_voltage_tol(arm_reg, volt, 0);
|
||
|
if (ret) {
|
||
|
dev_warn(cpu_dev,
|
||
|
"failed to scale vddarm down: %d\n", ret);
|
||
|
ret = 0;
|
||
|
}
|
||
|
ret = regulator_set_voltage_tol(soc_reg, imx6_soc_volt[index], 0);
|
||
|
if (ret) {
|
||
|
dev_warn(cpu_dev, "failed to scale vddsoc down: %d\n", ret);
|
||
|
ret = 0;
|
||
|
}
|
||
|
if (!IS_ERR(pu_reg)) {
|
||
|
ret = regulator_set_voltage_tol(pu_reg, imx6_soc_volt[index], 0);
|
||
|
if (ret) {
|
||
|
dev_warn(cpu_dev, "failed to scale vddpu down: %d\n", ret);
|
||
|
ret = 0;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static int imx6q_cpufreq_init(struct cpufreq_policy *policy)
|
||
|
{
|
||
|
policy->clk = arm_clk;
|
||
|
return cpufreq_generic_init(policy, freq_table, transition_latency);
|
||
|
}
|
||
|
|
||
|
static struct cpufreq_driver imx6q_cpufreq_driver = {
|
||
|
.flags = CPUFREQ_NEED_INITIAL_FREQ_CHECK,
|
||
|
.verify = cpufreq_generic_frequency_table_verify,
|
||
|
.target_index = imx6q_set_target,
|
||
|
.get = cpufreq_generic_get,
|
||
|
.init = imx6q_cpufreq_init,
|
||
|
.name = "imx6q-cpufreq",
|
||
|
.attr = cpufreq_generic_attr,
|
||
|
};
|
||
|
|
||
|
static int imx6q_cpufreq_probe(struct platform_device *pdev)
|
||
|
{
|
||
|
struct device_node *np;
|
||
|
struct dev_pm_opp *opp;
|
||
|
unsigned long min_volt, max_volt;
|
||
|
int num, ret;
|
||
|
const struct property *prop;
|
||
|
const __be32 *val;
|
||
|
u32 nr, i, j;
|
||
|
|
||
|
cpu_dev = get_cpu_device(0);
|
||
|
if (!cpu_dev) {
|
||
|
pr_err("failed to get cpu0 device\n");
|
||
|
return -ENODEV;
|
||
|
}
|
||
|
|
||
|
np = of_node_get(cpu_dev->of_node);
|
||
|
if (!np) {
|
||
|
dev_err(cpu_dev, "failed to find cpu0 node\n");
|
||
|
return -ENOENT;
|
||
|
}
|
||
|
|
||
|
arm_clk = clk_get(cpu_dev, "arm");
|
||
|
pll1_sys_clk = clk_get(cpu_dev, "pll1_sys");
|
||
|
pll1_sw_clk = clk_get(cpu_dev, "pll1_sw");
|
||
|
step_clk = clk_get(cpu_dev, "step");
|
||
|
pll2_pfd2_396m_clk = clk_get(cpu_dev, "pll2_pfd2_396m");
|
||
|
if (IS_ERR(arm_clk) || IS_ERR(pll1_sys_clk) || IS_ERR(pll1_sw_clk) ||
|
||
|
IS_ERR(step_clk) || IS_ERR(pll2_pfd2_396m_clk)) {
|
||
|
dev_err(cpu_dev, "failed to get clocks\n");
|
||
|
ret = -ENOENT;
|
||
|
goto put_clk;
|
||
|
}
|
||
|
|
||
|
arm_reg = regulator_get(cpu_dev, "arm");
|
||
|
pu_reg = regulator_get_optional(cpu_dev, "pu");
|
||
|
soc_reg = regulator_get(cpu_dev, "soc");
|
||
|
if (IS_ERR(arm_reg) || IS_ERR(soc_reg)) {
|
||
|
dev_err(cpu_dev, "failed to get regulators\n");
|
||
|
ret = -ENOENT;
|
||
|
goto put_reg;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* We expect an OPP table supplied by platform.
|
||
|
* Just, incase the platform did not supply the OPP
|
||
|
* table, it will try to get it.
|
||
|
*/
|
||
|
num = dev_pm_opp_get_opp_count(cpu_dev);
|
||
|
if (num < 0) {
|
||
|
ret = of_init_opp_table(cpu_dev);
|
||
|
if (ret < 0) {
|
||
|
dev_err(cpu_dev, "failed to init OPP table: %d\n", ret);
|
||
|
goto put_reg;
|
||
|
}
|
||
|
|
||
|
num = dev_pm_opp_get_opp_count(cpu_dev);
|
||
|
if (num < 0) {
|
||
|
ret = num;
|
||
|
dev_err(cpu_dev, "no OPP table is found: %d\n", ret);
|
||
|
goto put_reg;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
ret = dev_pm_opp_init_cpufreq_table(cpu_dev, &freq_table);
|
||
|
if (ret) {
|
||
|
dev_err(cpu_dev, "failed to init cpufreq table: %d\n", ret);
|
||
|
goto put_reg;
|
||
|
}
|
||
|
|
||
|
/* Make imx6_soc_volt array's size same as arm opp number */
|
||
|
imx6_soc_volt = devm_kzalloc(cpu_dev, sizeof(*imx6_soc_volt) * num, GFP_KERNEL);
|
||
|
if (imx6_soc_volt == NULL) {
|
||
|
ret = -ENOMEM;
|
||
|
goto free_freq_table;
|
||
|
}
|
||
|
|
||
|
prop = of_find_property(np, "fsl,soc-operating-points", NULL);
|
||
|
if (!prop || !prop->value)
|
||
|
goto soc_opp_out;
|
||
|
|
||
|
/*
|
||
|
* Each OPP is a set of tuples consisting of frequency and
|
||
|
* voltage like <freq-kHz vol-uV>.
|
||
|
*/
|
||
|
nr = prop->length / sizeof(u32);
|
||
|
if (nr % 2 || (nr / 2) < num)
|
||
|
goto soc_opp_out;
|
||
|
|
||
|
for (j = 0; j < num; j++) {
|
||
|
val = prop->value;
|
||
|
for (i = 0; i < nr / 2; i++) {
|
||
|
unsigned long freq = be32_to_cpup(val++);
|
||
|
unsigned long volt = be32_to_cpup(val++);
|
||
|
if (freq_table[j].frequency == freq) {
|
||
|
imx6_soc_volt[soc_opp_count++] = volt;
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
soc_opp_out:
|
||
|
/* use fixed soc opp volt if no valid soc opp info found in dtb */
|
||
|
if (soc_opp_count != num) {
|
||
|
dev_warn(cpu_dev, "can NOT find valid fsl,soc-operating-points property in dtb, use default value!\n");
|
||
|
for (j = 0; j < num; j++)
|
||
|
imx6_soc_volt[j] = PU_SOC_VOLTAGE_NORMAL;
|
||
|
if (freq_table[num - 1].frequency * 1000 == FREQ_1P2_GHZ)
|
||
|
imx6_soc_volt[num - 1] = PU_SOC_VOLTAGE_HIGH;
|
||
|
}
|
||
|
|
||
|
if (of_property_read_u32(np, "clock-latency", &transition_latency))
|
||
|
transition_latency = CPUFREQ_ETERNAL;
|
||
|
|
||
|
/*
|
||
|
* Calculate the ramp time for max voltage change in the
|
||
|
* VDDSOC and VDDPU regulators.
|
||
|
*/
|
||
|
ret = regulator_set_voltage_time(soc_reg, imx6_soc_volt[0], imx6_soc_volt[num - 1]);
|
||
|
if (ret > 0)
|
||
|
transition_latency += ret * 1000;
|
||
|
if (!IS_ERR(pu_reg)) {
|
||
|
ret = regulator_set_voltage_time(pu_reg, imx6_soc_volt[0], imx6_soc_volt[num - 1]);
|
||
|
if (ret > 0)
|
||
|
transition_latency += ret * 1000;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* OPP is maintained in order of increasing frequency, and
|
||
|
* freq_table initialised from OPP is therefore sorted in the
|
||
|
* same order.
|
||
|
*/
|
||
|
rcu_read_lock();
|
||
|
opp = dev_pm_opp_find_freq_exact(cpu_dev,
|
||
|
freq_table[0].frequency * 1000, true);
|
||
|
min_volt = dev_pm_opp_get_voltage(opp);
|
||
|
opp = dev_pm_opp_find_freq_exact(cpu_dev,
|
||
|
freq_table[--num].frequency * 1000, true);
|
||
|
max_volt = dev_pm_opp_get_voltage(opp);
|
||
|
rcu_read_unlock();
|
||
|
ret = regulator_set_voltage_time(arm_reg, min_volt, max_volt);
|
||
|
if (ret > 0)
|
||
|
transition_latency += ret * 1000;
|
||
|
|
||
|
ret = cpufreq_register_driver(&imx6q_cpufreq_driver);
|
||
|
if (ret) {
|
||
|
dev_err(cpu_dev, "failed register driver: %d\n", ret);
|
||
|
goto free_freq_table;
|
||
|
}
|
||
|
|
||
|
of_node_put(np);
|
||
|
return 0;
|
||
|
|
||
|
free_freq_table:
|
||
|
dev_pm_opp_free_cpufreq_table(cpu_dev, &freq_table);
|
||
|
put_reg:
|
||
|
if (!IS_ERR(arm_reg))
|
||
|
regulator_put(arm_reg);
|
||
|
if (!IS_ERR(pu_reg))
|
||
|
regulator_put(pu_reg);
|
||
|
if (!IS_ERR(soc_reg))
|
||
|
regulator_put(soc_reg);
|
||
|
put_clk:
|
||
|
if (!IS_ERR(arm_clk))
|
||
|
clk_put(arm_clk);
|
||
|
if (!IS_ERR(pll1_sys_clk))
|
||
|
clk_put(pll1_sys_clk);
|
||
|
if (!IS_ERR(pll1_sw_clk))
|
||
|
clk_put(pll1_sw_clk);
|
||
|
if (!IS_ERR(step_clk))
|
||
|
clk_put(step_clk);
|
||
|
if (!IS_ERR(pll2_pfd2_396m_clk))
|
||
|
clk_put(pll2_pfd2_396m_clk);
|
||
|
of_node_put(np);
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
static int imx6q_cpufreq_remove(struct platform_device *pdev)
|
||
|
{
|
||
|
cpufreq_unregister_driver(&imx6q_cpufreq_driver);
|
||
|
dev_pm_opp_free_cpufreq_table(cpu_dev, &freq_table);
|
||
|
regulator_put(arm_reg);
|
||
|
if (!IS_ERR(pu_reg))
|
||
|
regulator_put(pu_reg);
|
||
|
regulator_put(soc_reg);
|
||
|
clk_put(arm_clk);
|
||
|
clk_put(pll1_sys_clk);
|
||
|
clk_put(pll1_sw_clk);
|
||
|
clk_put(step_clk);
|
||
|
clk_put(pll2_pfd2_396m_clk);
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static struct platform_driver imx6q_cpufreq_platdrv = {
|
||
|
.driver = {
|
||
|
.name = "imx6q-cpufreq",
|
||
|
.owner = THIS_MODULE,
|
||
|
},
|
||
|
.probe = imx6q_cpufreq_probe,
|
||
|
.remove = imx6q_cpufreq_remove,
|
||
|
};
|
||
|
module_platform_driver(imx6q_cpufreq_platdrv);
|
||
|
|
||
|
MODULE_AUTHOR("Shawn Guo <shawn.guo@linaro.org>");
|
||
|
MODULE_DESCRIPTION("Freescale i.MX6Q cpufreq driver");
|
||
|
MODULE_LICENSE("GPL");
|