639 lines
15 KiB
C
639 lines
15 KiB
C
|
#include <linux/delay.h>
|
||
|
#include <linux/pci.h>
|
||
|
#include <linux/module.h>
|
||
|
#include <linux/sched.h>
|
||
|
#include <linux/slab.h>
|
||
|
#include <linux/ioport.h>
|
||
|
#include <linux/wait.h>
|
||
|
|
||
|
#include "pci.h"
|
||
|
|
||
|
/*
|
||
|
* This interrupt-safe spinlock protects all accesses to PCI
|
||
|
* configuration space.
|
||
|
*/
|
||
|
|
||
|
DEFINE_RAW_SPINLOCK(pci_lock);
|
||
|
|
||
|
/*
|
||
|
* Wrappers for all PCI configuration access functions. They just check
|
||
|
* alignment, do locking and call the low-level functions pointed to
|
||
|
* by pci_dev->ops.
|
||
|
*/
|
||
|
|
||
|
#define PCI_byte_BAD 0
|
||
|
#define PCI_word_BAD (pos & 1)
|
||
|
#define PCI_dword_BAD (pos & 3)
|
||
|
|
||
|
#define PCI_OP_READ(size,type,len) \
|
||
|
int pci_bus_read_config_##size \
|
||
|
(struct pci_bus *bus, unsigned int devfn, int pos, type *value) \
|
||
|
{ \
|
||
|
int res; \
|
||
|
unsigned long flags; \
|
||
|
u32 data = 0; \
|
||
|
if (PCI_##size##_BAD) return PCIBIOS_BAD_REGISTER_NUMBER; \
|
||
|
raw_spin_lock_irqsave(&pci_lock, flags); \
|
||
|
res = bus->ops->read(bus, devfn, pos, len, &data); \
|
||
|
*value = (type)data; \
|
||
|
raw_spin_unlock_irqrestore(&pci_lock, flags); \
|
||
|
return res; \
|
||
|
}
|
||
|
|
||
|
#define PCI_OP_WRITE(size,type,len) \
|
||
|
int pci_bus_write_config_##size \
|
||
|
(struct pci_bus *bus, unsigned int devfn, int pos, type value) \
|
||
|
{ \
|
||
|
int res; \
|
||
|
unsigned long flags; \
|
||
|
if (PCI_##size##_BAD) return PCIBIOS_BAD_REGISTER_NUMBER; \
|
||
|
raw_spin_lock_irqsave(&pci_lock, flags); \
|
||
|
res = bus->ops->write(bus, devfn, pos, len, value); \
|
||
|
raw_spin_unlock_irqrestore(&pci_lock, flags); \
|
||
|
return res; \
|
||
|
}
|
||
|
|
||
|
PCI_OP_READ(byte, u8, 1)
|
||
|
PCI_OP_READ(word, u16, 2)
|
||
|
PCI_OP_READ(dword, u32, 4)
|
||
|
PCI_OP_WRITE(byte, u8, 1)
|
||
|
PCI_OP_WRITE(word, u16, 2)
|
||
|
PCI_OP_WRITE(dword, u32, 4)
|
||
|
|
||
|
EXPORT_SYMBOL(pci_bus_read_config_byte);
|
||
|
EXPORT_SYMBOL(pci_bus_read_config_word);
|
||
|
EXPORT_SYMBOL(pci_bus_read_config_dword);
|
||
|
EXPORT_SYMBOL(pci_bus_write_config_byte);
|
||
|
EXPORT_SYMBOL(pci_bus_write_config_word);
|
||
|
EXPORT_SYMBOL(pci_bus_write_config_dword);
|
||
|
|
||
|
/**
|
||
|
* pci_bus_set_ops - Set raw operations of pci bus
|
||
|
* @bus: pci bus struct
|
||
|
* @ops: new raw operations
|
||
|
*
|
||
|
* Return previous raw operations
|
||
|
*/
|
||
|
struct pci_ops *pci_bus_set_ops(struct pci_bus *bus, struct pci_ops *ops)
|
||
|
{
|
||
|
struct pci_ops *old_ops;
|
||
|
unsigned long flags;
|
||
|
|
||
|
raw_spin_lock_irqsave(&pci_lock, flags);
|
||
|
old_ops = bus->ops;
|
||
|
bus->ops = ops;
|
||
|
raw_spin_unlock_irqrestore(&pci_lock, flags);
|
||
|
return old_ops;
|
||
|
}
|
||
|
EXPORT_SYMBOL(pci_bus_set_ops);
|
||
|
|
||
|
/**
|
||
|
* pci_read_vpd - Read one entry from Vital Product Data
|
||
|
* @dev: pci device struct
|
||
|
* @pos: offset in vpd space
|
||
|
* @count: number of bytes to read
|
||
|
* @buf: pointer to where to store result
|
||
|
*
|
||
|
*/
|
||
|
ssize_t pci_read_vpd(struct pci_dev *dev, loff_t pos, size_t count, void *buf)
|
||
|
{
|
||
|
if (!dev->vpd || !dev->vpd->ops)
|
||
|
return -ENODEV;
|
||
|
return dev->vpd->ops->read(dev, pos, count, buf);
|
||
|
}
|
||
|
EXPORT_SYMBOL(pci_read_vpd);
|
||
|
|
||
|
/**
|
||
|
* pci_write_vpd - Write entry to Vital Product Data
|
||
|
* @dev: pci device struct
|
||
|
* @pos: offset in vpd space
|
||
|
* @count: number of bytes to write
|
||
|
* @buf: buffer containing write data
|
||
|
*
|
||
|
*/
|
||
|
ssize_t pci_write_vpd(struct pci_dev *dev, loff_t pos, size_t count, const void *buf)
|
||
|
{
|
||
|
if (!dev->vpd || !dev->vpd->ops)
|
||
|
return -ENODEV;
|
||
|
return dev->vpd->ops->write(dev, pos, count, buf);
|
||
|
}
|
||
|
EXPORT_SYMBOL(pci_write_vpd);
|
||
|
|
||
|
/*
|
||
|
* The following routines are to prevent the user from accessing PCI config
|
||
|
* space when it's unsafe to do so. Some devices require this during BIST and
|
||
|
* we're required to prevent it during D-state transitions.
|
||
|
*
|
||
|
* We have a bit per device to indicate it's blocked and a global wait queue
|
||
|
* for callers to sleep on until devices are unblocked.
|
||
|
*/
|
||
|
static DECLARE_WAIT_QUEUE_HEAD(pci_cfg_wait);
|
||
|
|
||
|
static noinline void pci_wait_cfg(struct pci_dev *dev)
|
||
|
{
|
||
|
DECLARE_WAITQUEUE(wait, current);
|
||
|
|
||
|
__add_wait_queue(&pci_cfg_wait, &wait);
|
||
|
do {
|
||
|
set_current_state(TASK_UNINTERRUPTIBLE);
|
||
|
raw_spin_unlock_irq(&pci_lock);
|
||
|
schedule();
|
||
|
raw_spin_lock_irq(&pci_lock);
|
||
|
} while (dev->block_cfg_access);
|
||
|
__remove_wait_queue(&pci_cfg_wait, &wait);
|
||
|
}
|
||
|
|
||
|
/* Returns 0 on success, negative values indicate error. */
|
||
|
#define PCI_USER_READ_CONFIG(size,type) \
|
||
|
int pci_user_read_config_##size \
|
||
|
(struct pci_dev *dev, int pos, type *val) \
|
||
|
{ \
|
||
|
int ret = PCIBIOS_SUCCESSFUL; \
|
||
|
u32 data = -1; \
|
||
|
if (PCI_##size##_BAD) \
|
||
|
return -EINVAL; \
|
||
|
raw_spin_lock_irq(&pci_lock); \
|
||
|
if (unlikely(dev->block_cfg_access)) \
|
||
|
pci_wait_cfg(dev); \
|
||
|
ret = dev->bus->ops->read(dev->bus, dev->devfn, \
|
||
|
pos, sizeof(type), &data); \
|
||
|
raw_spin_unlock_irq(&pci_lock); \
|
||
|
*val = (type)data; \
|
||
|
return pcibios_err_to_errno(ret); \
|
||
|
} \
|
||
|
EXPORT_SYMBOL_GPL(pci_user_read_config_##size);
|
||
|
|
||
|
/* Returns 0 on success, negative values indicate error. */
|
||
|
#define PCI_USER_WRITE_CONFIG(size,type) \
|
||
|
int pci_user_write_config_##size \
|
||
|
(struct pci_dev *dev, int pos, type val) \
|
||
|
{ \
|
||
|
int ret = PCIBIOS_SUCCESSFUL; \
|
||
|
if (PCI_##size##_BAD) \
|
||
|
return -EINVAL; \
|
||
|
raw_spin_lock_irq(&pci_lock); \
|
||
|
if (unlikely(dev->block_cfg_access)) \
|
||
|
pci_wait_cfg(dev); \
|
||
|
ret = dev->bus->ops->write(dev->bus, dev->devfn, \
|
||
|
pos, sizeof(type), val); \
|
||
|
raw_spin_unlock_irq(&pci_lock); \
|
||
|
return pcibios_err_to_errno(ret); \
|
||
|
} \
|
||
|
EXPORT_SYMBOL_GPL(pci_user_write_config_##size);
|
||
|
|
||
|
PCI_USER_READ_CONFIG(byte, u8)
|
||
|
PCI_USER_READ_CONFIG(word, u16)
|
||
|
PCI_USER_READ_CONFIG(dword, u32)
|
||
|
PCI_USER_WRITE_CONFIG(byte, u8)
|
||
|
PCI_USER_WRITE_CONFIG(word, u16)
|
||
|
PCI_USER_WRITE_CONFIG(dword, u32)
|
||
|
|
||
|
/* VPD access through PCI 2.2+ VPD capability */
|
||
|
|
||
|
#define PCI_VPD_PCI22_SIZE (PCI_VPD_ADDR_MASK + 1)
|
||
|
|
||
|
struct pci_vpd_pci22 {
|
||
|
struct pci_vpd base;
|
||
|
struct mutex lock;
|
||
|
u16 flag;
|
||
|
bool busy;
|
||
|
u8 cap;
|
||
|
};
|
||
|
|
||
|
/*
|
||
|
* Wait for last operation to complete.
|
||
|
* This code has to spin since there is no other notification from the PCI
|
||
|
* hardware. Since the VPD is often implemented by serial attachment to an
|
||
|
* EEPROM, it may take many milliseconds to complete.
|
||
|
*
|
||
|
* Returns 0 on success, negative values indicate error.
|
||
|
*/
|
||
|
static int pci_vpd_pci22_wait(struct pci_dev *dev)
|
||
|
{
|
||
|
struct pci_vpd_pci22 *vpd =
|
||
|
container_of(dev->vpd, struct pci_vpd_pci22, base);
|
||
|
unsigned long timeout = jiffies + HZ/20 + 2;
|
||
|
u16 status;
|
||
|
int ret;
|
||
|
|
||
|
if (!vpd->busy)
|
||
|
return 0;
|
||
|
|
||
|
for (;;) {
|
||
|
ret = pci_user_read_config_word(dev, vpd->cap + PCI_VPD_ADDR,
|
||
|
&status);
|
||
|
if (ret < 0)
|
||
|
return ret;
|
||
|
|
||
|
if ((status & PCI_VPD_ADDR_F) == vpd->flag) {
|
||
|
vpd->busy = false;
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
if (time_after(jiffies, timeout)) {
|
||
|
dev_printk(KERN_DEBUG, &dev->dev, "vpd r/w failed. This is likely a firmware bug on this device. Contact the card vendor for a firmware update\n");
|
||
|
return -ETIMEDOUT;
|
||
|
}
|
||
|
if (fatal_signal_pending(current))
|
||
|
return -EINTR;
|
||
|
if (!cond_resched())
|
||
|
udelay(10);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static ssize_t pci_vpd_pci22_read(struct pci_dev *dev, loff_t pos, size_t count,
|
||
|
void *arg)
|
||
|
{
|
||
|
struct pci_vpd_pci22 *vpd =
|
||
|
container_of(dev->vpd, struct pci_vpd_pci22, base);
|
||
|
int ret;
|
||
|
loff_t end = pos + count;
|
||
|
u8 *buf = arg;
|
||
|
|
||
|
if (pos < 0 || pos > vpd->base.len || end > vpd->base.len)
|
||
|
return -EINVAL;
|
||
|
|
||
|
if (mutex_lock_killable(&vpd->lock))
|
||
|
return -EINTR;
|
||
|
|
||
|
ret = pci_vpd_pci22_wait(dev);
|
||
|
if (ret < 0)
|
||
|
goto out;
|
||
|
|
||
|
while (pos < end) {
|
||
|
u32 val;
|
||
|
unsigned int i, skip;
|
||
|
|
||
|
ret = pci_user_write_config_word(dev, vpd->cap + PCI_VPD_ADDR,
|
||
|
pos & ~3);
|
||
|
if (ret < 0)
|
||
|
break;
|
||
|
vpd->busy = true;
|
||
|
vpd->flag = PCI_VPD_ADDR_F;
|
||
|
ret = pci_vpd_pci22_wait(dev);
|
||
|
if (ret < 0)
|
||
|
break;
|
||
|
|
||
|
ret = pci_user_read_config_dword(dev, vpd->cap + PCI_VPD_DATA, &val);
|
||
|
if (ret < 0)
|
||
|
break;
|
||
|
|
||
|
skip = pos & 3;
|
||
|
for (i = 0; i < sizeof(u32); i++) {
|
||
|
if (i >= skip) {
|
||
|
*buf++ = val;
|
||
|
if (++pos == end)
|
||
|
break;
|
||
|
}
|
||
|
val >>= 8;
|
||
|
}
|
||
|
}
|
||
|
out:
|
||
|
mutex_unlock(&vpd->lock);
|
||
|
return ret ? ret : count;
|
||
|
}
|
||
|
|
||
|
static ssize_t pci_vpd_pci22_write(struct pci_dev *dev, loff_t pos, size_t count,
|
||
|
const void *arg)
|
||
|
{
|
||
|
struct pci_vpd_pci22 *vpd =
|
||
|
container_of(dev->vpd, struct pci_vpd_pci22, base);
|
||
|
const u8 *buf = arg;
|
||
|
loff_t end = pos + count;
|
||
|
int ret = 0;
|
||
|
|
||
|
if (pos < 0 || (pos & 3) || (count & 3) || end > vpd->base.len)
|
||
|
return -EINVAL;
|
||
|
|
||
|
if (mutex_lock_killable(&vpd->lock))
|
||
|
return -EINTR;
|
||
|
|
||
|
ret = pci_vpd_pci22_wait(dev);
|
||
|
if (ret < 0)
|
||
|
goto out;
|
||
|
|
||
|
while (pos < end) {
|
||
|
u32 val;
|
||
|
|
||
|
val = *buf++;
|
||
|
val |= *buf++ << 8;
|
||
|
val |= *buf++ << 16;
|
||
|
val |= *buf++ << 24;
|
||
|
|
||
|
ret = pci_user_write_config_dword(dev, vpd->cap + PCI_VPD_DATA, val);
|
||
|
if (ret < 0)
|
||
|
break;
|
||
|
ret = pci_user_write_config_word(dev, vpd->cap + PCI_VPD_ADDR,
|
||
|
pos | PCI_VPD_ADDR_F);
|
||
|
if (ret < 0)
|
||
|
break;
|
||
|
|
||
|
vpd->busy = true;
|
||
|
vpd->flag = 0;
|
||
|
ret = pci_vpd_pci22_wait(dev);
|
||
|
if (ret < 0)
|
||
|
break;
|
||
|
|
||
|
pos += sizeof(u32);
|
||
|
}
|
||
|
out:
|
||
|
mutex_unlock(&vpd->lock);
|
||
|
return ret ? ret : count;
|
||
|
}
|
||
|
|
||
|
static void pci_vpd_pci22_release(struct pci_dev *dev)
|
||
|
{
|
||
|
kfree(container_of(dev->vpd, struct pci_vpd_pci22, base));
|
||
|
}
|
||
|
|
||
|
static const struct pci_vpd_ops pci_vpd_pci22_ops = {
|
||
|
.read = pci_vpd_pci22_read,
|
||
|
.write = pci_vpd_pci22_write,
|
||
|
.release = pci_vpd_pci22_release,
|
||
|
};
|
||
|
|
||
|
int pci_vpd_pci22_init(struct pci_dev *dev)
|
||
|
{
|
||
|
struct pci_vpd_pci22 *vpd;
|
||
|
u8 cap;
|
||
|
|
||
|
cap = pci_find_capability(dev, PCI_CAP_ID_VPD);
|
||
|
if (!cap)
|
||
|
return -ENODEV;
|
||
|
vpd = kzalloc(sizeof(*vpd), GFP_ATOMIC);
|
||
|
if (!vpd)
|
||
|
return -ENOMEM;
|
||
|
|
||
|
vpd->base.len = PCI_VPD_PCI22_SIZE;
|
||
|
vpd->base.ops = &pci_vpd_pci22_ops;
|
||
|
mutex_init(&vpd->lock);
|
||
|
vpd->cap = cap;
|
||
|
vpd->busy = false;
|
||
|
dev->vpd = &vpd->base;
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* pci_cfg_access_lock - Lock PCI config reads/writes
|
||
|
* @dev: pci device struct
|
||
|
*
|
||
|
* When access is locked, any userspace reads or writes to config
|
||
|
* space and concurrent lock requests will sleep until access is
|
||
|
* allowed via pci_cfg_access_unlocked again.
|
||
|
*/
|
||
|
void pci_cfg_access_lock(struct pci_dev *dev)
|
||
|
{
|
||
|
might_sleep();
|
||
|
|
||
|
raw_spin_lock_irq(&pci_lock);
|
||
|
if (dev->block_cfg_access)
|
||
|
pci_wait_cfg(dev);
|
||
|
dev->block_cfg_access = 1;
|
||
|
raw_spin_unlock_irq(&pci_lock);
|
||
|
}
|
||
|
EXPORT_SYMBOL_GPL(pci_cfg_access_lock);
|
||
|
|
||
|
/**
|
||
|
* pci_cfg_access_trylock - try to lock PCI config reads/writes
|
||
|
* @dev: pci device struct
|
||
|
*
|
||
|
* Same as pci_cfg_access_lock, but will return 0 if access is
|
||
|
* already locked, 1 otherwise. This function can be used from
|
||
|
* atomic contexts.
|
||
|
*/
|
||
|
bool pci_cfg_access_trylock(struct pci_dev *dev)
|
||
|
{
|
||
|
unsigned long flags;
|
||
|
bool locked = true;
|
||
|
|
||
|
raw_spin_lock_irqsave(&pci_lock, flags);
|
||
|
if (dev->block_cfg_access)
|
||
|
locked = false;
|
||
|
else
|
||
|
dev->block_cfg_access = 1;
|
||
|
raw_spin_unlock_irqrestore(&pci_lock, flags);
|
||
|
|
||
|
return locked;
|
||
|
}
|
||
|
EXPORT_SYMBOL_GPL(pci_cfg_access_trylock);
|
||
|
|
||
|
/**
|
||
|
* pci_cfg_access_unlock - Unlock PCI config reads/writes
|
||
|
* @dev: pci device struct
|
||
|
*
|
||
|
* This function allows PCI config accesses to resume.
|
||
|
*/
|
||
|
void pci_cfg_access_unlock(struct pci_dev *dev)
|
||
|
{
|
||
|
unsigned long flags;
|
||
|
|
||
|
raw_spin_lock_irqsave(&pci_lock, flags);
|
||
|
|
||
|
/* This indicates a problem in the caller, but we don't need
|
||
|
* to kill them, unlike a double-block above. */
|
||
|
WARN_ON(!dev->block_cfg_access);
|
||
|
|
||
|
dev->block_cfg_access = 0;
|
||
|
wake_up_all(&pci_cfg_wait);
|
||
|
raw_spin_unlock_irqrestore(&pci_lock, flags);
|
||
|
}
|
||
|
EXPORT_SYMBOL_GPL(pci_cfg_access_unlock);
|
||
|
|
||
|
static inline int pcie_cap_version(const struct pci_dev *dev)
|
||
|
{
|
||
|
return pcie_caps_reg(dev) & PCI_EXP_FLAGS_VERS;
|
||
|
}
|
||
|
|
||
|
bool pcie_cap_has_lnkctl(const struct pci_dev *dev)
|
||
|
{
|
||
|
int type = pci_pcie_type(dev);
|
||
|
|
||
|
return type == PCI_EXP_TYPE_ENDPOINT ||
|
||
|
type == PCI_EXP_TYPE_LEG_END ||
|
||
|
type == PCI_EXP_TYPE_ROOT_PORT ||
|
||
|
type == PCI_EXP_TYPE_UPSTREAM ||
|
||
|
type == PCI_EXP_TYPE_DOWNSTREAM ||
|
||
|
type == PCI_EXP_TYPE_PCI_BRIDGE ||
|
||
|
type == PCI_EXP_TYPE_PCIE_BRIDGE;
|
||
|
}
|
||
|
|
||
|
static inline bool pcie_cap_has_sltctl(const struct pci_dev *dev)
|
||
|
{
|
||
|
int type = pci_pcie_type(dev);
|
||
|
|
||
|
return (type == PCI_EXP_TYPE_ROOT_PORT ||
|
||
|
type == PCI_EXP_TYPE_DOWNSTREAM) &&
|
||
|
pcie_caps_reg(dev) & PCI_EXP_FLAGS_SLOT;
|
||
|
}
|
||
|
|
||
|
static inline bool pcie_cap_has_rtctl(const struct pci_dev *dev)
|
||
|
{
|
||
|
int type = pci_pcie_type(dev);
|
||
|
|
||
|
return type == PCI_EXP_TYPE_ROOT_PORT ||
|
||
|
type == PCI_EXP_TYPE_RC_EC;
|
||
|
}
|
||
|
|
||
|
static bool pcie_capability_reg_implemented(struct pci_dev *dev, int pos)
|
||
|
{
|
||
|
if (!pci_is_pcie(dev))
|
||
|
return false;
|
||
|
|
||
|
switch (pos) {
|
||
|
case PCI_EXP_FLAGS:
|
||
|
return true;
|
||
|
case PCI_EXP_DEVCAP:
|
||
|
case PCI_EXP_DEVCTL:
|
||
|
case PCI_EXP_DEVSTA:
|
||
|
return true;
|
||
|
case PCI_EXP_LNKCAP:
|
||
|
case PCI_EXP_LNKCTL:
|
||
|
case PCI_EXP_LNKSTA:
|
||
|
return pcie_cap_has_lnkctl(dev);
|
||
|
case PCI_EXP_SLTCAP:
|
||
|
case PCI_EXP_SLTCTL:
|
||
|
case PCI_EXP_SLTSTA:
|
||
|
return pcie_cap_has_sltctl(dev);
|
||
|
case PCI_EXP_RTCTL:
|
||
|
case PCI_EXP_RTCAP:
|
||
|
case PCI_EXP_RTSTA:
|
||
|
return pcie_cap_has_rtctl(dev);
|
||
|
case PCI_EXP_DEVCAP2:
|
||
|
case PCI_EXP_DEVCTL2:
|
||
|
case PCI_EXP_LNKCAP2:
|
||
|
case PCI_EXP_LNKCTL2:
|
||
|
case PCI_EXP_LNKSTA2:
|
||
|
return pcie_cap_version(dev) > 1;
|
||
|
default:
|
||
|
return false;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Note that these accessor functions are only for the "PCI Express
|
||
|
* Capability" (see PCIe spec r3.0, sec 7.8). They do not apply to the
|
||
|
* other "PCI Express Extended Capabilities" (AER, VC, ACS, MFVC, etc.)
|
||
|
*/
|
||
|
int pcie_capability_read_word(struct pci_dev *dev, int pos, u16 *val)
|
||
|
{
|
||
|
int ret;
|
||
|
|
||
|
*val = 0;
|
||
|
if (pos & 1)
|
||
|
return -EINVAL;
|
||
|
|
||
|
if (pcie_capability_reg_implemented(dev, pos)) {
|
||
|
ret = pci_read_config_word(dev, pci_pcie_cap(dev) + pos, val);
|
||
|
/*
|
||
|
* Reset *val to 0 if pci_read_config_word() fails, it may
|
||
|
* have been written as 0xFFFF if hardware error happens
|
||
|
* during pci_read_config_word().
|
||
|
*/
|
||
|
if (ret)
|
||
|
*val = 0;
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* For Functions that do not implement the Slot Capabilities,
|
||
|
* Slot Status, and Slot Control registers, these spaces must
|
||
|
* be hardwired to 0b, with the exception of the Presence Detect
|
||
|
* State bit in the Slot Status register of Downstream Ports,
|
||
|
* which must be hardwired to 1b. (PCIe Base Spec 3.0, sec 7.8)
|
||
|
*/
|
||
|
if (pci_is_pcie(dev) && pos == PCI_EXP_SLTSTA &&
|
||
|
pci_pcie_type(dev) == PCI_EXP_TYPE_DOWNSTREAM) {
|
||
|
*val = PCI_EXP_SLTSTA_PDS;
|
||
|
}
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
EXPORT_SYMBOL(pcie_capability_read_word);
|
||
|
|
||
|
int pcie_capability_read_dword(struct pci_dev *dev, int pos, u32 *val)
|
||
|
{
|
||
|
int ret;
|
||
|
|
||
|
*val = 0;
|
||
|
if (pos & 3)
|
||
|
return -EINVAL;
|
||
|
|
||
|
if (pcie_capability_reg_implemented(dev, pos)) {
|
||
|
ret = pci_read_config_dword(dev, pci_pcie_cap(dev) + pos, val);
|
||
|
/*
|
||
|
* Reset *val to 0 if pci_read_config_dword() fails, it may
|
||
|
* have been written as 0xFFFFFFFF if hardware error happens
|
||
|
* during pci_read_config_dword().
|
||
|
*/
|
||
|
if (ret)
|
||
|
*val = 0;
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
if (pci_is_pcie(dev) && pos == PCI_EXP_SLTCTL &&
|
||
|
pci_pcie_type(dev) == PCI_EXP_TYPE_DOWNSTREAM) {
|
||
|
*val = PCI_EXP_SLTSTA_PDS;
|
||
|
}
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
EXPORT_SYMBOL(pcie_capability_read_dword);
|
||
|
|
||
|
int pcie_capability_write_word(struct pci_dev *dev, int pos, u16 val)
|
||
|
{
|
||
|
if (pos & 1)
|
||
|
return -EINVAL;
|
||
|
|
||
|
if (!pcie_capability_reg_implemented(dev, pos))
|
||
|
return 0;
|
||
|
|
||
|
return pci_write_config_word(dev, pci_pcie_cap(dev) + pos, val);
|
||
|
}
|
||
|
EXPORT_SYMBOL(pcie_capability_write_word);
|
||
|
|
||
|
int pcie_capability_write_dword(struct pci_dev *dev, int pos, u32 val)
|
||
|
{
|
||
|
if (pos & 3)
|
||
|
return -EINVAL;
|
||
|
|
||
|
if (!pcie_capability_reg_implemented(dev, pos))
|
||
|
return 0;
|
||
|
|
||
|
return pci_write_config_dword(dev, pci_pcie_cap(dev) + pos, val);
|
||
|
}
|
||
|
EXPORT_SYMBOL(pcie_capability_write_dword);
|
||
|
|
||
|
int pcie_capability_clear_and_set_word(struct pci_dev *dev, int pos,
|
||
|
u16 clear, u16 set)
|
||
|
{
|
||
|
int ret;
|
||
|
u16 val;
|
||
|
|
||
|
ret = pcie_capability_read_word(dev, pos, &val);
|
||
|
if (!ret) {
|
||
|
val &= ~clear;
|
||
|
val |= set;
|
||
|
ret = pcie_capability_write_word(dev, pos, val);
|
||
|
}
|
||
|
|
||
|
return ret;
|
||
|
}
|
||
|
EXPORT_SYMBOL(pcie_capability_clear_and_set_word);
|
||
|
|
||
|
int pcie_capability_clear_and_set_dword(struct pci_dev *dev, int pos,
|
||
|
u32 clear, u32 set)
|
||
|
{
|
||
|
int ret;
|
||
|
u32 val;
|
||
|
|
||
|
ret = pcie_capability_read_dword(dev, pos, &val);
|
||
|
if (!ret) {
|
||
|
val &= ~clear;
|
||
|
val |= set;
|
||
|
ret = pcie_capability_write_dword(dev, pos, val);
|
||
|
}
|
||
|
|
||
|
return ret;
|
||
|
}
|
||
|
EXPORT_SYMBOL(pcie_capability_clear_and_set_dword);
|