android_kernel_samsung_hero.../fs/ubifs/ubifs.h

1804 lines
62 KiB
C
Raw Permalink Normal View History

2016-08-17 10:41:52 +02:00
/*
* This file is part of UBIFS.
*
* Copyright (C) 2006-2008 Nokia Corporation
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 as published by
* the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License along with
* this program; if not, write to the Free Software Foundation, Inc., 51
* Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*
* Authors: Artem Bityutskiy (Битюцкий Артём)
* Adrian Hunter
*/
#ifndef __UBIFS_H__
#define __UBIFS_H__
#include <asm/div64.h>
#include <linux/statfs.h>
#include <linux/fs.h>
#include <linux/err.h>
#include <linux/sched.h>
#include <linux/slab.h>
#include <linux/vmalloc.h>
#include <linux/spinlock.h>
#include <linux/mutex.h>
#include <linux/rwsem.h>
#include <linux/mtd/ubi.h>
#include <linux/pagemap.h>
#include <linux/backing-dev.h>
#include <linux/security.h>
#include "ubifs-media.h"
/* Version of this UBIFS implementation */
#define UBIFS_VERSION 1
/* Normal UBIFS messages */
#define ubifs_msg(c, fmt, ...) \
pr_notice("UBIFS (ubi%d:%d): " fmt "\n", \
(c)->vi.ubi_num, (c)->vi.vol_id, ##__VA_ARGS__)
/* UBIFS error messages */
#define ubifs_err(c, fmt, ...) \
pr_err("UBIFS error (ubi%d:%d pid %d): %s: " fmt "\n", \
(c)->vi.ubi_num, (c)->vi.vol_id, current->pid, \
__func__, ##__VA_ARGS__)
/* UBIFS warning messages */
#define ubifs_warn(c, fmt, ...) \
pr_warn("UBIFS warning (ubi%d:%d pid %d): %s: " fmt "\n", \
(c)->vi.ubi_num, (c)->vi.vol_id, current->pid, \
__func__, ##__VA_ARGS__)
/*
* A variant of 'ubifs_err()' which takes the UBIFS file-sytem description
* object as an argument.
*/
#define ubifs_errc(c, fmt, ...) \
do { \
if (!(c)->probing) \
ubifs_err(c, fmt, ##__VA_ARGS__); \
} while (0)
/* UBIFS file system VFS magic number */
#define UBIFS_SUPER_MAGIC 0x24051905
/* Number of UBIFS blocks per VFS page */
#define UBIFS_BLOCKS_PER_PAGE (PAGE_CACHE_SIZE / UBIFS_BLOCK_SIZE)
#define UBIFS_BLOCKS_PER_PAGE_SHIFT (PAGE_CACHE_SHIFT - UBIFS_BLOCK_SHIFT)
/* "File system end of life" sequence number watermark */
#define SQNUM_WARN_WATERMARK 0xFFFFFFFF00000000ULL
#define SQNUM_WATERMARK 0xFFFFFFFFFF000000ULL
/*
* Minimum amount of LEBs reserved for the index. At present the index needs at
* least 2 LEBs: one for the index head and one for in-the-gaps method (which
* currently does not cater for the index head and so excludes it from
* consideration).
*/
#define MIN_INDEX_LEBS 2
/* Minimum amount of data UBIFS writes to the flash */
#define MIN_WRITE_SZ (UBIFS_DATA_NODE_SZ + 8)
/*
* Currently we do not support inode number overlapping and re-using, so this
* watermark defines dangerous inode number level. This should be fixed later,
* although it is difficult to exceed current limit. Another option is to use
* 64-bit inode numbers, but this means more overhead.
*/
#define INUM_WARN_WATERMARK 0xFFF00000
#define INUM_WATERMARK 0xFFFFFF00
/* Maximum number of entries in each LPT (LEB category) heap */
#define LPT_HEAP_SZ 256
/*
* Background thread name pattern. The numbers are UBI device and volume
* numbers.
*/
#define BGT_NAME_PATTERN "ubifs_bgt%d_%d"
/* Write-buffer synchronization timeout interval in seconds */
#define WBUF_TIMEOUT_SOFTLIMIT 3
#define WBUF_TIMEOUT_HARDLIMIT 5
/* Maximum possible inode number (only 32-bit inodes are supported now) */
#define MAX_INUM 0xFFFFFFFF
/* Number of non-data journal heads */
#define NONDATA_JHEADS_CNT 2
/* Shorter names for journal head numbers for internal usage */
#define GCHD UBIFS_GC_HEAD
#define BASEHD UBIFS_BASE_HEAD
#define DATAHD UBIFS_DATA_HEAD
/* 'No change' value for 'ubifs_change_lp()' */
#define LPROPS_NC 0x80000001
/*
* There is no notion of truncation key because truncation nodes do not exist
* in TNC. However, when replaying, it is handy to introduce fake "truncation"
* keys for truncation nodes because the code becomes simpler. So we define
* %UBIFS_TRUN_KEY type.
*
* But otherwise, out of the journal reply scope, the truncation keys are
* invalid.
*/
#define UBIFS_TRUN_KEY UBIFS_KEY_TYPES_CNT
#define UBIFS_INVALID_KEY UBIFS_KEY_TYPES_CNT
/*
* How much a directory entry/extended attribute entry adds to the parent/host
* inode.
*/
#define CALC_DENT_SIZE(name_len) ALIGN(UBIFS_DENT_NODE_SZ + (name_len) + 1, 8)
/* How much an extended attribute adds to the host inode */
#define CALC_XATTR_BYTES(data_len) ALIGN(UBIFS_INO_NODE_SZ + (data_len) + 1, 8)
/*
* Znodes which were not touched for 'OLD_ZNODE_AGE' seconds are considered
* "old", and znode which were touched last 'YOUNG_ZNODE_AGE' seconds ago are
* considered "young". This is used by shrinker when selecting znode to trim
* off.
*/
#define OLD_ZNODE_AGE 20
#define YOUNG_ZNODE_AGE 5
/*
* Some compressors, like LZO, may end up with more data then the input buffer.
* So UBIFS always allocates larger output buffer, to be sure the compressor
* will not corrupt memory in case of worst case compression.
*/
#define WORST_COMPR_FACTOR 2
/*
* How much memory is needed for a buffer where we compress a data node.
*/
#define COMPRESSED_DATA_NODE_BUF_SZ \
(UBIFS_DATA_NODE_SZ + UBIFS_BLOCK_SIZE * WORST_COMPR_FACTOR)
/* Maximum expected tree height for use by bottom_up_buf */
#define BOTTOM_UP_HEIGHT 64
/* Maximum number of data nodes to bulk-read */
#define UBIFS_MAX_BULK_READ 32
/*
* Lockdep classes for UBIFS inode @ui_mutex.
*/
enum {
WB_MUTEX_1 = 0,
WB_MUTEX_2 = 1,
WB_MUTEX_3 = 2,
};
/*
* Znode flags (actually, bit numbers which store the flags).
*
* DIRTY_ZNODE: znode is dirty
* COW_ZNODE: znode is being committed and a new instance of this znode has to
* be created before changing this znode
* OBSOLETE_ZNODE: znode is obsolete, which means it was deleted, but it is
* still in the commit list and the ongoing commit operation
* will commit it, and delete this znode after it is done
*/
enum {
DIRTY_ZNODE = 0,
COW_ZNODE = 1,
OBSOLETE_ZNODE = 2,
};
/*
* Commit states.
*
* COMMIT_RESTING: commit is not wanted
* COMMIT_BACKGROUND: background commit has been requested
* COMMIT_REQUIRED: commit is required
* COMMIT_RUNNING_BACKGROUND: background commit is running
* COMMIT_RUNNING_REQUIRED: commit is running and it is required
* COMMIT_BROKEN: commit failed
*/
enum {
COMMIT_RESTING = 0,
COMMIT_BACKGROUND,
COMMIT_REQUIRED,
COMMIT_RUNNING_BACKGROUND,
COMMIT_RUNNING_REQUIRED,
COMMIT_BROKEN,
};
/*
* 'ubifs_scan_a_node()' return values.
*
* SCANNED_GARBAGE: scanned garbage
* SCANNED_EMPTY_SPACE: scanned empty space
* SCANNED_A_NODE: scanned a valid node
* SCANNED_A_CORRUPT_NODE: scanned a corrupted node
* SCANNED_A_BAD_PAD_NODE: scanned a padding node with invalid pad length
*
* Greater than zero means: 'scanned that number of padding bytes'
*/
enum {
SCANNED_GARBAGE = 0,
SCANNED_EMPTY_SPACE = -1,
SCANNED_A_NODE = -2,
SCANNED_A_CORRUPT_NODE = -3,
SCANNED_A_BAD_PAD_NODE = -4,
};
/*
* LPT cnode flag bits.
*
* DIRTY_CNODE: cnode is dirty
* OBSOLETE_CNODE: cnode is being committed and has been copied (or deleted),
* so it can (and must) be freed when the commit is finished
* COW_CNODE: cnode is being committed and must be copied before writing
*/
enum {
DIRTY_CNODE = 0,
OBSOLETE_CNODE = 1,
COW_CNODE = 2,
};
/*
* Dirty flag bits (lpt_drty_flgs) for LPT special nodes.
*
* LTAB_DIRTY: ltab node is dirty
* LSAVE_DIRTY: lsave node is dirty
*/
enum {
LTAB_DIRTY = 1,
LSAVE_DIRTY = 2,
};
/*
* Return codes used by the garbage collector.
* @LEB_FREED: the logical eraseblock was freed and is ready to use
* @LEB_FREED_IDX: indexing LEB was freed and can be used only after the commit
* @LEB_RETAINED: the logical eraseblock was freed and retained for GC purposes
*/
enum {
LEB_FREED,
LEB_FREED_IDX,
LEB_RETAINED,
};
/**
* struct ubifs_old_idx - index node obsoleted since last commit start.
* @rb: rb-tree node
* @lnum: LEB number of obsoleted index node
* @offs: offset of obsoleted index node
*/
struct ubifs_old_idx {
struct rb_node rb;
int lnum;
int offs;
};
/* The below union makes it easier to deal with keys */
union ubifs_key {
uint8_t u8[UBIFS_SK_LEN];
uint32_t u32[UBIFS_SK_LEN/4];
uint64_t u64[UBIFS_SK_LEN/8];
__le32 j32[UBIFS_SK_LEN/4];
};
/**
* struct ubifs_scan_node - UBIFS scanned node information.
* @list: list of scanned nodes
* @key: key of node scanned (if it has one)
* @sqnum: sequence number
* @type: type of node scanned
* @offs: offset with LEB of node scanned
* @len: length of node scanned
* @node: raw node
*/
struct ubifs_scan_node {
struct list_head list;
union ubifs_key key;
unsigned long long sqnum;
int type;
int offs;
int len;
void *node;
};
/**
* struct ubifs_scan_leb - UBIFS scanned LEB information.
* @lnum: logical eraseblock number
* @nodes_cnt: number of nodes scanned
* @nodes: list of struct ubifs_scan_node
* @endpt: end point (and therefore the start of empty space)
* @buf: buffer containing entire LEB scanned
*/
struct ubifs_scan_leb {
int lnum;
int nodes_cnt;
struct list_head nodes;
int endpt;
void *buf;
};
/**
* struct ubifs_gced_idx_leb - garbage-collected indexing LEB.
* @list: list
* @lnum: LEB number
* @unmap: OK to unmap this LEB
*
* This data structure is used to temporary store garbage-collected indexing
* LEBs - they are not released immediately, but only after the next commit.
* This is needed to guarantee recoverability.
*/
struct ubifs_gced_idx_leb {
struct list_head list;
int lnum;
int unmap;
};
/**
* struct ubifs_inode - UBIFS in-memory inode description.
* @vfs_inode: VFS inode description object
* @creat_sqnum: sequence number at time of creation
* @del_cmtno: commit number corresponding to the time the inode was deleted,
* protected by @c->commit_sem;
* @xattr_size: summarized size of all extended attributes in bytes
* @xattr_cnt: count of extended attributes this inode has
* @xattr_names: sum of lengths of all extended attribute names belonging to
* this inode
* @dirty: non-zero if the inode is dirty
* @xattr: non-zero if this is an extended attribute inode
* @bulk_read: non-zero if bulk-read should be used
* @ui_mutex: serializes inode write-back with the rest of VFS operations,
* serializes "clean <-> dirty" state changes, serializes bulk-read,
* protects @dirty, @bulk_read, @ui_size, and @xattr_size
* @ui_lock: protects @synced_i_size
* @synced_i_size: synchronized size of inode, i.e. the value of inode size
* currently stored on the flash; used only for regular file
* inodes
* @ui_size: inode size used by UBIFS when writing to flash
* @flags: inode flags (@UBIFS_COMPR_FL, etc)
* @compr_type: default compression type used for this inode
* @last_page_read: page number of last page read (for bulk read)
* @read_in_a_row: number of consecutive pages read in a row (for bulk read)
* @data_len: length of the data attached to the inode
* @data: inode's data
*
* @ui_mutex exists for two main reasons. At first it prevents inodes from
* being written back while UBIFS changing them, being in the middle of an VFS
* operation. This way UBIFS makes sure the inode fields are consistent. For
* example, in 'ubifs_rename()' we change 3 inodes simultaneously, and
* write-back must not write any of them before we have finished.
*
* The second reason is budgeting - UBIFS has to budget all operations. If an
* operation is going to mark an inode dirty, it has to allocate budget for
* this. It cannot just mark it dirty because there is no guarantee there will
* be enough flash space to write the inode back later. This means UBIFS has
* to have full control over inode "clean <-> dirty" transitions (and pages
* actually). But unfortunately, VFS marks inodes dirty in many places, and it
* does not ask the file-system if it is allowed to do so (there is a notifier,
* but it is not enough), i.e., there is no mechanism to synchronize with this.
* So UBIFS has its own inode dirty flag and its own mutex to serialize
* "clean <-> dirty" transitions.
*
* The @synced_i_size field is used to make sure we never write pages which are
* beyond last synchronized inode size. See 'ubifs_writepage()' for more
* information.
*
* The @ui_size is a "shadow" variable for @inode->i_size and UBIFS uses
* @ui_size instead of @inode->i_size. The reason for this is that UBIFS cannot
* make sure @inode->i_size is always changed under @ui_mutex, because it
* cannot call 'truncate_setsize()' with @ui_mutex locked, because it would
* deadlock with 'ubifs_writepage()' (see file.c). All the other inode fields
* are changed under @ui_mutex, so they do not need "shadow" fields. Note, one
* could consider to rework locking and base it on "shadow" fields.
*/
struct ubifs_inode {
struct inode vfs_inode;
unsigned long long creat_sqnum;
unsigned long long del_cmtno;
unsigned int xattr_size;
unsigned int xattr_cnt;
unsigned int xattr_names;
unsigned int dirty:1;
unsigned int xattr:1;
unsigned int bulk_read:1;
unsigned int compr_type:2;
struct mutex ui_mutex;
spinlock_t ui_lock;
loff_t synced_i_size;
loff_t ui_size;
int flags;
pgoff_t last_page_read;
pgoff_t read_in_a_row;
int data_len;
void *data;
};
/**
* struct ubifs_unclean_leb - records a LEB recovered under read-only mode.
* @list: list
* @lnum: LEB number of recovered LEB
* @endpt: offset where recovery ended
*
* This structure records a LEB identified during recovery that needs to be
* cleaned but was not because UBIFS was mounted read-only. The information
* is used to clean the LEB when remounting to read-write mode.
*/
struct ubifs_unclean_leb {
struct list_head list;
int lnum;
int endpt;
};
/*
* LEB properties flags.
*
* LPROPS_UNCAT: not categorized
* LPROPS_DIRTY: dirty > free, dirty >= @c->dead_wm, not index
* LPROPS_DIRTY_IDX: dirty + free > @c->min_idx_node_sze and index
* LPROPS_FREE: free > 0, dirty < @c->dead_wm, not empty, not index
* LPROPS_HEAP_CNT: number of heaps used for storing categorized LEBs
* LPROPS_EMPTY: LEB is empty, not taken
* LPROPS_FREEABLE: free + dirty == leb_size, not index, not taken
* LPROPS_FRDI_IDX: free + dirty == leb_size and index, may be taken
* LPROPS_CAT_MASK: mask for the LEB categories above
* LPROPS_TAKEN: LEB was taken (this flag is not saved on the media)
* LPROPS_INDEX: LEB contains indexing nodes (this flag also exists on flash)
*/
enum {
LPROPS_UNCAT = 0,
LPROPS_DIRTY = 1,
LPROPS_DIRTY_IDX = 2,
LPROPS_FREE = 3,
LPROPS_HEAP_CNT = 3,
LPROPS_EMPTY = 4,
LPROPS_FREEABLE = 5,
LPROPS_FRDI_IDX = 6,
LPROPS_CAT_MASK = 15,
LPROPS_TAKEN = 16,
LPROPS_INDEX = 32,
};
/**
* struct ubifs_lprops - logical eraseblock properties.
* @free: amount of free space in bytes
* @dirty: amount of dirty space in bytes
* @flags: LEB properties flags (see above)
* @lnum: LEB number
* @list: list of same-category lprops (for LPROPS_EMPTY and LPROPS_FREEABLE)
* @hpos: heap position in heap of same-category lprops (other categories)
*/
struct ubifs_lprops {
int free;
int dirty;
int flags;
int lnum;
union {
struct list_head list;
int hpos;
};
};
/**
* struct ubifs_lpt_lprops - LPT logical eraseblock properties.
* @free: amount of free space in bytes
* @dirty: amount of dirty space in bytes
* @tgc: trivial GC flag (1 => unmap after commit end)
* @cmt: commit flag (1 => reserved for commit)
*/
struct ubifs_lpt_lprops {
int free;
int dirty;
unsigned tgc:1;
unsigned cmt:1;
};
/**
* struct ubifs_lp_stats - statistics of eraseblocks in the main area.
* @empty_lebs: number of empty LEBs
* @taken_empty_lebs: number of taken LEBs
* @idx_lebs: number of indexing LEBs
* @total_free: total free space in bytes (includes all LEBs)
* @total_dirty: total dirty space in bytes (includes all LEBs)
* @total_used: total used space in bytes (does not include index LEBs)
* @total_dead: total dead space in bytes (does not include index LEBs)
* @total_dark: total dark space in bytes (does not include index LEBs)
*
* The @taken_empty_lebs field counts the LEBs that are in the transient state
* of having been "taken" for use but not yet written to. @taken_empty_lebs is
* needed to account correctly for @gc_lnum, otherwise @empty_lebs could be
* used by itself (in which case 'unused_lebs' would be a better name). In the
* case of @gc_lnum, it is "taken" at mount time or whenever a LEB is retained
* by GC, but unlike other empty LEBs that are "taken", it may not be written
* straight away (i.e. before the next commit start or unmount), so either
* @gc_lnum must be specially accounted for, or the current approach followed
* i.e. count it under @taken_empty_lebs.
*
* @empty_lebs includes @taken_empty_lebs.
*
* @total_used, @total_dead and @total_dark fields do not account indexing
* LEBs.
*/
struct ubifs_lp_stats {
int empty_lebs;
int taken_empty_lebs;
int idx_lebs;
long long total_free;
long long total_dirty;
long long total_used;
long long total_dead;
long long total_dark;
};
struct ubifs_nnode;
/**
* struct ubifs_cnode - LEB Properties Tree common node.
* @parent: parent nnode
* @cnext: next cnode to commit
* @flags: flags (%DIRTY_LPT_NODE or %OBSOLETE_LPT_NODE)
* @iip: index in parent
* @level: level in the tree (zero for pnodes, greater than zero for nnodes)
* @num: node number
*/
struct ubifs_cnode {
struct ubifs_nnode *parent;
struct ubifs_cnode *cnext;
unsigned long flags;
int iip;
int level;
int num;
};
/**
* struct ubifs_pnode - LEB Properties Tree leaf node.
* @parent: parent nnode
* @cnext: next cnode to commit
* @flags: flags (%DIRTY_LPT_NODE or %OBSOLETE_LPT_NODE)
* @iip: index in parent
* @level: level in the tree (always zero for pnodes)
* @num: node number
* @lprops: LEB properties array
*/
struct ubifs_pnode {
struct ubifs_nnode *parent;
struct ubifs_cnode *cnext;
unsigned long flags;
int iip;
int level;
int num;
struct ubifs_lprops lprops[UBIFS_LPT_FANOUT];
};
/**
* struct ubifs_nbranch - LEB Properties Tree internal node branch.
* @lnum: LEB number of child
* @offs: offset of child
* @nnode: nnode child
* @pnode: pnode child
* @cnode: cnode child
*/
struct ubifs_nbranch {
int lnum;
int offs;
union {
struct ubifs_nnode *nnode;
struct ubifs_pnode *pnode;
struct ubifs_cnode *cnode;
};
};
/**
* struct ubifs_nnode - LEB Properties Tree internal node.
* @parent: parent nnode
* @cnext: next cnode to commit
* @flags: flags (%DIRTY_LPT_NODE or %OBSOLETE_LPT_NODE)
* @iip: index in parent
* @level: level in the tree (always greater than zero for nnodes)
* @num: node number
* @nbranch: branches to child nodes
*/
struct ubifs_nnode {
struct ubifs_nnode *parent;
struct ubifs_cnode *cnext;
unsigned long flags;
int iip;
int level;
int num;
struct ubifs_nbranch nbranch[UBIFS_LPT_FANOUT];
};
/**
* struct ubifs_lpt_heap - heap of categorized lprops.
* @arr: heap array
* @cnt: number in heap
* @max_cnt: maximum number allowed in heap
*
* There are %LPROPS_HEAP_CNT heaps.
*/
struct ubifs_lpt_heap {
struct ubifs_lprops **arr;
int cnt;
int max_cnt;
};
/*
* Return codes for LPT scan callback function.
*
* LPT_SCAN_CONTINUE: continue scanning
* LPT_SCAN_ADD: add the LEB properties scanned to the tree in memory
* LPT_SCAN_STOP: stop scanning
*/
enum {
LPT_SCAN_CONTINUE = 0,
LPT_SCAN_ADD = 1,
LPT_SCAN_STOP = 2,
};
struct ubifs_info;
/* Callback used by the 'ubifs_lpt_scan_nolock()' function */
typedef int (*ubifs_lpt_scan_callback)(struct ubifs_info *c,
const struct ubifs_lprops *lprops,
int in_tree, void *data);
/**
* struct ubifs_wbuf - UBIFS write-buffer.
* @c: UBIFS file-system description object
* @buf: write-buffer (of min. flash I/O unit size)
* @lnum: logical eraseblock number the write-buffer points to
* @offs: write-buffer offset in this logical eraseblock
* @avail: number of bytes available in the write-buffer
* @used: number of used bytes in the write-buffer
* @size: write-buffer size (in [@c->min_io_size, @c->max_write_size] range)
* @jhead: journal head the mutex belongs to (note, needed only to shut lockdep
* up by 'mutex_lock_nested()).
* @sync_callback: write-buffer synchronization callback
* @io_mutex: serializes write-buffer I/O
* @lock: serializes @buf, @lnum, @offs, @avail, @used, @next_ino and @inodes
* fields
* @softlimit: soft write-buffer timeout interval
* @delta: hard and soft timeouts delta (the timer expire interval is @softlimit
* and @softlimit + @delta)
* @timer: write-buffer timer
* @no_timer: non-zero if this write-buffer does not have a timer
* @need_sync: non-zero if the timer expired and the wbuf needs sync'ing
* @next_ino: points to the next position of the following inode number
* @inodes: stores the inode numbers of the nodes which are in wbuf
*
* The write-buffer synchronization callback is called when the write-buffer is
* synchronized in order to notify how much space was wasted due to
* write-buffer padding and how much free space is left in the LEB.
*
* Note: the fields @buf, @lnum, @offs, @avail and @used can be read under
* spin-lock or mutex because they are written under both mutex and spin-lock.
* @buf is appended to under mutex but overwritten under both mutex and
* spin-lock. Thus the data between @buf and @buf + @used can be read under
* spinlock.
*/
struct ubifs_wbuf {
struct ubifs_info *c;
void *buf;
int lnum;
int offs;
int avail;
int used;
int size;
int jhead;
int (*sync_callback)(struct ubifs_info *c, int lnum, int free, int pad);
struct mutex io_mutex;
spinlock_t lock;
ktime_t softlimit;
unsigned long long delta;
struct hrtimer timer;
unsigned int no_timer:1;
unsigned int need_sync:1;
int next_ino;
ino_t *inodes;
};
/**
* struct ubifs_bud - bud logical eraseblock.
* @lnum: logical eraseblock number
* @start: where the (uncommitted) bud data starts
* @jhead: journal head number this bud belongs to
* @list: link in the list buds belonging to the same journal head
* @rb: link in the tree of all buds
*/
struct ubifs_bud {
int lnum;
int start;
int jhead;
struct list_head list;
struct rb_node rb;
};
/**
* struct ubifs_jhead - journal head.
* @wbuf: head's write-buffer
* @buds_list: list of bud LEBs belonging to this journal head
* @grouped: non-zero if UBIFS groups nodes when writing to this journal head
*
* Note, the @buds list is protected by the @c->buds_lock.
*/
struct ubifs_jhead {
struct ubifs_wbuf wbuf;
struct list_head buds_list;
unsigned int grouped:1;
};
/**
* struct ubifs_zbranch - key/coordinate/length branch stored in znodes.
* @key: key
* @znode: znode address in memory
* @lnum: LEB number of the target node (indexing node or data node)
* @offs: target node offset within @lnum
* @len: target node length
*/
struct ubifs_zbranch {
union ubifs_key key;
union {
struct ubifs_znode *znode;
void *leaf;
};
int lnum;
int offs;
int len;
};
/**
* struct ubifs_znode - in-memory representation of an indexing node.
* @parent: parent znode or NULL if it is the root
* @cnext: next znode to commit
* @flags: znode flags (%DIRTY_ZNODE, %COW_ZNODE or %OBSOLETE_ZNODE)
* @time: last access time (seconds)
* @level: level of the entry in the TNC tree
* @child_cnt: count of child znodes
* @iip: index in parent's zbranch array
* @alt: lower bound of key range has altered i.e. child inserted at slot 0
* @lnum: LEB number of the corresponding indexing node
* @offs: offset of the corresponding indexing node
* @len: length of the corresponding indexing node
* @zbranch: array of znode branches (@c->fanout elements)
*
* Note! The @lnum, @offs, and @len fields are not really needed - we have them
* only for internal consistency check. They could be removed to save some RAM.
*/
struct ubifs_znode {
struct ubifs_znode *parent;
struct ubifs_znode *cnext;
unsigned long flags;
unsigned long time;
int level;
int child_cnt;
int iip;
int alt;
int lnum;
int offs;
int len;
struct ubifs_zbranch zbranch[];
};
/**
* struct bu_info - bulk-read information.
* @key: first data node key
* @zbranch: zbranches of data nodes to bulk read
* @buf: buffer to read into
* @buf_len: buffer length
* @gc_seq: GC sequence number to detect races with GC
* @cnt: number of data nodes for bulk read
* @blk_cnt: number of data blocks including holes
* @oef: end of file reached
*/
struct bu_info {
union ubifs_key key;
struct ubifs_zbranch zbranch[UBIFS_MAX_BULK_READ];
void *buf;
int buf_len;
int gc_seq;
int cnt;
int blk_cnt;
int eof;
};
/**
* struct ubifs_node_range - node length range description data structure.
* @len: fixed node length
* @min_len: minimum possible node length
* @max_len: maximum possible node length
*
* If @max_len is %0, the node has fixed length @len.
*/
struct ubifs_node_range {
union {
int len;
int min_len;
};
int max_len;
};
/**
* struct ubifs_compressor - UBIFS compressor description structure.
* @compr_type: compressor type (%UBIFS_COMPR_LZO, etc)
* @cc: cryptoapi compressor handle
* @comp_mutex: mutex used during compression
* @decomp_mutex: mutex used during decompression
* @name: compressor name
* @capi_name: cryptoapi compressor name
*/
struct ubifs_compressor {
int compr_type;
struct crypto_comp *cc;
struct mutex *comp_mutex;
struct mutex *decomp_mutex;
const char *name;
const char *capi_name;
};
/**
* struct ubifs_budget_req - budget requirements of an operation.
*
* @fast: non-zero if the budgeting should try to acquire budget quickly and
* should not try to call write-back
* @recalculate: non-zero if @idx_growth, @data_growth, and @dd_growth fields
* have to be re-calculated
* @new_page: non-zero if the operation adds a new page
* @dirtied_page: non-zero if the operation makes a page dirty
* @new_dent: non-zero if the operation adds a new directory entry
* @mod_dent: non-zero if the operation removes or modifies an existing
* directory entry
* @new_ino: non-zero if the operation adds a new inode
* @new_ino_d: now much data newly created inode contains
* @dirtied_ino: how many inodes the operation makes dirty
* @dirtied_ino_d: now much data dirtied inode contains
* @idx_growth: how much the index will supposedly grow
* @data_growth: how much new data the operation will supposedly add
* @dd_growth: how much data that makes other data dirty the operation will
* supposedly add
*
* @idx_growth, @data_growth and @dd_growth are not used in budget request. The
* budgeting subsystem caches index and data growth values there to avoid
* re-calculating them when the budget is released. However, if @idx_growth is
* %-1, it is calculated by the release function using other fields.
*
* An inode may contain 4KiB of data at max., thus the widths of @new_ino_d
* is 13 bits, and @dirtied_ino_d - 15, because up to 4 inodes may be made
* dirty by the re-name operation.
*
* Note, UBIFS aligns node lengths to 8-bytes boundary, so the requester has to
* make sure the amount of inode data which contribute to @new_ino_d and
* @dirtied_ino_d fields are aligned.
*/
struct ubifs_budget_req {
unsigned int fast:1;
unsigned int recalculate:1;
#ifndef UBIFS_DEBUG
unsigned int new_page:1;
unsigned int dirtied_page:1;
unsigned int new_dent:1;
unsigned int mod_dent:1;
unsigned int new_ino:1;
unsigned int new_ino_d:13;
unsigned int dirtied_ino:4;
unsigned int dirtied_ino_d:15;
#else
/* Not bit-fields to check for overflows */
unsigned int new_page;
unsigned int dirtied_page;
unsigned int new_dent;
unsigned int mod_dent;
unsigned int new_ino;
unsigned int new_ino_d;
unsigned int dirtied_ino;
unsigned int dirtied_ino_d;
#endif
int idx_growth;
int data_growth;
int dd_growth;
};
/**
* struct ubifs_orphan - stores the inode number of an orphan.
* @rb: rb-tree node of rb-tree of orphans sorted by inode number
* @list: list head of list of orphans in order added
* @new_list: list head of list of orphans added since the last commit
* @cnext: next orphan to commit
* @dnext: next orphan to delete
* @inum: inode number
* @new: %1 => added since the last commit, otherwise %0
* @cmt: %1 => commit pending, otherwise %0
* @del: %1 => delete pending, otherwise %0
*/
struct ubifs_orphan {
struct rb_node rb;
struct list_head list;
struct list_head new_list;
struct ubifs_orphan *cnext;
struct ubifs_orphan *dnext;
ino_t inum;
unsigned new:1;
unsigned cmt:1;
unsigned del:1;
};
/**
* struct ubifs_mount_opts - UBIFS-specific mount options information.
* @unmount_mode: selected unmount mode (%0 default, %1 normal, %2 fast)
* @bulk_read: enable/disable bulk-reads (%0 default, %1 disable, %2 enable)
* @chk_data_crc: enable/disable CRC data checking when reading data nodes
* (%0 default, %1 disable, %2 enable)
* @override_compr: override default compressor (%0 - do not override and use
* superblock compressor, %1 - override and use compressor
* specified in @compr_type)
* @compr_type: compressor type to override the superblock compressor with
* (%UBIFS_COMPR_NONE, etc)
*/
struct ubifs_mount_opts {
unsigned int unmount_mode:2;
unsigned int bulk_read:2;
unsigned int chk_data_crc:2;
unsigned int override_compr:1;
unsigned int compr_type:2;
};
/**
* struct ubifs_budg_info - UBIFS budgeting information.
* @idx_growth: amount of bytes budgeted for index growth
* @data_growth: amount of bytes budgeted for cached data
* @dd_growth: amount of bytes budgeted for cached data that will make
* other data dirty
* @uncommitted_idx: amount of bytes were budgeted for growth of the index, but
* which still have to be taken into account because the index
* has not been committed so far
* @old_idx_sz: size of index on flash
* @min_idx_lebs: minimum number of LEBs required for the index
* @nospace: non-zero if the file-system does not have flash space (used as
* optimization)
* @nospace_rp: the same as @nospace, but additionally means that even reserved
* pool is full
* @page_budget: budget for a page (constant, never changed after mount)
* @inode_budget: budget for an inode (constant, never changed after mount)
* @dent_budget: budget for a directory entry (constant, never changed after
* mount)
*/
struct ubifs_budg_info {
long long idx_growth;
long long data_growth;
long long dd_growth;
long long uncommitted_idx;
unsigned long long old_idx_sz;
int min_idx_lebs;
unsigned int nospace:1;
unsigned int nospace_rp:1;
int page_budget;
int inode_budget;
int dent_budget;
};
struct ubifs_debug_info;
/**
* struct ubifs_info - UBIFS file-system description data structure
* (per-superblock).
* @vfs_sb: VFS @struct super_block object
* @bdi: backing device info object to make VFS happy and disable read-ahead
*
* @highest_inum: highest used inode number
* @max_sqnum: current global sequence number
* @cmt_no: commit number of the last successfully completed commit, protected
* by @commit_sem
* @cnt_lock: protects @highest_inum and @max_sqnum counters
* @fmt_version: UBIFS on-flash format version
* @ro_compat_version: R/O compatibility version
* @uuid: UUID from super block
*
* @lhead_lnum: log head logical eraseblock number
* @lhead_offs: log head offset
* @ltail_lnum: log tail logical eraseblock number (offset is always 0)
* @log_mutex: protects the log, @lhead_lnum, @lhead_offs, @ltail_lnum, and
* @bud_bytes
* @min_log_bytes: minimum required number of bytes in the log
* @cmt_bud_bytes: used during commit to temporarily amount of bytes in
* committed buds
*
* @buds: tree of all buds indexed by bud LEB number
* @bud_bytes: how many bytes of flash is used by buds
* @buds_lock: protects the @buds tree, @bud_bytes, and per-journal head bud
* lists
* @jhead_cnt: count of journal heads
* @jheads: journal heads (head zero is base head)
* @max_bud_bytes: maximum number of bytes allowed in buds
* @bg_bud_bytes: number of bud bytes when background commit is initiated
* @old_buds: buds to be released after commit ends
* @max_bud_cnt: maximum number of buds
*
* @commit_sem: synchronizes committer with other processes
* @cmt_state: commit state
* @cs_lock: commit state lock
* @cmt_wq: wait queue to sleep on if the log is full and a commit is running
*
* @big_lpt: flag that LPT is too big to write whole during commit
* @space_fixup: flag indicating that free space in LEBs needs to be cleaned up
* @no_chk_data_crc: do not check CRCs when reading data nodes (except during
* recovery)
* @bulk_read: enable bulk-reads
* @default_compr: default compression algorithm (%UBIFS_COMPR_LZO, etc)
* @rw_incompat: the media is not R/W compatible
*
* @tnc_mutex: protects the Tree Node Cache (TNC), @zroot, @cnext, @enext, and
* @calc_idx_sz
* @zroot: zbranch which points to the root index node and znode
* @cnext: next znode to commit
* @enext: next znode to commit to empty space
* @gap_lebs: array of LEBs used by the in-gaps commit method
* @cbuf: commit buffer
* @ileb_buf: buffer for commit in-the-gaps method
* @ileb_len: length of data in ileb_buf
* @ihead_lnum: LEB number of index head
* @ihead_offs: offset of index head
* @ilebs: pre-allocated index LEBs
* @ileb_cnt: number of pre-allocated index LEBs
* @ileb_nxt: next pre-allocated index LEBs
* @old_idx: tree of index nodes obsoleted since the last commit start
* @bottom_up_buf: a buffer which is used by 'dirty_cow_bottom_up()' in tnc.c
*
* @mst_node: master node
* @mst_offs: offset of valid master node
*
* @max_bu_buf_len: maximum bulk-read buffer length
* @bu_mutex: protects the pre-allocated bulk-read buffer and @c->bu
* @bu: pre-allocated bulk-read information
*
* @write_reserve_mutex: protects @write_reserve_buf
* @write_reserve_buf: on the write path we allocate memory, which might
* sometimes be unavailable, in which case we use this
* write reserve buffer
*
* @log_lebs: number of logical eraseblocks in the log
* @log_bytes: log size in bytes
* @log_last: last LEB of the log
* @lpt_lebs: number of LEBs used for lprops table
* @lpt_first: first LEB of the lprops table area
* @lpt_last: last LEB of the lprops table area
* @orph_lebs: number of LEBs used for the orphan area
* @orph_first: first LEB of the orphan area
* @orph_last: last LEB of the orphan area
* @main_lebs: count of LEBs in the main area
* @main_first: first LEB of the main area
* @main_bytes: main area size in bytes
*
* @key_hash_type: type of the key hash
* @key_hash: direntry key hash function
* @key_fmt: key format
* @key_len: key length
* @fanout: fanout of the index tree (number of links per indexing node)
*
* @min_io_size: minimal input/output unit size
* @min_io_shift: number of bits in @min_io_size minus one
* @max_write_size: maximum amount of bytes the underlying flash can write at a
* time (MTD write buffer size)
* @max_write_shift: number of bits in @max_write_size minus one
* @leb_size: logical eraseblock size in bytes
* @leb_start: starting offset of logical eraseblocks within physical
* eraseblocks
* @half_leb_size: half LEB size
* @idx_leb_size: how many bytes of an LEB are effectively available when it is
* used to store indexing nodes (@leb_size - @max_idx_node_sz)
* @leb_cnt: count of logical eraseblocks
* @max_leb_cnt: maximum count of logical eraseblocks
* @old_leb_cnt: count of logical eraseblocks before re-size
* @ro_media: the underlying UBI volume is read-only
* @ro_mount: the file-system was mounted as read-only
* @ro_error: UBIFS switched to R/O mode because an error happened
*
* @dirty_pg_cnt: number of dirty pages (not used)
* @dirty_zn_cnt: number of dirty znodes
* @clean_zn_cnt: number of clean znodes
*
* @space_lock: protects @bi and @lst
* @lst: lprops statistics
* @bi: budgeting information
* @calc_idx_sz: temporary variable which is used to calculate new index size
* (contains accurate new index size at end of TNC commit start)
*
* @ref_node_alsz: size of the LEB reference node aligned to the min. flash
* I/O unit
* @mst_node_alsz: master node aligned size
* @min_idx_node_sz: minimum indexing node aligned on 8-bytes boundary
* @max_idx_node_sz: maximum indexing node aligned on 8-bytes boundary
* @max_inode_sz: maximum possible inode size in bytes
* @max_znode_sz: size of znode in bytes
*
* @leb_overhead: how many bytes are wasted in an LEB when it is filled with
* data nodes of maximum size - used in free space reporting
* @dead_wm: LEB dead space watermark
* @dark_wm: LEB dark space watermark
* @block_cnt: count of 4KiB blocks on the FS
*
* @ranges: UBIFS node length ranges
* @ubi: UBI volume descriptor
* @di: UBI device information
* @vi: UBI volume information
*
* @orph_tree: rb-tree of orphan inode numbers
* @orph_list: list of orphan inode numbers in order added
* @orph_new: list of orphan inode numbers added since last commit
* @orph_cnext: next orphan to commit
* @orph_dnext: next orphan to delete
* @orphan_lock: lock for orph_tree and orph_new
* @orph_buf: buffer for orphan nodes
* @new_orphans: number of orphans since last commit
* @cmt_orphans: number of orphans being committed
* @tot_orphans: number of orphans in the rb_tree
* @max_orphans: maximum number of orphans allowed
* @ohead_lnum: orphan head LEB number
* @ohead_offs: orphan head offset
* @no_orphs: non-zero if there are no orphans
*
* @bgt: UBIFS background thread
* @bgt_name: background thread name
* @need_bgt: if background thread should run
* @need_wbuf_sync: if write-buffers have to be synchronized
*
* @gc_lnum: LEB number used for garbage collection
* @sbuf: a buffer of LEB size used by GC and replay for scanning
* @idx_gc: list of index LEBs that have been garbage collected
* @idx_gc_cnt: number of elements on the idx_gc list
* @gc_seq: incremented for every non-index LEB garbage collected
* @gced_lnum: last non-index LEB that was garbage collected
*
* @infos_list: links all 'ubifs_info' objects
* @umount_mutex: serializes shrinker and un-mount
* @shrinker_run_no: shrinker run number
*
* @space_bits: number of bits needed to record free or dirty space
* @lpt_lnum_bits: number of bits needed to record a LEB number in the LPT
* @lpt_offs_bits: number of bits needed to record an offset in the LPT
* @lpt_spc_bits: number of bits needed to space in the LPT
* @pcnt_bits: number of bits needed to record pnode or nnode number
* @lnum_bits: number of bits needed to record LEB number
* @nnode_sz: size of on-flash nnode
* @pnode_sz: size of on-flash pnode
* @ltab_sz: size of on-flash LPT lprops table
* @lsave_sz: size of on-flash LPT save table
* @pnode_cnt: number of pnodes
* @nnode_cnt: number of nnodes
* @lpt_hght: height of the LPT
* @pnodes_have: number of pnodes in memory
*
* @lp_mutex: protects lprops table and all the other lprops-related fields
* @lpt_lnum: LEB number of the root nnode of the LPT
* @lpt_offs: offset of the root nnode of the LPT
* @nhead_lnum: LEB number of LPT head
* @nhead_offs: offset of LPT head
* @lpt_drty_flgs: dirty flags for LPT special nodes e.g. ltab
* @dirty_nn_cnt: number of dirty nnodes
* @dirty_pn_cnt: number of dirty pnodes
* @check_lpt_free: flag that indicates LPT GC may be needed
* @lpt_sz: LPT size
* @lpt_nod_buf: buffer for an on-flash nnode or pnode
* @lpt_buf: buffer of LEB size used by LPT
* @nroot: address in memory of the root nnode of the LPT
* @lpt_cnext: next LPT node to commit
* @lpt_heap: array of heaps of categorized lprops
* @dirty_idx: a (reverse sorted) copy of the LPROPS_DIRTY_IDX heap as at
* previous commit start
* @uncat_list: list of un-categorized LEBs
* @empty_list: list of empty LEBs
* @freeable_list: list of freeable non-index LEBs (free + dirty == @leb_size)
* @frdi_idx_list: list of freeable index LEBs (free + dirty == @leb_size)
* @freeable_cnt: number of freeable LEBs in @freeable_list
* @in_a_category_cnt: count of lprops which are in a certain category, which
* basically meants that they were loaded from the flash
*
* @ltab_lnum: LEB number of LPT's own lprops table
* @ltab_offs: offset of LPT's own lprops table
* @ltab: LPT's own lprops table
* @ltab_cmt: LPT's own lprops table (commit copy)
* @lsave_cnt: number of LEB numbers in LPT's save table
* @lsave_lnum: LEB number of LPT's save table
* @lsave_offs: offset of LPT's save table
* @lsave: LPT's save table
* @lscan_lnum: LEB number of last LPT scan
*
* @rp_size: size of the reserved pool in bytes
* @report_rp_size: size of the reserved pool reported to user-space
* @rp_uid: reserved pool user ID
* @rp_gid: reserved pool group ID
*
* @empty: %1 if the UBI device is empty
* @need_recovery: %1 if the file-system needs recovery
* @replaying: %1 during journal replay
* @mounting: %1 while mounting
* @probing: %1 while attempting to mount if MS_SILENT mount flag is set
* @remounting_rw: %1 while re-mounting from R/O mode to R/W mode
* @replay_list: temporary list used during journal replay
* @replay_buds: list of buds to replay
* @cs_sqnum: sequence number of first node in the log (commit start node)
* @replay_sqnum: sequence number of node currently being replayed
* @unclean_leb_list: LEBs to recover when re-mounting R/O mounted FS to R/W
* mode
* @rcvrd_mst_node: recovered master node to write when re-mounting R/O mounted
* FS to R/W mode
* @size_tree: inode size information for recovery
* @mount_opts: UBIFS-specific mount options
*
* @dbg: debugging-related information
*/
struct ubifs_info {
struct super_block *vfs_sb;
struct backing_dev_info bdi;
ino_t highest_inum;
unsigned long long max_sqnum;
unsigned long long cmt_no;
spinlock_t cnt_lock;
int fmt_version;
int ro_compat_version;
unsigned char uuid[16];
int lhead_lnum;
int lhead_offs;
int ltail_lnum;
struct mutex log_mutex;
int min_log_bytes;
long long cmt_bud_bytes;
struct rb_root buds;
long long bud_bytes;
spinlock_t buds_lock;
int jhead_cnt;
struct ubifs_jhead *jheads;
long long max_bud_bytes;
long long bg_bud_bytes;
struct list_head old_buds;
int max_bud_cnt;
struct rw_semaphore commit_sem;
int cmt_state;
spinlock_t cs_lock;
wait_queue_head_t cmt_wq;
unsigned int big_lpt:1;
unsigned int space_fixup:1;
unsigned int no_chk_data_crc:1;
unsigned int bulk_read:1;
unsigned int default_compr:2;
unsigned int rw_incompat:1;
struct mutex tnc_mutex;
struct ubifs_zbranch zroot;
struct ubifs_znode *cnext;
struct ubifs_znode *enext;
int *gap_lebs;
void *cbuf;
void *ileb_buf;
int ileb_len;
int ihead_lnum;
int ihead_offs;
int *ilebs;
int ileb_cnt;
int ileb_nxt;
struct rb_root old_idx;
int *bottom_up_buf;
struct ubifs_mst_node *mst_node;
int mst_offs;
int max_bu_buf_len;
struct mutex bu_mutex;
struct bu_info bu;
struct mutex write_reserve_mutex;
void *write_reserve_buf;
int log_lebs;
long long log_bytes;
int log_last;
int lpt_lebs;
int lpt_first;
int lpt_last;
int orph_lebs;
int orph_first;
int orph_last;
int main_lebs;
int main_first;
long long main_bytes;
uint8_t key_hash_type;
uint32_t (*key_hash)(const char *str, int len);
int key_fmt;
int key_len;
int fanout;
int min_io_size;
int min_io_shift;
int max_write_size;
int max_write_shift;
int leb_size;
int leb_start;
int half_leb_size;
int idx_leb_size;
int leb_cnt;
int max_leb_cnt;
int old_leb_cnt;
unsigned int ro_media:1;
unsigned int ro_mount:1;
unsigned int ro_error:1;
atomic_long_t dirty_pg_cnt;
atomic_long_t dirty_zn_cnt;
atomic_long_t clean_zn_cnt;
spinlock_t space_lock;
struct ubifs_lp_stats lst;
struct ubifs_budg_info bi;
unsigned long long calc_idx_sz;
int ref_node_alsz;
int mst_node_alsz;
int min_idx_node_sz;
int max_idx_node_sz;
long long max_inode_sz;
int max_znode_sz;
int leb_overhead;
int dead_wm;
int dark_wm;
int block_cnt;
struct ubifs_node_range ranges[UBIFS_NODE_TYPES_CNT];
struct ubi_volume_desc *ubi;
struct ubi_device_info di;
struct ubi_volume_info vi;
struct rb_root orph_tree;
struct list_head orph_list;
struct list_head orph_new;
struct ubifs_orphan *orph_cnext;
struct ubifs_orphan *orph_dnext;
spinlock_t orphan_lock;
void *orph_buf;
int new_orphans;
int cmt_orphans;
int tot_orphans;
int max_orphans;
int ohead_lnum;
int ohead_offs;
int no_orphs;
struct task_struct *bgt;
char bgt_name[sizeof(BGT_NAME_PATTERN) + 9];
int need_bgt;
int need_wbuf_sync;
int gc_lnum;
void *sbuf;
struct list_head idx_gc;
int idx_gc_cnt;
int gc_seq;
int gced_lnum;
struct list_head infos_list;
struct mutex umount_mutex;
unsigned int shrinker_run_no;
int space_bits;
int lpt_lnum_bits;
int lpt_offs_bits;
int lpt_spc_bits;
int pcnt_bits;
int lnum_bits;
int nnode_sz;
int pnode_sz;
int ltab_sz;
int lsave_sz;
int pnode_cnt;
int nnode_cnt;
int lpt_hght;
int pnodes_have;
struct mutex lp_mutex;
int lpt_lnum;
int lpt_offs;
int nhead_lnum;
int nhead_offs;
int lpt_drty_flgs;
int dirty_nn_cnt;
int dirty_pn_cnt;
int check_lpt_free;
long long lpt_sz;
void *lpt_nod_buf;
void *lpt_buf;
struct ubifs_nnode *nroot;
struct ubifs_cnode *lpt_cnext;
struct ubifs_lpt_heap lpt_heap[LPROPS_HEAP_CNT];
struct ubifs_lpt_heap dirty_idx;
struct list_head uncat_list;
struct list_head empty_list;
struct list_head freeable_list;
struct list_head frdi_idx_list;
int freeable_cnt;
int in_a_category_cnt;
int ltab_lnum;
int ltab_offs;
struct ubifs_lpt_lprops *ltab;
struct ubifs_lpt_lprops *ltab_cmt;
int lsave_cnt;
int lsave_lnum;
int lsave_offs;
int *lsave;
int lscan_lnum;
long long rp_size;
long long report_rp_size;
kuid_t rp_uid;
kgid_t rp_gid;
/* The below fields are used only during mounting and re-mounting */
unsigned int empty:1;
unsigned int need_recovery:1;
unsigned int replaying:1;
unsigned int mounting:1;
unsigned int remounting_rw:1;
unsigned int probing:1;
struct list_head replay_list;
struct list_head replay_buds;
unsigned long long cs_sqnum;
unsigned long long replay_sqnum;
struct list_head unclean_leb_list;
struct ubifs_mst_node *rcvrd_mst_node;
struct rb_root size_tree;
struct ubifs_mount_opts mount_opts;
struct ubifs_debug_info *dbg;
};
extern struct list_head ubifs_infos;
extern spinlock_t ubifs_infos_lock;
extern atomic_long_t ubifs_clean_zn_cnt;
extern struct kmem_cache *ubifs_inode_slab;
extern const struct super_operations ubifs_super_operations;
extern const struct xattr_handler *ubifs_xattr_handlers[];
extern const struct address_space_operations ubifs_file_address_operations;
extern const struct file_operations ubifs_file_operations;
extern const struct inode_operations ubifs_file_inode_operations;
extern const struct file_operations ubifs_dir_operations;
extern const struct inode_operations ubifs_dir_inode_operations;
extern const struct inode_operations ubifs_symlink_inode_operations;
extern struct backing_dev_info ubifs_backing_dev_info;
extern struct ubifs_compressor *ubifs_compressors[UBIFS_COMPR_TYPES_CNT];
/* io.c */
void ubifs_ro_mode(struct ubifs_info *c, int err);
int ubifs_leb_read(const struct ubifs_info *c, int lnum, void *buf, int offs,
int len, int even_ebadmsg);
int ubifs_leb_write(struct ubifs_info *c, int lnum, const void *buf, int offs,
int len);
int ubifs_leb_change(struct ubifs_info *c, int lnum, const void *buf, int len);
int ubifs_leb_unmap(struct ubifs_info *c, int lnum);
int ubifs_leb_map(struct ubifs_info *c, int lnum);
int ubifs_is_mapped(const struct ubifs_info *c, int lnum);
int ubifs_wbuf_write_nolock(struct ubifs_wbuf *wbuf, void *buf, int len);
int ubifs_wbuf_seek_nolock(struct ubifs_wbuf *wbuf, int lnum, int offs);
int ubifs_wbuf_init(struct ubifs_info *c, struct ubifs_wbuf *wbuf);
int ubifs_read_node(const struct ubifs_info *c, void *buf, int type, int len,
int lnum, int offs);
int ubifs_read_node_wbuf(struct ubifs_wbuf *wbuf, void *buf, int type, int len,
int lnum, int offs);
int ubifs_write_node(struct ubifs_info *c, void *node, int len, int lnum,
int offs);
int ubifs_check_node(const struct ubifs_info *c, const void *buf, int lnum,
int offs, int quiet, int must_chk_crc);
void ubifs_prepare_node(struct ubifs_info *c, void *buf, int len, int pad);
void ubifs_prep_grp_node(struct ubifs_info *c, void *node, int len, int last);
int ubifs_io_init(struct ubifs_info *c);
void ubifs_pad(const struct ubifs_info *c, void *buf, int pad);
int ubifs_wbuf_sync_nolock(struct ubifs_wbuf *wbuf);
int ubifs_bg_wbufs_sync(struct ubifs_info *c);
void ubifs_wbuf_add_ino_nolock(struct ubifs_wbuf *wbuf, ino_t inum);
int ubifs_sync_wbufs_by_inode(struct ubifs_info *c, struct inode *inode);
/* scan.c */
struct ubifs_scan_leb *ubifs_scan(const struct ubifs_info *c, int lnum,
int offs, void *sbuf, int quiet);
void ubifs_scan_destroy(struct ubifs_scan_leb *sleb);
int ubifs_scan_a_node(const struct ubifs_info *c, void *buf, int len, int lnum,
int offs, int quiet);
struct ubifs_scan_leb *ubifs_start_scan(const struct ubifs_info *c, int lnum,
int offs, void *sbuf);
void ubifs_end_scan(const struct ubifs_info *c, struct ubifs_scan_leb *sleb,
int lnum, int offs);
int ubifs_add_snod(const struct ubifs_info *c, struct ubifs_scan_leb *sleb,
void *buf, int offs);
void ubifs_scanned_corruption(const struct ubifs_info *c, int lnum, int offs,
void *buf);
/* log.c */
void ubifs_add_bud(struct ubifs_info *c, struct ubifs_bud *bud);
void ubifs_create_buds_lists(struct ubifs_info *c);
int ubifs_add_bud_to_log(struct ubifs_info *c, int jhead, int lnum, int offs);
struct ubifs_bud *ubifs_search_bud(struct ubifs_info *c, int lnum);
struct ubifs_wbuf *ubifs_get_wbuf(struct ubifs_info *c, int lnum);
int ubifs_log_start_commit(struct ubifs_info *c, int *ltail_lnum);
int ubifs_log_end_commit(struct ubifs_info *c, int new_ltail_lnum);
int ubifs_log_post_commit(struct ubifs_info *c, int old_ltail_lnum);
int ubifs_consolidate_log(struct ubifs_info *c);
/* journal.c */
int ubifs_jnl_update(struct ubifs_info *c, const struct inode *dir,
const struct qstr *nm, const struct inode *inode,
int deletion, int xent);
int ubifs_jnl_write_data(struct ubifs_info *c, const struct inode *inode,
const union ubifs_key *key, const void *buf, int len);
int ubifs_jnl_write_inode(struct ubifs_info *c, const struct inode *inode);
int ubifs_jnl_delete_inode(struct ubifs_info *c, const struct inode *inode);
int ubifs_jnl_rename(struct ubifs_info *c, const struct inode *old_dir,
const struct dentry *old_dentry,
const struct inode *new_dir,
const struct dentry *new_dentry, int sync);
int ubifs_jnl_truncate(struct ubifs_info *c, const struct inode *inode,
loff_t old_size, loff_t new_size);
int ubifs_jnl_delete_xattr(struct ubifs_info *c, const struct inode *host,
const struct inode *inode, const struct qstr *nm);
int ubifs_jnl_change_xattr(struct ubifs_info *c, const struct inode *inode1,
const struct inode *inode2);
/* budget.c */
int ubifs_budget_space(struct ubifs_info *c, struct ubifs_budget_req *req);
void ubifs_release_budget(struct ubifs_info *c, struct ubifs_budget_req *req);
void ubifs_release_dirty_inode_budget(struct ubifs_info *c,
struct ubifs_inode *ui);
int ubifs_budget_inode_op(struct ubifs_info *c, struct inode *inode,
struct ubifs_budget_req *req);
void ubifs_release_ino_dirty(struct ubifs_info *c, struct inode *inode,
struct ubifs_budget_req *req);
void ubifs_cancel_ino_op(struct ubifs_info *c, struct inode *inode,
struct ubifs_budget_req *req);
long long ubifs_get_free_space(struct ubifs_info *c);
long long ubifs_get_free_space_nolock(struct ubifs_info *c);
int ubifs_calc_min_idx_lebs(struct ubifs_info *c);
void ubifs_convert_page_budget(struct ubifs_info *c);
long long ubifs_reported_space(const struct ubifs_info *c, long long free);
long long ubifs_calc_available(const struct ubifs_info *c, int min_idx_lebs);
/* find.c */
int ubifs_find_free_space(struct ubifs_info *c, int min_space, int *offs,
int squeeze);
int ubifs_find_free_leb_for_idx(struct ubifs_info *c);
int ubifs_find_dirty_leb(struct ubifs_info *c, struct ubifs_lprops *ret_lp,
int min_space, int pick_free);
int ubifs_find_dirty_idx_leb(struct ubifs_info *c);
int ubifs_save_dirty_idx_lnums(struct ubifs_info *c);
/* tnc.c */
int ubifs_lookup_level0(struct ubifs_info *c, const union ubifs_key *key,
struct ubifs_znode **zn, int *n);
int ubifs_tnc_lookup_nm(struct ubifs_info *c, const union ubifs_key *key,
void *node, const struct qstr *nm);
int ubifs_tnc_locate(struct ubifs_info *c, const union ubifs_key *key,
void *node, int *lnum, int *offs);
int ubifs_tnc_add(struct ubifs_info *c, const union ubifs_key *key, int lnum,
int offs, int len);
int ubifs_tnc_replace(struct ubifs_info *c, const union ubifs_key *key,
int old_lnum, int old_offs, int lnum, int offs, int len);
int ubifs_tnc_add_nm(struct ubifs_info *c, const union ubifs_key *key,
int lnum, int offs, int len, const struct qstr *nm);
int ubifs_tnc_remove(struct ubifs_info *c, const union ubifs_key *key);
int ubifs_tnc_remove_nm(struct ubifs_info *c, const union ubifs_key *key,
const struct qstr *nm);
int ubifs_tnc_remove_range(struct ubifs_info *c, union ubifs_key *from_key,
union ubifs_key *to_key);
int ubifs_tnc_remove_ino(struct ubifs_info *c, ino_t inum);
struct ubifs_dent_node *ubifs_tnc_next_ent(struct ubifs_info *c,
union ubifs_key *key,
const struct qstr *nm);
void ubifs_tnc_close(struct ubifs_info *c);
int ubifs_tnc_has_node(struct ubifs_info *c, union ubifs_key *key, int level,
int lnum, int offs, int is_idx);
int ubifs_dirty_idx_node(struct ubifs_info *c, union ubifs_key *key, int level,
int lnum, int offs);
/* Shared by tnc.c for tnc_commit.c */
void destroy_old_idx(struct ubifs_info *c);
int is_idx_node_in_tnc(struct ubifs_info *c, union ubifs_key *key, int level,
int lnum, int offs);
int insert_old_idx_znode(struct ubifs_info *c, struct ubifs_znode *znode);
int ubifs_tnc_get_bu_keys(struct ubifs_info *c, struct bu_info *bu);
int ubifs_tnc_bulk_read(struct ubifs_info *c, struct bu_info *bu);
/* tnc_misc.c */
struct ubifs_znode *ubifs_tnc_levelorder_next(struct ubifs_znode *zr,
struct ubifs_znode *znode);
int ubifs_search_zbranch(const struct ubifs_info *c,
const struct ubifs_znode *znode,
const union ubifs_key *key, int *n);
struct ubifs_znode *ubifs_tnc_postorder_first(struct ubifs_znode *znode);
struct ubifs_znode *ubifs_tnc_postorder_next(struct ubifs_znode *znode);
long ubifs_destroy_tnc_subtree(struct ubifs_znode *zr);
struct ubifs_znode *ubifs_load_znode(struct ubifs_info *c,
struct ubifs_zbranch *zbr,
struct ubifs_znode *parent, int iip);
int ubifs_tnc_read_node(struct ubifs_info *c, struct ubifs_zbranch *zbr,
void *node);
/* tnc_commit.c */
int ubifs_tnc_start_commit(struct ubifs_info *c, struct ubifs_zbranch *zroot);
int ubifs_tnc_end_commit(struct ubifs_info *c);
/* shrinker.c */
unsigned long ubifs_shrink_scan(struct shrinker *shrink,
struct shrink_control *sc);
unsigned long ubifs_shrink_count(struct shrinker *shrink,
struct shrink_control *sc);
/* commit.c */
int ubifs_bg_thread(void *info);
void ubifs_commit_required(struct ubifs_info *c);
void ubifs_request_bg_commit(struct ubifs_info *c);
int ubifs_run_commit(struct ubifs_info *c);
void ubifs_recovery_commit(struct ubifs_info *c);
int ubifs_gc_should_commit(struct ubifs_info *c);
void ubifs_wait_for_commit(struct ubifs_info *c);
/* master.c */
int ubifs_read_master(struct ubifs_info *c);
int ubifs_write_master(struct ubifs_info *c);
/* sb.c */
int ubifs_read_superblock(struct ubifs_info *c);
struct ubifs_sb_node *ubifs_read_sb_node(struct ubifs_info *c);
int ubifs_write_sb_node(struct ubifs_info *c, struct ubifs_sb_node *sup);
int ubifs_fixup_free_space(struct ubifs_info *c);
/* replay.c */
int ubifs_validate_entry(struct ubifs_info *c,
const struct ubifs_dent_node *dent);
int ubifs_replay_journal(struct ubifs_info *c);
/* gc.c */
int ubifs_garbage_collect(struct ubifs_info *c, int anyway);
int ubifs_gc_start_commit(struct ubifs_info *c);
int ubifs_gc_end_commit(struct ubifs_info *c);
void ubifs_destroy_idx_gc(struct ubifs_info *c);
int ubifs_get_idx_gc_leb(struct ubifs_info *c);
int ubifs_garbage_collect_leb(struct ubifs_info *c, struct ubifs_lprops *lp);
/* orphan.c */
int ubifs_add_orphan(struct ubifs_info *c, ino_t inum);
void ubifs_delete_orphan(struct ubifs_info *c, ino_t inum);
int ubifs_orphan_start_commit(struct ubifs_info *c);
int ubifs_orphan_end_commit(struct ubifs_info *c);
int ubifs_mount_orphans(struct ubifs_info *c, int unclean, int read_only);
int ubifs_clear_orphans(struct ubifs_info *c);
/* lpt.c */
int ubifs_calc_lpt_geom(struct ubifs_info *c);
int ubifs_create_dflt_lpt(struct ubifs_info *c, int *main_lebs, int lpt_first,
int *lpt_lebs, int *big_lpt);
int ubifs_lpt_init(struct ubifs_info *c, int rd, int wr);
struct ubifs_lprops *ubifs_lpt_lookup(struct ubifs_info *c, int lnum);
struct ubifs_lprops *ubifs_lpt_lookup_dirty(struct ubifs_info *c, int lnum);
int ubifs_lpt_scan_nolock(struct ubifs_info *c, int start_lnum, int end_lnum,
ubifs_lpt_scan_callback scan_cb, void *data);
/* Shared by lpt.c for lpt_commit.c */
void ubifs_pack_lsave(struct ubifs_info *c, void *buf, int *lsave);
void ubifs_pack_ltab(struct ubifs_info *c, void *buf,
struct ubifs_lpt_lprops *ltab);
void ubifs_pack_pnode(struct ubifs_info *c, void *buf,
struct ubifs_pnode *pnode);
void ubifs_pack_nnode(struct ubifs_info *c, void *buf,
struct ubifs_nnode *nnode);
struct ubifs_pnode *ubifs_get_pnode(struct ubifs_info *c,
struct ubifs_nnode *parent, int iip);
struct ubifs_nnode *ubifs_get_nnode(struct ubifs_info *c,
struct ubifs_nnode *parent, int iip);
int ubifs_read_nnode(struct ubifs_info *c, struct ubifs_nnode *parent, int iip);
void ubifs_add_lpt_dirt(struct ubifs_info *c, int lnum, int dirty);
void ubifs_add_nnode_dirt(struct ubifs_info *c, struct ubifs_nnode *nnode);
uint32_t ubifs_unpack_bits(uint8_t **addr, int *pos, int nrbits);
struct ubifs_nnode *ubifs_first_nnode(struct ubifs_info *c, int *hght);
/* Needed only in debugging code in lpt_commit.c */
int ubifs_unpack_nnode(const struct ubifs_info *c, void *buf,
struct ubifs_nnode *nnode);
/* lpt_commit.c */
int ubifs_lpt_start_commit(struct ubifs_info *c);
int ubifs_lpt_end_commit(struct ubifs_info *c);
int ubifs_lpt_post_commit(struct ubifs_info *c);
void ubifs_lpt_free(struct ubifs_info *c, int wr_only);
/* lprops.c */
const struct ubifs_lprops *ubifs_change_lp(struct ubifs_info *c,
const struct ubifs_lprops *lp,
int free, int dirty, int flags,
int idx_gc_cnt);
void ubifs_get_lp_stats(struct ubifs_info *c, struct ubifs_lp_stats *lst);
void ubifs_add_to_cat(struct ubifs_info *c, struct ubifs_lprops *lprops,
int cat);
void ubifs_replace_cat(struct ubifs_info *c, struct ubifs_lprops *old_lprops,
struct ubifs_lprops *new_lprops);
void ubifs_ensure_cat(struct ubifs_info *c, struct ubifs_lprops *lprops);
int ubifs_categorize_lprops(const struct ubifs_info *c,
const struct ubifs_lprops *lprops);
int ubifs_change_one_lp(struct ubifs_info *c, int lnum, int free, int dirty,
int flags_set, int flags_clean, int idx_gc_cnt);
int ubifs_update_one_lp(struct ubifs_info *c, int lnum, int free, int dirty,
int flags_set, int flags_clean);
int ubifs_read_one_lp(struct ubifs_info *c, int lnum, struct ubifs_lprops *lp);
const struct ubifs_lprops *ubifs_fast_find_free(struct ubifs_info *c);
const struct ubifs_lprops *ubifs_fast_find_empty(struct ubifs_info *c);
const struct ubifs_lprops *ubifs_fast_find_freeable(struct ubifs_info *c);
const struct ubifs_lprops *ubifs_fast_find_frdi_idx(struct ubifs_info *c);
int ubifs_calc_dark(const struct ubifs_info *c, int spc);
/* file.c */
int ubifs_fsync(struct file *file, loff_t start, loff_t end, int datasync);
int ubifs_setattr(struct dentry *dentry, struct iattr *attr);
/* dir.c */
struct inode *ubifs_new_inode(struct ubifs_info *c, const struct inode *dir,
umode_t mode);
int ubifs_getattr(struct vfsmount *mnt, struct dentry *dentry,
struct kstat *stat);
/* xattr.c */
int ubifs_setxattr(struct dentry *dentry, const char *name,
const void *value, size_t size, int flags);
ssize_t ubifs_getxattr(struct dentry *dentry, const char *name, void *buf,
size_t size);
ssize_t ubifs_listxattr(struct dentry *dentry, char *buffer, size_t size);
int ubifs_removexattr(struct dentry *dentry, const char *name);
int ubifs_init_security(struct inode *dentry, struct inode *inode,
const struct qstr *qstr);
/* super.c */
struct inode *ubifs_iget(struct super_block *sb, unsigned long inum);
/* recovery.c */
int ubifs_recover_master_node(struct ubifs_info *c);
int ubifs_write_rcvrd_mst_node(struct ubifs_info *c);
struct ubifs_scan_leb *ubifs_recover_leb(struct ubifs_info *c, int lnum,
int offs, void *sbuf, int jhead);
struct ubifs_scan_leb *ubifs_recover_log_leb(struct ubifs_info *c, int lnum,
int offs, void *sbuf);
int ubifs_recover_inl_heads(struct ubifs_info *c, void *sbuf);
int ubifs_clean_lebs(struct ubifs_info *c, void *sbuf);
int ubifs_rcvry_gc_commit(struct ubifs_info *c);
int ubifs_recover_size_accum(struct ubifs_info *c, union ubifs_key *key,
int deletion, loff_t new_size);
int ubifs_recover_size(struct ubifs_info *c);
void ubifs_destroy_size_tree(struct ubifs_info *c);
/* ioctl.c */
long ubifs_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
void ubifs_set_inode_flags(struct inode *inode);
#ifdef CONFIG_COMPAT
long ubifs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
#endif
/* compressor.c */
int __init ubifs_compressors_init(void);
void ubifs_compressors_exit(void);
void ubifs_compress(const struct ubifs_info *c, const void *in_buf, int in_len,
void *out_buf, int *out_len, int *compr_type);
int ubifs_decompress(const struct ubifs_info *c, const void *buf, int len,
void *out, int *out_len, int compr_type);
#include "debug.h"
#include "misc.h"
#include "key.h"
#endif /* !__UBIFS_H__ */