396 lines
10 KiB
C
396 lines
10 KiB
C
|
/*
|
||
|
* arch/arm/mach-vexpress/tc2_pm.c - TC2 power management support
|
||
|
*
|
||
|
* Created by: Nicolas Pitre, October 2012
|
||
|
* Copyright: (C) 2012-2013 Linaro Limited
|
||
|
*
|
||
|
* Some portions of this file were originally written by Achin Gupta
|
||
|
* Copyright: (C) 2012 ARM Limited
|
||
|
*
|
||
|
* This program is free software; you can redistribute it and/or modify
|
||
|
* it under the terms of the GNU General Public License version 2 as
|
||
|
* published by the Free Software Foundation.
|
||
|
*/
|
||
|
|
||
|
#include <linux/delay.h>
|
||
|
#include <linux/init.h>
|
||
|
#include <linux/io.h>
|
||
|
#include <linux/kernel.h>
|
||
|
#include <linux/of_address.h>
|
||
|
#include <linux/of_irq.h>
|
||
|
#include <linux/spinlock.h>
|
||
|
#include <linux/errno.h>
|
||
|
#include <linux/irqchip/arm-gic.h>
|
||
|
|
||
|
#include <asm/mcpm.h>
|
||
|
#include <asm/proc-fns.h>
|
||
|
#include <asm/cacheflush.h>
|
||
|
#include <asm/cputype.h>
|
||
|
#include <asm/cp15.h>
|
||
|
|
||
|
#include <linux/arm-cci.h>
|
||
|
|
||
|
#include "spc.h"
|
||
|
|
||
|
/* SCC conf registers */
|
||
|
#define RESET_CTRL 0x018
|
||
|
#define RESET_A15_NCORERESET(cpu) (1 << (2 + (cpu)))
|
||
|
#define RESET_A7_NCORERESET(cpu) (1 << (16 + (cpu)))
|
||
|
|
||
|
#define A15_CONF 0x400
|
||
|
#define A7_CONF 0x500
|
||
|
#define SYS_INFO 0x700
|
||
|
#define SPC_BASE 0xb00
|
||
|
|
||
|
static void __iomem *scc;
|
||
|
|
||
|
/*
|
||
|
* We can't use regular spinlocks. In the switcher case, it is possible
|
||
|
* for an outbound CPU to call power_down() after its inbound counterpart
|
||
|
* is already live using the same logical CPU number which trips lockdep
|
||
|
* debugging.
|
||
|
*/
|
||
|
static arch_spinlock_t tc2_pm_lock = __ARCH_SPIN_LOCK_UNLOCKED;
|
||
|
|
||
|
#define TC2_CLUSTERS 2
|
||
|
#define TC2_MAX_CPUS_PER_CLUSTER 3
|
||
|
|
||
|
static unsigned int tc2_nr_cpus[TC2_CLUSTERS];
|
||
|
|
||
|
/* Keep per-cpu usage count to cope with unordered up/down requests */
|
||
|
static int tc2_pm_use_count[TC2_MAX_CPUS_PER_CLUSTER][TC2_CLUSTERS];
|
||
|
|
||
|
#define tc2_cluster_unused(cluster) \
|
||
|
(!tc2_pm_use_count[0][cluster] && \
|
||
|
!tc2_pm_use_count[1][cluster] && \
|
||
|
!tc2_pm_use_count[2][cluster])
|
||
|
|
||
|
static int tc2_pm_power_up(unsigned int cpu, unsigned int cluster)
|
||
|
{
|
||
|
pr_debug("%s: cpu %u cluster %u\n", __func__, cpu, cluster);
|
||
|
if (cluster >= TC2_CLUSTERS || cpu >= tc2_nr_cpus[cluster])
|
||
|
return -EINVAL;
|
||
|
|
||
|
/*
|
||
|
* Since this is called with IRQs enabled, and no arch_spin_lock_irq
|
||
|
* variant exists, we need to disable IRQs manually here.
|
||
|
*/
|
||
|
local_irq_disable();
|
||
|
arch_spin_lock(&tc2_pm_lock);
|
||
|
|
||
|
if (tc2_cluster_unused(cluster))
|
||
|
ve_spc_powerdown(cluster, false);
|
||
|
|
||
|
tc2_pm_use_count[cpu][cluster]++;
|
||
|
if (tc2_pm_use_count[cpu][cluster] == 1) {
|
||
|
ve_spc_set_resume_addr(cluster, cpu,
|
||
|
virt_to_phys(mcpm_entry_point));
|
||
|
ve_spc_cpu_wakeup_irq(cluster, cpu, true);
|
||
|
} else if (tc2_pm_use_count[cpu][cluster] != 2) {
|
||
|
/*
|
||
|
* The only possible values are:
|
||
|
* 0 = CPU down
|
||
|
* 1 = CPU (still) up
|
||
|
* 2 = CPU requested to be up before it had a chance
|
||
|
* to actually make itself down.
|
||
|
* Any other value is a bug.
|
||
|
*/
|
||
|
BUG();
|
||
|
}
|
||
|
|
||
|
arch_spin_unlock(&tc2_pm_lock);
|
||
|
local_irq_enable();
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static void tc2_pm_down(u64 residency)
|
||
|
{
|
||
|
unsigned int mpidr, cpu, cluster;
|
||
|
bool last_man = false, skip_wfi = false;
|
||
|
|
||
|
mpidr = read_cpuid_mpidr();
|
||
|
cpu = MPIDR_AFFINITY_LEVEL(mpidr, 0);
|
||
|
cluster = MPIDR_AFFINITY_LEVEL(mpidr, 1);
|
||
|
|
||
|
pr_debug("%s: cpu %u cluster %u\n", __func__, cpu, cluster);
|
||
|
BUG_ON(cluster >= TC2_CLUSTERS || cpu >= TC2_MAX_CPUS_PER_CLUSTER);
|
||
|
|
||
|
__mcpm_cpu_going_down(cpu, cluster);
|
||
|
|
||
|
arch_spin_lock(&tc2_pm_lock);
|
||
|
BUG_ON(__mcpm_cluster_state(cluster) != CLUSTER_UP);
|
||
|
tc2_pm_use_count[cpu][cluster]--;
|
||
|
if (tc2_pm_use_count[cpu][cluster] == 0) {
|
||
|
ve_spc_cpu_wakeup_irq(cluster, cpu, true);
|
||
|
if (tc2_cluster_unused(cluster)) {
|
||
|
ve_spc_powerdown(cluster, true);
|
||
|
ve_spc_global_wakeup_irq(true);
|
||
|
last_man = true;
|
||
|
}
|
||
|
} else if (tc2_pm_use_count[cpu][cluster] == 1) {
|
||
|
/*
|
||
|
* A power_up request went ahead of us.
|
||
|
* Even if we do not want to shut this CPU down,
|
||
|
* the caller expects a certain state as if the WFI
|
||
|
* was aborted. So let's continue with cache cleaning.
|
||
|
*/
|
||
|
skip_wfi = true;
|
||
|
} else
|
||
|
BUG();
|
||
|
|
||
|
/*
|
||
|
* If the CPU is committed to power down, make sure
|
||
|
* the power controller will be in charge of waking it
|
||
|
* up upon IRQ, ie IRQ lines are cut from GIC CPU IF
|
||
|
* to the CPU by disabling the GIC CPU IF to prevent wfi
|
||
|
* from completing execution behind power controller back
|
||
|
*/
|
||
|
if (!skip_wfi)
|
||
|
gic_cpu_if_down();
|
||
|
|
||
|
if (last_man && __mcpm_outbound_enter_critical(cpu, cluster)) {
|
||
|
arch_spin_unlock(&tc2_pm_lock);
|
||
|
|
||
|
if (read_cpuid_part() == ARM_CPU_PART_CORTEX_A15) {
|
||
|
/*
|
||
|
* On the Cortex-A15 we need to disable
|
||
|
* L2 prefetching before flushing the cache.
|
||
|
*/
|
||
|
asm volatile(
|
||
|
"mcr p15, 1, %0, c15, c0, 3 \n\t"
|
||
|
"isb \n\t"
|
||
|
"dsb "
|
||
|
: : "r" (0x400) );
|
||
|
}
|
||
|
|
||
|
v7_exit_coherency_flush(all);
|
||
|
|
||
|
cci_disable_port_by_cpu(mpidr);
|
||
|
|
||
|
__mcpm_outbound_leave_critical(cluster, CLUSTER_DOWN);
|
||
|
} else {
|
||
|
/*
|
||
|
* If last man then undo any setup done previously.
|
||
|
*/
|
||
|
if (last_man) {
|
||
|
ve_spc_powerdown(cluster, false);
|
||
|
ve_spc_global_wakeup_irq(false);
|
||
|
}
|
||
|
|
||
|
arch_spin_unlock(&tc2_pm_lock);
|
||
|
|
||
|
v7_exit_coherency_flush(louis);
|
||
|
}
|
||
|
|
||
|
__mcpm_cpu_down(cpu, cluster);
|
||
|
|
||
|
/* Now we are prepared for power-down, do it: */
|
||
|
if (!skip_wfi)
|
||
|
wfi();
|
||
|
|
||
|
/* Not dead at this point? Let our caller cope. */
|
||
|
}
|
||
|
|
||
|
static void tc2_pm_power_down(void)
|
||
|
{
|
||
|
tc2_pm_down(0);
|
||
|
}
|
||
|
|
||
|
static int tc2_core_in_reset(unsigned int cpu, unsigned int cluster)
|
||
|
{
|
||
|
u32 mask = cluster ?
|
||
|
RESET_A7_NCORERESET(cpu)
|
||
|
: RESET_A15_NCORERESET(cpu);
|
||
|
|
||
|
return !(readl_relaxed(scc + RESET_CTRL) & mask);
|
||
|
}
|
||
|
|
||
|
#define POLL_MSEC 10
|
||
|
#define TIMEOUT_MSEC 1000
|
||
|
|
||
|
static int tc2_pm_wait_for_powerdown(unsigned int cpu, unsigned int cluster)
|
||
|
{
|
||
|
unsigned tries;
|
||
|
|
||
|
pr_debug("%s: cpu %u cluster %u\n", __func__, cpu, cluster);
|
||
|
BUG_ON(cluster >= TC2_CLUSTERS || cpu >= TC2_MAX_CPUS_PER_CLUSTER);
|
||
|
|
||
|
for (tries = 0; tries < TIMEOUT_MSEC / POLL_MSEC; ++tries) {
|
||
|
/*
|
||
|
* Only examine the hardware state if the target CPU has
|
||
|
* caught up at least as far as tc2_pm_down():
|
||
|
*/
|
||
|
if (ACCESS_ONCE(tc2_pm_use_count[cpu][cluster]) == 0) {
|
||
|
pr_debug("%s(cpu=%u, cluster=%u): RESET_CTRL = 0x%08X\n",
|
||
|
__func__, cpu, cluster,
|
||
|
readl_relaxed(scc + RESET_CTRL));
|
||
|
|
||
|
/*
|
||
|
* We need the CPU to reach WFI, but the power
|
||
|
* controller may put the cluster in reset and
|
||
|
* power it off as soon as that happens, before
|
||
|
* we have a chance to see STANDBYWFI.
|
||
|
*
|
||
|
* So we need to check for both conditions:
|
||
|
*/
|
||
|
if (tc2_core_in_reset(cpu, cluster) ||
|
||
|
ve_spc_cpu_in_wfi(cpu, cluster))
|
||
|
return 0; /* success: the CPU is halted */
|
||
|
}
|
||
|
|
||
|
/* Otherwise, wait and retry: */
|
||
|
msleep(POLL_MSEC);
|
||
|
}
|
||
|
|
||
|
return -ETIMEDOUT; /* timeout */
|
||
|
}
|
||
|
|
||
|
static void tc2_pm_suspend(u64 residency)
|
||
|
{
|
||
|
unsigned int mpidr, cpu, cluster;
|
||
|
|
||
|
mpidr = read_cpuid_mpidr();
|
||
|
cpu = MPIDR_AFFINITY_LEVEL(mpidr, 0);
|
||
|
cluster = MPIDR_AFFINITY_LEVEL(mpidr, 1);
|
||
|
ve_spc_set_resume_addr(cluster, cpu, virt_to_phys(mcpm_entry_point));
|
||
|
tc2_pm_down(residency);
|
||
|
}
|
||
|
|
||
|
static void tc2_pm_powered_up(void)
|
||
|
{
|
||
|
unsigned int mpidr, cpu, cluster;
|
||
|
unsigned long flags;
|
||
|
|
||
|
mpidr = read_cpuid_mpidr();
|
||
|
cpu = MPIDR_AFFINITY_LEVEL(mpidr, 0);
|
||
|
cluster = MPIDR_AFFINITY_LEVEL(mpidr, 1);
|
||
|
|
||
|
pr_debug("%s: cpu %u cluster %u\n", __func__, cpu, cluster);
|
||
|
BUG_ON(cluster >= TC2_CLUSTERS || cpu >= TC2_MAX_CPUS_PER_CLUSTER);
|
||
|
|
||
|
local_irq_save(flags);
|
||
|
arch_spin_lock(&tc2_pm_lock);
|
||
|
|
||
|
if (tc2_cluster_unused(cluster)) {
|
||
|
ve_spc_powerdown(cluster, false);
|
||
|
ve_spc_global_wakeup_irq(false);
|
||
|
}
|
||
|
|
||
|
if (!tc2_pm_use_count[cpu][cluster])
|
||
|
tc2_pm_use_count[cpu][cluster] = 1;
|
||
|
|
||
|
ve_spc_cpu_wakeup_irq(cluster, cpu, false);
|
||
|
ve_spc_set_resume_addr(cluster, cpu, 0);
|
||
|
|
||
|
arch_spin_unlock(&tc2_pm_lock);
|
||
|
local_irq_restore(flags);
|
||
|
}
|
||
|
|
||
|
static const struct mcpm_platform_ops tc2_pm_power_ops = {
|
||
|
.power_up = tc2_pm_power_up,
|
||
|
.power_down = tc2_pm_power_down,
|
||
|
.wait_for_powerdown = tc2_pm_wait_for_powerdown,
|
||
|
.suspend = tc2_pm_suspend,
|
||
|
.powered_up = tc2_pm_powered_up,
|
||
|
};
|
||
|
|
||
|
static bool __init tc2_pm_usage_count_init(void)
|
||
|
{
|
||
|
unsigned int mpidr, cpu, cluster;
|
||
|
|
||
|
mpidr = read_cpuid_mpidr();
|
||
|
cpu = MPIDR_AFFINITY_LEVEL(mpidr, 0);
|
||
|
cluster = MPIDR_AFFINITY_LEVEL(mpidr, 1);
|
||
|
|
||
|
pr_debug("%s: cpu %u cluster %u\n", __func__, cpu, cluster);
|
||
|
if (cluster >= TC2_CLUSTERS || cpu >= tc2_nr_cpus[cluster]) {
|
||
|
pr_err("%s: boot CPU is out of bound!\n", __func__);
|
||
|
return false;
|
||
|
}
|
||
|
tc2_pm_use_count[cpu][cluster] = 1;
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Enable cluster-level coherency, in preparation for turning on the MMU.
|
||
|
*/
|
||
|
static void __naked tc2_pm_power_up_setup(unsigned int affinity_level)
|
||
|
{
|
||
|
asm volatile (" \n"
|
||
|
" cmp r0, #1 \n"
|
||
|
" bxne lr \n"
|
||
|
" b cci_enable_port_for_self ");
|
||
|
}
|
||
|
|
||
|
static void __init tc2_cache_off(void)
|
||
|
{
|
||
|
pr_info("TC2: disabling cache during MCPM loopback test\n");
|
||
|
if (read_cpuid_part() == ARM_CPU_PART_CORTEX_A15) {
|
||
|
/* disable L2 prefetching on the Cortex-A15 */
|
||
|
asm volatile(
|
||
|
"mcr p15, 1, %0, c15, c0, 3 \n\t"
|
||
|
"isb \n\t"
|
||
|
"dsb "
|
||
|
: : "r" (0x400) );
|
||
|
}
|
||
|
v7_exit_coherency_flush(all);
|
||
|
cci_disable_port_by_cpu(read_cpuid_mpidr());
|
||
|
}
|
||
|
|
||
|
static int __init tc2_pm_init(void)
|
||
|
{
|
||
|
int ret, irq;
|
||
|
u32 a15_cluster_id, a7_cluster_id, sys_info;
|
||
|
struct device_node *np;
|
||
|
|
||
|
/*
|
||
|
* The power management-related features are hidden behind
|
||
|
* SCC registers. We need to extract runtime information like
|
||
|
* cluster ids and number of CPUs really available in clusters.
|
||
|
*/
|
||
|
np = of_find_compatible_node(NULL, NULL,
|
||
|
"arm,vexpress-scc,v2p-ca15_a7");
|
||
|
scc = of_iomap(np, 0);
|
||
|
if (!scc)
|
||
|
return -ENODEV;
|
||
|
|
||
|
a15_cluster_id = readl_relaxed(scc + A15_CONF) & 0xf;
|
||
|
a7_cluster_id = readl_relaxed(scc + A7_CONF) & 0xf;
|
||
|
if (a15_cluster_id >= TC2_CLUSTERS || a7_cluster_id >= TC2_CLUSTERS)
|
||
|
return -EINVAL;
|
||
|
|
||
|
sys_info = readl_relaxed(scc + SYS_INFO);
|
||
|
tc2_nr_cpus[a15_cluster_id] = (sys_info >> 16) & 0xf;
|
||
|
tc2_nr_cpus[a7_cluster_id] = (sys_info >> 20) & 0xf;
|
||
|
|
||
|
irq = irq_of_parse_and_map(np, 0);
|
||
|
|
||
|
/*
|
||
|
* A subset of the SCC registers is also used to communicate
|
||
|
* with the SPC (power controller). We need to be able to
|
||
|
* drive it very early in the boot process to power up
|
||
|
* processors, so we initialize the SPC driver here.
|
||
|
*/
|
||
|
ret = ve_spc_init(scc + SPC_BASE, a15_cluster_id, irq);
|
||
|
if (ret)
|
||
|
return ret;
|
||
|
|
||
|
if (!cci_probed())
|
||
|
return -ENODEV;
|
||
|
|
||
|
if (!tc2_pm_usage_count_init())
|
||
|
return -EINVAL;
|
||
|
|
||
|
ret = mcpm_platform_register(&tc2_pm_power_ops);
|
||
|
if (!ret) {
|
||
|
mcpm_sync_init(tc2_pm_power_up_setup);
|
||
|
/* test if we can (re)enable the CCI on our own */
|
||
|
BUG_ON(mcpm_loopback(tc2_cache_off) != 0);
|
||
|
pr_info("TC2 power management initialized\n");
|
||
|
}
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
early_initcall(tc2_pm_init);
|