628 lines
14 KiB
C
628 lines
14 KiB
C
|
/*
|
||
|
* linux/arch/arm/mm/fault.c
|
||
|
*
|
||
|
* Copyright (C) 1995 Linus Torvalds
|
||
|
* Modifications for ARM processor (c) 1995-2004 Russell King
|
||
|
*
|
||
|
* This program is free software; you can redistribute it and/or modify
|
||
|
* it under the terms of the GNU General Public License version 2 as
|
||
|
* published by the Free Software Foundation.
|
||
|
*/
|
||
|
#include <linux/module.h>
|
||
|
#include <linux/signal.h>
|
||
|
#include <linux/mm.h>
|
||
|
#include <linux/hardirq.h>
|
||
|
#include <linux/init.h>
|
||
|
#include <linux/kprobes.h>
|
||
|
#include <linux/uaccess.h>
|
||
|
#include <linux/page-flags.h>
|
||
|
#include <linux/sched.h>
|
||
|
#include <linux/highmem.h>
|
||
|
#include <linux/perf_event.h>
|
||
|
|
||
|
#include <asm/exception.h>
|
||
|
#include <asm/pgtable.h>
|
||
|
#include <asm/system_misc.h>
|
||
|
#include <asm/system_info.h>
|
||
|
#include <asm/tlbflush.h>
|
||
|
|
||
|
#include "fault.h"
|
||
|
|
||
|
#include <trace/events/exception.h>
|
||
|
|
||
|
#ifdef CONFIG_MMU
|
||
|
|
||
|
#ifdef CONFIG_KPROBES
|
||
|
static inline int notify_page_fault(struct pt_regs *regs, unsigned int fsr)
|
||
|
{
|
||
|
int ret = 0;
|
||
|
|
||
|
if (!user_mode(regs)) {
|
||
|
/* kprobe_running() needs smp_processor_id() */
|
||
|
preempt_disable();
|
||
|
if (kprobe_running() && kprobe_fault_handler(regs, fsr))
|
||
|
ret = 1;
|
||
|
preempt_enable();
|
||
|
}
|
||
|
|
||
|
return ret;
|
||
|
}
|
||
|
#else
|
||
|
static inline int notify_page_fault(struct pt_regs *regs, unsigned int fsr)
|
||
|
{
|
||
|
return 0;
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
/*
|
||
|
* This is useful to dump out the page tables associated with
|
||
|
* 'addr' in mm 'mm'.
|
||
|
*/
|
||
|
void show_pte(struct mm_struct *mm, unsigned long addr)
|
||
|
{
|
||
|
pgd_t *pgd;
|
||
|
|
||
|
if (!mm)
|
||
|
mm = &init_mm;
|
||
|
|
||
|
printk(KERN_ALERT "pgd = %p\n", mm->pgd);
|
||
|
pgd = pgd_offset(mm, addr);
|
||
|
printk(KERN_ALERT "[%08lx] *pgd=%08llx",
|
||
|
addr, (long long)pgd_val(*pgd));
|
||
|
|
||
|
do {
|
||
|
pud_t *pud;
|
||
|
pmd_t *pmd;
|
||
|
pte_t *pte;
|
||
|
|
||
|
if (pgd_none(*pgd))
|
||
|
break;
|
||
|
|
||
|
if (pgd_bad(*pgd)) {
|
||
|
printk("(bad)");
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
pud = pud_offset(pgd, addr);
|
||
|
if (PTRS_PER_PUD != 1)
|
||
|
printk(", *pud=%08llx", (long long)pud_val(*pud));
|
||
|
|
||
|
if (pud_none(*pud))
|
||
|
break;
|
||
|
|
||
|
if (pud_bad(*pud)) {
|
||
|
printk("(bad)");
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
pmd = pmd_offset(pud, addr);
|
||
|
if (PTRS_PER_PMD != 1)
|
||
|
printk(", *pmd=%08llx", (long long)pmd_val(*pmd));
|
||
|
|
||
|
if (pmd_none(*pmd))
|
||
|
break;
|
||
|
|
||
|
if (pmd_bad(*pmd)) {
|
||
|
printk("(bad)");
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
/* We must not map this if we have highmem enabled */
|
||
|
if (PageHighMem(pfn_to_page(pmd_val(*pmd) >> PAGE_SHIFT)))
|
||
|
break;
|
||
|
|
||
|
pte = pte_offset_map(pmd, addr);
|
||
|
printk(", *pte=%08llx", (long long)pte_val(*pte));
|
||
|
#ifndef CONFIG_ARM_LPAE
|
||
|
printk(", *ppte=%08llx",
|
||
|
(long long)pte_val(pte[PTE_HWTABLE_PTRS]));
|
||
|
#endif
|
||
|
pte_unmap(pte);
|
||
|
} while(0);
|
||
|
|
||
|
printk("\n");
|
||
|
}
|
||
|
#else /* CONFIG_MMU */
|
||
|
void show_pte(struct mm_struct *mm, unsigned long addr)
|
||
|
{ }
|
||
|
#endif /* CONFIG_MMU */
|
||
|
|
||
|
/*
|
||
|
* Oops. The kernel tried to access some page that wasn't present.
|
||
|
*/
|
||
|
static void
|
||
|
__do_kernel_fault(struct mm_struct *mm, unsigned long addr, unsigned int fsr,
|
||
|
struct pt_regs *regs)
|
||
|
{
|
||
|
/*
|
||
|
* Are we prepared to handle this kernel fault?
|
||
|
*/
|
||
|
if (fixup_exception(regs))
|
||
|
return;
|
||
|
|
||
|
/*
|
||
|
* No handler, we'll have to terminate things with extreme prejudice.
|
||
|
*/
|
||
|
bust_spinlocks(1);
|
||
|
printk(KERN_ALERT
|
||
|
"Unable to handle kernel %s at virtual address %08lx\n",
|
||
|
(addr < PAGE_SIZE) ? "NULL pointer dereference" :
|
||
|
"paging request", addr);
|
||
|
|
||
|
show_pte(mm, addr);
|
||
|
die("Oops", regs, fsr);
|
||
|
bust_spinlocks(0);
|
||
|
do_exit(SIGKILL);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Something tried to access memory that isn't in our memory map..
|
||
|
* User mode accesses just cause a SIGSEGV
|
||
|
*/
|
||
|
static void
|
||
|
__do_user_fault(struct task_struct *tsk, unsigned long addr,
|
||
|
unsigned int fsr, unsigned int sig, int code,
|
||
|
struct pt_regs *regs)
|
||
|
{
|
||
|
struct siginfo si;
|
||
|
|
||
|
trace_user_fault(tsk, addr, fsr);
|
||
|
|
||
|
#ifdef CONFIG_DEBUG_USER
|
||
|
if (((user_debug & UDBG_SEGV) && (sig == SIGSEGV)) ||
|
||
|
((user_debug & UDBG_BUS) && (sig == SIGBUS))) {
|
||
|
printk(KERN_DEBUG "%s: unhandled page fault (%d) at 0x%08lx, code 0x%03x\n",
|
||
|
tsk->comm, sig, addr, fsr);
|
||
|
show_pte(tsk->mm, addr);
|
||
|
show_regs(regs);
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
tsk->thread.address = addr;
|
||
|
tsk->thread.error_code = fsr;
|
||
|
tsk->thread.trap_no = 14;
|
||
|
si.si_signo = sig;
|
||
|
si.si_errno = 0;
|
||
|
si.si_code = code;
|
||
|
si.si_addr = (void __user *)addr;
|
||
|
force_sig_info(sig, &si, tsk);
|
||
|
}
|
||
|
|
||
|
void do_bad_area(unsigned long addr, unsigned int fsr, struct pt_regs *regs)
|
||
|
{
|
||
|
struct task_struct *tsk = current;
|
||
|
struct mm_struct *mm = tsk->active_mm;
|
||
|
|
||
|
/*
|
||
|
* If we are in kernel mode at this point, we
|
||
|
* have no context to handle this fault with.
|
||
|
*/
|
||
|
if (user_mode(regs))
|
||
|
__do_user_fault(tsk, addr, fsr, SIGSEGV, SEGV_MAPERR, regs);
|
||
|
else
|
||
|
__do_kernel_fault(mm, addr, fsr, regs);
|
||
|
}
|
||
|
|
||
|
#ifdef CONFIG_MMU
|
||
|
#define VM_FAULT_BADMAP 0x010000
|
||
|
#define VM_FAULT_BADACCESS 0x020000
|
||
|
|
||
|
/*
|
||
|
* Check that the permissions on the VMA allow for the fault which occurred.
|
||
|
* If we encountered a write fault, we must have write permission, otherwise
|
||
|
* we allow any permission.
|
||
|
*/
|
||
|
static inline bool access_error(unsigned int fsr, struct vm_area_struct *vma)
|
||
|
{
|
||
|
unsigned int mask = VM_READ | VM_WRITE | VM_EXEC;
|
||
|
|
||
|
if (fsr & FSR_WRITE)
|
||
|
mask = VM_WRITE;
|
||
|
if (fsr & FSR_LNX_PF)
|
||
|
mask = VM_EXEC;
|
||
|
|
||
|
return vma->vm_flags & mask ? false : true;
|
||
|
}
|
||
|
|
||
|
static int __kprobes
|
||
|
__do_page_fault(struct mm_struct *mm, unsigned long addr, unsigned int fsr,
|
||
|
unsigned int flags, struct task_struct *tsk)
|
||
|
{
|
||
|
struct vm_area_struct *vma;
|
||
|
int fault;
|
||
|
|
||
|
vma = find_vma(mm, addr);
|
||
|
fault = VM_FAULT_BADMAP;
|
||
|
if (unlikely(!vma))
|
||
|
goto out;
|
||
|
if (unlikely(vma->vm_start > addr))
|
||
|
goto check_stack;
|
||
|
|
||
|
/*
|
||
|
* Ok, we have a good vm_area for this
|
||
|
* memory access, so we can handle it.
|
||
|
*/
|
||
|
good_area:
|
||
|
if (access_error(fsr, vma)) {
|
||
|
fault = VM_FAULT_BADACCESS;
|
||
|
goto out;
|
||
|
}
|
||
|
|
||
|
return handle_mm_fault(mm, vma, addr & PAGE_MASK, flags);
|
||
|
|
||
|
check_stack:
|
||
|
/* Don't allow expansion below FIRST_USER_ADDRESS */
|
||
|
if (vma->vm_flags & VM_GROWSDOWN &&
|
||
|
addr >= FIRST_USER_ADDRESS && !expand_stack(vma, addr))
|
||
|
goto good_area;
|
||
|
out:
|
||
|
return fault;
|
||
|
}
|
||
|
|
||
|
static int __kprobes
|
||
|
do_page_fault(unsigned long addr, unsigned int fsr, struct pt_regs *regs)
|
||
|
{
|
||
|
struct task_struct *tsk;
|
||
|
struct mm_struct *mm;
|
||
|
int fault, sig, code;
|
||
|
unsigned int flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
|
||
|
|
||
|
if (notify_page_fault(regs, fsr))
|
||
|
return 0;
|
||
|
|
||
|
tsk = current;
|
||
|
mm = tsk->mm;
|
||
|
|
||
|
/* Enable interrupts if they were enabled in the parent context. */
|
||
|
if (interrupts_enabled(regs))
|
||
|
local_irq_enable();
|
||
|
|
||
|
/*
|
||
|
* If we're in an interrupt, or have no irqs, or have no user
|
||
|
* context, we must not take the fault..
|
||
|
*/
|
||
|
if (in_atomic() || irqs_disabled() || !mm)
|
||
|
goto no_context;
|
||
|
|
||
|
if (user_mode(regs))
|
||
|
flags |= FAULT_FLAG_USER;
|
||
|
if (fsr & FSR_WRITE)
|
||
|
flags |= FAULT_FLAG_WRITE;
|
||
|
|
||
|
/*
|
||
|
* As per x86, we may deadlock here. However, since the kernel only
|
||
|
* validly references user space from well defined areas of the code,
|
||
|
* we can bug out early if this is from code which shouldn't.
|
||
|
*/
|
||
|
if (!down_read_trylock(&mm->mmap_sem)) {
|
||
|
if (!user_mode(regs) && !search_exception_tables(regs->ARM_pc))
|
||
|
goto no_context;
|
||
|
retry:
|
||
|
down_read(&mm->mmap_sem);
|
||
|
} else {
|
||
|
/*
|
||
|
* The above down_read_trylock() might have succeeded in
|
||
|
* which case, we'll have missed the might_sleep() from
|
||
|
* down_read()
|
||
|
*/
|
||
|
might_sleep();
|
||
|
#ifdef CONFIG_DEBUG_VM
|
||
|
if (!user_mode(regs) &&
|
||
|
!search_exception_tables(regs->ARM_pc))
|
||
|
goto no_context;
|
||
|
#endif
|
||
|
}
|
||
|
|
||
|
fault = __do_page_fault(mm, addr, fsr, flags, tsk);
|
||
|
|
||
|
/* If we need to retry but a fatal signal is pending, handle the
|
||
|
* signal first. We do not need to release the mmap_sem because
|
||
|
* it would already be released in __lock_page_or_retry in
|
||
|
* mm/filemap.c. */
|
||
|
if ((fault & VM_FAULT_RETRY) && fatal_signal_pending(current))
|
||
|
return 0;
|
||
|
|
||
|
/*
|
||
|
* Major/minor page fault accounting is only done on the
|
||
|
* initial attempt. If we go through a retry, it is extremely
|
||
|
* likely that the page will be found in page cache at that point.
|
||
|
*/
|
||
|
|
||
|
perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, addr);
|
||
|
if (!(fault & VM_FAULT_ERROR) && flags & FAULT_FLAG_ALLOW_RETRY) {
|
||
|
if (fault & VM_FAULT_MAJOR) {
|
||
|
tsk->maj_flt++;
|
||
|
perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1,
|
||
|
regs, addr);
|
||
|
} else {
|
||
|
tsk->min_flt++;
|
||
|
perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1,
|
||
|
regs, addr);
|
||
|
}
|
||
|
if (fault & VM_FAULT_RETRY) {
|
||
|
/* Clear FAULT_FLAG_ALLOW_RETRY to avoid any risk
|
||
|
* of starvation. */
|
||
|
flags &= ~FAULT_FLAG_ALLOW_RETRY;
|
||
|
flags |= FAULT_FLAG_TRIED;
|
||
|
goto retry;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
up_read(&mm->mmap_sem);
|
||
|
|
||
|
/*
|
||
|
* Handle the "normal" case first - VM_FAULT_MAJOR / VM_FAULT_MINOR
|
||
|
*/
|
||
|
if (likely(!(fault & (VM_FAULT_ERROR | VM_FAULT_BADMAP | VM_FAULT_BADACCESS))))
|
||
|
return 0;
|
||
|
|
||
|
/*
|
||
|
* If we are in kernel mode at this point, we
|
||
|
* have no context to handle this fault with.
|
||
|
*/
|
||
|
if (!user_mode(regs))
|
||
|
goto no_context;
|
||
|
|
||
|
if (fault & VM_FAULT_OOM) {
|
||
|
/*
|
||
|
* We ran out of memory, call the OOM killer, and return to
|
||
|
* userspace (which will retry the fault, or kill us if we
|
||
|
* got oom-killed)
|
||
|
*/
|
||
|
pagefault_out_of_memory();
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
if (fault & VM_FAULT_SIGBUS) {
|
||
|
/*
|
||
|
* We had some memory, but were unable to
|
||
|
* successfully fix up this page fault.
|
||
|
*/
|
||
|
sig = SIGBUS;
|
||
|
code = BUS_ADRERR;
|
||
|
} else {
|
||
|
/*
|
||
|
* Something tried to access memory that
|
||
|
* isn't in our memory map..
|
||
|
*/
|
||
|
sig = SIGSEGV;
|
||
|
code = fault == VM_FAULT_BADACCESS ?
|
||
|
SEGV_ACCERR : SEGV_MAPERR;
|
||
|
}
|
||
|
|
||
|
__do_user_fault(tsk, addr, fsr, sig, code, regs);
|
||
|
return 0;
|
||
|
|
||
|
no_context:
|
||
|
__do_kernel_fault(mm, addr, fsr, regs);
|
||
|
return 0;
|
||
|
}
|
||
|
#else /* CONFIG_MMU */
|
||
|
static int
|
||
|
do_page_fault(unsigned long addr, unsigned int fsr, struct pt_regs *regs)
|
||
|
{
|
||
|
return 0;
|
||
|
}
|
||
|
#endif /* CONFIG_MMU */
|
||
|
|
||
|
/*
|
||
|
* First Level Translation Fault Handler
|
||
|
*
|
||
|
* We enter here because the first level page table doesn't contain
|
||
|
* a valid entry for the address.
|
||
|
*
|
||
|
* If the address is in kernel space (>= TASK_SIZE), then we are
|
||
|
* probably faulting in the vmalloc() area.
|
||
|
*
|
||
|
* If the init_task's first level page tables contains the relevant
|
||
|
* entry, we copy the it to this task. If not, we send the process
|
||
|
* a signal, fixup the exception, or oops the kernel.
|
||
|
*
|
||
|
* NOTE! We MUST NOT take any locks for this case. We may be in an
|
||
|
* interrupt or a critical region, and should only copy the information
|
||
|
* from the master page table, nothing more.
|
||
|
*/
|
||
|
#ifdef CONFIG_MMU
|
||
|
static int __kprobes
|
||
|
do_translation_fault(unsigned long addr, unsigned int fsr,
|
||
|
struct pt_regs *regs)
|
||
|
{
|
||
|
unsigned int index;
|
||
|
pgd_t *pgd, *pgd_k;
|
||
|
pud_t *pud, *pud_k;
|
||
|
pmd_t *pmd, *pmd_k;
|
||
|
|
||
|
if (addr < TASK_SIZE)
|
||
|
return do_page_fault(addr, fsr, regs);
|
||
|
|
||
|
if (user_mode(regs))
|
||
|
goto bad_area;
|
||
|
|
||
|
index = pgd_index(addr);
|
||
|
|
||
|
pgd = cpu_get_pgd() + index;
|
||
|
pgd_k = init_mm.pgd + index;
|
||
|
|
||
|
if (pgd_none(*pgd_k))
|
||
|
goto bad_area;
|
||
|
if (!pgd_present(*pgd))
|
||
|
set_pgd(pgd, *pgd_k);
|
||
|
|
||
|
pud = pud_offset(pgd, addr);
|
||
|
pud_k = pud_offset(pgd_k, addr);
|
||
|
|
||
|
if (pud_none(*pud_k))
|
||
|
goto bad_area;
|
||
|
if (!pud_present(*pud))
|
||
|
set_pud(pud, *pud_k);
|
||
|
|
||
|
pmd = pmd_offset(pud, addr);
|
||
|
pmd_k = pmd_offset(pud_k, addr);
|
||
|
|
||
|
#ifdef CONFIG_ARM_LPAE
|
||
|
/*
|
||
|
* Only one hardware entry per PMD with LPAE.
|
||
|
*/
|
||
|
index = 0;
|
||
|
#else
|
||
|
/*
|
||
|
* On ARM one Linux PGD entry contains two hardware entries (see page
|
||
|
* tables layout in pgtable.h). We normally guarantee that we always
|
||
|
* fill both L1 entries. But create_mapping() doesn't follow the rule.
|
||
|
* It can create inidividual L1 entries, so here we have to call
|
||
|
* pmd_none() check for the entry really corresponded to address, not
|
||
|
* for the first of pair.
|
||
|
*/
|
||
|
index = (addr >> SECTION_SHIFT) & 1;
|
||
|
#endif
|
||
|
if (pmd_none(pmd_k[index]))
|
||
|
goto bad_area;
|
||
|
|
||
|
copy_pmd(pmd, pmd_k);
|
||
|
return 0;
|
||
|
|
||
|
bad_area:
|
||
|
do_bad_area(addr, fsr, regs);
|
||
|
return 0;
|
||
|
}
|
||
|
#else /* CONFIG_MMU */
|
||
|
static int
|
||
|
do_translation_fault(unsigned long addr, unsigned int fsr,
|
||
|
struct pt_regs *regs)
|
||
|
{
|
||
|
return 0;
|
||
|
}
|
||
|
#endif /* CONFIG_MMU */
|
||
|
|
||
|
/*
|
||
|
* Some section permission faults need to be handled gracefully.
|
||
|
* They can happen due to a __{get,put}_user during an oops.
|
||
|
*/
|
||
|
#ifndef CONFIG_ARM_LPAE
|
||
|
static int
|
||
|
do_sect_fault(unsigned long addr, unsigned int fsr, struct pt_regs *regs)
|
||
|
{
|
||
|
do_bad_area(addr, fsr, regs);
|
||
|
return 0;
|
||
|
}
|
||
|
#endif /* CONFIG_ARM_LPAE */
|
||
|
|
||
|
/*
|
||
|
* This abort handler always returns "fault".
|
||
|
*/
|
||
|
static int
|
||
|
do_bad(unsigned long addr, unsigned int fsr, struct pt_regs *regs)
|
||
|
{
|
||
|
return 1;
|
||
|
}
|
||
|
|
||
|
struct fsr_info {
|
||
|
int (*fn)(unsigned long addr, unsigned int fsr, struct pt_regs *regs);
|
||
|
int sig;
|
||
|
int code;
|
||
|
const char *name;
|
||
|
};
|
||
|
|
||
|
/* FSR definition */
|
||
|
#ifdef CONFIG_ARM_LPAE
|
||
|
#include "fsr-3level.c"
|
||
|
#else
|
||
|
#include "fsr-2level.c"
|
||
|
#endif
|
||
|
|
||
|
void __init
|
||
|
hook_fault_code(int nr, int (*fn)(unsigned long, unsigned int, struct pt_regs *),
|
||
|
int sig, int code, const char *name)
|
||
|
{
|
||
|
if (nr < 0 || nr >= ARRAY_SIZE(fsr_info))
|
||
|
BUG();
|
||
|
|
||
|
fsr_info[nr].fn = fn;
|
||
|
fsr_info[nr].sig = sig;
|
||
|
fsr_info[nr].code = code;
|
||
|
fsr_info[nr].name = name;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Dispatch a data abort to the relevant handler.
|
||
|
*/
|
||
|
asmlinkage void __exception
|
||
|
do_DataAbort(unsigned long addr, unsigned int fsr, struct pt_regs *regs)
|
||
|
{
|
||
|
const struct fsr_info *inf = fsr_info + fsr_fs(fsr);
|
||
|
struct siginfo info;
|
||
|
|
||
|
if (!inf->fn(addr, fsr & ~FSR_LNX_PF, regs))
|
||
|
return;
|
||
|
|
||
|
trace_unhandled_abort(regs, addr, fsr);
|
||
|
|
||
|
printk(KERN_ALERT "Unhandled fault: %s (0x%03x) at 0x%08lx\n",
|
||
|
inf->name, fsr, addr);
|
||
|
|
||
|
info.si_signo = inf->sig;
|
||
|
info.si_errno = 0;
|
||
|
info.si_code = inf->code;
|
||
|
info.si_addr = (void __user *)addr;
|
||
|
arm_notify_die("", regs, &info, fsr, 0);
|
||
|
}
|
||
|
|
||
|
void __init
|
||
|
hook_ifault_code(int nr, int (*fn)(unsigned long, unsigned int, struct pt_regs *),
|
||
|
int sig, int code, const char *name)
|
||
|
{
|
||
|
if (nr < 0 || nr >= ARRAY_SIZE(ifsr_info))
|
||
|
BUG();
|
||
|
|
||
|
ifsr_info[nr].fn = fn;
|
||
|
ifsr_info[nr].sig = sig;
|
||
|
ifsr_info[nr].code = code;
|
||
|
ifsr_info[nr].name = name;
|
||
|
}
|
||
|
|
||
|
asmlinkage void __exception
|
||
|
do_PrefetchAbort(unsigned long addr, unsigned int ifsr, struct pt_regs *regs)
|
||
|
{
|
||
|
const struct fsr_info *inf = ifsr_info + fsr_fs(ifsr);
|
||
|
struct siginfo info;
|
||
|
|
||
|
if (!inf->fn(addr, ifsr | FSR_LNX_PF, regs))
|
||
|
return;
|
||
|
|
||
|
trace_unhandled_abort(regs, addr, ifsr);
|
||
|
|
||
|
printk(KERN_ALERT "Unhandled prefetch abort: %s (0x%03x) at 0x%08lx\n",
|
||
|
inf->name, ifsr, addr);
|
||
|
|
||
|
info.si_signo = inf->sig;
|
||
|
info.si_errno = 0;
|
||
|
info.si_code = inf->code;
|
||
|
info.si_addr = (void __user *)addr;
|
||
|
arm_notify_die("", regs, &info, ifsr, 0);
|
||
|
}
|
||
|
|
||
|
#ifndef CONFIG_ARM_LPAE
|
||
|
static int __init exceptions_init(void)
|
||
|
{
|
||
|
if (cpu_architecture() >= CPU_ARCH_ARMv6) {
|
||
|
hook_fault_code(4, do_translation_fault, SIGSEGV, SEGV_MAPERR,
|
||
|
"I-cache maintenance fault");
|
||
|
}
|
||
|
|
||
|
if (cpu_architecture() >= CPU_ARCH_ARMv7) {
|
||
|
/*
|
||
|
* TODO: Access flag faults introduced in ARMv6K.
|
||
|
* Runtime check for 'K' extension is needed
|
||
|
*/
|
||
|
hook_fault_code(3, do_bad, SIGSEGV, SEGV_MAPERR,
|
||
|
"section access flag fault");
|
||
|
hook_fault_code(6, do_bad, SIGSEGV, SEGV_MAPERR,
|
||
|
"section access flag fault");
|
||
|
}
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
arch_initcall(exceptions_init);
|
||
|
#endif
|