android_kernel_samsung_hero.../fs/ocfs2/journal.c

2253 lines
58 KiB
C
Raw Permalink Normal View History

2016-08-17 10:41:52 +02:00
/* -*- mode: c; c-basic-offset: 8; -*-
* vim: noexpandtab sw=8 ts=8 sts=0:
*
* journal.c
*
* Defines functions of journalling api
*
* Copyright (C) 2003, 2004 Oracle. All rights reserved.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public
* License along with this program; if not, write to the
* Free Software Foundation, Inc., 59 Temple Place - Suite 330,
* Boston, MA 021110-1307, USA.
*/
#include <linux/fs.h>
#include <linux/types.h>
#include <linux/slab.h>
#include <linux/highmem.h>
#include <linux/kthread.h>
#include <linux/time.h>
#include <linux/random.h>
#include <linux/delay.h>
#include <cluster/masklog.h>
#include "ocfs2.h"
#include "alloc.h"
#include "blockcheck.h"
#include "dir.h"
#include "dlmglue.h"
#include "extent_map.h"
#include "heartbeat.h"
#include "inode.h"
#include "journal.h"
#include "localalloc.h"
#include "slot_map.h"
#include "super.h"
#include "sysfile.h"
#include "uptodate.h"
#include "quota.h"
#include "buffer_head_io.h"
#include "ocfs2_trace.h"
DEFINE_SPINLOCK(trans_inc_lock);
#define ORPHAN_SCAN_SCHEDULE_TIMEOUT 300000
static int ocfs2_force_read_journal(struct inode *inode);
static int ocfs2_recover_node(struct ocfs2_super *osb,
int node_num, int slot_num);
static int __ocfs2_recovery_thread(void *arg);
static int ocfs2_commit_cache(struct ocfs2_super *osb);
static int __ocfs2_wait_on_mount(struct ocfs2_super *osb, int quota);
static int ocfs2_journal_toggle_dirty(struct ocfs2_super *osb,
int dirty, int replayed);
static int ocfs2_trylock_journal(struct ocfs2_super *osb,
int slot_num);
static int ocfs2_recover_orphans(struct ocfs2_super *osb,
int slot);
static int ocfs2_commit_thread(void *arg);
static void ocfs2_queue_recovery_completion(struct ocfs2_journal *journal,
int slot_num,
struct ocfs2_dinode *la_dinode,
struct ocfs2_dinode *tl_dinode,
struct ocfs2_quota_recovery *qrec);
static inline int ocfs2_wait_on_mount(struct ocfs2_super *osb)
{
return __ocfs2_wait_on_mount(osb, 0);
}
static inline int ocfs2_wait_on_quotas(struct ocfs2_super *osb)
{
return __ocfs2_wait_on_mount(osb, 1);
}
/*
* This replay_map is to track online/offline slots, so we could recover
* offline slots during recovery and mount
*/
enum ocfs2_replay_state {
REPLAY_UNNEEDED = 0, /* Replay is not needed, so ignore this map */
REPLAY_NEEDED, /* Replay slots marked in rm_replay_slots */
REPLAY_DONE /* Replay was already queued */
};
struct ocfs2_replay_map {
unsigned int rm_slots;
enum ocfs2_replay_state rm_state;
unsigned char rm_replay_slots[0];
};
void ocfs2_replay_map_set_state(struct ocfs2_super *osb, int state)
{
if (!osb->replay_map)
return;
/* If we've already queued the replay, we don't have any more to do */
if (osb->replay_map->rm_state == REPLAY_DONE)
return;
osb->replay_map->rm_state = state;
}
int ocfs2_compute_replay_slots(struct ocfs2_super *osb)
{
struct ocfs2_replay_map *replay_map;
int i, node_num;
/* If replay map is already set, we don't do it again */
if (osb->replay_map)
return 0;
replay_map = kzalloc(sizeof(struct ocfs2_replay_map) +
(osb->max_slots * sizeof(char)), GFP_KERNEL);
if (!replay_map) {
mlog_errno(-ENOMEM);
return -ENOMEM;
}
spin_lock(&osb->osb_lock);
replay_map->rm_slots = osb->max_slots;
replay_map->rm_state = REPLAY_UNNEEDED;
/* set rm_replay_slots for offline slot(s) */
for (i = 0; i < replay_map->rm_slots; i++) {
if (ocfs2_slot_to_node_num_locked(osb, i, &node_num) == -ENOENT)
replay_map->rm_replay_slots[i] = 1;
}
osb->replay_map = replay_map;
spin_unlock(&osb->osb_lock);
return 0;
}
void ocfs2_queue_replay_slots(struct ocfs2_super *osb)
{
struct ocfs2_replay_map *replay_map = osb->replay_map;
int i;
if (!replay_map)
return;
if (replay_map->rm_state != REPLAY_NEEDED)
return;
for (i = 0; i < replay_map->rm_slots; i++)
if (replay_map->rm_replay_slots[i])
ocfs2_queue_recovery_completion(osb->journal, i, NULL,
NULL, NULL);
replay_map->rm_state = REPLAY_DONE;
}
void ocfs2_free_replay_slots(struct ocfs2_super *osb)
{
struct ocfs2_replay_map *replay_map = osb->replay_map;
if (!osb->replay_map)
return;
kfree(replay_map);
osb->replay_map = NULL;
}
int ocfs2_recovery_init(struct ocfs2_super *osb)
{
struct ocfs2_recovery_map *rm;
mutex_init(&osb->recovery_lock);
osb->disable_recovery = 0;
osb->recovery_thread_task = NULL;
init_waitqueue_head(&osb->recovery_event);
rm = kzalloc(sizeof(struct ocfs2_recovery_map) +
osb->max_slots * sizeof(unsigned int),
GFP_KERNEL);
if (!rm) {
mlog_errno(-ENOMEM);
return -ENOMEM;
}
rm->rm_entries = (unsigned int *)((char *)rm +
sizeof(struct ocfs2_recovery_map));
osb->recovery_map = rm;
return 0;
}
/* we can't grab the goofy sem lock from inside wait_event, so we use
* memory barriers to make sure that we'll see the null task before
* being woken up */
static int ocfs2_recovery_thread_running(struct ocfs2_super *osb)
{
mb();
return osb->recovery_thread_task != NULL;
}
void ocfs2_recovery_exit(struct ocfs2_super *osb)
{
struct ocfs2_recovery_map *rm;
/* disable any new recovery threads and wait for any currently
* running ones to exit. Do this before setting the vol_state. */
mutex_lock(&osb->recovery_lock);
osb->disable_recovery = 1;
mutex_unlock(&osb->recovery_lock);
wait_event(osb->recovery_event, !ocfs2_recovery_thread_running(osb));
/* At this point, we know that no more recovery threads can be
* launched, so wait for any recovery completion work to
* complete. */
flush_workqueue(ocfs2_wq);
/*
* Now that recovery is shut down, and the osb is about to be
* freed, the osb_lock is not taken here.
*/
rm = osb->recovery_map;
/* XXX: Should we bug if there are dirty entries? */
kfree(rm);
}
static int __ocfs2_recovery_map_test(struct ocfs2_super *osb,
unsigned int node_num)
{
int i;
struct ocfs2_recovery_map *rm = osb->recovery_map;
assert_spin_locked(&osb->osb_lock);
for (i = 0; i < rm->rm_used; i++) {
if (rm->rm_entries[i] == node_num)
return 1;
}
return 0;
}
/* Behaves like test-and-set. Returns the previous value */
static int ocfs2_recovery_map_set(struct ocfs2_super *osb,
unsigned int node_num)
{
struct ocfs2_recovery_map *rm = osb->recovery_map;
spin_lock(&osb->osb_lock);
if (__ocfs2_recovery_map_test(osb, node_num)) {
spin_unlock(&osb->osb_lock);
return 1;
}
/* XXX: Can this be exploited? Not from o2dlm... */
BUG_ON(rm->rm_used >= osb->max_slots);
rm->rm_entries[rm->rm_used] = node_num;
rm->rm_used++;
spin_unlock(&osb->osb_lock);
return 0;
}
static void ocfs2_recovery_map_clear(struct ocfs2_super *osb,
unsigned int node_num)
{
int i;
struct ocfs2_recovery_map *rm = osb->recovery_map;
spin_lock(&osb->osb_lock);
for (i = 0; i < rm->rm_used; i++) {
if (rm->rm_entries[i] == node_num)
break;
}
if (i < rm->rm_used) {
/* XXX: be careful with the pointer math */
memmove(&(rm->rm_entries[i]), &(rm->rm_entries[i + 1]),
(rm->rm_used - i - 1) * sizeof(unsigned int));
rm->rm_used--;
}
spin_unlock(&osb->osb_lock);
}
static int ocfs2_commit_cache(struct ocfs2_super *osb)
{
int status = 0;
unsigned int flushed;
struct ocfs2_journal *journal = NULL;
journal = osb->journal;
/* Flush all pending commits and checkpoint the journal. */
down_write(&journal->j_trans_barrier);
flushed = atomic_read(&journal->j_num_trans);
trace_ocfs2_commit_cache_begin(flushed);
if (flushed == 0) {
up_write(&journal->j_trans_barrier);
goto finally;
}
jbd2_journal_lock_updates(journal->j_journal);
status = jbd2_journal_flush(journal->j_journal);
jbd2_journal_unlock_updates(journal->j_journal);
if (status < 0) {
up_write(&journal->j_trans_barrier);
mlog_errno(status);
goto finally;
}
ocfs2_inc_trans_id(journal);
flushed = atomic_read(&journal->j_num_trans);
atomic_set(&journal->j_num_trans, 0);
up_write(&journal->j_trans_barrier);
trace_ocfs2_commit_cache_end(journal->j_trans_id, flushed);
ocfs2_wake_downconvert_thread(osb);
wake_up(&journal->j_checkpointed);
finally:
return status;
}
handle_t *ocfs2_start_trans(struct ocfs2_super *osb, int max_buffs)
{
journal_t *journal = osb->journal->j_journal;
handle_t *handle;
BUG_ON(!osb || !osb->journal->j_journal);
if (ocfs2_is_hard_readonly(osb))
return ERR_PTR(-EROFS);
BUG_ON(osb->journal->j_state == OCFS2_JOURNAL_FREE);
BUG_ON(max_buffs <= 0);
/* Nested transaction? Just return the handle... */
if (journal_current_handle())
return jbd2_journal_start(journal, max_buffs);
sb_start_intwrite(osb->sb);
down_read(&osb->journal->j_trans_barrier);
handle = jbd2_journal_start(journal, max_buffs);
if (IS_ERR(handle)) {
up_read(&osb->journal->j_trans_barrier);
sb_end_intwrite(osb->sb);
mlog_errno(PTR_ERR(handle));
if (is_journal_aborted(journal)) {
ocfs2_abort(osb->sb, "Detected aborted journal");
handle = ERR_PTR(-EROFS);
}
} else {
if (!ocfs2_mount_local(osb))
atomic_inc(&(osb->journal->j_num_trans));
}
return handle;
}
int ocfs2_commit_trans(struct ocfs2_super *osb,
handle_t *handle)
{
int ret, nested;
struct ocfs2_journal *journal = osb->journal;
BUG_ON(!handle);
nested = handle->h_ref > 1;
ret = jbd2_journal_stop(handle);
if (ret < 0)
mlog_errno(ret);
if (!nested) {
up_read(&journal->j_trans_barrier);
sb_end_intwrite(osb->sb);
}
return ret;
}
/*
* 'nblocks' is what you want to add to the current transaction.
*
* This might call jbd2_journal_restart() which will commit dirty buffers
* and then restart the transaction. Before calling
* ocfs2_extend_trans(), any changed blocks should have been
* dirtied. After calling it, all blocks which need to be changed must
* go through another set of journal_access/journal_dirty calls.
*
* WARNING: This will not release any semaphores or disk locks taken
* during the transaction, so make sure they were taken *before*
* start_trans or we'll have ordering deadlocks.
*
* WARNING2: Note that we do *not* drop j_trans_barrier here. This is
* good because transaction ids haven't yet been recorded on the
* cluster locks associated with this handle.
*/
int ocfs2_extend_trans(handle_t *handle, int nblocks)
{
int status, old_nblocks;
BUG_ON(!handle);
BUG_ON(nblocks < 0);
if (!nblocks)
return 0;
old_nblocks = handle->h_buffer_credits;
trace_ocfs2_extend_trans(old_nblocks, nblocks);
#ifdef CONFIG_OCFS2_DEBUG_FS
status = 1;
#else
status = jbd2_journal_extend(handle, nblocks);
if (status < 0) {
mlog_errno(status);
goto bail;
}
#endif
if (status > 0) {
trace_ocfs2_extend_trans_restart(old_nblocks + nblocks);
status = jbd2_journal_restart(handle,
old_nblocks + nblocks);
if (status < 0) {
mlog_errno(status);
goto bail;
}
}
status = 0;
bail:
return status;
}
/*
* If we have fewer than thresh credits, extend by OCFS2_MAX_TRANS_DATA.
* If that fails, restart the transaction & regain write access for the
* buffer head which is used for metadata modifications.
* Taken from Ext4: extend_or_restart_transaction()
*/
int ocfs2_allocate_extend_trans(handle_t *handle, int thresh)
{
int status, old_nblks;
BUG_ON(!handle);
old_nblks = handle->h_buffer_credits;
trace_ocfs2_allocate_extend_trans(old_nblks, thresh);
if (old_nblks < thresh)
return 0;
status = jbd2_journal_extend(handle, OCFS2_MAX_TRANS_DATA);
if (status < 0) {
mlog_errno(status);
goto bail;
}
if (status > 0) {
status = jbd2_journal_restart(handle, OCFS2_MAX_TRANS_DATA);
if (status < 0)
mlog_errno(status);
}
bail:
return status;
}
struct ocfs2_triggers {
struct jbd2_buffer_trigger_type ot_triggers;
int ot_offset;
};
static inline struct ocfs2_triggers *to_ocfs2_trigger(struct jbd2_buffer_trigger_type *triggers)
{
return container_of(triggers, struct ocfs2_triggers, ot_triggers);
}
static void ocfs2_frozen_trigger(struct jbd2_buffer_trigger_type *triggers,
struct buffer_head *bh,
void *data, size_t size)
{
struct ocfs2_triggers *ot = to_ocfs2_trigger(triggers);
/*
* We aren't guaranteed to have the superblock here, so we
* must unconditionally compute the ecc data.
* __ocfs2_journal_access() will only set the triggers if
* metaecc is enabled.
*/
ocfs2_block_check_compute(data, size, data + ot->ot_offset);
}
/*
* Quota blocks have their own trigger because the struct ocfs2_block_check
* offset depends on the blocksize.
*/
static void ocfs2_dq_frozen_trigger(struct jbd2_buffer_trigger_type *triggers,
struct buffer_head *bh,
void *data, size_t size)
{
struct ocfs2_disk_dqtrailer *dqt =
ocfs2_block_dqtrailer(size, data);
/*
* We aren't guaranteed to have the superblock here, so we
* must unconditionally compute the ecc data.
* __ocfs2_journal_access() will only set the triggers if
* metaecc is enabled.
*/
ocfs2_block_check_compute(data, size, &dqt->dq_check);
}
/*
* Directory blocks also have their own trigger because the
* struct ocfs2_block_check offset depends on the blocksize.
*/
static void ocfs2_db_frozen_trigger(struct jbd2_buffer_trigger_type *triggers,
struct buffer_head *bh,
void *data, size_t size)
{
struct ocfs2_dir_block_trailer *trailer =
ocfs2_dir_trailer_from_size(size, data);
/*
* We aren't guaranteed to have the superblock here, so we
* must unconditionally compute the ecc data.
* __ocfs2_journal_access() will only set the triggers if
* metaecc is enabled.
*/
ocfs2_block_check_compute(data, size, &trailer->db_check);
}
static void ocfs2_abort_trigger(struct jbd2_buffer_trigger_type *triggers,
struct buffer_head *bh)
{
mlog(ML_ERROR,
"ocfs2_abort_trigger called by JBD2. bh = 0x%lx, "
"bh->b_blocknr = %llu\n",
(unsigned long)bh,
(unsigned long long)bh->b_blocknr);
/* We aren't guaranteed to have the superblock here - but if we
* don't, it'll just crash. */
ocfs2_error(bh->b_assoc_map->host->i_sb,
"JBD2 has aborted our journal, ocfs2 cannot continue\n");
}
static struct ocfs2_triggers di_triggers = {
.ot_triggers = {
.t_frozen = ocfs2_frozen_trigger,
.t_abort = ocfs2_abort_trigger,
},
.ot_offset = offsetof(struct ocfs2_dinode, i_check),
};
static struct ocfs2_triggers eb_triggers = {
.ot_triggers = {
.t_frozen = ocfs2_frozen_trigger,
.t_abort = ocfs2_abort_trigger,
},
.ot_offset = offsetof(struct ocfs2_extent_block, h_check),
};
static struct ocfs2_triggers rb_triggers = {
.ot_triggers = {
.t_frozen = ocfs2_frozen_trigger,
.t_abort = ocfs2_abort_trigger,
},
.ot_offset = offsetof(struct ocfs2_refcount_block, rf_check),
};
static struct ocfs2_triggers gd_triggers = {
.ot_triggers = {
.t_frozen = ocfs2_frozen_trigger,
.t_abort = ocfs2_abort_trigger,
},
.ot_offset = offsetof(struct ocfs2_group_desc, bg_check),
};
static struct ocfs2_triggers db_triggers = {
.ot_triggers = {
.t_frozen = ocfs2_db_frozen_trigger,
.t_abort = ocfs2_abort_trigger,
},
};
static struct ocfs2_triggers xb_triggers = {
.ot_triggers = {
.t_frozen = ocfs2_frozen_trigger,
.t_abort = ocfs2_abort_trigger,
},
.ot_offset = offsetof(struct ocfs2_xattr_block, xb_check),
};
static struct ocfs2_triggers dq_triggers = {
.ot_triggers = {
.t_frozen = ocfs2_dq_frozen_trigger,
.t_abort = ocfs2_abort_trigger,
},
};
static struct ocfs2_triggers dr_triggers = {
.ot_triggers = {
.t_frozen = ocfs2_frozen_trigger,
.t_abort = ocfs2_abort_trigger,
},
.ot_offset = offsetof(struct ocfs2_dx_root_block, dr_check),
};
static struct ocfs2_triggers dl_triggers = {
.ot_triggers = {
.t_frozen = ocfs2_frozen_trigger,
.t_abort = ocfs2_abort_trigger,
},
.ot_offset = offsetof(struct ocfs2_dx_leaf, dl_check),
};
static int __ocfs2_journal_access(handle_t *handle,
struct ocfs2_caching_info *ci,
struct buffer_head *bh,
struct ocfs2_triggers *triggers,
int type)
{
int status;
struct ocfs2_super *osb =
OCFS2_SB(ocfs2_metadata_cache_get_super(ci));
BUG_ON(!ci || !ci->ci_ops);
BUG_ON(!handle);
BUG_ON(!bh);
trace_ocfs2_journal_access(
(unsigned long long)ocfs2_metadata_cache_owner(ci),
(unsigned long long)bh->b_blocknr, type, bh->b_size);
/* we can safely remove this assertion after testing. */
if (!buffer_uptodate(bh)) {
mlog(ML_ERROR, "giving me a buffer that's not uptodate!\n");
mlog(ML_ERROR, "b_blocknr=%llu\n",
(unsigned long long)bh->b_blocknr);
BUG();
}
/* Set the current transaction information on the ci so
* that the locking code knows whether it can drop it's locks
* on this ci or not. We're protected from the commit
* thread updating the current transaction id until
* ocfs2_commit_trans() because ocfs2_start_trans() took
* j_trans_barrier for us. */
ocfs2_set_ci_lock_trans(osb->journal, ci);
ocfs2_metadata_cache_io_lock(ci);
switch (type) {
case OCFS2_JOURNAL_ACCESS_CREATE:
case OCFS2_JOURNAL_ACCESS_WRITE:
status = jbd2_journal_get_write_access(handle, bh);
break;
case OCFS2_JOURNAL_ACCESS_UNDO:
status = jbd2_journal_get_undo_access(handle, bh);
break;
default:
status = -EINVAL;
mlog(ML_ERROR, "Unknown access type!\n");
}
if (!status && ocfs2_meta_ecc(osb) && triggers)
jbd2_journal_set_triggers(bh, &triggers->ot_triggers);
ocfs2_metadata_cache_io_unlock(ci);
if (status < 0)
mlog(ML_ERROR, "Error %d getting %d access to buffer!\n",
status, type);
return status;
}
int ocfs2_journal_access_di(handle_t *handle, struct ocfs2_caching_info *ci,
struct buffer_head *bh, int type)
{
return __ocfs2_journal_access(handle, ci, bh, &di_triggers, type);
}
int ocfs2_journal_access_eb(handle_t *handle, struct ocfs2_caching_info *ci,
struct buffer_head *bh, int type)
{
return __ocfs2_journal_access(handle, ci, bh, &eb_triggers, type);
}
int ocfs2_journal_access_rb(handle_t *handle, struct ocfs2_caching_info *ci,
struct buffer_head *bh, int type)
{
return __ocfs2_journal_access(handle, ci, bh, &rb_triggers,
type);
}
int ocfs2_journal_access_gd(handle_t *handle, struct ocfs2_caching_info *ci,
struct buffer_head *bh, int type)
{
return __ocfs2_journal_access(handle, ci, bh, &gd_triggers, type);
}
int ocfs2_journal_access_db(handle_t *handle, struct ocfs2_caching_info *ci,
struct buffer_head *bh, int type)
{
return __ocfs2_journal_access(handle, ci, bh, &db_triggers, type);
}
int ocfs2_journal_access_xb(handle_t *handle, struct ocfs2_caching_info *ci,
struct buffer_head *bh, int type)
{
return __ocfs2_journal_access(handle, ci, bh, &xb_triggers, type);
}
int ocfs2_journal_access_dq(handle_t *handle, struct ocfs2_caching_info *ci,
struct buffer_head *bh, int type)
{
return __ocfs2_journal_access(handle, ci, bh, &dq_triggers, type);
}
int ocfs2_journal_access_dr(handle_t *handle, struct ocfs2_caching_info *ci,
struct buffer_head *bh, int type)
{
return __ocfs2_journal_access(handle, ci, bh, &dr_triggers, type);
}
int ocfs2_journal_access_dl(handle_t *handle, struct ocfs2_caching_info *ci,
struct buffer_head *bh, int type)
{
return __ocfs2_journal_access(handle, ci, bh, &dl_triggers, type);
}
int ocfs2_journal_access(handle_t *handle, struct ocfs2_caching_info *ci,
struct buffer_head *bh, int type)
{
return __ocfs2_journal_access(handle, ci, bh, NULL, type);
}
void ocfs2_journal_dirty(handle_t *handle, struct buffer_head *bh)
{
int status;
trace_ocfs2_journal_dirty((unsigned long long)bh->b_blocknr);
status = jbd2_journal_dirty_metadata(handle, bh);
BUG_ON(status);
}
#define OCFS2_DEFAULT_COMMIT_INTERVAL (HZ * JBD2_DEFAULT_MAX_COMMIT_AGE)
void ocfs2_set_journal_params(struct ocfs2_super *osb)
{
journal_t *journal = osb->journal->j_journal;
unsigned long commit_interval = OCFS2_DEFAULT_COMMIT_INTERVAL;
if (osb->osb_commit_interval)
commit_interval = osb->osb_commit_interval;
write_lock(&journal->j_state_lock);
journal->j_commit_interval = commit_interval;
if (osb->s_mount_opt & OCFS2_MOUNT_BARRIER)
journal->j_flags |= JBD2_BARRIER;
else
journal->j_flags &= ~JBD2_BARRIER;
write_unlock(&journal->j_state_lock);
}
int ocfs2_journal_init(struct ocfs2_journal *journal, int *dirty)
{
int status = -1;
struct inode *inode = NULL; /* the journal inode */
journal_t *j_journal = NULL;
struct ocfs2_dinode *di = NULL;
struct buffer_head *bh = NULL;
struct ocfs2_super *osb;
int inode_lock = 0;
BUG_ON(!journal);
osb = journal->j_osb;
/* already have the inode for our journal */
inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE,
osb->slot_num);
if (inode == NULL) {
status = -EACCES;
mlog_errno(status);
goto done;
}
if (is_bad_inode(inode)) {
mlog(ML_ERROR, "access error (bad inode)\n");
iput(inode);
inode = NULL;
status = -EACCES;
goto done;
}
SET_INODE_JOURNAL(inode);
OCFS2_I(inode)->ip_open_count++;
/* Skip recovery waits here - journal inode metadata never
* changes in a live cluster so it can be considered an
* exception to the rule. */
status = ocfs2_inode_lock_full(inode, &bh, 1, OCFS2_META_LOCK_RECOVERY);
if (status < 0) {
if (status != -ERESTARTSYS)
mlog(ML_ERROR, "Could not get lock on journal!\n");
goto done;
}
inode_lock = 1;
di = (struct ocfs2_dinode *)bh->b_data;
if (i_size_read(inode) < OCFS2_MIN_JOURNAL_SIZE) {
mlog(ML_ERROR, "Journal file size (%lld) is too small!\n",
i_size_read(inode));
status = -EINVAL;
goto done;
}
trace_ocfs2_journal_init(i_size_read(inode),
(unsigned long long)inode->i_blocks,
OCFS2_I(inode)->ip_clusters);
/* call the kernels journal init function now */
j_journal = jbd2_journal_init_inode(inode);
if (j_journal == NULL) {
mlog(ML_ERROR, "Linux journal layer error\n");
status = -EINVAL;
goto done;
}
trace_ocfs2_journal_init_maxlen(j_journal->j_maxlen);
*dirty = (le32_to_cpu(di->id1.journal1.ij_flags) &
OCFS2_JOURNAL_DIRTY_FL);
journal->j_journal = j_journal;
journal->j_inode = inode;
journal->j_bh = bh;
ocfs2_set_journal_params(osb);
journal->j_state = OCFS2_JOURNAL_LOADED;
status = 0;
done:
if (status < 0) {
if (inode_lock)
ocfs2_inode_unlock(inode, 1);
brelse(bh);
if (inode) {
OCFS2_I(inode)->ip_open_count--;
iput(inode);
}
}
return status;
}
static void ocfs2_bump_recovery_generation(struct ocfs2_dinode *di)
{
le32_add_cpu(&(di->id1.journal1.ij_recovery_generation), 1);
}
static u32 ocfs2_get_recovery_generation(struct ocfs2_dinode *di)
{
return le32_to_cpu(di->id1.journal1.ij_recovery_generation);
}
static int ocfs2_journal_toggle_dirty(struct ocfs2_super *osb,
int dirty, int replayed)
{
int status;
unsigned int flags;
struct ocfs2_journal *journal = osb->journal;
struct buffer_head *bh = journal->j_bh;
struct ocfs2_dinode *fe;
fe = (struct ocfs2_dinode *)bh->b_data;
/* The journal bh on the osb always comes from ocfs2_journal_init()
* and was validated there inside ocfs2_inode_lock_full(). It's a
* code bug if we mess it up. */
BUG_ON(!OCFS2_IS_VALID_DINODE(fe));
flags = le32_to_cpu(fe->id1.journal1.ij_flags);
if (dirty)
flags |= OCFS2_JOURNAL_DIRTY_FL;
else
flags &= ~OCFS2_JOURNAL_DIRTY_FL;
fe->id1.journal1.ij_flags = cpu_to_le32(flags);
if (replayed)
ocfs2_bump_recovery_generation(fe);
ocfs2_compute_meta_ecc(osb->sb, bh->b_data, &fe->i_check);
status = ocfs2_write_block(osb, bh, INODE_CACHE(journal->j_inode));
if (status < 0)
mlog_errno(status);
return status;
}
/*
* If the journal has been kmalloc'd it needs to be freed after this
* call.
*/
void ocfs2_journal_shutdown(struct ocfs2_super *osb)
{
struct ocfs2_journal *journal = NULL;
int status = 0;
struct inode *inode = NULL;
int num_running_trans = 0;
BUG_ON(!osb);
journal = osb->journal;
if (!journal)
goto done;
inode = journal->j_inode;
if (journal->j_state != OCFS2_JOURNAL_LOADED)
goto done;
/* need to inc inode use count - jbd2_journal_destroy will iput. */
if (!igrab(inode))
BUG();
num_running_trans = atomic_read(&(osb->journal->j_num_trans));
trace_ocfs2_journal_shutdown(num_running_trans);
/* Do a commit_cache here. It will flush our journal, *and*
* release any locks that are still held.
* set the SHUTDOWN flag and release the trans lock.
* the commit thread will take the trans lock for us below. */
journal->j_state = OCFS2_JOURNAL_IN_SHUTDOWN;
/* The OCFS2_JOURNAL_IN_SHUTDOWN will signal to commit_cache to not
* drop the trans_lock (which we want to hold until we
* completely destroy the journal. */
if (osb->commit_task) {
/* Wait for the commit thread */
trace_ocfs2_journal_shutdown_wait(osb->commit_task);
kthread_stop(osb->commit_task);
osb->commit_task = NULL;
}
BUG_ON(atomic_read(&(osb->journal->j_num_trans)) != 0);
if (ocfs2_mount_local(osb)) {
jbd2_journal_lock_updates(journal->j_journal);
status = jbd2_journal_flush(journal->j_journal);
jbd2_journal_unlock_updates(journal->j_journal);
if (status < 0)
mlog_errno(status);
}
if (status == 0) {
/*
* Do not toggle if flush was unsuccessful otherwise
* will leave dirty metadata in a "clean" journal
*/
status = ocfs2_journal_toggle_dirty(osb, 0, 0);
if (status < 0)
mlog_errno(status);
}
/* Shutdown the kernel journal system */
jbd2_journal_destroy(journal->j_journal);
journal->j_journal = NULL;
OCFS2_I(inode)->ip_open_count--;
/* unlock our journal */
ocfs2_inode_unlock(inode, 1);
brelse(journal->j_bh);
journal->j_bh = NULL;
journal->j_state = OCFS2_JOURNAL_FREE;
// up_write(&journal->j_trans_barrier);
done:
if (inode)
iput(inode);
}
static void ocfs2_clear_journal_error(struct super_block *sb,
journal_t *journal,
int slot)
{
int olderr;
olderr = jbd2_journal_errno(journal);
if (olderr) {
mlog(ML_ERROR, "File system error %d recorded in "
"journal %u.\n", olderr, slot);
mlog(ML_ERROR, "File system on device %s needs checking.\n",
sb->s_id);
jbd2_journal_ack_err(journal);
jbd2_journal_clear_err(journal);
}
}
int ocfs2_journal_load(struct ocfs2_journal *journal, int local, int replayed)
{
int status = 0;
struct ocfs2_super *osb;
BUG_ON(!journal);
osb = journal->j_osb;
status = jbd2_journal_load(journal->j_journal);
if (status < 0) {
mlog(ML_ERROR, "Failed to load journal!\n");
goto done;
}
ocfs2_clear_journal_error(osb->sb, journal->j_journal, osb->slot_num);
status = ocfs2_journal_toggle_dirty(osb, 1, replayed);
if (status < 0) {
mlog_errno(status);
goto done;
}
/* Launch the commit thread */
if (!local) {
osb->commit_task = kthread_run(ocfs2_commit_thread, osb,
"ocfs2cmt");
if (IS_ERR(osb->commit_task)) {
status = PTR_ERR(osb->commit_task);
osb->commit_task = NULL;
mlog(ML_ERROR, "unable to launch ocfs2commit thread, "
"error=%d", status);
goto done;
}
} else
osb->commit_task = NULL;
done:
return status;
}
/* 'full' flag tells us whether we clear out all blocks or if we just
* mark the journal clean */
int ocfs2_journal_wipe(struct ocfs2_journal *journal, int full)
{
int status;
BUG_ON(!journal);
status = jbd2_journal_wipe(journal->j_journal, full);
if (status < 0) {
mlog_errno(status);
goto bail;
}
status = ocfs2_journal_toggle_dirty(journal->j_osb, 0, 0);
if (status < 0)
mlog_errno(status);
bail:
return status;
}
static int ocfs2_recovery_completed(struct ocfs2_super *osb)
{
int empty;
struct ocfs2_recovery_map *rm = osb->recovery_map;
spin_lock(&osb->osb_lock);
empty = (rm->rm_used == 0);
spin_unlock(&osb->osb_lock);
return empty;
}
void ocfs2_wait_for_recovery(struct ocfs2_super *osb)
{
wait_event(osb->recovery_event, ocfs2_recovery_completed(osb));
}
/*
* JBD Might read a cached version of another nodes journal file. We
* don't want this as this file changes often and we get no
* notification on those changes. The only way to be sure that we've
* got the most up to date version of those blocks then is to force
* read them off disk. Just searching through the buffer cache won't
* work as there may be pages backing this file which are still marked
* up to date. We know things can't change on this file underneath us
* as we have the lock by now :)
*/
static int ocfs2_force_read_journal(struct inode *inode)
{
int status = 0;
int i;
u64 v_blkno, p_blkno, p_blocks, num_blocks;
#define CONCURRENT_JOURNAL_FILL 32ULL
struct buffer_head *bhs[CONCURRENT_JOURNAL_FILL];
memset(bhs, 0, sizeof(struct buffer_head *) * CONCURRENT_JOURNAL_FILL);
num_blocks = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
v_blkno = 0;
while (v_blkno < num_blocks) {
status = ocfs2_extent_map_get_blocks(inode, v_blkno,
&p_blkno, &p_blocks, NULL);
if (status < 0) {
mlog_errno(status);
goto bail;
}
if (p_blocks > CONCURRENT_JOURNAL_FILL)
p_blocks = CONCURRENT_JOURNAL_FILL;
/* We are reading journal data which should not
* be put in the uptodate cache */
status = ocfs2_read_blocks_sync(OCFS2_SB(inode->i_sb),
p_blkno, p_blocks, bhs);
if (status < 0) {
mlog_errno(status);
goto bail;
}
for(i = 0; i < p_blocks; i++) {
brelse(bhs[i]);
bhs[i] = NULL;
}
v_blkno += p_blocks;
}
bail:
for(i = 0; i < CONCURRENT_JOURNAL_FILL; i++)
brelse(bhs[i]);
return status;
}
struct ocfs2_la_recovery_item {
struct list_head lri_list;
int lri_slot;
struct ocfs2_dinode *lri_la_dinode;
struct ocfs2_dinode *lri_tl_dinode;
struct ocfs2_quota_recovery *lri_qrec;
};
/* Does the second half of the recovery process. By this point, the
* node is marked clean and can actually be considered recovered,
* hence it's no longer in the recovery map, but there's still some
* cleanup we can do which shouldn't happen within the recovery thread
* as locking in that context becomes very difficult if we are to take
* recovering nodes into account.
*
* NOTE: This function can and will sleep on recovery of other nodes
* during cluster locking, just like any other ocfs2 process.
*/
void ocfs2_complete_recovery(struct work_struct *work)
{
int ret = 0;
struct ocfs2_journal *journal =
container_of(work, struct ocfs2_journal, j_recovery_work);
struct ocfs2_super *osb = journal->j_osb;
struct ocfs2_dinode *la_dinode, *tl_dinode;
struct ocfs2_la_recovery_item *item, *n;
struct ocfs2_quota_recovery *qrec;
LIST_HEAD(tmp_la_list);
trace_ocfs2_complete_recovery(
(unsigned long long)OCFS2_I(journal->j_inode)->ip_blkno);
spin_lock(&journal->j_lock);
list_splice_init(&journal->j_la_cleanups, &tmp_la_list);
spin_unlock(&journal->j_lock);
list_for_each_entry_safe(item, n, &tmp_la_list, lri_list) {
list_del_init(&item->lri_list);
ocfs2_wait_on_quotas(osb);
la_dinode = item->lri_la_dinode;
tl_dinode = item->lri_tl_dinode;
qrec = item->lri_qrec;
trace_ocfs2_complete_recovery_slot(item->lri_slot,
la_dinode ? le64_to_cpu(la_dinode->i_blkno) : 0,
tl_dinode ? le64_to_cpu(tl_dinode->i_blkno) : 0,
qrec);
if (la_dinode) {
ret = ocfs2_complete_local_alloc_recovery(osb,
la_dinode);
if (ret < 0)
mlog_errno(ret);
kfree(la_dinode);
}
if (tl_dinode) {
ret = ocfs2_complete_truncate_log_recovery(osb,
tl_dinode);
if (ret < 0)
mlog_errno(ret);
kfree(tl_dinode);
}
ret = ocfs2_recover_orphans(osb, item->lri_slot);
if (ret < 0)
mlog_errno(ret);
if (qrec) {
ret = ocfs2_finish_quota_recovery(osb, qrec,
item->lri_slot);
if (ret < 0)
mlog_errno(ret);
/* Recovery info is already freed now */
}
kfree(item);
}
trace_ocfs2_complete_recovery_end(ret);
}
/* NOTE: This function always eats your references to la_dinode and
* tl_dinode, either manually on error, or by passing them to
* ocfs2_complete_recovery */
static void ocfs2_queue_recovery_completion(struct ocfs2_journal *journal,
int slot_num,
struct ocfs2_dinode *la_dinode,
struct ocfs2_dinode *tl_dinode,
struct ocfs2_quota_recovery *qrec)
{
struct ocfs2_la_recovery_item *item;
item = kmalloc(sizeof(struct ocfs2_la_recovery_item), GFP_NOFS);
if (!item) {
/* Though we wish to avoid it, we are in fact safe in
* skipping local alloc cleanup as fsck.ocfs2 is more
* than capable of reclaiming unused space. */
kfree(la_dinode);
kfree(tl_dinode);
if (qrec)
ocfs2_free_quota_recovery(qrec);
mlog_errno(-ENOMEM);
return;
}
INIT_LIST_HEAD(&item->lri_list);
item->lri_la_dinode = la_dinode;
item->lri_slot = slot_num;
item->lri_tl_dinode = tl_dinode;
item->lri_qrec = qrec;
spin_lock(&journal->j_lock);
list_add_tail(&item->lri_list, &journal->j_la_cleanups);
queue_work(ocfs2_wq, &journal->j_recovery_work);
spin_unlock(&journal->j_lock);
}
/* Called by the mount code to queue recovery the last part of
* recovery for it's own and offline slot(s). */
void ocfs2_complete_mount_recovery(struct ocfs2_super *osb)
{
struct ocfs2_journal *journal = osb->journal;
if (ocfs2_is_hard_readonly(osb))
return;
/* No need to queue up our truncate_log as regular cleanup will catch
* that */
ocfs2_queue_recovery_completion(journal, osb->slot_num,
osb->local_alloc_copy, NULL, NULL);
ocfs2_schedule_truncate_log_flush(osb, 0);
osb->local_alloc_copy = NULL;
osb->dirty = 0;
/* queue to recover orphan slots for all offline slots */
ocfs2_replay_map_set_state(osb, REPLAY_NEEDED);
ocfs2_queue_replay_slots(osb);
ocfs2_free_replay_slots(osb);
}
void ocfs2_complete_quota_recovery(struct ocfs2_super *osb)
{
if (osb->quota_rec) {
ocfs2_queue_recovery_completion(osb->journal,
osb->slot_num,
NULL,
NULL,
osb->quota_rec);
osb->quota_rec = NULL;
}
}
static int __ocfs2_recovery_thread(void *arg)
{
int status, node_num, slot_num;
struct ocfs2_super *osb = arg;
struct ocfs2_recovery_map *rm = osb->recovery_map;
int *rm_quota = NULL;
int rm_quota_used = 0, i;
struct ocfs2_quota_recovery *qrec;
status = ocfs2_wait_on_mount(osb);
if (status < 0) {
goto bail;
}
rm_quota = kzalloc(osb->max_slots * sizeof(int), GFP_NOFS);
if (!rm_quota) {
status = -ENOMEM;
goto bail;
}
restart:
status = ocfs2_super_lock(osb, 1);
if (status < 0) {
mlog_errno(status);
goto bail;
}
status = ocfs2_compute_replay_slots(osb);
if (status < 0)
mlog_errno(status);
/* queue recovery for our own slot */
ocfs2_queue_recovery_completion(osb->journal, osb->slot_num, NULL,
NULL, NULL);
spin_lock(&osb->osb_lock);
while (rm->rm_used) {
/* It's always safe to remove entry zero, as we won't
* clear it until ocfs2_recover_node() has succeeded. */
node_num = rm->rm_entries[0];
spin_unlock(&osb->osb_lock);
slot_num = ocfs2_node_num_to_slot(osb, node_num);
trace_ocfs2_recovery_thread_node(node_num, slot_num);
if (slot_num == -ENOENT) {
status = 0;
goto skip_recovery;
}
/* It is a bit subtle with quota recovery. We cannot do it
* immediately because we have to obtain cluster locks from
* quota files and we also don't want to just skip it because
* then quota usage would be out of sync until some node takes
* the slot. So we remember which nodes need quota recovery
* and when everything else is done, we recover quotas. */
for (i = 0; i < rm_quota_used && rm_quota[i] != slot_num; i++);
if (i == rm_quota_used)
rm_quota[rm_quota_used++] = slot_num;
status = ocfs2_recover_node(osb, node_num, slot_num);
skip_recovery:
if (!status) {
ocfs2_recovery_map_clear(osb, node_num);
} else {
mlog(ML_ERROR,
"Error %d recovering node %d on device (%u,%u)!\n",
status, node_num,
MAJOR(osb->sb->s_dev), MINOR(osb->sb->s_dev));
mlog(ML_ERROR, "Volume requires unmount.\n");
}
spin_lock(&osb->osb_lock);
}
spin_unlock(&osb->osb_lock);
trace_ocfs2_recovery_thread_end(status);
/* Refresh all journal recovery generations from disk */
status = ocfs2_check_journals_nolocks(osb);
status = (status == -EROFS) ? 0 : status;
if (status < 0)
mlog_errno(status);
/* Now it is right time to recover quotas... We have to do this under
* superblock lock so that no one can start using the slot (and crash)
* before we recover it */
for (i = 0; i < rm_quota_used; i++) {
qrec = ocfs2_begin_quota_recovery(osb, rm_quota[i]);
if (IS_ERR(qrec)) {
status = PTR_ERR(qrec);
mlog_errno(status);
continue;
}
ocfs2_queue_recovery_completion(osb->journal, rm_quota[i],
NULL, NULL, qrec);
}
ocfs2_super_unlock(osb, 1);
/* queue recovery for offline slots */
ocfs2_queue_replay_slots(osb);
bail:
mutex_lock(&osb->recovery_lock);
if (!status && !ocfs2_recovery_completed(osb)) {
mutex_unlock(&osb->recovery_lock);
goto restart;
}
ocfs2_free_replay_slots(osb);
osb->recovery_thread_task = NULL;
mb(); /* sync with ocfs2_recovery_thread_running */
wake_up(&osb->recovery_event);
mutex_unlock(&osb->recovery_lock);
kfree(rm_quota);
/* no one is callint kthread_stop() for us so the kthread() api
* requires that we call do_exit(). And it isn't exported, but
* complete_and_exit() seems to be a minimal wrapper around it. */
complete_and_exit(NULL, status);
return status;
}
void ocfs2_recovery_thread(struct ocfs2_super *osb, int node_num)
{
mutex_lock(&osb->recovery_lock);
trace_ocfs2_recovery_thread(node_num, osb->node_num,
osb->disable_recovery, osb->recovery_thread_task,
osb->disable_recovery ?
-1 : ocfs2_recovery_map_set(osb, node_num));
if (osb->disable_recovery)
goto out;
if (osb->recovery_thread_task)
goto out;
osb->recovery_thread_task = kthread_run(__ocfs2_recovery_thread, osb,
"ocfs2rec");
if (IS_ERR(osb->recovery_thread_task)) {
mlog_errno((int)PTR_ERR(osb->recovery_thread_task));
osb->recovery_thread_task = NULL;
}
out:
mutex_unlock(&osb->recovery_lock);
wake_up(&osb->recovery_event);
}
static int ocfs2_read_journal_inode(struct ocfs2_super *osb,
int slot_num,
struct buffer_head **bh,
struct inode **ret_inode)
{
int status = -EACCES;
struct inode *inode = NULL;
BUG_ON(slot_num >= osb->max_slots);
inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE,
slot_num);
if (!inode || is_bad_inode(inode)) {
mlog_errno(status);
goto bail;
}
SET_INODE_JOURNAL(inode);
status = ocfs2_read_inode_block_full(inode, bh, OCFS2_BH_IGNORE_CACHE);
if (status < 0) {
mlog_errno(status);
goto bail;
}
status = 0;
bail:
if (inode) {
if (status || !ret_inode)
iput(inode);
else
*ret_inode = inode;
}
return status;
}
/* Does the actual journal replay and marks the journal inode as
* clean. Will only replay if the journal inode is marked dirty. */
static int ocfs2_replay_journal(struct ocfs2_super *osb,
int node_num,
int slot_num)
{
int status;
int got_lock = 0;
unsigned int flags;
struct inode *inode = NULL;
struct ocfs2_dinode *fe;
journal_t *journal = NULL;
struct buffer_head *bh = NULL;
u32 slot_reco_gen;
status = ocfs2_read_journal_inode(osb, slot_num, &bh, &inode);
if (status) {
mlog_errno(status);
goto done;
}
fe = (struct ocfs2_dinode *)bh->b_data;
slot_reco_gen = ocfs2_get_recovery_generation(fe);
brelse(bh);
bh = NULL;
/*
* As the fs recovery is asynchronous, there is a small chance that
* another node mounted (and recovered) the slot before the recovery
* thread could get the lock. To handle that, we dirty read the journal
* inode for that slot to get the recovery generation. If it is
* different than what we expected, the slot has been recovered.
* If not, it needs recovery.
*/
if (osb->slot_recovery_generations[slot_num] != slot_reco_gen) {
trace_ocfs2_replay_journal_recovered(slot_num,
osb->slot_recovery_generations[slot_num], slot_reco_gen);
osb->slot_recovery_generations[slot_num] = slot_reco_gen;
status = -EBUSY;
goto done;
}
/* Continue with recovery as the journal has not yet been recovered */
status = ocfs2_inode_lock_full(inode, &bh, 1, OCFS2_META_LOCK_RECOVERY);
if (status < 0) {
trace_ocfs2_replay_journal_lock_err(status);
if (status != -ERESTARTSYS)
mlog(ML_ERROR, "Could not lock journal!\n");
goto done;
}
got_lock = 1;
fe = (struct ocfs2_dinode *) bh->b_data;
flags = le32_to_cpu(fe->id1.journal1.ij_flags);
slot_reco_gen = ocfs2_get_recovery_generation(fe);
if (!(flags & OCFS2_JOURNAL_DIRTY_FL)) {
trace_ocfs2_replay_journal_skip(node_num);
/* Refresh recovery generation for the slot */
osb->slot_recovery_generations[slot_num] = slot_reco_gen;
goto done;
}
/* we need to run complete recovery for offline orphan slots */
ocfs2_replay_map_set_state(osb, REPLAY_NEEDED);
printk(KERN_NOTICE "ocfs2: Begin replay journal (node %d, slot %d) on "\
"device (%u,%u)\n", node_num, slot_num, MAJOR(osb->sb->s_dev),
MINOR(osb->sb->s_dev));
OCFS2_I(inode)->ip_clusters = le32_to_cpu(fe->i_clusters);
status = ocfs2_force_read_journal(inode);
if (status < 0) {
mlog_errno(status);
goto done;
}
journal = jbd2_journal_init_inode(inode);
if (journal == NULL) {
mlog(ML_ERROR, "Linux journal layer error\n");
status = -EIO;
goto done;
}
status = jbd2_journal_load(journal);
if (status < 0) {
mlog_errno(status);
if (!igrab(inode))
BUG();
jbd2_journal_destroy(journal);
goto done;
}
ocfs2_clear_journal_error(osb->sb, journal, slot_num);
/* wipe the journal */
jbd2_journal_lock_updates(journal);
status = jbd2_journal_flush(journal);
jbd2_journal_unlock_updates(journal);
if (status < 0)
mlog_errno(status);
/* This will mark the node clean */
flags = le32_to_cpu(fe->id1.journal1.ij_flags);
flags &= ~OCFS2_JOURNAL_DIRTY_FL;
fe->id1.journal1.ij_flags = cpu_to_le32(flags);
/* Increment recovery generation to indicate successful recovery */
ocfs2_bump_recovery_generation(fe);
osb->slot_recovery_generations[slot_num] =
ocfs2_get_recovery_generation(fe);
ocfs2_compute_meta_ecc(osb->sb, bh->b_data, &fe->i_check);
status = ocfs2_write_block(osb, bh, INODE_CACHE(inode));
if (status < 0)
mlog_errno(status);
if (!igrab(inode))
BUG();
jbd2_journal_destroy(journal);
printk(KERN_NOTICE "ocfs2: End replay journal (node %d, slot %d) on "\
"device (%u,%u)\n", node_num, slot_num, MAJOR(osb->sb->s_dev),
MINOR(osb->sb->s_dev));
done:
/* drop the lock on this nodes journal */
if (got_lock)
ocfs2_inode_unlock(inode, 1);
if (inode)
iput(inode);
brelse(bh);
return status;
}
/*
* Do the most important parts of node recovery:
* - Replay it's journal
* - Stamp a clean local allocator file
* - Stamp a clean truncate log
* - Mark the node clean
*
* If this function completes without error, a node in OCFS2 can be
* said to have been safely recovered. As a result, failure during the
* second part of a nodes recovery process (local alloc recovery) is
* far less concerning.
*/
static int ocfs2_recover_node(struct ocfs2_super *osb,
int node_num, int slot_num)
{
int status = 0;
struct ocfs2_dinode *la_copy = NULL;
struct ocfs2_dinode *tl_copy = NULL;
trace_ocfs2_recover_node(node_num, slot_num, osb->node_num);
/* Should not ever be called to recover ourselves -- in that
* case we should've called ocfs2_journal_load instead. */
BUG_ON(osb->node_num == node_num);
status = ocfs2_replay_journal(osb, node_num, slot_num);
if (status < 0) {
if (status == -EBUSY) {
trace_ocfs2_recover_node_skip(slot_num, node_num);
status = 0;
goto done;
}
mlog_errno(status);
goto done;
}
/* Stamp a clean local alloc file AFTER recovering the journal... */
status = ocfs2_begin_local_alloc_recovery(osb, slot_num, &la_copy);
if (status < 0) {
mlog_errno(status);
goto done;
}
/* An error from begin_truncate_log_recovery is not
* serious enough to warrant halting the rest of
* recovery. */
status = ocfs2_begin_truncate_log_recovery(osb, slot_num, &tl_copy);
if (status < 0)
mlog_errno(status);
/* Likewise, this would be a strange but ultimately not so
* harmful place to get an error... */
status = ocfs2_clear_slot(osb, slot_num);
if (status < 0)
mlog_errno(status);
/* This will kfree the memory pointed to by la_copy and tl_copy */
ocfs2_queue_recovery_completion(osb->journal, slot_num, la_copy,
tl_copy, NULL);
status = 0;
done:
return status;
}
/* Test node liveness by trylocking his journal. If we get the lock,
* we drop it here. Return 0 if we got the lock, -EAGAIN if node is
* still alive (we couldn't get the lock) and < 0 on error. */
static int ocfs2_trylock_journal(struct ocfs2_super *osb,
int slot_num)
{
int status, flags;
struct inode *inode = NULL;
inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE,
slot_num);
if (inode == NULL) {
mlog(ML_ERROR, "access error\n");
status = -EACCES;
goto bail;
}
if (is_bad_inode(inode)) {
mlog(ML_ERROR, "access error (bad inode)\n");
iput(inode);
inode = NULL;
status = -EACCES;
goto bail;
}
SET_INODE_JOURNAL(inode);
flags = OCFS2_META_LOCK_RECOVERY | OCFS2_META_LOCK_NOQUEUE;
status = ocfs2_inode_lock_full(inode, NULL, 1, flags);
if (status < 0) {
if (status != -EAGAIN)
mlog_errno(status);
goto bail;
}
ocfs2_inode_unlock(inode, 1);
bail:
if (inode)
iput(inode);
return status;
}
/* Call this underneath ocfs2_super_lock. It also assumes that the
* slot info struct has been updated from disk. */
int ocfs2_mark_dead_nodes(struct ocfs2_super *osb)
{
unsigned int node_num;
int status, i;
u32 gen;
struct buffer_head *bh = NULL;
struct ocfs2_dinode *di;
/* This is called with the super block cluster lock, so we
* know that the slot map can't change underneath us. */
for (i = 0; i < osb->max_slots; i++) {
/* Read journal inode to get the recovery generation */
status = ocfs2_read_journal_inode(osb, i, &bh, NULL);
if (status) {
mlog_errno(status);
goto bail;
}
di = (struct ocfs2_dinode *)bh->b_data;
gen = ocfs2_get_recovery_generation(di);
brelse(bh);
bh = NULL;
spin_lock(&osb->osb_lock);
osb->slot_recovery_generations[i] = gen;
trace_ocfs2_mark_dead_nodes(i,
osb->slot_recovery_generations[i]);
if (i == osb->slot_num) {
spin_unlock(&osb->osb_lock);
continue;
}
status = ocfs2_slot_to_node_num_locked(osb, i, &node_num);
if (status == -ENOENT) {
spin_unlock(&osb->osb_lock);
continue;
}
if (__ocfs2_recovery_map_test(osb, node_num)) {
spin_unlock(&osb->osb_lock);
continue;
}
spin_unlock(&osb->osb_lock);
/* Ok, we have a slot occupied by another node which
* is not in the recovery map. We trylock his journal
* file here to test if he's alive. */
status = ocfs2_trylock_journal(osb, i);
if (!status) {
/* Since we're called from mount, we know that
* the recovery thread can't race us on
* setting / checking the recovery bits. */
ocfs2_recovery_thread(osb, node_num);
} else if ((status < 0) && (status != -EAGAIN)) {
mlog_errno(status);
goto bail;
}
}
status = 0;
bail:
return status;
}
/*
* Scan timer should get fired every ORPHAN_SCAN_SCHEDULE_TIMEOUT. Add some
* randomness to the timeout to minimize multple nodes firing the timer at the
* same time.
*/
static inline unsigned long ocfs2_orphan_scan_timeout(void)
{
unsigned long time;
get_random_bytes(&time, sizeof(time));
time = ORPHAN_SCAN_SCHEDULE_TIMEOUT + (time % 5000);
return msecs_to_jiffies(time);
}
/*
* ocfs2_queue_orphan_scan calls ocfs2_queue_recovery_completion for
* every slot, queuing a recovery of the slot on the ocfs2_wq thread. This
* is done to catch any orphans that are left over in orphan directories.
*
* It scans all slots, even ones that are in use. It does so to handle the
* case described below:
*
* Node 1 has an inode it was using. The dentry went away due to memory
* pressure. Node 1 closes the inode, but it's on the free list. The node
* has the open lock.
* Node 2 unlinks the inode. It grabs the dentry lock to notify others,
* but node 1 has no dentry and doesn't get the message. It trylocks the
* open lock, sees that another node has a PR, and does nothing.
* Later node 2 runs its orphan dir. It igets the inode, trylocks the
* open lock, sees the PR still, and does nothing.
* Basically, we have to trigger an orphan iput on node 1. The only way
* for this to happen is if node 1 runs node 2's orphan dir.
*
* ocfs2_queue_orphan_scan gets called every ORPHAN_SCAN_SCHEDULE_TIMEOUT
* seconds. It gets an EX lock on os_lockres and checks sequence number
* stored in LVB. If the sequence number has changed, it means some other
* node has done the scan. This node skips the scan and tracks the
* sequence number. If the sequence number didn't change, it means a scan
* hasn't happened. The node queues a scan and increments the
* sequence number in the LVB.
*/
void ocfs2_queue_orphan_scan(struct ocfs2_super *osb)
{
struct ocfs2_orphan_scan *os;
int status, i;
u32 seqno = 0;
os = &osb->osb_orphan_scan;
if (atomic_read(&os->os_state) == ORPHAN_SCAN_INACTIVE)
goto out;
trace_ocfs2_queue_orphan_scan_begin(os->os_count, os->os_seqno,
atomic_read(&os->os_state));
status = ocfs2_orphan_scan_lock(osb, &seqno);
if (status < 0) {
if (status != -EAGAIN)
mlog_errno(status);
goto out;
}
/* Do no queue the tasks if the volume is being umounted */
if (atomic_read(&os->os_state) == ORPHAN_SCAN_INACTIVE)
goto unlock;
if (os->os_seqno != seqno) {
os->os_seqno = seqno;
goto unlock;
}
for (i = 0; i < osb->max_slots; i++)
ocfs2_queue_recovery_completion(osb->journal, i, NULL, NULL,
NULL);
/*
* We queued a recovery on orphan slots, increment the sequence
* number and update LVB so other node will skip the scan for a while
*/
seqno++;
os->os_count++;
os->os_scantime = CURRENT_TIME;
unlock:
ocfs2_orphan_scan_unlock(osb, seqno);
out:
trace_ocfs2_queue_orphan_scan_end(os->os_count, os->os_seqno,
atomic_read(&os->os_state));
return;
}
/* Worker task that gets fired every ORPHAN_SCAN_SCHEDULE_TIMEOUT millsec */
void ocfs2_orphan_scan_work(struct work_struct *work)
{
struct ocfs2_orphan_scan *os;
struct ocfs2_super *osb;
os = container_of(work, struct ocfs2_orphan_scan,
os_orphan_scan_work.work);
osb = os->os_osb;
mutex_lock(&os->os_lock);
ocfs2_queue_orphan_scan(osb);
if (atomic_read(&os->os_state) == ORPHAN_SCAN_ACTIVE)
queue_delayed_work(ocfs2_wq, &os->os_orphan_scan_work,
ocfs2_orphan_scan_timeout());
mutex_unlock(&os->os_lock);
}
void ocfs2_orphan_scan_stop(struct ocfs2_super *osb)
{
struct ocfs2_orphan_scan *os;
os = &osb->osb_orphan_scan;
if (atomic_read(&os->os_state) == ORPHAN_SCAN_ACTIVE) {
atomic_set(&os->os_state, ORPHAN_SCAN_INACTIVE);
mutex_lock(&os->os_lock);
cancel_delayed_work(&os->os_orphan_scan_work);
mutex_unlock(&os->os_lock);
}
}
void ocfs2_orphan_scan_init(struct ocfs2_super *osb)
{
struct ocfs2_orphan_scan *os;
os = &osb->osb_orphan_scan;
os->os_osb = osb;
os->os_count = 0;
os->os_seqno = 0;
mutex_init(&os->os_lock);
INIT_DELAYED_WORK(&os->os_orphan_scan_work, ocfs2_orphan_scan_work);
}
void ocfs2_orphan_scan_start(struct ocfs2_super *osb)
{
struct ocfs2_orphan_scan *os;
os = &osb->osb_orphan_scan;
os->os_scantime = CURRENT_TIME;
if (ocfs2_is_hard_readonly(osb) || ocfs2_mount_local(osb))
atomic_set(&os->os_state, ORPHAN_SCAN_INACTIVE);
else {
atomic_set(&os->os_state, ORPHAN_SCAN_ACTIVE);
queue_delayed_work(ocfs2_wq, &os->os_orphan_scan_work,
ocfs2_orphan_scan_timeout());
}
}
struct ocfs2_orphan_filldir_priv {
struct dir_context ctx;
struct inode *head;
struct ocfs2_super *osb;
};
static int ocfs2_orphan_filldir(void *priv, const char *name, int name_len,
loff_t pos, u64 ino, unsigned type)
{
struct ocfs2_orphan_filldir_priv *p = priv;
struct inode *iter;
if (name_len == 1 && !strncmp(".", name, 1))
return 0;
if (name_len == 2 && !strncmp("..", name, 2))
return 0;
/* Skip bad inodes so that recovery can continue */
iter = ocfs2_iget(p->osb, ino,
OCFS2_FI_FLAG_ORPHAN_RECOVERY, 0);
if (IS_ERR(iter))
return 0;
trace_ocfs2_orphan_filldir((unsigned long long)OCFS2_I(iter)->ip_blkno);
/* No locking is required for the next_orphan queue as there
* is only ever a single process doing orphan recovery. */
OCFS2_I(iter)->ip_next_orphan = p->head;
p->head = iter;
return 0;
}
static int ocfs2_queue_orphans(struct ocfs2_super *osb,
int slot,
struct inode **head)
{
int status;
struct inode *orphan_dir_inode = NULL;
struct ocfs2_orphan_filldir_priv priv = {
.ctx.actor = ocfs2_orphan_filldir,
.osb = osb,
.head = *head
};
orphan_dir_inode = ocfs2_get_system_file_inode(osb,
ORPHAN_DIR_SYSTEM_INODE,
slot);
if (!orphan_dir_inode) {
status = -ENOENT;
mlog_errno(status);
return status;
}
mutex_lock(&orphan_dir_inode->i_mutex);
status = ocfs2_inode_lock(orphan_dir_inode, NULL, 0);
if (status < 0) {
mlog_errno(status);
goto out;
}
status = ocfs2_dir_foreach(orphan_dir_inode, &priv.ctx);
if (status) {
mlog_errno(status);
goto out_cluster;
}
*head = priv.head;
out_cluster:
ocfs2_inode_unlock(orphan_dir_inode, 0);
out:
mutex_unlock(&orphan_dir_inode->i_mutex);
iput(orphan_dir_inode);
return status;
}
static int ocfs2_orphan_recovery_can_continue(struct ocfs2_super *osb,
int slot)
{
int ret;
spin_lock(&osb->osb_lock);
ret = !osb->osb_orphan_wipes[slot];
spin_unlock(&osb->osb_lock);
return ret;
}
static void ocfs2_mark_recovering_orphan_dir(struct ocfs2_super *osb,
int slot)
{
spin_lock(&osb->osb_lock);
/* Mark ourselves such that new processes in delete_inode()
* know to quit early. */
ocfs2_node_map_set_bit(osb, &osb->osb_recovering_orphan_dirs, slot);
while (osb->osb_orphan_wipes[slot]) {
/* If any processes are already in the middle of an
* orphan wipe on this dir, then we need to wait for
* them. */
spin_unlock(&osb->osb_lock);
wait_event_interruptible(osb->osb_wipe_event,
ocfs2_orphan_recovery_can_continue(osb, slot));
spin_lock(&osb->osb_lock);
}
spin_unlock(&osb->osb_lock);
}
static void ocfs2_clear_recovering_orphan_dir(struct ocfs2_super *osb,
int slot)
{
ocfs2_node_map_clear_bit(osb, &osb->osb_recovering_orphan_dirs, slot);
}
/*
* Orphan recovery. Each mounted node has it's own orphan dir which we
* must run during recovery. Our strategy here is to build a list of
* the inodes in the orphan dir and iget/iput them. The VFS does
* (most) of the rest of the work.
*
* Orphan recovery can happen at any time, not just mount so we have a
* couple of extra considerations.
*
* - We grab as many inodes as we can under the orphan dir lock -
* doing iget() outside the orphan dir risks getting a reference on
* an invalid inode.
* - We must be sure not to deadlock with other processes on the
* system wanting to run delete_inode(). This can happen when they go
* to lock the orphan dir and the orphan recovery process attempts to
* iget() inside the orphan dir lock. This can be avoided by
* advertising our state to ocfs2_delete_inode().
*/
static int ocfs2_recover_orphans(struct ocfs2_super *osb,
int slot)
{
int ret = 0;
struct inode *inode = NULL;
struct inode *iter;
struct ocfs2_inode_info *oi;
trace_ocfs2_recover_orphans(slot);
ocfs2_mark_recovering_orphan_dir(osb, slot);
ret = ocfs2_queue_orphans(osb, slot, &inode);
ocfs2_clear_recovering_orphan_dir(osb, slot);
/* Error here should be noted, but we want to continue with as
* many queued inodes as we've got. */
if (ret)
mlog_errno(ret);
while (inode) {
oi = OCFS2_I(inode);
trace_ocfs2_recover_orphans_iput(
(unsigned long long)oi->ip_blkno);
iter = oi->ip_next_orphan;
spin_lock(&oi->ip_lock);
/* Set the proper information to get us going into
* ocfs2_delete_inode. */
oi->ip_flags |= OCFS2_INODE_MAYBE_ORPHANED;
spin_unlock(&oi->ip_lock);
iput(inode);
inode = iter;
}
return ret;
}
static int __ocfs2_wait_on_mount(struct ocfs2_super *osb, int quota)
{
/* This check is good because ocfs2 will wait on our recovery
* thread before changing it to something other than MOUNTED
* or DISABLED. */
wait_event(osb->osb_mount_event,
(!quota && atomic_read(&osb->vol_state) == VOLUME_MOUNTED) ||
atomic_read(&osb->vol_state) == VOLUME_MOUNTED_QUOTAS ||
atomic_read(&osb->vol_state) == VOLUME_DISABLED);
/* If there's an error on mount, then we may never get to the
* MOUNTED flag, but this is set right before
* dismount_volume() so we can trust it. */
if (atomic_read(&osb->vol_state) == VOLUME_DISABLED) {
trace_ocfs2_wait_on_mount(VOLUME_DISABLED);
mlog(0, "mount error, exiting!\n");
return -EBUSY;
}
return 0;
}
static int ocfs2_commit_thread(void *arg)
{
int status;
struct ocfs2_super *osb = arg;
struct ocfs2_journal *journal = osb->journal;
/* we can trust j_num_trans here because _should_stop() is only set in
* shutdown and nobody other than ourselves should be able to start
* transactions. committing on shutdown might take a few iterations
* as final transactions put deleted inodes on the list */
while (!(kthread_should_stop() &&
atomic_read(&journal->j_num_trans) == 0)) {
wait_event_interruptible(osb->checkpoint_event,
atomic_read(&journal->j_num_trans)
|| kthread_should_stop());
status = ocfs2_commit_cache(osb);
if (status < 0) {
static unsigned long abort_warn_time;
/* Warn about this once per minute */
if (printk_timed_ratelimit(&abort_warn_time, 60*HZ))
mlog(ML_ERROR, "status = %d, journal is "
"already aborted.\n", status);
/*
* After ocfs2_commit_cache() fails, j_num_trans has a
* non-zero value. Sleep here to avoid a busy-wait
* loop.
*/
msleep_interruptible(1000);
}
if (kthread_should_stop() && atomic_read(&journal->j_num_trans)){
mlog(ML_KTHREAD,
"commit_thread: %u transactions pending on "
"shutdown\n",
atomic_read(&journal->j_num_trans));
}
}
return 0;
}
/* Reads all the journal inodes without taking any cluster locks. Used
* for hard readonly access to determine whether any journal requires
* recovery. Also used to refresh the recovery generation numbers after
* a journal has been recovered by another node.
*/
int ocfs2_check_journals_nolocks(struct ocfs2_super *osb)
{
int ret = 0;
unsigned int slot;
struct buffer_head *di_bh = NULL;
struct ocfs2_dinode *di;
int journal_dirty = 0;
for(slot = 0; slot < osb->max_slots; slot++) {
ret = ocfs2_read_journal_inode(osb, slot, &di_bh, NULL);
if (ret) {
mlog_errno(ret);
goto out;
}
di = (struct ocfs2_dinode *) di_bh->b_data;
osb->slot_recovery_generations[slot] =
ocfs2_get_recovery_generation(di);
if (le32_to_cpu(di->id1.journal1.ij_flags) &
OCFS2_JOURNAL_DIRTY_FL)
journal_dirty = 1;
brelse(di_bh);
di_bh = NULL;
}
out:
if (journal_dirty)
ret = -EROFS;
return ret;
}