3574 lines
104 KiB
C
3574 lines
104 KiB
C
|
/*
|
||
|
* linux/fs/ext3/inode.c
|
||
|
*
|
||
|
* Copyright (C) 1992, 1993, 1994, 1995
|
||
|
* Remy Card (card@masi.ibp.fr)
|
||
|
* Laboratoire MASI - Institut Blaise Pascal
|
||
|
* Universite Pierre et Marie Curie (Paris VI)
|
||
|
*
|
||
|
* from
|
||
|
*
|
||
|
* linux/fs/minix/inode.c
|
||
|
*
|
||
|
* Copyright (C) 1991, 1992 Linus Torvalds
|
||
|
*
|
||
|
* Goal-directed block allocation by Stephen Tweedie
|
||
|
* (sct@redhat.com), 1993, 1998
|
||
|
* Big-endian to little-endian byte-swapping/bitmaps by
|
||
|
* David S. Miller (davem@caip.rutgers.edu), 1995
|
||
|
* 64-bit file support on 64-bit platforms by Jakub Jelinek
|
||
|
* (jj@sunsite.ms.mff.cuni.cz)
|
||
|
*
|
||
|
* Assorted race fixes, rewrite of ext3_get_block() by Al Viro, 2000
|
||
|
*/
|
||
|
|
||
|
#include <linux/highuid.h>
|
||
|
#include <linux/quotaops.h>
|
||
|
#include <linux/writeback.h>
|
||
|
#include <linux/mpage.h>
|
||
|
#include <linux/namei.h>
|
||
|
#include <linux/aio.h>
|
||
|
#include "ext3.h"
|
||
|
#include "xattr.h"
|
||
|
#include "acl.h"
|
||
|
|
||
|
static int ext3_writepage_trans_blocks(struct inode *inode);
|
||
|
static int ext3_block_truncate_page(struct inode *inode, loff_t from);
|
||
|
|
||
|
/*
|
||
|
* Test whether an inode is a fast symlink.
|
||
|
*/
|
||
|
static int ext3_inode_is_fast_symlink(struct inode *inode)
|
||
|
{
|
||
|
int ea_blocks = EXT3_I(inode)->i_file_acl ?
|
||
|
(inode->i_sb->s_blocksize >> 9) : 0;
|
||
|
|
||
|
return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* The ext3 forget function must perform a revoke if we are freeing data
|
||
|
* which has been journaled. Metadata (eg. indirect blocks) must be
|
||
|
* revoked in all cases.
|
||
|
*
|
||
|
* "bh" may be NULL: a metadata block may have been freed from memory
|
||
|
* but there may still be a record of it in the journal, and that record
|
||
|
* still needs to be revoked.
|
||
|
*/
|
||
|
int ext3_forget(handle_t *handle, int is_metadata, struct inode *inode,
|
||
|
struct buffer_head *bh, ext3_fsblk_t blocknr)
|
||
|
{
|
||
|
int err;
|
||
|
|
||
|
might_sleep();
|
||
|
|
||
|
trace_ext3_forget(inode, is_metadata, blocknr);
|
||
|
BUFFER_TRACE(bh, "enter");
|
||
|
|
||
|
jbd_debug(4, "forgetting bh %p: is_metadata = %d, mode %o, "
|
||
|
"data mode %lx\n",
|
||
|
bh, is_metadata, inode->i_mode,
|
||
|
test_opt(inode->i_sb, DATA_FLAGS));
|
||
|
|
||
|
/* Never use the revoke function if we are doing full data
|
||
|
* journaling: there is no need to, and a V1 superblock won't
|
||
|
* support it. Otherwise, only skip the revoke on un-journaled
|
||
|
* data blocks. */
|
||
|
|
||
|
if (test_opt(inode->i_sb, DATA_FLAGS) == EXT3_MOUNT_JOURNAL_DATA ||
|
||
|
(!is_metadata && !ext3_should_journal_data(inode))) {
|
||
|
if (bh) {
|
||
|
BUFFER_TRACE(bh, "call journal_forget");
|
||
|
return ext3_journal_forget(handle, bh);
|
||
|
}
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* data!=journal && (is_metadata || should_journal_data(inode))
|
||
|
*/
|
||
|
BUFFER_TRACE(bh, "call ext3_journal_revoke");
|
||
|
err = ext3_journal_revoke(handle, blocknr, bh);
|
||
|
if (err)
|
||
|
ext3_abort(inode->i_sb, __func__,
|
||
|
"error %d when attempting revoke", err);
|
||
|
BUFFER_TRACE(bh, "exit");
|
||
|
return err;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Work out how many blocks we need to proceed with the next chunk of a
|
||
|
* truncate transaction.
|
||
|
*/
|
||
|
static unsigned long blocks_for_truncate(struct inode *inode)
|
||
|
{
|
||
|
unsigned long needed;
|
||
|
|
||
|
needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9);
|
||
|
|
||
|
/* Give ourselves just enough room to cope with inodes in which
|
||
|
* i_blocks is corrupt: we've seen disk corruptions in the past
|
||
|
* which resulted in random data in an inode which looked enough
|
||
|
* like a regular file for ext3 to try to delete it. Things
|
||
|
* will go a bit crazy if that happens, but at least we should
|
||
|
* try not to panic the whole kernel. */
|
||
|
if (needed < 2)
|
||
|
needed = 2;
|
||
|
|
||
|
/* But we need to bound the transaction so we don't overflow the
|
||
|
* journal. */
|
||
|
if (needed > EXT3_MAX_TRANS_DATA)
|
||
|
needed = EXT3_MAX_TRANS_DATA;
|
||
|
|
||
|
return EXT3_DATA_TRANS_BLOCKS(inode->i_sb) + needed;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Truncate transactions can be complex and absolutely huge. So we need to
|
||
|
* be able to restart the transaction at a conventient checkpoint to make
|
||
|
* sure we don't overflow the journal.
|
||
|
*
|
||
|
* start_transaction gets us a new handle for a truncate transaction,
|
||
|
* and extend_transaction tries to extend the existing one a bit. If
|
||
|
* extend fails, we need to propagate the failure up and restart the
|
||
|
* transaction in the top-level truncate loop. --sct
|
||
|
*/
|
||
|
static handle_t *start_transaction(struct inode *inode)
|
||
|
{
|
||
|
handle_t *result;
|
||
|
|
||
|
result = ext3_journal_start(inode, blocks_for_truncate(inode));
|
||
|
if (!IS_ERR(result))
|
||
|
return result;
|
||
|
|
||
|
ext3_std_error(inode->i_sb, PTR_ERR(result));
|
||
|
return result;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Try to extend this transaction for the purposes of truncation.
|
||
|
*
|
||
|
* Returns 0 if we managed to create more room. If we can't create more
|
||
|
* room, and the transaction must be restarted we return 1.
|
||
|
*/
|
||
|
static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
|
||
|
{
|
||
|
if (handle->h_buffer_credits > EXT3_RESERVE_TRANS_BLOCKS)
|
||
|
return 0;
|
||
|
if (!ext3_journal_extend(handle, blocks_for_truncate(inode)))
|
||
|
return 0;
|
||
|
return 1;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Restart the transaction associated with *handle. This does a commit,
|
||
|
* so before we call here everything must be consistently dirtied against
|
||
|
* this transaction.
|
||
|
*/
|
||
|
static int truncate_restart_transaction(handle_t *handle, struct inode *inode)
|
||
|
{
|
||
|
int ret;
|
||
|
|
||
|
jbd_debug(2, "restarting handle %p\n", handle);
|
||
|
/*
|
||
|
* Drop truncate_mutex to avoid deadlock with ext3_get_blocks_handle
|
||
|
* At this moment, get_block can be called only for blocks inside
|
||
|
* i_size since page cache has been already dropped and writes are
|
||
|
* blocked by i_mutex. So we can safely drop the truncate_mutex.
|
||
|
*/
|
||
|
mutex_unlock(&EXT3_I(inode)->truncate_mutex);
|
||
|
ret = ext3_journal_restart(handle, blocks_for_truncate(inode));
|
||
|
mutex_lock(&EXT3_I(inode)->truncate_mutex);
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Called at inode eviction from icache
|
||
|
*/
|
||
|
void ext3_evict_inode (struct inode *inode)
|
||
|
{
|
||
|
struct ext3_inode_info *ei = EXT3_I(inode);
|
||
|
struct ext3_block_alloc_info *rsv;
|
||
|
handle_t *handle;
|
||
|
int want_delete = 0;
|
||
|
|
||
|
trace_ext3_evict_inode(inode);
|
||
|
if (!inode->i_nlink && !is_bad_inode(inode)) {
|
||
|
dquot_initialize(inode);
|
||
|
want_delete = 1;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* When journalling data dirty buffers are tracked only in the journal.
|
||
|
* So although mm thinks everything is clean and ready for reaping the
|
||
|
* inode might still have some pages to write in the running
|
||
|
* transaction or waiting to be checkpointed. Thus calling
|
||
|
* journal_invalidatepage() (via truncate_inode_pages()) to discard
|
||
|
* these buffers can cause data loss. Also even if we did not discard
|
||
|
* these buffers, we would have no way to find them after the inode
|
||
|
* is reaped and thus user could see stale data if he tries to read
|
||
|
* them before the transaction is checkpointed. So be careful and
|
||
|
* force everything to disk here... We use ei->i_datasync_tid to
|
||
|
* store the newest transaction containing inode's data.
|
||
|
*
|
||
|
* Note that directories do not have this problem because they don't
|
||
|
* use page cache.
|
||
|
*
|
||
|
* The s_journal check handles the case when ext3_get_journal() fails
|
||
|
* and puts the journal inode.
|
||
|
*/
|
||
|
if (inode->i_nlink && ext3_should_journal_data(inode) &&
|
||
|
EXT3_SB(inode->i_sb)->s_journal &&
|
||
|
(S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) &&
|
||
|
inode->i_ino != EXT3_JOURNAL_INO) {
|
||
|
tid_t commit_tid = atomic_read(&ei->i_datasync_tid);
|
||
|
journal_t *journal = EXT3_SB(inode->i_sb)->s_journal;
|
||
|
|
||
|
log_start_commit(journal, commit_tid);
|
||
|
log_wait_commit(journal, commit_tid);
|
||
|
filemap_write_and_wait(&inode->i_data);
|
||
|
}
|
||
|
truncate_inode_pages_final(&inode->i_data);
|
||
|
|
||
|
ext3_discard_reservation(inode);
|
||
|
rsv = ei->i_block_alloc_info;
|
||
|
ei->i_block_alloc_info = NULL;
|
||
|
if (unlikely(rsv))
|
||
|
kfree(rsv);
|
||
|
|
||
|
if (!want_delete)
|
||
|
goto no_delete;
|
||
|
|
||
|
handle = start_transaction(inode);
|
||
|
if (IS_ERR(handle)) {
|
||
|
/*
|
||
|
* If we're going to skip the normal cleanup, we still need to
|
||
|
* make sure that the in-core orphan linked list is properly
|
||
|
* cleaned up.
|
||
|
*/
|
||
|
ext3_orphan_del(NULL, inode);
|
||
|
goto no_delete;
|
||
|
}
|
||
|
|
||
|
if (IS_SYNC(inode))
|
||
|
handle->h_sync = 1;
|
||
|
inode->i_size = 0;
|
||
|
if (inode->i_blocks)
|
||
|
ext3_truncate(inode);
|
||
|
/*
|
||
|
* Kill off the orphan record created when the inode lost the last
|
||
|
* link. Note that ext3_orphan_del() has to be able to cope with the
|
||
|
* deletion of a non-existent orphan - ext3_truncate() could
|
||
|
* have removed the record.
|
||
|
*/
|
||
|
ext3_orphan_del(handle, inode);
|
||
|
ei->i_dtime = get_seconds();
|
||
|
|
||
|
/*
|
||
|
* One subtle ordering requirement: if anything has gone wrong
|
||
|
* (transaction abort, IO errors, whatever), then we can still
|
||
|
* do these next steps (the fs will already have been marked as
|
||
|
* having errors), but we can't free the inode if the mark_dirty
|
||
|
* fails.
|
||
|
*/
|
||
|
if (ext3_mark_inode_dirty(handle, inode)) {
|
||
|
/* If that failed, just dquot_drop() and be done with that */
|
||
|
dquot_drop(inode);
|
||
|
clear_inode(inode);
|
||
|
} else {
|
||
|
ext3_xattr_delete_inode(handle, inode);
|
||
|
dquot_free_inode(inode);
|
||
|
dquot_drop(inode);
|
||
|
clear_inode(inode);
|
||
|
ext3_free_inode(handle, inode);
|
||
|
}
|
||
|
ext3_journal_stop(handle);
|
||
|
return;
|
||
|
no_delete:
|
||
|
clear_inode(inode);
|
||
|
dquot_drop(inode);
|
||
|
}
|
||
|
|
||
|
typedef struct {
|
||
|
__le32 *p;
|
||
|
__le32 key;
|
||
|
struct buffer_head *bh;
|
||
|
} Indirect;
|
||
|
|
||
|
static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
|
||
|
{
|
||
|
p->key = *(p->p = v);
|
||
|
p->bh = bh;
|
||
|
}
|
||
|
|
||
|
static int verify_chain(Indirect *from, Indirect *to)
|
||
|
{
|
||
|
while (from <= to && from->key == *from->p)
|
||
|
from++;
|
||
|
return (from > to);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* ext3_block_to_path - parse the block number into array of offsets
|
||
|
* @inode: inode in question (we are only interested in its superblock)
|
||
|
* @i_block: block number to be parsed
|
||
|
* @offsets: array to store the offsets in
|
||
|
* @boundary: set this non-zero if the referred-to block is likely to be
|
||
|
* followed (on disk) by an indirect block.
|
||
|
*
|
||
|
* To store the locations of file's data ext3 uses a data structure common
|
||
|
* for UNIX filesystems - tree of pointers anchored in the inode, with
|
||
|
* data blocks at leaves and indirect blocks in intermediate nodes.
|
||
|
* This function translates the block number into path in that tree -
|
||
|
* return value is the path length and @offsets[n] is the offset of
|
||
|
* pointer to (n+1)th node in the nth one. If @block is out of range
|
||
|
* (negative or too large) warning is printed and zero returned.
|
||
|
*
|
||
|
* Note: function doesn't find node addresses, so no IO is needed. All
|
||
|
* we need to know is the capacity of indirect blocks (taken from the
|
||
|
* inode->i_sb).
|
||
|
*/
|
||
|
|
||
|
/*
|
||
|
* Portability note: the last comparison (check that we fit into triple
|
||
|
* indirect block) is spelled differently, because otherwise on an
|
||
|
* architecture with 32-bit longs and 8Kb pages we might get into trouble
|
||
|
* if our filesystem had 8Kb blocks. We might use long long, but that would
|
||
|
* kill us on x86. Oh, well, at least the sign propagation does not matter -
|
||
|
* i_block would have to be negative in the very beginning, so we would not
|
||
|
* get there at all.
|
||
|
*/
|
||
|
|
||
|
static int ext3_block_to_path(struct inode *inode,
|
||
|
long i_block, int offsets[4], int *boundary)
|
||
|
{
|
||
|
int ptrs = EXT3_ADDR_PER_BLOCK(inode->i_sb);
|
||
|
int ptrs_bits = EXT3_ADDR_PER_BLOCK_BITS(inode->i_sb);
|
||
|
const long direct_blocks = EXT3_NDIR_BLOCKS,
|
||
|
indirect_blocks = ptrs,
|
||
|
double_blocks = (1 << (ptrs_bits * 2));
|
||
|
int n = 0;
|
||
|
int final = 0;
|
||
|
|
||
|
if (i_block < 0) {
|
||
|
ext3_warning (inode->i_sb, "ext3_block_to_path", "block < 0");
|
||
|
} else if (i_block < direct_blocks) {
|
||
|
offsets[n++] = i_block;
|
||
|
final = direct_blocks;
|
||
|
} else if ( (i_block -= direct_blocks) < indirect_blocks) {
|
||
|
offsets[n++] = EXT3_IND_BLOCK;
|
||
|
offsets[n++] = i_block;
|
||
|
final = ptrs;
|
||
|
} else if ((i_block -= indirect_blocks) < double_blocks) {
|
||
|
offsets[n++] = EXT3_DIND_BLOCK;
|
||
|
offsets[n++] = i_block >> ptrs_bits;
|
||
|
offsets[n++] = i_block & (ptrs - 1);
|
||
|
final = ptrs;
|
||
|
} else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
|
||
|
offsets[n++] = EXT3_TIND_BLOCK;
|
||
|
offsets[n++] = i_block >> (ptrs_bits * 2);
|
||
|
offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
|
||
|
offsets[n++] = i_block & (ptrs - 1);
|
||
|
final = ptrs;
|
||
|
} else {
|
||
|
ext3_warning(inode->i_sb, "ext3_block_to_path", "block > big");
|
||
|
}
|
||
|
if (boundary)
|
||
|
*boundary = final - 1 - (i_block & (ptrs - 1));
|
||
|
return n;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* ext3_get_branch - read the chain of indirect blocks leading to data
|
||
|
* @inode: inode in question
|
||
|
* @depth: depth of the chain (1 - direct pointer, etc.)
|
||
|
* @offsets: offsets of pointers in inode/indirect blocks
|
||
|
* @chain: place to store the result
|
||
|
* @err: here we store the error value
|
||
|
*
|
||
|
* Function fills the array of triples <key, p, bh> and returns %NULL
|
||
|
* if everything went OK or the pointer to the last filled triple
|
||
|
* (incomplete one) otherwise. Upon the return chain[i].key contains
|
||
|
* the number of (i+1)-th block in the chain (as it is stored in memory,
|
||
|
* i.e. little-endian 32-bit), chain[i].p contains the address of that
|
||
|
* number (it points into struct inode for i==0 and into the bh->b_data
|
||
|
* for i>0) and chain[i].bh points to the buffer_head of i-th indirect
|
||
|
* block for i>0 and NULL for i==0. In other words, it holds the block
|
||
|
* numbers of the chain, addresses they were taken from (and where we can
|
||
|
* verify that chain did not change) and buffer_heads hosting these
|
||
|
* numbers.
|
||
|
*
|
||
|
* Function stops when it stumbles upon zero pointer (absent block)
|
||
|
* (pointer to last triple returned, *@err == 0)
|
||
|
* or when it gets an IO error reading an indirect block
|
||
|
* (ditto, *@err == -EIO)
|
||
|
* or when it notices that chain had been changed while it was reading
|
||
|
* (ditto, *@err == -EAGAIN)
|
||
|
* or when it reads all @depth-1 indirect blocks successfully and finds
|
||
|
* the whole chain, all way to the data (returns %NULL, *err == 0).
|
||
|
*/
|
||
|
static Indirect *ext3_get_branch(struct inode *inode, int depth, int *offsets,
|
||
|
Indirect chain[4], int *err)
|
||
|
{
|
||
|
struct super_block *sb = inode->i_sb;
|
||
|
Indirect *p = chain;
|
||
|
struct buffer_head *bh;
|
||
|
|
||
|
*err = 0;
|
||
|
/* i_data is not going away, no lock needed */
|
||
|
add_chain (chain, NULL, EXT3_I(inode)->i_data + *offsets);
|
||
|
if (!p->key)
|
||
|
goto no_block;
|
||
|
while (--depth) {
|
||
|
bh = sb_bread(sb, le32_to_cpu(p->key));
|
||
|
if (!bh)
|
||
|
goto failure;
|
||
|
/* Reader: pointers */
|
||
|
if (!verify_chain(chain, p))
|
||
|
goto changed;
|
||
|
add_chain(++p, bh, (__le32*)bh->b_data + *++offsets);
|
||
|
/* Reader: end */
|
||
|
if (!p->key)
|
||
|
goto no_block;
|
||
|
}
|
||
|
return NULL;
|
||
|
|
||
|
changed:
|
||
|
brelse(bh);
|
||
|
*err = -EAGAIN;
|
||
|
goto no_block;
|
||
|
failure:
|
||
|
*err = -EIO;
|
||
|
no_block:
|
||
|
return p;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* ext3_find_near - find a place for allocation with sufficient locality
|
||
|
* @inode: owner
|
||
|
* @ind: descriptor of indirect block.
|
||
|
*
|
||
|
* This function returns the preferred place for block allocation.
|
||
|
* It is used when heuristic for sequential allocation fails.
|
||
|
* Rules are:
|
||
|
* + if there is a block to the left of our position - allocate near it.
|
||
|
* + if pointer will live in indirect block - allocate near that block.
|
||
|
* + if pointer will live in inode - allocate in the same
|
||
|
* cylinder group.
|
||
|
*
|
||
|
* In the latter case we colour the starting block by the callers PID to
|
||
|
* prevent it from clashing with concurrent allocations for a different inode
|
||
|
* in the same block group. The PID is used here so that functionally related
|
||
|
* files will be close-by on-disk.
|
||
|
*
|
||
|
* Caller must make sure that @ind is valid and will stay that way.
|
||
|
*/
|
||
|
static ext3_fsblk_t ext3_find_near(struct inode *inode, Indirect *ind)
|
||
|
{
|
||
|
struct ext3_inode_info *ei = EXT3_I(inode);
|
||
|
__le32 *start = ind->bh ? (__le32*) ind->bh->b_data : ei->i_data;
|
||
|
__le32 *p;
|
||
|
ext3_fsblk_t bg_start;
|
||
|
ext3_grpblk_t colour;
|
||
|
|
||
|
/* Try to find previous block */
|
||
|
for (p = ind->p - 1; p >= start; p--) {
|
||
|
if (*p)
|
||
|
return le32_to_cpu(*p);
|
||
|
}
|
||
|
|
||
|
/* No such thing, so let's try location of indirect block */
|
||
|
if (ind->bh)
|
||
|
return ind->bh->b_blocknr;
|
||
|
|
||
|
/*
|
||
|
* It is going to be referred to from the inode itself? OK, just put it
|
||
|
* into the same cylinder group then.
|
||
|
*/
|
||
|
bg_start = ext3_group_first_block_no(inode->i_sb, ei->i_block_group);
|
||
|
colour = (current->pid % 16) *
|
||
|
(EXT3_BLOCKS_PER_GROUP(inode->i_sb) / 16);
|
||
|
return bg_start + colour;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* ext3_find_goal - find a preferred place for allocation.
|
||
|
* @inode: owner
|
||
|
* @block: block we want
|
||
|
* @partial: pointer to the last triple within a chain
|
||
|
*
|
||
|
* Normally this function find the preferred place for block allocation,
|
||
|
* returns it.
|
||
|
*/
|
||
|
|
||
|
static ext3_fsblk_t ext3_find_goal(struct inode *inode, long block,
|
||
|
Indirect *partial)
|
||
|
{
|
||
|
struct ext3_block_alloc_info *block_i;
|
||
|
|
||
|
block_i = EXT3_I(inode)->i_block_alloc_info;
|
||
|
|
||
|
/*
|
||
|
* try the heuristic for sequential allocation,
|
||
|
* failing that at least try to get decent locality.
|
||
|
*/
|
||
|
if (block_i && (block == block_i->last_alloc_logical_block + 1)
|
||
|
&& (block_i->last_alloc_physical_block != 0)) {
|
||
|
return block_i->last_alloc_physical_block + 1;
|
||
|
}
|
||
|
|
||
|
return ext3_find_near(inode, partial);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* ext3_blks_to_allocate - Look up the block map and count the number
|
||
|
* of direct blocks need to be allocated for the given branch.
|
||
|
*
|
||
|
* @branch: chain of indirect blocks
|
||
|
* @k: number of blocks need for indirect blocks
|
||
|
* @blks: number of data blocks to be mapped.
|
||
|
* @blocks_to_boundary: the offset in the indirect block
|
||
|
*
|
||
|
* return the total number of blocks to be allocate, including the
|
||
|
* direct and indirect blocks.
|
||
|
*/
|
||
|
static int ext3_blks_to_allocate(Indirect *branch, int k, unsigned long blks,
|
||
|
int blocks_to_boundary)
|
||
|
{
|
||
|
unsigned long count = 0;
|
||
|
|
||
|
/*
|
||
|
* Simple case, [t,d]Indirect block(s) has not allocated yet
|
||
|
* then it's clear blocks on that path have not allocated
|
||
|
*/
|
||
|
if (k > 0) {
|
||
|
/* right now we don't handle cross boundary allocation */
|
||
|
if (blks < blocks_to_boundary + 1)
|
||
|
count += blks;
|
||
|
else
|
||
|
count += blocks_to_boundary + 1;
|
||
|
return count;
|
||
|
}
|
||
|
|
||
|
count++;
|
||
|
while (count < blks && count <= blocks_to_boundary &&
|
||
|
le32_to_cpu(*(branch[0].p + count)) == 0) {
|
||
|
count++;
|
||
|
}
|
||
|
return count;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* ext3_alloc_blocks - multiple allocate blocks needed for a branch
|
||
|
* @handle: handle for this transaction
|
||
|
* @inode: owner
|
||
|
* @goal: preferred place for allocation
|
||
|
* @indirect_blks: the number of blocks need to allocate for indirect
|
||
|
* blocks
|
||
|
* @blks: number of blocks need to allocated for direct blocks
|
||
|
* @new_blocks: on return it will store the new block numbers for
|
||
|
* the indirect blocks(if needed) and the first direct block,
|
||
|
* @err: here we store the error value
|
||
|
*
|
||
|
* return the number of direct blocks allocated
|
||
|
*/
|
||
|
static int ext3_alloc_blocks(handle_t *handle, struct inode *inode,
|
||
|
ext3_fsblk_t goal, int indirect_blks, int blks,
|
||
|
ext3_fsblk_t new_blocks[4], int *err)
|
||
|
{
|
||
|
int target, i;
|
||
|
unsigned long count = 0;
|
||
|
int index = 0;
|
||
|
ext3_fsblk_t current_block = 0;
|
||
|
int ret = 0;
|
||
|
|
||
|
/*
|
||
|
* Here we try to allocate the requested multiple blocks at once,
|
||
|
* on a best-effort basis.
|
||
|
* To build a branch, we should allocate blocks for
|
||
|
* the indirect blocks(if not allocated yet), and at least
|
||
|
* the first direct block of this branch. That's the
|
||
|
* minimum number of blocks need to allocate(required)
|
||
|
*/
|
||
|
target = blks + indirect_blks;
|
||
|
|
||
|
while (1) {
|
||
|
count = target;
|
||
|
/* allocating blocks for indirect blocks and direct blocks */
|
||
|
current_block = ext3_new_blocks(handle,inode,goal,&count,err);
|
||
|
if (*err)
|
||
|
goto failed_out;
|
||
|
|
||
|
target -= count;
|
||
|
/* allocate blocks for indirect blocks */
|
||
|
while (index < indirect_blks && count) {
|
||
|
new_blocks[index++] = current_block++;
|
||
|
count--;
|
||
|
}
|
||
|
|
||
|
if (count > 0)
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
/* save the new block number for the first direct block */
|
||
|
new_blocks[index] = current_block;
|
||
|
|
||
|
/* total number of blocks allocated for direct blocks */
|
||
|
ret = count;
|
||
|
*err = 0;
|
||
|
return ret;
|
||
|
failed_out:
|
||
|
for (i = 0; i <index; i++)
|
||
|
ext3_free_blocks(handle, inode, new_blocks[i], 1);
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* ext3_alloc_branch - allocate and set up a chain of blocks.
|
||
|
* @handle: handle for this transaction
|
||
|
* @inode: owner
|
||
|
* @indirect_blks: number of allocated indirect blocks
|
||
|
* @blks: number of allocated direct blocks
|
||
|
* @goal: preferred place for allocation
|
||
|
* @offsets: offsets (in the blocks) to store the pointers to next.
|
||
|
* @branch: place to store the chain in.
|
||
|
*
|
||
|
* This function allocates blocks, zeroes out all but the last one,
|
||
|
* links them into chain and (if we are synchronous) writes them to disk.
|
||
|
* In other words, it prepares a branch that can be spliced onto the
|
||
|
* inode. It stores the information about that chain in the branch[], in
|
||
|
* the same format as ext3_get_branch() would do. We are calling it after
|
||
|
* we had read the existing part of chain and partial points to the last
|
||
|
* triple of that (one with zero ->key). Upon the exit we have the same
|
||
|
* picture as after the successful ext3_get_block(), except that in one
|
||
|
* place chain is disconnected - *branch->p is still zero (we did not
|
||
|
* set the last link), but branch->key contains the number that should
|
||
|
* be placed into *branch->p to fill that gap.
|
||
|
*
|
||
|
* If allocation fails we free all blocks we've allocated (and forget
|
||
|
* their buffer_heads) and return the error value the from failed
|
||
|
* ext3_alloc_block() (normally -ENOSPC). Otherwise we set the chain
|
||
|
* as described above and return 0.
|
||
|
*/
|
||
|
static int ext3_alloc_branch(handle_t *handle, struct inode *inode,
|
||
|
int indirect_blks, int *blks, ext3_fsblk_t goal,
|
||
|
int *offsets, Indirect *branch)
|
||
|
{
|
||
|
int blocksize = inode->i_sb->s_blocksize;
|
||
|
int i, n = 0;
|
||
|
int err = 0;
|
||
|
struct buffer_head *bh;
|
||
|
int num;
|
||
|
ext3_fsblk_t new_blocks[4];
|
||
|
ext3_fsblk_t current_block;
|
||
|
|
||
|
num = ext3_alloc_blocks(handle, inode, goal, indirect_blks,
|
||
|
*blks, new_blocks, &err);
|
||
|
if (err)
|
||
|
return err;
|
||
|
|
||
|
branch[0].key = cpu_to_le32(new_blocks[0]);
|
||
|
/*
|
||
|
* metadata blocks and data blocks are allocated.
|
||
|
*/
|
||
|
for (n = 1; n <= indirect_blks; n++) {
|
||
|
/*
|
||
|
* Get buffer_head for parent block, zero it out
|
||
|
* and set the pointer to new one, then send
|
||
|
* parent to disk.
|
||
|
*/
|
||
|
bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
|
||
|
if (unlikely(!bh)) {
|
||
|
err = -ENOMEM;
|
||
|
goto failed;
|
||
|
}
|
||
|
branch[n].bh = bh;
|
||
|
lock_buffer(bh);
|
||
|
BUFFER_TRACE(bh, "call get_create_access");
|
||
|
err = ext3_journal_get_create_access(handle, bh);
|
||
|
if (err) {
|
||
|
unlock_buffer(bh);
|
||
|
brelse(bh);
|
||
|
goto failed;
|
||
|
}
|
||
|
|
||
|
memset(bh->b_data, 0, blocksize);
|
||
|
branch[n].p = (__le32 *) bh->b_data + offsets[n];
|
||
|
branch[n].key = cpu_to_le32(new_blocks[n]);
|
||
|
*branch[n].p = branch[n].key;
|
||
|
if ( n == indirect_blks) {
|
||
|
current_block = new_blocks[n];
|
||
|
/*
|
||
|
* End of chain, update the last new metablock of
|
||
|
* the chain to point to the new allocated
|
||
|
* data blocks numbers
|
||
|
*/
|
||
|
for (i=1; i < num; i++)
|
||
|
*(branch[n].p + i) = cpu_to_le32(++current_block);
|
||
|
}
|
||
|
BUFFER_TRACE(bh, "marking uptodate");
|
||
|
set_buffer_uptodate(bh);
|
||
|
unlock_buffer(bh);
|
||
|
|
||
|
BUFFER_TRACE(bh, "call ext3_journal_dirty_metadata");
|
||
|
err = ext3_journal_dirty_metadata(handle, bh);
|
||
|
if (err)
|
||
|
goto failed;
|
||
|
}
|
||
|
*blks = num;
|
||
|
return err;
|
||
|
failed:
|
||
|
/* Allocation failed, free what we already allocated */
|
||
|
for (i = 1; i <= n ; i++) {
|
||
|
BUFFER_TRACE(branch[i].bh, "call journal_forget");
|
||
|
ext3_journal_forget(handle, branch[i].bh);
|
||
|
}
|
||
|
for (i = 0; i < indirect_blks; i++)
|
||
|
ext3_free_blocks(handle, inode, new_blocks[i], 1);
|
||
|
|
||
|
ext3_free_blocks(handle, inode, new_blocks[i], num);
|
||
|
|
||
|
return err;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* ext3_splice_branch - splice the allocated branch onto inode.
|
||
|
* @handle: handle for this transaction
|
||
|
* @inode: owner
|
||
|
* @block: (logical) number of block we are adding
|
||
|
* @where: location of missing link
|
||
|
* @num: number of indirect blocks we are adding
|
||
|
* @blks: number of direct blocks we are adding
|
||
|
*
|
||
|
* This function fills the missing link and does all housekeeping needed in
|
||
|
* inode (->i_blocks, etc.). In case of success we end up with the full
|
||
|
* chain to new block and return 0.
|
||
|
*/
|
||
|
static int ext3_splice_branch(handle_t *handle, struct inode *inode,
|
||
|
long block, Indirect *where, int num, int blks)
|
||
|
{
|
||
|
int i;
|
||
|
int err = 0;
|
||
|
struct ext3_block_alloc_info *block_i;
|
||
|
ext3_fsblk_t current_block;
|
||
|
struct ext3_inode_info *ei = EXT3_I(inode);
|
||
|
struct timespec now;
|
||
|
|
||
|
block_i = ei->i_block_alloc_info;
|
||
|
/*
|
||
|
* If we're splicing into a [td]indirect block (as opposed to the
|
||
|
* inode) then we need to get write access to the [td]indirect block
|
||
|
* before the splice.
|
||
|
*/
|
||
|
if (where->bh) {
|
||
|
BUFFER_TRACE(where->bh, "get_write_access");
|
||
|
err = ext3_journal_get_write_access(handle, where->bh);
|
||
|
if (err)
|
||
|
goto err_out;
|
||
|
}
|
||
|
/* That's it */
|
||
|
|
||
|
*where->p = where->key;
|
||
|
|
||
|
/*
|
||
|
* Update the host buffer_head or inode to point to more just allocated
|
||
|
* direct blocks blocks
|
||
|
*/
|
||
|
if (num == 0 && blks > 1) {
|
||
|
current_block = le32_to_cpu(where->key) + 1;
|
||
|
for (i = 1; i < blks; i++)
|
||
|
*(where->p + i ) = cpu_to_le32(current_block++);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* update the most recently allocated logical & physical block
|
||
|
* in i_block_alloc_info, to assist find the proper goal block for next
|
||
|
* allocation
|
||
|
*/
|
||
|
if (block_i) {
|
||
|
block_i->last_alloc_logical_block = block + blks - 1;
|
||
|
block_i->last_alloc_physical_block =
|
||
|
le32_to_cpu(where[num].key) + blks - 1;
|
||
|
}
|
||
|
|
||
|
/* We are done with atomic stuff, now do the rest of housekeeping */
|
||
|
now = CURRENT_TIME_SEC;
|
||
|
if (!timespec_equal(&inode->i_ctime, &now) || !where->bh) {
|
||
|
inode->i_ctime = now;
|
||
|
ext3_mark_inode_dirty(handle, inode);
|
||
|
}
|
||
|
/* ext3_mark_inode_dirty already updated i_sync_tid */
|
||
|
atomic_set(&ei->i_datasync_tid, handle->h_transaction->t_tid);
|
||
|
|
||
|
/* had we spliced it onto indirect block? */
|
||
|
if (where->bh) {
|
||
|
/*
|
||
|
* If we spliced it onto an indirect block, we haven't
|
||
|
* altered the inode. Note however that if it is being spliced
|
||
|
* onto an indirect block at the very end of the file (the
|
||
|
* file is growing) then we *will* alter the inode to reflect
|
||
|
* the new i_size. But that is not done here - it is done in
|
||
|
* generic_commit_write->__mark_inode_dirty->ext3_dirty_inode.
|
||
|
*/
|
||
|
jbd_debug(5, "splicing indirect only\n");
|
||
|
BUFFER_TRACE(where->bh, "call ext3_journal_dirty_metadata");
|
||
|
err = ext3_journal_dirty_metadata(handle, where->bh);
|
||
|
if (err)
|
||
|
goto err_out;
|
||
|
} else {
|
||
|
/*
|
||
|
* OK, we spliced it into the inode itself on a direct block.
|
||
|
* Inode was dirtied above.
|
||
|
*/
|
||
|
jbd_debug(5, "splicing direct\n");
|
||
|
}
|
||
|
return err;
|
||
|
|
||
|
err_out:
|
||
|
for (i = 1; i <= num; i++) {
|
||
|
BUFFER_TRACE(where[i].bh, "call journal_forget");
|
||
|
ext3_journal_forget(handle, where[i].bh);
|
||
|
ext3_free_blocks(handle,inode,le32_to_cpu(where[i-1].key),1);
|
||
|
}
|
||
|
ext3_free_blocks(handle, inode, le32_to_cpu(where[num].key), blks);
|
||
|
|
||
|
return err;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Allocation strategy is simple: if we have to allocate something, we will
|
||
|
* have to go the whole way to leaf. So let's do it before attaching anything
|
||
|
* to tree, set linkage between the newborn blocks, write them if sync is
|
||
|
* required, recheck the path, free and repeat if check fails, otherwise
|
||
|
* set the last missing link (that will protect us from any truncate-generated
|
||
|
* removals - all blocks on the path are immune now) and possibly force the
|
||
|
* write on the parent block.
|
||
|
* That has a nice additional property: no special recovery from the failed
|
||
|
* allocations is needed - we simply release blocks and do not touch anything
|
||
|
* reachable from inode.
|
||
|
*
|
||
|
* `handle' can be NULL if create == 0.
|
||
|
*
|
||
|
* The BKL may not be held on entry here. Be sure to take it early.
|
||
|
* return > 0, # of blocks mapped or allocated.
|
||
|
* return = 0, if plain lookup failed.
|
||
|
* return < 0, error case.
|
||
|
*/
|
||
|
int ext3_get_blocks_handle(handle_t *handle, struct inode *inode,
|
||
|
sector_t iblock, unsigned long maxblocks,
|
||
|
struct buffer_head *bh_result,
|
||
|
int create)
|
||
|
{
|
||
|
int err = -EIO;
|
||
|
int offsets[4];
|
||
|
Indirect chain[4];
|
||
|
Indirect *partial;
|
||
|
ext3_fsblk_t goal;
|
||
|
int indirect_blks;
|
||
|
int blocks_to_boundary = 0;
|
||
|
int depth;
|
||
|
struct ext3_inode_info *ei = EXT3_I(inode);
|
||
|
int count = 0;
|
||
|
ext3_fsblk_t first_block = 0;
|
||
|
|
||
|
|
||
|
trace_ext3_get_blocks_enter(inode, iblock, maxblocks, create);
|
||
|
J_ASSERT(handle != NULL || create == 0);
|
||
|
depth = ext3_block_to_path(inode,iblock,offsets,&blocks_to_boundary);
|
||
|
|
||
|
if (depth == 0)
|
||
|
goto out;
|
||
|
|
||
|
partial = ext3_get_branch(inode, depth, offsets, chain, &err);
|
||
|
|
||
|
/* Simplest case - block found, no allocation needed */
|
||
|
if (!partial) {
|
||
|
first_block = le32_to_cpu(chain[depth - 1].key);
|
||
|
clear_buffer_new(bh_result);
|
||
|
count++;
|
||
|
/*map more blocks*/
|
||
|
while (count < maxblocks && count <= blocks_to_boundary) {
|
||
|
ext3_fsblk_t blk;
|
||
|
|
||
|
if (!verify_chain(chain, chain + depth - 1)) {
|
||
|
/*
|
||
|
* Indirect block might be removed by
|
||
|
* truncate while we were reading it.
|
||
|
* Handling of that case: forget what we've
|
||
|
* got now. Flag the err as EAGAIN, so it
|
||
|
* will reread.
|
||
|
*/
|
||
|
err = -EAGAIN;
|
||
|
count = 0;
|
||
|
break;
|
||
|
}
|
||
|
blk = le32_to_cpu(*(chain[depth-1].p + count));
|
||
|
|
||
|
if (blk == first_block + count)
|
||
|
count++;
|
||
|
else
|
||
|
break;
|
||
|
}
|
||
|
if (err != -EAGAIN)
|
||
|
goto got_it;
|
||
|
}
|
||
|
|
||
|
/* Next simple case - plain lookup or failed read of indirect block */
|
||
|
if (!create || err == -EIO)
|
||
|
goto cleanup;
|
||
|
|
||
|
/*
|
||
|
* Block out ext3_truncate while we alter the tree
|
||
|
*/
|
||
|
mutex_lock(&ei->truncate_mutex);
|
||
|
|
||
|
/*
|
||
|
* If the indirect block is missing while we are reading
|
||
|
* the chain(ext3_get_branch() returns -EAGAIN err), or
|
||
|
* if the chain has been changed after we grab the semaphore,
|
||
|
* (either because another process truncated this branch, or
|
||
|
* another get_block allocated this branch) re-grab the chain to see if
|
||
|
* the request block has been allocated or not.
|
||
|
*
|
||
|
* Since we already block the truncate/other get_block
|
||
|
* at this point, we will have the current copy of the chain when we
|
||
|
* splice the branch into the tree.
|
||
|
*/
|
||
|
if (err == -EAGAIN || !verify_chain(chain, partial)) {
|
||
|
while (partial > chain) {
|
||
|
brelse(partial->bh);
|
||
|
partial--;
|
||
|
}
|
||
|
partial = ext3_get_branch(inode, depth, offsets, chain, &err);
|
||
|
if (!partial) {
|
||
|
count++;
|
||
|
mutex_unlock(&ei->truncate_mutex);
|
||
|
if (err)
|
||
|
goto cleanup;
|
||
|
clear_buffer_new(bh_result);
|
||
|
goto got_it;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Okay, we need to do block allocation. Lazily initialize the block
|
||
|
* allocation info here if necessary
|
||
|
*/
|
||
|
if (S_ISREG(inode->i_mode) && (!ei->i_block_alloc_info))
|
||
|
ext3_init_block_alloc_info(inode);
|
||
|
|
||
|
goal = ext3_find_goal(inode, iblock, partial);
|
||
|
|
||
|
/* the number of blocks need to allocate for [d,t]indirect blocks */
|
||
|
indirect_blks = (chain + depth) - partial - 1;
|
||
|
|
||
|
/*
|
||
|
* Next look up the indirect map to count the totoal number of
|
||
|
* direct blocks to allocate for this branch.
|
||
|
*/
|
||
|
count = ext3_blks_to_allocate(partial, indirect_blks,
|
||
|
maxblocks, blocks_to_boundary);
|
||
|
err = ext3_alloc_branch(handle, inode, indirect_blks, &count, goal,
|
||
|
offsets + (partial - chain), partial);
|
||
|
|
||
|
/*
|
||
|
* The ext3_splice_branch call will free and forget any buffers
|
||
|
* on the new chain if there is a failure, but that risks using
|
||
|
* up transaction credits, especially for bitmaps where the
|
||
|
* credits cannot be returned. Can we handle this somehow? We
|
||
|
* may need to return -EAGAIN upwards in the worst case. --sct
|
||
|
*/
|
||
|
if (!err)
|
||
|
err = ext3_splice_branch(handle, inode, iblock,
|
||
|
partial, indirect_blks, count);
|
||
|
mutex_unlock(&ei->truncate_mutex);
|
||
|
if (err)
|
||
|
goto cleanup;
|
||
|
|
||
|
set_buffer_new(bh_result);
|
||
|
got_it:
|
||
|
map_bh(bh_result, inode->i_sb, le32_to_cpu(chain[depth-1].key));
|
||
|
if (count > blocks_to_boundary)
|
||
|
set_buffer_boundary(bh_result);
|
||
|
err = count;
|
||
|
/* Clean up and exit */
|
||
|
partial = chain + depth - 1; /* the whole chain */
|
||
|
cleanup:
|
||
|
while (partial > chain) {
|
||
|
BUFFER_TRACE(partial->bh, "call brelse");
|
||
|
brelse(partial->bh);
|
||
|
partial--;
|
||
|
}
|
||
|
BUFFER_TRACE(bh_result, "returned");
|
||
|
out:
|
||
|
trace_ext3_get_blocks_exit(inode, iblock,
|
||
|
depth ? le32_to_cpu(chain[depth-1].key) : 0,
|
||
|
count, err);
|
||
|
return err;
|
||
|
}
|
||
|
|
||
|
/* Maximum number of blocks we map for direct IO at once. */
|
||
|
#define DIO_MAX_BLOCKS 4096
|
||
|
/*
|
||
|
* Number of credits we need for writing DIO_MAX_BLOCKS:
|
||
|
* We need sb + group descriptor + bitmap + inode -> 4
|
||
|
* For B blocks with A block pointers per block we need:
|
||
|
* 1 (triple ind.) + (B/A/A + 2) (doubly ind.) + (B/A + 2) (indirect).
|
||
|
* If we plug in 4096 for B and 256 for A (for 1KB block size), we get 25.
|
||
|
*/
|
||
|
#define DIO_CREDITS 25
|
||
|
|
||
|
static int ext3_get_block(struct inode *inode, sector_t iblock,
|
||
|
struct buffer_head *bh_result, int create)
|
||
|
{
|
||
|
handle_t *handle = ext3_journal_current_handle();
|
||
|
int ret = 0, started = 0;
|
||
|
unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
|
||
|
|
||
|
if (create && !handle) { /* Direct IO write... */
|
||
|
if (max_blocks > DIO_MAX_BLOCKS)
|
||
|
max_blocks = DIO_MAX_BLOCKS;
|
||
|
handle = ext3_journal_start(inode, DIO_CREDITS +
|
||
|
EXT3_MAXQUOTAS_TRANS_BLOCKS(inode->i_sb));
|
||
|
if (IS_ERR(handle)) {
|
||
|
ret = PTR_ERR(handle);
|
||
|
goto out;
|
||
|
}
|
||
|
started = 1;
|
||
|
}
|
||
|
|
||
|
ret = ext3_get_blocks_handle(handle, inode, iblock,
|
||
|
max_blocks, bh_result, create);
|
||
|
if (ret > 0) {
|
||
|
bh_result->b_size = (ret << inode->i_blkbits);
|
||
|
ret = 0;
|
||
|
}
|
||
|
if (started)
|
||
|
ext3_journal_stop(handle);
|
||
|
out:
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
int ext3_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
|
||
|
u64 start, u64 len)
|
||
|
{
|
||
|
return generic_block_fiemap(inode, fieinfo, start, len,
|
||
|
ext3_get_block);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* `handle' can be NULL if create is zero
|
||
|
*/
|
||
|
struct buffer_head *ext3_getblk(handle_t *handle, struct inode *inode,
|
||
|
long block, int create, int *errp)
|
||
|
{
|
||
|
struct buffer_head dummy;
|
||
|
int fatal = 0, err;
|
||
|
|
||
|
J_ASSERT(handle != NULL || create == 0);
|
||
|
|
||
|
dummy.b_state = 0;
|
||
|
dummy.b_blocknr = -1000;
|
||
|
buffer_trace_init(&dummy.b_history);
|
||
|
err = ext3_get_blocks_handle(handle, inode, block, 1,
|
||
|
&dummy, create);
|
||
|
/*
|
||
|
* ext3_get_blocks_handle() returns number of blocks
|
||
|
* mapped. 0 in case of a HOLE.
|
||
|
*/
|
||
|
if (err > 0) {
|
||
|
WARN_ON(err > 1);
|
||
|
err = 0;
|
||
|
}
|
||
|
*errp = err;
|
||
|
if (!err && buffer_mapped(&dummy)) {
|
||
|
struct buffer_head *bh;
|
||
|
bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
|
||
|
if (unlikely(!bh)) {
|
||
|
*errp = -ENOMEM;
|
||
|
goto err;
|
||
|
}
|
||
|
if (buffer_new(&dummy)) {
|
||
|
J_ASSERT(create != 0);
|
||
|
J_ASSERT(handle != NULL);
|
||
|
|
||
|
/*
|
||
|
* Now that we do not always journal data, we should
|
||
|
* keep in mind whether this should always journal the
|
||
|
* new buffer as metadata. For now, regular file
|
||
|
* writes use ext3_get_block instead, so it's not a
|
||
|
* problem.
|
||
|
*/
|
||
|
lock_buffer(bh);
|
||
|
BUFFER_TRACE(bh, "call get_create_access");
|
||
|
fatal = ext3_journal_get_create_access(handle, bh);
|
||
|
if (!fatal && !buffer_uptodate(bh)) {
|
||
|
memset(bh->b_data,0,inode->i_sb->s_blocksize);
|
||
|
set_buffer_uptodate(bh);
|
||
|
}
|
||
|
unlock_buffer(bh);
|
||
|
BUFFER_TRACE(bh, "call ext3_journal_dirty_metadata");
|
||
|
err = ext3_journal_dirty_metadata(handle, bh);
|
||
|
if (!fatal)
|
||
|
fatal = err;
|
||
|
} else {
|
||
|
BUFFER_TRACE(bh, "not a new buffer");
|
||
|
}
|
||
|
if (fatal) {
|
||
|
*errp = fatal;
|
||
|
brelse(bh);
|
||
|
bh = NULL;
|
||
|
}
|
||
|
return bh;
|
||
|
}
|
||
|
err:
|
||
|
return NULL;
|
||
|
}
|
||
|
|
||
|
struct buffer_head *ext3_bread(handle_t *handle, struct inode *inode,
|
||
|
int block, int create, int *err)
|
||
|
{
|
||
|
struct buffer_head * bh;
|
||
|
|
||
|
bh = ext3_getblk(handle, inode, block, create, err);
|
||
|
if (!bh)
|
||
|
return bh;
|
||
|
if (bh_uptodate_or_lock(bh))
|
||
|
return bh;
|
||
|
get_bh(bh);
|
||
|
bh->b_end_io = end_buffer_read_sync;
|
||
|
submit_bh(READ | REQ_META | REQ_PRIO, bh);
|
||
|
wait_on_buffer(bh);
|
||
|
if (buffer_uptodate(bh))
|
||
|
return bh;
|
||
|
put_bh(bh);
|
||
|
*err = -EIO;
|
||
|
return NULL;
|
||
|
}
|
||
|
|
||
|
static int walk_page_buffers( handle_t *handle,
|
||
|
struct buffer_head *head,
|
||
|
unsigned from,
|
||
|
unsigned to,
|
||
|
int *partial,
|
||
|
int (*fn)( handle_t *handle,
|
||
|
struct buffer_head *bh))
|
||
|
{
|
||
|
struct buffer_head *bh;
|
||
|
unsigned block_start, block_end;
|
||
|
unsigned blocksize = head->b_size;
|
||
|
int err, ret = 0;
|
||
|
struct buffer_head *next;
|
||
|
|
||
|
for ( bh = head, block_start = 0;
|
||
|
ret == 0 && (bh != head || !block_start);
|
||
|
block_start = block_end, bh = next)
|
||
|
{
|
||
|
next = bh->b_this_page;
|
||
|
block_end = block_start + blocksize;
|
||
|
if (block_end <= from || block_start >= to) {
|
||
|
if (partial && !buffer_uptodate(bh))
|
||
|
*partial = 1;
|
||
|
continue;
|
||
|
}
|
||
|
err = (*fn)(handle, bh);
|
||
|
if (!ret)
|
||
|
ret = err;
|
||
|
}
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* To preserve ordering, it is essential that the hole instantiation and
|
||
|
* the data write be encapsulated in a single transaction. We cannot
|
||
|
* close off a transaction and start a new one between the ext3_get_block()
|
||
|
* and the commit_write(). So doing the journal_start at the start of
|
||
|
* prepare_write() is the right place.
|
||
|
*
|
||
|
* Also, this function can nest inside ext3_writepage() ->
|
||
|
* block_write_full_page(). In that case, we *know* that ext3_writepage()
|
||
|
* has generated enough buffer credits to do the whole page. So we won't
|
||
|
* block on the journal in that case, which is good, because the caller may
|
||
|
* be PF_MEMALLOC.
|
||
|
*
|
||
|
* By accident, ext3 can be reentered when a transaction is open via
|
||
|
* quota file writes. If we were to commit the transaction while thus
|
||
|
* reentered, there can be a deadlock - we would be holding a quota
|
||
|
* lock, and the commit would never complete if another thread had a
|
||
|
* transaction open and was blocking on the quota lock - a ranking
|
||
|
* violation.
|
||
|
*
|
||
|
* So what we do is to rely on the fact that journal_stop/journal_start
|
||
|
* will _not_ run commit under these circumstances because handle->h_ref
|
||
|
* is elevated. We'll still have enough credits for the tiny quotafile
|
||
|
* write.
|
||
|
*/
|
||
|
static int do_journal_get_write_access(handle_t *handle,
|
||
|
struct buffer_head *bh)
|
||
|
{
|
||
|
int dirty = buffer_dirty(bh);
|
||
|
int ret;
|
||
|
|
||
|
if (!buffer_mapped(bh) || buffer_freed(bh))
|
||
|
return 0;
|
||
|
/*
|
||
|
* __block_prepare_write() could have dirtied some buffers. Clean
|
||
|
* the dirty bit as jbd2_journal_get_write_access() could complain
|
||
|
* otherwise about fs integrity issues. Setting of the dirty bit
|
||
|
* by __block_prepare_write() isn't a real problem here as we clear
|
||
|
* the bit before releasing a page lock and thus writeback cannot
|
||
|
* ever write the buffer.
|
||
|
*/
|
||
|
if (dirty)
|
||
|
clear_buffer_dirty(bh);
|
||
|
ret = ext3_journal_get_write_access(handle, bh);
|
||
|
if (!ret && dirty)
|
||
|
ret = ext3_journal_dirty_metadata(handle, bh);
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Truncate blocks that were not used by write. We have to truncate the
|
||
|
* pagecache as well so that corresponding buffers get properly unmapped.
|
||
|
*/
|
||
|
static void ext3_truncate_failed_write(struct inode *inode)
|
||
|
{
|
||
|
truncate_inode_pages(inode->i_mapping, inode->i_size);
|
||
|
ext3_truncate(inode);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Truncate blocks that were not used by direct IO write. We have to zero out
|
||
|
* the last file block as well because direct IO might have written to it.
|
||
|
*/
|
||
|
static void ext3_truncate_failed_direct_write(struct inode *inode)
|
||
|
{
|
||
|
ext3_block_truncate_page(inode, inode->i_size);
|
||
|
ext3_truncate(inode);
|
||
|
}
|
||
|
|
||
|
static int ext3_write_begin(struct file *file, struct address_space *mapping,
|
||
|
loff_t pos, unsigned len, unsigned flags,
|
||
|
struct page **pagep, void **fsdata)
|
||
|
{
|
||
|
struct inode *inode = mapping->host;
|
||
|
int ret;
|
||
|
handle_t *handle;
|
||
|
int retries = 0;
|
||
|
struct page *page;
|
||
|
pgoff_t index;
|
||
|
unsigned from, to;
|
||
|
/* Reserve one block more for addition to orphan list in case
|
||
|
* we allocate blocks but write fails for some reason */
|
||
|
int needed_blocks = ext3_writepage_trans_blocks(inode) + 1;
|
||
|
|
||
|
trace_ext3_write_begin(inode, pos, len, flags);
|
||
|
|
||
|
index = pos >> PAGE_CACHE_SHIFT;
|
||
|
from = pos & (PAGE_CACHE_SIZE - 1);
|
||
|
to = from + len;
|
||
|
|
||
|
retry:
|
||
|
page = grab_cache_page_write_begin(mapping, index, flags);
|
||
|
if (!page)
|
||
|
return -ENOMEM;
|
||
|
*pagep = page;
|
||
|
|
||
|
handle = ext3_journal_start(inode, needed_blocks);
|
||
|
if (IS_ERR(handle)) {
|
||
|
unlock_page(page);
|
||
|
page_cache_release(page);
|
||
|
ret = PTR_ERR(handle);
|
||
|
goto out;
|
||
|
}
|
||
|
ret = __block_write_begin(page, pos, len, ext3_get_block);
|
||
|
if (ret)
|
||
|
goto write_begin_failed;
|
||
|
|
||
|
if (ext3_should_journal_data(inode)) {
|
||
|
ret = walk_page_buffers(handle, page_buffers(page),
|
||
|
from, to, NULL, do_journal_get_write_access);
|
||
|
}
|
||
|
write_begin_failed:
|
||
|
if (ret) {
|
||
|
/*
|
||
|
* block_write_begin may have instantiated a few blocks
|
||
|
* outside i_size. Trim these off again. Don't need
|
||
|
* i_size_read because we hold i_mutex.
|
||
|
*
|
||
|
* Add inode to orphan list in case we crash before truncate
|
||
|
* finishes. Do this only if ext3_can_truncate() agrees so
|
||
|
* that orphan processing code is happy.
|
||
|
*/
|
||
|
if (pos + len > inode->i_size && ext3_can_truncate(inode))
|
||
|
ext3_orphan_add(handle, inode);
|
||
|
ext3_journal_stop(handle);
|
||
|
unlock_page(page);
|
||
|
page_cache_release(page);
|
||
|
if (pos + len > inode->i_size)
|
||
|
ext3_truncate_failed_write(inode);
|
||
|
}
|
||
|
if (ret == -ENOSPC && ext3_should_retry_alloc(inode->i_sb, &retries))
|
||
|
goto retry;
|
||
|
out:
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
|
||
|
int ext3_journal_dirty_data(handle_t *handle, struct buffer_head *bh)
|
||
|
{
|
||
|
int err = journal_dirty_data(handle, bh);
|
||
|
if (err)
|
||
|
ext3_journal_abort_handle(__func__, __func__,
|
||
|
bh, handle, err);
|
||
|
return err;
|
||
|
}
|
||
|
|
||
|
/* For ordered writepage and write_end functions */
|
||
|
static int journal_dirty_data_fn(handle_t *handle, struct buffer_head *bh)
|
||
|
{
|
||
|
/*
|
||
|
* Write could have mapped the buffer but it didn't copy the data in
|
||
|
* yet. So avoid filing such buffer into a transaction.
|
||
|
*/
|
||
|
if (buffer_mapped(bh) && buffer_uptodate(bh))
|
||
|
return ext3_journal_dirty_data(handle, bh);
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/* For write_end() in data=journal mode */
|
||
|
static int write_end_fn(handle_t *handle, struct buffer_head *bh)
|
||
|
{
|
||
|
if (!buffer_mapped(bh) || buffer_freed(bh))
|
||
|
return 0;
|
||
|
set_buffer_uptodate(bh);
|
||
|
return ext3_journal_dirty_metadata(handle, bh);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* This is nasty and subtle: ext3_write_begin() could have allocated blocks
|
||
|
* for the whole page but later we failed to copy the data in. Update inode
|
||
|
* size according to what we managed to copy. The rest is going to be
|
||
|
* truncated in write_end function.
|
||
|
*/
|
||
|
static void update_file_sizes(struct inode *inode, loff_t pos, unsigned copied)
|
||
|
{
|
||
|
/* What matters to us is i_disksize. We don't write i_size anywhere */
|
||
|
if (pos + copied > inode->i_size)
|
||
|
i_size_write(inode, pos + copied);
|
||
|
if (pos + copied > EXT3_I(inode)->i_disksize) {
|
||
|
EXT3_I(inode)->i_disksize = pos + copied;
|
||
|
mark_inode_dirty(inode);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* We need to pick up the new inode size which generic_commit_write gave us
|
||
|
* `file' can be NULL - eg, when called from page_symlink().
|
||
|
*
|
||
|
* ext3 never places buffers on inode->i_mapping->private_list. metadata
|
||
|
* buffers are managed internally.
|
||
|
*/
|
||
|
static int ext3_ordered_write_end(struct file *file,
|
||
|
struct address_space *mapping,
|
||
|
loff_t pos, unsigned len, unsigned copied,
|
||
|
struct page *page, void *fsdata)
|
||
|
{
|
||
|
handle_t *handle = ext3_journal_current_handle();
|
||
|
struct inode *inode = file->f_mapping->host;
|
||
|
unsigned from, to;
|
||
|
int ret = 0, ret2;
|
||
|
|
||
|
trace_ext3_ordered_write_end(inode, pos, len, copied);
|
||
|
copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
|
||
|
|
||
|
from = pos & (PAGE_CACHE_SIZE - 1);
|
||
|
to = from + copied;
|
||
|
ret = walk_page_buffers(handle, page_buffers(page),
|
||
|
from, to, NULL, journal_dirty_data_fn);
|
||
|
|
||
|
if (ret == 0)
|
||
|
update_file_sizes(inode, pos, copied);
|
||
|
/*
|
||
|
* There may be allocated blocks outside of i_size because
|
||
|
* we failed to copy some data. Prepare for truncate.
|
||
|
*/
|
||
|
if (pos + len > inode->i_size && ext3_can_truncate(inode))
|
||
|
ext3_orphan_add(handle, inode);
|
||
|
ret2 = ext3_journal_stop(handle);
|
||
|
if (!ret)
|
||
|
ret = ret2;
|
||
|
unlock_page(page);
|
||
|
page_cache_release(page);
|
||
|
|
||
|
if (pos + len > inode->i_size)
|
||
|
ext3_truncate_failed_write(inode);
|
||
|
return ret ? ret : copied;
|
||
|
}
|
||
|
|
||
|
static int ext3_writeback_write_end(struct file *file,
|
||
|
struct address_space *mapping,
|
||
|
loff_t pos, unsigned len, unsigned copied,
|
||
|
struct page *page, void *fsdata)
|
||
|
{
|
||
|
handle_t *handle = ext3_journal_current_handle();
|
||
|
struct inode *inode = file->f_mapping->host;
|
||
|
int ret;
|
||
|
|
||
|
trace_ext3_writeback_write_end(inode, pos, len, copied);
|
||
|
copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
|
||
|
update_file_sizes(inode, pos, copied);
|
||
|
/*
|
||
|
* There may be allocated blocks outside of i_size because
|
||
|
* we failed to copy some data. Prepare for truncate.
|
||
|
*/
|
||
|
if (pos + len > inode->i_size && ext3_can_truncate(inode))
|
||
|
ext3_orphan_add(handle, inode);
|
||
|
ret = ext3_journal_stop(handle);
|
||
|
unlock_page(page);
|
||
|
page_cache_release(page);
|
||
|
|
||
|
if (pos + len > inode->i_size)
|
||
|
ext3_truncate_failed_write(inode);
|
||
|
return ret ? ret : copied;
|
||
|
}
|
||
|
|
||
|
static int ext3_journalled_write_end(struct file *file,
|
||
|
struct address_space *mapping,
|
||
|
loff_t pos, unsigned len, unsigned copied,
|
||
|
struct page *page, void *fsdata)
|
||
|
{
|
||
|
handle_t *handle = ext3_journal_current_handle();
|
||
|
struct inode *inode = mapping->host;
|
||
|
struct ext3_inode_info *ei = EXT3_I(inode);
|
||
|
int ret = 0, ret2;
|
||
|
int partial = 0;
|
||
|
unsigned from, to;
|
||
|
|
||
|
trace_ext3_journalled_write_end(inode, pos, len, copied);
|
||
|
from = pos & (PAGE_CACHE_SIZE - 1);
|
||
|
to = from + len;
|
||
|
|
||
|
if (copied < len) {
|
||
|
if (!PageUptodate(page))
|
||
|
copied = 0;
|
||
|
page_zero_new_buffers(page, from + copied, to);
|
||
|
to = from + copied;
|
||
|
}
|
||
|
|
||
|
ret = walk_page_buffers(handle, page_buffers(page), from,
|
||
|
to, &partial, write_end_fn);
|
||
|
if (!partial)
|
||
|
SetPageUptodate(page);
|
||
|
|
||
|
if (pos + copied > inode->i_size)
|
||
|
i_size_write(inode, pos + copied);
|
||
|
/*
|
||
|
* There may be allocated blocks outside of i_size because
|
||
|
* we failed to copy some data. Prepare for truncate.
|
||
|
*/
|
||
|
if (pos + len > inode->i_size && ext3_can_truncate(inode))
|
||
|
ext3_orphan_add(handle, inode);
|
||
|
ext3_set_inode_state(inode, EXT3_STATE_JDATA);
|
||
|
atomic_set(&ei->i_datasync_tid, handle->h_transaction->t_tid);
|
||
|
if (inode->i_size > ei->i_disksize) {
|
||
|
ei->i_disksize = inode->i_size;
|
||
|
ret2 = ext3_mark_inode_dirty(handle, inode);
|
||
|
if (!ret)
|
||
|
ret = ret2;
|
||
|
}
|
||
|
|
||
|
ret2 = ext3_journal_stop(handle);
|
||
|
if (!ret)
|
||
|
ret = ret2;
|
||
|
unlock_page(page);
|
||
|
page_cache_release(page);
|
||
|
|
||
|
if (pos + len > inode->i_size)
|
||
|
ext3_truncate_failed_write(inode);
|
||
|
return ret ? ret : copied;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* bmap() is special. It gets used by applications such as lilo and by
|
||
|
* the swapper to find the on-disk block of a specific piece of data.
|
||
|
*
|
||
|
* Naturally, this is dangerous if the block concerned is still in the
|
||
|
* journal. If somebody makes a swapfile on an ext3 data-journaling
|
||
|
* filesystem and enables swap, then they may get a nasty shock when the
|
||
|
* data getting swapped to that swapfile suddenly gets overwritten by
|
||
|
* the original zero's written out previously to the journal and
|
||
|
* awaiting writeback in the kernel's buffer cache.
|
||
|
*
|
||
|
* So, if we see any bmap calls here on a modified, data-journaled file,
|
||
|
* take extra steps to flush any blocks which might be in the cache.
|
||
|
*/
|
||
|
static sector_t ext3_bmap(struct address_space *mapping, sector_t block)
|
||
|
{
|
||
|
struct inode *inode = mapping->host;
|
||
|
journal_t *journal;
|
||
|
int err;
|
||
|
|
||
|
if (ext3_test_inode_state(inode, EXT3_STATE_JDATA)) {
|
||
|
/*
|
||
|
* This is a REALLY heavyweight approach, but the use of
|
||
|
* bmap on dirty files is expected to be extremely rare:
|
||
|
* only if we run lilo or swapon on a freshly made file
|
||
|
* do we expect this to happen.
|
||
|
*
|
||
|
* (bmap requires CAP_SYS_RAWIO so this does not
|
||
|
* represent an unprivileged user DOS attack --- we'd be
|
||
|
* in trouble if mortal users could trigger this path at
|
||
|
* will.)
|
||
|
*
|
||
|
* NB. EXT3_STATE_JDATA is not set on files other than
|
||
|
* regular files. If somebody wants to bmap a directory
|
||
|
* or symlink and gets confused because the buffer
|
||
|
* hasn't yet been flushed to disk, they deserve
|
||
|
* everything they get.
|
||
|
*/
|
||
|
|
||
|
ext3_clear_inode_state(inode, EXT3_STATE_JDATA);
|
||
|
journal = EXT3_JOURNAL(inode);
|
||
|
journal_lock_updates(journal);
|
||
|
err = journal_flush(journal);
|
||
|
journal_unlock_updates(journal);
|
||
|
|
||
|
if (err)
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
return generic_block_bmap(mapping,block,ext3_get_block);
|
||
|
}
|
||
|
|
||
|
static int bget_one(handle_t *handle, struct buffer_head *bh)
|
||
|
{
|
||
|
get_bh(bh);
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static int bput_one(handle_t *handle, struct buffer_head *bh)
|
||
|
{
|
||
|
put_bh(bh);
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static int buffer_unmapped(handle_t *handle, struct buffer_head *bh)
|
||
|
{
|
||
|
return !buffer_mapped(bh);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Note that whenever we need to map blocks we start a transaction even if
|
||
|
* we're not journalling data. This is to preserve ordering: any hole
|
||
|
* instantiation within __block_write_full_page -> ext3_get_block() should be
|
||
|
* journalled along with the data so we don't crash and then get metadata which
|
||
|
* refers to old data.
|
||
|
*
|
||
|
* In all journalling modes block_write_full_page() will start the I/O.
|
||
|
*
|
||
|
* We don't honour synchronous mounts for writepage(). That would be
|
||
|
* disastrous. Any write() or metadata operation will sync the fs for
|
||
|
* us.
|
||
|
*/
|
||
|
static int ext3_ordered_writepage(struct page *page,
|
||
|
struct writeback_control *wbc)
|
||
|
{
|
||
|
struct inode *inode = page->mapping->host;
|
||
|
struct buffer_head *page_bufs;
|
||
|
handle_t *handle = NULL;
|
||
|
int ret = 0;
|
||
|
int err;
|
||
|
|
||
|
J_ASSERT(PageLocked(page));
|
||
|
/*
|
||
|
* We don't want to warn for emergency remount. The condition is
|
||
|
* ordered to avoid dereferencing inode->i_sb in non-error case to
|
||
|
* avoid slow-downs.
|
||
|
*/
|
||
|
WARN_ON_ONCE(IS_RDONLY(inode) &&
|
||
|
!(EXT3_SB(inode->i_sb)->s_mount_state & EXT3_ERROR_FS));
|
||
|
|
||
|
/*
|
||
|
* We give up here if we're reentered, because it might be for a
|
||
|
* different filesystem.
|
||
|
*/
|
||
|
if (ext3_journal_current_handle())
|
||
|
goto out_fail;
|
||
|
|
||
|
trace_ext3_ordered_writepage(page);
|
||
|
if (!page_has_buffers(page)) {
|
||
|
create_empty_buffers(page, inode->i_sb->s_blocksize,
|
||
|
(1 << BH_Dirty)|(1 << BH_Uptodate));
|
||
|
page_bufs = page_buffers(page);
|
||
|
} else {
|
||
|
page_bufs = page_buffers(page);
|
||
|
if (!walk_page_buffers(NULL, page_bufs, 0, PAGE_CACHE_SIZE,
|
||
|
NULL, buffer_unmapped)) {
|
||
|
/* Provide NULL get_block() to catch bugs if buffers
|
||
|
* weren't really mapped */
|
||
|
return block_write_full_page(page, NULL, wbc);
|
||
|
}
|
||
|
}
|
||
|
handle = ext3_journal_start(inode, ext3_writepage_trans_blocks(inode));
|
||
|
|
||
|
if (IS_ERR(handle)) {
|
||
|
ret = PTR_ERR(handle);
|
||
|
goto out_fail;
|
||
|
}
|
||
|
|
||
|
walk_page_buffers(handle, page_bufs, 0,
|
||
|
PAGE_CACHE_SIZE, NULL, bget_one);
|
||
|
|
||
|
ret = block_write_full_page(page, ext3_get_block, wbc);
|
||
|
|
||
|
/*
|
||
|
* The page can become unlocked at any point now, and
|
||
|
* truncate can then come in and change things. So we
|
||
|
* can't touch *page from now on. But *page_bufs is
|
||
|
* safe due to elevated refcount.
|
||
|
*/
|
||
|
|
||
|
/*
|
||
|
* And attach them to the current transaction. But only if
|
||
|
* block_write_full_page() succeeded. Otherwise they are unmapped,
|
||
|
* and generally junk.
|
||
|
*/
|
||
|
if (ret == 0)
|
||
|
ret = walk_page_buffers(handle, page_bufs, 0, PAGE_CACHE_SIZE,
|
||
|
NULL, journal_dirty_data_fn);
|
||
|
walk_page_buffers(handle, page_bufs, 0,
|
||
|
PAGE_CACHE_SIZE, NULL, bput_one);
|
||
|
err = ext3_journal_stop(handle);
|
||
|
if (!ret)
|
||
|
ret = err;
|
||
|
return ret;
|
||
|
|
||
|
out_fail:
|
||
|
redirty_page_for_writepage(wbc, page);
|
||
|
unlock_page(page);
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
static int ext3_writeback_writepage(struct page *page,
|
||
|
struct writeback_control *wbc)
|
||
|
{
|
||
|
struct inode *inode = page->mapping->host;
|
||
|
handle_t *handle = NULL;
|
||
|
int ret = 0;
|
||
|
int err;
|
||
|
|
||
|
J_ASSERT(PageLocked(page));
|
||
|
/*
|
||
|
* We don't want to warn for emergency remount. The condition is
|
||
|
* ordered to avoid dereferencing inode->i_sb in non-error case to
|
||
|
* avoid slow-downs.
|
||
|
*/
|
||
|
WARN_ON_ONCE(IS_RDONLY(inode) &&
|
||
|
!(EXT3_SB(inode->i_sb)->s_mount_state & EXT3_ERROR_FS));
|
||
|
|
||
|
if (ext3_journal_current_handle())
|
||
|
goto out_fail;
|
||
|
|
||
|
trace_ext3_writeback_writepage(page);
|
||
|
if (page_has_buffers(page)) {
|
||
|
if (!walk_page_buffers(NULL, page_buffers(page), 0,
|
||
|
PAGE_CACHE_SIZE, NULL, buffer_unmapped)) {
|
||
|
/* Provide NULL get_block() to catch bugs if buffers
|
||
|
* weren't really mapped */
|
||
|
return block_write_full_page(page, NULL, wbc);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
handle = ext3_journal_start(inode, ext3_writepage_trans_blocks(inode));
|
||
|
if (IS_ERR(handle)) {
|
||
|
ret = PTR_ERR(handle);
|
||
|
goto out_fail;
|
||
|
}
|
||
|
|
||
|
ret = block_write_full_page(page, ext3_get_block, wbc);
|
||
|
|
||
|
err = ext3_journal_stop(handle);
|
||
|
if (!ret)
|
||
|
ret = err;
|
||
|
return ret;
|
||
|
|
||
|
out_fail:
|
||
|
redirty_page_for_writepage(wbc, page);
|
||
|
unlock_page(page);
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
static int ext3_journalled_writepage(struct page *page,
|
||
|
struct writeback_control *wbc)
|
||
|
{
|
||
|
struct inode *inode = page->mapping->host;
|
||
|
handle_t *handle = NULL;
|
||
|
int ret = 0;
|
||
|
int err;
|
||
|
|
||
|
J_ASSERT(PageLocked(page));
|
||
|
/*
|
||
|
* We don't want to warn for emergency remount. The condition is
|
||
|
* ordered to avoid dereferencing inode->i_sb in non-error case to
|
||
|
* avoid slow-downs.
|
||
|
*/
|
||
|
WARN_ON_ONCE(IS_RDONLY(inode) &&
|
||
|
!(EXT3_SB(inode->i_sb)->s_mount_state & EXT3_ERROR_FS));
|
||
|
|
||
|
trace_ext3_journalled_writepage(page);
|
||
|
if (!page_has_buffers(page) || PageChecked(page)) {
|
||
|
if (ext3_journal_current_handle())
|
||
|
goto no_write;
|
||
|
|
||
|
handle = ext3_journal_start(inode,
|
||
|
ext3_writepage_trans_blocks(inode));
|
||
|
if (IS_ERR(handle)) {
|
||
|
ret = PTR_ERR(handle);
|
||
|
goto no_write;
|
||
|
}
|
||
|
/*
|
||
|
* It's mmapped pagecache. Add buffers and journal it. There
|
||
|
* doesn't seem much point in redirtying the page here.
|
||
|
*/
|
||
|
ClearPageChecked(page);
|
||
|
ret = __block_write_begin(page, 0, PAGE_CACHE_SIZE,
|
||
|
ext3_get_block);
|
||
|
if (ret != 0) {
|
||
|
ext3_journal_stop(handle);
|
||
|
goto out_unlock;
|
||
|
}
|
||
|
ret = walk_page_buffers(handle, page_buffers(page), 0,
|
||
|
PAGE_CACHE_SIZE, NULL, do_journal_get_write_access);
|
||
|
|
||
|
err = walk_page_buffers(handle, page_buffers(page), 0,
|
||
|
PAGE_CACHE_SIZE, NULL, write_end_fn);
|
||
|
if (ret == 0)
|
||
|
ret = err;
|
||
|
ext3_set_inode_state(inode, EXT3_STATE_JDATA);
|
||
|
atomic_set(&EXT3_I(inode)->i_datasync_tid,
|
||
|
handle->h_transaction->t_tid);
|
||
|
unlock_page(page);
|
||
|
err = ext3_journal_stop(handle);
|
||
|
if (!ret)
|
||
|
ret = err;
|
||
|
} else {
|
||
|
/*
|
||
|
* It is a page full of checkpoint-mode buffers. Go and write
|
||
|
* them. They should have been already mapped when they went
|
||
|
* to the journal so provide NULL get_block function to catch
|
||
|
* errors.
|
||
|
*/
|
||
|
ret = block_write_full_page(page, NULL, wbc);
|
||
|
}
|
||
|
out:
|
||
|
return ret;
|
||
|
|
||
|
no_write:
|
||
|
redirty_page_for_writepage(wbc, page);
|
||
|
out_unlock:
|
||
|
unlock_page(page);
|
||
|
goto out;
|
||
|
}
|
||
|
|
||
|
static int ext3_readpage(struct file *file, struct page *page)
|
||
|
{
|
||
|
trace_ext3_readpage(page);
|
||
|
return mpage_readpage(page, ext3_get_block);
|
||
|
}
|
||
|
|
||
|
static int
|
||
|
ext3_readpages(struct file *file, struct address_space *mapping,
|
||
|
struct list_head *pages, unsigned nr_pages)
|
||
|
{
|
||
|
return mpage_readpages(mapping, pages, nr_pages, ext3_get_block);
|
||
|
}
|
||
|
|
||
|
static void ext3_invalidatepage(struct page *page, unsigned int offset,
|
||
|
unsigned int length)
|
||
|
{
|
||
|
journal_t *journal = EXT3_JOURNAL(page->mapping->host);
|
||
|
|
||
|
trace_ext3_invalidatepage(page, offset, length);
|
||
|
|
||
|
/*
|
||
|
* If it's a full truncate we just forget about the pending dirtying
|
||
|
*/
|
||
|
if (offset == 0 && length == PAGE_CACHE_SIZE)
|
||
|
ClearPageChecked(page);
|
||
|
|
||
|
journal_invalidatepage(journal, page, offset, length);
|
||
|
}
|
||
|
|
||
|
static int ext3_releasepage(struct page *page, gfp_t wait)
|
||
|
{
|
||
|
journal_t *journal = EXT3_JOURNAL(page->mapping->host);
|
||
|
|
||
|
trace_ext3_releasepage(page);
|
||
|
WARN_ON(PageChecked(page));
|
||
|
if (!page_has_buffers(page))
|
||
|
return 0;
|
||
|
return journal_try_to_free_buffers(journal, page, wait);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* If the O_DIRECT write will extend the file then add this inode to the
|
||
|
* orphan list. So recovery will truncate it back to the original size
|
||
|
* if the machine crashes during the write.
|
||
|
*
|
||
|
* If the O_DIRECT write is intantiating holes inside i_size and the machine
|
||
|
* crashes then stale disk data _may_ be exposed inside the file. But current
|
||
|
* VFS code falls back into buffered path in that case so we are safe.
|
||
|
*/
|
||
|
static ssize_t ext3_direct_IO(int rw, struct kiocb *iocb,
|
||
|
struct iov_iter *iter, loff_t offset)
|
||
|
{
|
||
|
struct file *file = iocb->ki_filp;
|
||
|
struct inode *inode = file->f_mapping->host;
|
||
|
struct ext3_inode_info *ei = EXT3_I(inode);
|
||
|
handle_t *handle;
|
||
|
ssize_t ret;
|
||
|
int orphan = 0;
|
||
|
size_t count = iov_iter_count(iter);
|
||
|
int retries = 0;
|
||
|
|
||
|
trace_ext3_direct_IO_enter(inode, offset, count, rw);
|
||
|
|
||
|
if (rw == WRITE) {
|
||
|
loff_t final_size = offset + count;
|
||
|
|
||
|
if (final_size > inode->i_size) {
|
||
|
/* Credits for sb + inode write */
|
||
|
handle = ext3_journal_start(inode, 2);
|
||
|
if (IS_ERR(handle)) {
|
||
|
ret = PTR_ERR(handle);
|
||
|
goto out;
|
||
|
}
|
||
|
ret = ext3_orphan_add(handle, inode);
|
||
|
if (ret) {
|
||
|
ext3_journal_stop(handle);
|
||
|
goto out;
|
||
|
}
|
||
|
orphan = 1;
|
||
|
ei->i_disksize = inode->i_size;
|
||
|
ext3_journal_stop(handle);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
retry:
|
||
|
ret = blockdev_direct_IO(rw, iocb, inode, iter, offset, ext3_get_block);
|
||
|
/*
|
||
|
* In case of error extending write may have instantiated a few
|
||
|
* blocks outside i_size. Trim these off again.
|
||
|
*/
|
||
|
if (unlikely((rw & WRITE) && ret < 0)) {
|
||
|
loff_t isize = i_size_read(inode);
|
||
|
loff_t end = offset + count;
|
||
|
|
||
|
if (end > isize)
|
||
|
ext3_truncate_failed_direct_write(inode);
|
||
|
}
|
||
|
if (ret == -ENOSPC && ext3_should_retry_alloc(inode->i_sb, &retries))
|
||
|
goto retry;
|
||
|
|
||
|
if (orphan) {
|
||
|
int err;
|
||
|
|
||
|
/* Credits for sb + inode write */
|
||
|
handle = ext3_journal_start(inode, 2);
|
||
|
if (IS_ERR(handle)) {
|
||
|
/* This is really bad luck. We've written the data
|
||
|
* but cannot extend i_size. Truncate allocated blocks
|
||
|
* and pretend the write failed... */
|
||
|
ext3_truncate_failed_direct_write(inode);
|
||
|
ret = PTR_ERR(handle);
|
||
|
if (inode->i_nlink)
|
||
|
ext3_orphan_del(NULL, inode);
|
||
|
goto out;
|
||
|
}
|
||
|
if (inode->i_nlink)
|
||
|
ext3_orphan_del(handle, inode);
|
||
|
if (ret > 0) {
|
||
|
loff_t end = offset + ret;
|
||
|
if (end > inode->i_size) {
|
||
|
ei->i_disksize = end;
|
||
|
i_size_write(inode, end);
|
||
|
/*
|
||
|
* We're going to return a positive `ret'
|
||
|
* here due to non-zero-length I/O, so there's
|
||
|
* no way of reporting error returns from
|
||
|
* ext3_mark_inode_dirty() to userspace. So
|
||
|
* ignore it.
|
||
|
*/
|
||
|
ext3_mark_inode_dirty(handle, inode);
|
||
|
}
|
||
|
}
|
||
|
err = ext3_journal_stop(handle);
|
||
|
if (ret == 0)
|
||
|
ret = err;
|
||
|
}
|
||
|
out:
|
||
|
trace_ext3_direct_IO_exit(inode, offset, count, rw, ret);
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Pages can be marked dirty completely asynchronously from ext3's journalling
|
||
|
* activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
|
||
|
* much here because ->set_page_dirty is called under VFS locks. The page is
|
||
|
* not necessarily locked.
|
||
|
*
|
||
|
* We cannot just dirty the page and leave attached buffers clean, because the
|
||
|
* buffers' dirty state is "definitive". We cannot just set the buffers dirty
|
||
|
* or jbddirty because all the journalling code will explode.
|
||
|
*
|
||
|
* So what we do is to mark the page "pending dirty" and next time writepage
|
||
|
* is called, propagate that into the buffers appropriately.
|
||
|
*/
|
||
|
static int ext3_journalled_set_page_dirty(struct page *page)
|
||
|
{
|
||
|
SetPageChecked(page);
|
||
|
return __set_page_dirty_nobuffers(page);
|
||
|
}
|
||
|
|
||
|
static const struct address_space_operations ext3_ordered_aops = {
|
||
|
.readpage = ext3_readpage,
|
||
|
.readpages = ext3_readpages,
|
||
|
.writepage = ext3_ordered_writepage,
|
||
|
.write_begin = ext3_write_begin,
|
||
|
.write_end = ext3_ordered_write_end,
|
||
|
.bmap = ext3_bmap,
|
||
|
.invalidatepage = ext3_invalidatepage,
|
||
|
.releasepage = ext3_releasepage,
|
||
|
.direct_IO = ext3_direct_IO,
|
||
|
.migratepage = buffer_migrate_page,
|
||
|
.is_partially_uptodate = block_is_partially_uptodate,
|
||
|
.is_dirty_writeback = buffer_check_dirty_writeback,
|
||
|
.error_remove_page = generic_error_remove_page,
|
||
|
};
|
||
|
|
||
|
static const struct address_space_operations ext3_writeback_aops = {
|
||
|
.readpage = ext3_readpage,
|
||
|
.readpages = ext3_readpages,
|
||
|
.writepage = ext3_writeback_writepage,
|
||
|
.write_begin = ext3_write_begin,
|
||
|
.write_end = ext3_writeback_write_end,
|
||
|
.bmap = ext3_bmap,
|
||
|
.invalidatepage = ext3_invalidatepage,
|
||
|
.releasepage = ext3_releasepage,
|
||
|
.direct_IO = ext3_direct_IO,
|
||
|
.migratepage = buffer_migrate_page,
|
||
|
.is_partially_uptodate = block_is_partially_uptodate,
|
||
|
.error_remove_page = generic_error_remove_page,
|
||
|
};
|
||
|
|
||
|
static const struct address_space_operations ext3_journalled_aops = {
|
||
|
.readpage = ext3_readpage,
|
||
|
.readpages = ext3_readpages,
|
||
|
.writepage = ext3_journalled_writepage,
|
||
|
.write_begin = ext3_write_begin,
|
||
|
.write_end = ext3_journalled_write_end,
|
||
|
.set_page_dirty = ext3_journalled_set_page_dirty,
|
||
|
.bmap = ext3_bmap,
|
||
|
.invalidatepage = ext3_invalidatepage,
|
||
|
.releasepage = ext3_releasepage,
|
||
|
.is_partially_uptodate = block_is_partially_uptodate,
|
||
|
.error_remove_page = generic_error_remove_page,
|
||
|
};
|
||
|
|
||
|
void ext3_set_aops(struct inode *inode)
|
||
|
{
|
||
|
if (ext3_should_order_data(inode))
|
||
|
inode->i_mapping->a_ops = &ext3_ordered_aops;
|
||
|
else if (ext3_should_writeback_data(inode))
|
||
|
inode->i_mapping->a_ops = &ext3_writeback_aops;
|
||
|
else
|
||
|
inode->i_mapping->a_ops = &ext3_journalled_aops;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* ext3_block_truncate_page() zeroes out a mapping from file offset `from'
|
||
|
* up to the end of the block which corresponds to `from'.
|
||
|
* This required during truncate. We need to physically zero the tail end
|
||
|
* of that block so it doesn't yield old data if the file is later grown.
|
||
|
*/
|
||
|
static int ext3_block_truncate_page(struct inode *inode, loff_t from)
|
||
|
{
|
||
|
ext3_fsblk_t index = from >> PAGE_CACHE_SHIFT;
|
||
|
unsigned offset = from & (PAGE_CACHE_SIZE - 1);
|
||
|
unsigned blocksize, iblock, length, pos;
|
||
|
struct page *page;
|
||
|
handle_t *handle = NULL;
|
||
|
struct buffer_head *bh;
|
||
|
int err = 0;
|
||
|
|
||
|
/* Truncated on block boundary - nothing to do */
|
||
|
blocksize = inode->i_sb->s_blocksize;
|
||
|
if ((from & (blocksize - 1)) == 0)
|
||
|
return 0;
|
||
|
|
||
|
page = grab_cache_page(inode->i_mapping, index);
|
||
|
if (!page)
|
||
|
return -ENOMEM;
|
||
|
length = blocksize - (offset & (blocksize - 1));
|
||
|
iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
|
||
|
|
||
|
if (!page_has_buffers(page))
|
||
|
create_empty_buffers(page, blocksize, 0);
|
||
|
|
||
|
/* Find the buffer that contains "offset" */
|
||
|
bh = page_buffers(page);
|
||
|
pos = blocksize;
|
||
|
while (offset >= pos) {
|
||
|
bh = bh->b_this_page;
|
||
|
iblock++;
|
||
|
pos += blocksize;
|
||
|
}
|
||
|
|
||
|
err = 0;
|
||
|
if (buffer_freed(bh)) {
|
||
|
BUFFER_TRACE(bh, "freed: skip");
|
||
|
goto unlock;
|
||
|
}
|
||
|
|
||
|
if (!buffer_mapped(bh)) {
|
||
|
BUFFER_TRACE(bh, "unmapped");
|
||
|
ext3_get_block(inode, iblock, bh, 0);
|
||
|
/* unmapped? It's a hole - nothing to do */
|
||
|
if (!buffer_mapped(bh)) {
|
||
|
BUFFER_TRACE(bh, "still unmapped");
|
||
|
goto unlock;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* Ok, it's mapped. Make sure it's up-to-date */
|
||
|
if (PageUptodate(page))
|
||
|
set_buffer_uptodate(bh);
|
||
|
|
||
|
if (!bh_uptodate_or_lock(bh)) {
|
||
|
err = bh_submit_read(bh);
|
||
|
/* Uhhuh. Read error. Complain and punt. */
|
||
|
if (err)
|
||
|
goto unlock;
|
||
|
}
|
||
|
|
||
|
/* data=writeback mode doesn't need transaction to zero-out data */
|
||
|
if (!ext3_should_writeback_data(inode)) {
|
||
|
/* We journal at most one block */
|
||
|
handle = ext3_journal_start(inode, 1);
|
||
|
if (IS_ERR(handle)) {
|
||
|
clear_highpage(page);
|
||
|
flush_dcache_page(page);
|
||
|
err = PTR_ERR(handle);
|
||
|
goto unlock;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
if (ext3_should_journal_data(inode)) {
|
||
|
BUFFER_TRACE(bh, "get write access");
|
||
|
err = ext3_journal_get_write_access(handle, bh);
|
||
|
if (err)
|
||
|
goto stop;
|
||
|
}
|
||
|
|
||
|
zero_user(page, offset, length);
|
||
|
BUFFER_TRACE(bh, "zeroed end of block");
|
||
|
|
||
|
err = 0;
|
||
|
if (ext3_should_journal_data(inode)) {
|
||
|
err = ext3_journal_dirty_metadata(handle, bh);
|
||
|
} else {
|
||
|
if (ext3_should_order_data(inode))
|
||
|
err = ext3_journal_dirty_data(handle, bh);
|
||
|
mark_buffer_dirty(bh);
|
||
|
}
|
||
|
stop:
|
||
|
if (handle)
|
||
|
ext3_journal_stop(handle);
|
||
|
|
||
|
unlock:
|
||
|
unlock_page(page);
|
||
|
page_cache_release(page);
|
||
|
return err;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Probably it should be a library function... search for first non-zero word
|
||
|
* or memcmp with zero_page, whatever is better for particular architecture.
|
||
|
* Linus?
|
||
|
*/
|
||
|
static inline int all_zeroes(__le32 *p, __le32 *q)
|
||
|
{
|
||
|
while (p < q)
|
||
|
if (*p++)
|
||
|
return 0;
|
||
|
return 1;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* ext3_find_shared - find the indirect blocks for partial truncation.
|
||
|
* @inode: inode in question
|
||
|
* @depth: depth of the affected branch
|
||
|
* @offsets: offsets of pointers in that branch (see ext3_block_to_path)
|
||
|
* @chain: place to store the pointers to partial indirect blocks
|
||
|
* @top: place to the (detached) top of branch
|
||
|
*
|
||
|
* This is a helper function used by ext3_truncate().
|
||
|
*
|
||
|
* When we do truncate() we may have to clean the ends of several
|
||
|
* indirect blocks but leave the blocks themselves alive. Block is
|
||
|
* partially truncated if some data below the new i_size is referred
|
||
|
* from it (and it is on the path to the first completely truncated
|
||
|
* data block, indeed). We have to free the top of that path along
|
||
|
* with everything to the right of the path. Since no allocation
|
||
|
* past the truncation point is possible until ext3_truncate()
|
||
|
* finishes, we may safely do the latter, but top of branch may
|
||
|
* require special attention - pageout below the truncation point
|
||
|
* might try to populate it.
|
||
|
*
|
||
|
* We atomically detach the top of branch from the tree, store the
|
||
|
* block number of its root in *@top, pointers to buffer_heads of
|
||
|
* partially truncated blocks - in @chain[].bh and pointers to
|
||
|
* their last elements that should not be removed - in
|
||
|
* @chain[].p. Return value is the pointer to last filled element
|
||
|
* of @chain.
|
||
|
*
|
||
|
* The work left to caller to do the actual freeing of subtrees:
|
||
|
* a) free the subtree starting from *@top
|
||
|
* b) free the subtrees whose roots are stored in
|
||
|
* (@chain[i].p+1 .. end of @chain[i].bh->b_data)
|
||
|
* c) free the subtrees growing from the inode past the @chain[0].
|
||
|
* (no partially truncated stuff there). */
|
||
|
|
||
|
static Indirect *ext3_find_shared(struct inode *inode, int depth,
|
||
|
int offsets[4], Indirect chain[4], __le32 *top)
|
||
|
{
|
||
|
Indirect *partial, *p;
|
||
|
int k, err;
|
||
|
|
||
|
*top = 0;
|
||
|
/* Make k index the deepest non-null offset + 1 */
|
||
|
for (k = depth; k > 1 && !offsets[k-1]; k--)
|
||
|
;
|
||
|
partial = ext3_get_branch(inode, k, offsets, chain, &err);
|
||
|
/* Writer: pointers */
|
||
|
if (!partial)
|
||
|
partial = chain + k-1;
|
||
|
/*
|
||
|
* If the branch acquired continuation since we've looked at it -
|
||
|
* fine, it should all survive and (new) top doesn't belong to us.
|
||
|
*/
|
||
|
if (!partial->key && *partial->p)
|
||
|
/* Writer: end */
|
||
|
goto no_top;
|
||
|
for (p=partial; p>chain && all_zeroes((__le32*)p->bh->b_data,p->p); p--)
|
||
|
;
|
||
|
/*
|
||
|
* OK, we've found the last block that must survive. The rest of our
|
||
|
* branch should be detached before unlocking. However, if that rest
|
||
|
* of branch is all ours and does not grow immediately from the inode
|
||
|
* it's easier to cheat and just decrement partial->p.
|
||
|
*/
|
||
|
if (p == chain + k - 1 && p > chain) {
|
||
|
p->p--;
|
||
|
} else {
|
||
|
*top = *p->p;
|
||
|
/* Nope, don't do this in ext3. Must leave the tree intact */
|
||
|
#if 0
|
||
|
*p->p = 0;
|
||
|
#endif
|
||
|
}
|
||
|
/* Writer: end */
|
||
|
|
||
|
while(partial > p) {
|
||
|
brelse(partial->bh);
|
||
|
partial--;
|
||
|
}
|
||
|
no_top:
|
||
|
return partial;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Zero a number of block pointers in either an inode or an indirect block.
|
||
|
* If we restart the transaction we must again get write access to the
|
||
|
* indirect block for further modification.
|
||
|
*
|
||
|
* We release `count' blocks on disk, but (last - first) may be greater
|
||
|
* than `count' because there can be holes in there.
|
||
|
*/
|
||
|
static void ext3_clear_blocks(handle_t *handle, struct inode *inode,
|
||
|
struct buffer_head *bh, ext3_fsblk_t block_to_free,
|
||
|
unsigned long count, __le32 *first, __le32 *last)
|
||
|
{
|
||
|
__le32 *p;
|
||
|
if (try_to_extend_transaction(handle, inode)) {
|
||
|
if (bh) {
|
||
|
BUFFER_TRACE(bh, "call ext3_journal_dirty_metadata");
|
||
|
if (ext3_journal_dirty_metadata(handle, bh))
|
||
|
return;
|
||
|
}
|
||
|
ext3_mark_inode_dirty(handle, inode);
|
||
|
truncate_restart_transaction(handle, inode);
|
||
|
if (bh) {
|
||
|
BUFFER_TRACE(bh, "retaking write access");
|
||
|
if (ext3_journal_get_write_access(handle, bh))
|
||
|
return;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Any buffers which are on the journal will be in memory. We find
|
||
|
* them on the hash table so journal_revoke() will run journal_forget()
|
||
|
* on them. We've already detached each block from the file, so
|
||
|
* bforget() in journal_forget() should be safe.
|
||
|
*
|
||
|
* AKPM: turn on bforget in journal_forget()!!!
|
||
|
*/
|
||
|
for (p = first; p < last; p++) {
|
||
|
u32 nr = le32_to_cpu(*p);
|
||
|
if (nr) {
|
||
|
struct buffer_head *bh;
|
||
|
|
||
|
*p = 0;
|
||
|
bh = sb_find_get_block(inode->i_sb, nr);
|
||
|
ext3_forget(handle, 0, inode, bh, nr);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
ext3_free_blocks(handle, inode, block_to_free, count);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* ext3_free_data - free a list of data blocks
|
||
|
* @handle: handle for this transaction
|
||
|
* @inode: inode we are dealing with
|
||
|
* @this_bh: indirect buffer_head which contains *@first and *@last
|
||
|
* @first: array of block numbers
|
||
|
* @last: points immediately past the end of array
|
||
|
*
|
||
|
* We are freeing all blocks referred from that array (numbers are stored as
|
||
|
* little-endian 32-bit) and updating @inode->i_blocks appropriately.
|
||
|
*
|
||
|
* We accumulate contiguous runs of blocks to free. Conveniently, if these
|
||
|
* blocks are contiguous then releasing them at one time will only affect one
|
||
|
* or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
|
||
|
* actually use a lot of journal space.
|
||
|
*
|
||
|
* @this_bh will be %NULL if @first and @last point into the inode's direct
|
||
|
* block pointers.
|
||
|
*/
|
||
|
static void ext3_free_data(handle_t *handle, struct inode *inode,
|
||
|
struct buffer_head *this_bh,
|
||
|
__le32 *first, __le32 *last)
|
||
|
{
|
||
|
ext3_fsblk_t block_to_free = 0; /* Starting block # of a run */
|
||
|
unsigned long count = 0; /* Number of blocks in the run */
|
||
|
__le32 *block_to_free_p = NULL; /* Pointer into inode/ind
|
||
|
corresponding to
|
||
|
block_to_free */
|
||
|
ext3_fsblk_t nr; /* Current block # */
|
||
|
__le32 *p; /* Pointer into inode/ind
|
||
|
for current block */
|
||
|
int err;
|
||
|
|
||
|
if (this_bh) { /* For indirect block */
|
||
|
BUFFER_TRACE(this_bh, "get_write_access");
|
||
|
err = ext3_journal_get_write_access(handle, this_bh);
|
||
|
/* Important: if we can't update the indirect pointers
|
||
|
* to the blocks, we can't free them. */
|
||
|
if (err)
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
for (p = first; p < last; p++) {
|
||
|
nr = le32_to_cpu(*p);
|
||
|
if (nr) {
|
||
|
/* accumulate blocks to free if they're contiguous */
|
||
|
if (count == 0) {
|
||
|
block_to_free = nr;
|
||
|
block_to_free_p = p;
|
||
|
count = 1;
|
||
|
} else if (nr == block_to_free + count) {
|
||
|
count++;
|
||
|
} else {
|
||
|
ext3_clear_blocks(handle, inode, this_bh,
|
||
|
block_to_free,
|
||
|
count, block_to_free_p, p);
|
||
|
block_to_free = nr;
|
||
|
block_to_free_p = p;
|
||
|
count = 1;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
if (count > 0)
|
||
|
ext3_clear_blocks(handle, inode, this_bh, block_to_free,
|
||
|
count, block_to_free_p, p);
|
||
|
|
||
|
if (this_bh) {
|
||
|
BUFFER_TRACE(this_bh, "call ext3_journal_dirty_metadata");
|
||
|
|
||
|
/*
|
||
|
* The buffer head should have an attached journal head at this
|
||
|
* point. However, if the data is corrupted and an indirect
|
||
|
* block pointed to itself, it would have been detached when
|
||
|
* the block was cleared. Check for this instead of OOPSing.
|
||
|
*/
|
||
|
if (bh2jh(this_bh))
|
||
|
ext3_journal_dirty_metadata(handle, this_bh);
|
||
|
else
|
||
|
ext3_error(inode->i_sb, "ext3_free_data",
|
||
|
"circular indirect block detected, "
|
||
|
"inode=%lu, block=%llu",
|
||
|
inode->i_ino,
|
||
|
(unsigned long long)this_bh->b_blocknr);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* ext3_free_branches - free an array of branches
|
||
|
* @handle: JBD handle for this transaction
|
||
|
* @inode: inode we are dealing with
|
||
|
* @parent_bh: the buffer_head which contains *@first and *@last
|
||
|
* @first: array of block numbers
|
||
|
* @last: pointer immediately past the end of array
|
||
|
* @depth: depth of the branches to free
|
||
|
*
|
||
|
* We are freeing all blocks referred from these branches (numbers are
|
||
|
* stored as little-endian 32-bit) and updating @inode->i_blocks
|
||
|
* appropriately.
|
||
|
*/
|
||
|
static void ext3_free_branches(handle_t *handle, struct inode *inode,
|
||
|
struct buffer_head *parent_bh,
|
||
|
__le32 *first, __le32 *last, int depth)
|
||
|
{
|
||
|
ext3_fsblk_t nr;
|
||
|
__le32 *p;
|
||
|
|
||
|
if (is_handle_aborted(handle))
|
||
|
return;
|
||
|
|
||
|
if (depth--) {
|
||
|
struct buffer_head *bh;
|
||
|
int addr_per_block = EXT3_ADDR_PER_BLOCK(inode->i_sb);
|
||
|
p = last;
|
||
|
while (--p >= first) {
|
||
|
nr = le32_to_cpu(*p);
|
||
|
if (!nr)
|
||
|
continue; /* A hole */
|
||
|
|
||
|
/* Go read the buffer for the next level down */
|
||
|
bh = sb_bread(inode->i_sb, nr);
|
||
|
|
||
|
/*
|
||
|
* A read failure? Report error and clear slot
|
||
|
* (should be rare).
|
||
|
*/
|
||
|
if (!bh) {
|
||
|
ext3_error(inode->i_sb, "ext3_free_branches",
|
||
|
"Read failure, inode=%lu, block="E3FSBLK,
|
||
|
inode->i_ino, nr);
|
||
|
continue;
|
||
|
}
|
||
|
|
||
|
/* This zaps the entire block. Bottom up. */
|
||
|
BUFFER_TRACE(bh, "free child branches");
|
||
|
ext3_free_branches(handle, inode, bh,
|
||
|
(__le32*)bh->b_data,
|
||
|
(__le32*)bh->b_data + addr_per_block,
|
||
|
depth);
|
||
|
|
||
|
/*
|
||
|
* Everything below this this pointer has been
|
||
|
* released. Now let this top-of-subtree go.
|
||
|
*
|
||
|
* We want the freeing of this indirect block to be
|
||
|
* atomic in the journal with the updating of the
|
||
|
* bitmap block which owns it. So make some room in
|
||
|
* the journal.
|
||
|
*
|
||
|
* We zero the parent pointer *after* freeing its
|
||
|
* pointee in the bitmaps, so if extend_transaction()
|
||
|
* for some reason fails to put the bitmap changes and
|
||
|
* the release into the same transaction, recovery
|
||
|
* will merely complain about releasing a free block,
|
||
|
* rather than leaking blocks.
|
||
|
*/
|
||
|
if (is_handle_aborted(handle))
|
||
|
return;
|
||
|
if (try_to_extend_transaction(handle, inode)) {
|
||
|
ext3_mark_inode_dirty(handle, inode);
|
||
|
truncate_restart_transaction(handle, inode);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* We've probably journalled the indirect block several
|
||
|
* times during the truncate. But it's no longer
|
||
|
* needed and we now drop it from the transaction via
|
||
|
* journal_revoke().
|
||
|
*
|
||
|
* That's easy if it's exclusively part of this
|
||
|
* transaction. But if it's part of the committing
|
||
|
* transaction then journal_forget() will simply
|
||
|
* brelse() it. That means that if the underlying
|
||
|
* block is reallocated in ext3_get_block(),
|
||
|
* unmap_underlying_metadata() will find this block
|
||
|
* and will try to get rid of it. damn, damn. Thus
|
||
|
* we don't allow a block to be reallocated until
|
||
|
* a transaction freeing it has fully committed.
|
||
|
*
|
||
|
* We also have to make sure journal replay after a
|
||
|
* crash does not overwrite non-journaled data blocks
|
||
|
* with old metadata when the block got reallocated for
|
||
|
* data. Thus we have to store a revoke record for a
|
||
|
* block in the same transaction in which we free the
|
||
|
* block.
|
||
|
*/
|
||
|
ext3_forget(handle, 1, inode, bh, bh->b_blocknr);
|
||
|
|
||
|
ext3_free_blocks(handle, inode, nr, 1);
|
||
|
|
||
|
if (parent_bh) {
|
||
|
/*
|
||
|
* The block which we have just freed is
|
||
|
* pointed to by an indirect block: journal it
|
||
|
*/
|
||
|
BUFFER_TRACE(parent_bh, "get_write_access");
|
||
|
if (!ext3_journal_get_write_access(handle,
|
||
|
parent_bh)){
|
||
|
*p = 0;
|
||
|
BUFFER_TRACE(parent_bh,
|
||
|
"call ext3_journal_dirty_metadata");
|
||
|
ext3_journal_dirty_metadata(handle,
|
||
|
parent_bh);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
} else {
|
||
|
/* We have reached the bottom of the tree. */
|
||
|
BUFFER_TRACE(parent_bh, "free data blocks");
|
||
|
ext3_free_data(handle, inode, parent_bh, first, last);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
int ext3_can_truncate(struct inode *inode)
|
||
|
{
|
||
|
if (S_ISREG(inode->i_mode))
|
||
|
return 1;
|
||
|
if (S_ISDIR(inode->i_mode))
|
||
|
return 1;
|
||
|
if (S_ISLNK(inode->i_mode))
|
||
|
return !ext3_inode_is_fast_symlink(inode);
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* ext3_truncate()
|
||
|
*
|
||
|
* We block out ext3_get_block() block instantiations across the entire
|
||
|
* transaction, and VFS/VM ensures that ext3_truncate() cannot run
|
||
|
* simultaneously on behalf of the same inode.
|
||
|
*
|
||
|
* As we work through the truncate and commit bits of it to the journal there
|
||
|
* is one core, guiding principle: the file's tree must always be consistent on
|
||
|
* disk. We must be able to restart the truncate after a crash.
|
||
|
*
|
||
|
* The file's tree may be transiently inconsistent in memory (although it
|
||
|
* probably isn't), but whenever we close off and commit a journal transaction,
|
||
|
* the contents of (the filesystem + the journal) must be consistent and
|
||
|
* restartable. It's pretty simple, really: bottom up, right to left (although
|
||
|
* left-to-right works OK too).
|
||
|
*
|
||
|
* Note that at recovery time, journal replay occurs *before* the restart of
|
||
|
* truncate against the orphan inode list.
|
||
|
*
|
||
|
* The committed inode has the new, desired i_size (which is the same as
|
||
|
* i_disksize in this case). After a crash, ext3_orphan_cleanup() will see
|
||
|
* that this inode's truncate did not complete and it will again call
|
||
|
* ext3_truncate() to have another go. So there will be instantiated blocks
|
||
|
* to the right of the truncation point in a crashed ext3 filesystem. But
|
||
|
* that's fine - as long as they are linked from the inode, the post-crash
|
||
|
* ext3_truncate() run will find them and release them.
|
||
|
*/
|
||
|
void ext3_truncate(struct inode *inode)
|
||
|
{
|
||
|
handle_t *handle;
|
||
|
struct ext3_inode_info *ei = EXT3_I(inode);
|
||
|
__le32 *i_data = ei->i_data;
|
||
|
int addr_per_block = EXT3_ADDR_PER_BLOCK(inode->i_sb);
|
||
|
int offsets[4];
|
||
|
Indirect chain[4];
|
||
|
Indirect *partial;
|
||
|
__le32 nr = 0;
|
||
|
int n;
|
||
|
long last_block;
|
||
|
unsigned blocksize = inode->i_sb->s_blocksize;
|
||
|
|
||
|
trace_ext3_truncate_enter(inode);
|
||
|
|
||
|
if (!ext3_can_truncate(inode))
|
||
|
goto out_notrans;
|
||
|
|
||
|
if (inode->i_size == 0 && ext3_should_writeback_data(inode))
|
||
|
ext3_set_inode_state(inode, EXT3_STATE_FLUSH_ON_CLOSE);
|
||
|
|
||
|
handle = start_transaction(inode);
|
||
|
if (IS_ERR(handle))
|
||
|
goto out_notrans;
|
||
|
|
||
|
last_block = (inode->i_size + blocksize-1)
|
||
|
>> EXT3_BLOCK_SIZE_BITS(inode->i_sb);
|
||
|
n = ext3_block_to_path(inode, last_block, offsets, NULL);
|
||
|
if (n == 0)
|
||
|
goto out_stop; /* error */
|
||
|
|
||
|
/*
|
||
|
* OK. This truncate is going to happen. We add the inode to the
|
||
|
* orphan list, so that if this truncate spans multiple transactions,
|
||
|
* and we crash, we will resume the truncate when the filesystem
|
||
|
* recovers. It also marks the inode dirty, to catch the new size.
|
||
|
*
|
||
|
* Implication: the file must always be in a sane, consistent
|
||
|
* truncatable state while each transaction commits.
|
||
|
*/
|
||
|
if (ext3_orphan_add(handle, inode))
|
||
|
goto out_stop;
|
||
|
|
||
|
/*
|
||
|
* The orphan list entry will now protect us from any crash which
|
||
|
* occurs before the truncate completes, so it is now safe to propagate
|
||
|
* the new, shorter inode size (held for now in i_size) into the
|
||
|
* on-disk inode. We do this via i_disksize, which is the value which
|
||
|
* ext3 *really* writes onto the disk inode.
|
||
|
*/
|
||
|
ei->i_disksize = inode->i_size;
|
||
|
|
||
|
/*
|
||
|
* From here we block out all ext3_get_block() callers who want to
|
||
|
* modify the block allocation tree.
|
||
|
*/
|
||
|
mutex_lock(&ei->truncate_mutex);
|
||
|
|
||
|
if (n == 1) { /* direct blocks */
|
||
|
ext3_free_data(handle, inode, NULL, i_data+offsets[0],
|
||
|
i_data + EXT3_NDIR_BLOCKS);
|
||
|
goto do_indirects;
|
||
|
}
|
||
|
|
||
|
partial = ext3_find_shared(inode, n, offsets, chain, &nr);
|
||
|
/* Kill the top of shared branch (not detached) */
|
||
|
if (nr) {
|
||
|
if (partial == chain) {
|
||
|
/* Shared branch grows from the inode */
|
||
|
ext3_free_branches(handle, inode, NULL,
|
||
|
&nr, &nr+1, (chain+n-1) - partial);
|
||
|
*partial->p = 0;
|
||
|
/*
|
||
|
* We mark the inode dirty prior to restart,
|
||
|
* and prior to stop. No need for it here.
|
||
|
*/
|
||
|
} else {
|
||
|
/* Shared branch grows from an indirect block */
|
||
|
ext3_free_branches(handle, inode, partial->bh,
|
||
|
partial->p,
|
||
|
partial->p+1, (chain+n-1) - partial);
|
||
|
}
|
||
|
}
|
||
|
/* Clear the ends of indirect blocks on the shared branch */
|
||
|
while (partial > chain) {
|
||
|
ext3_free_branches(handle, inode, partial->bh, partial->p + 1,
|
||
|
(__le32*)partial->bh->b_data+addr_per_block,
|
||
|
(chain+n-1) - partial);
|
||
|
BUFFER_TRACE(partial->bh, "call brelse");
|
||
|
brelse (partial->bh);
|
||
|
partial--;
|
||
|
}
|
||
|
do_indirects:
|
||
|
/* Kill the remaining (whole) subtrees */
|
||
|
switch (offsets[0]) {
|
||
|
default:
|
||
|
nr = i_data[EXT3_IND_BLOCK];
|
||
|
if (nr) {
|
||
|
ext3_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
|
||
|
i_data[EXT3_IND_BLOCK] = 0;
|
||
|
}
|
||
|
case EXT3_IND_BLOCK:
|
||
|
nr = i_data[EXT3_DIND_BLOCK];
|
||
|
if (nr) {
|
||
|
ext3_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
|
||
|
i_data[EXT3_DIND_BLOCK] = 0;
|
||
|
}
|
||
|
case EXT3_DIND_BLOCK:
|
||
|
nr = i_data[EXT3_TIND_BLOCK];
|
||
|
if (nr) {
|
||
|
ext3_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
|
||
|
i_data[EXT3_TIND_BLOCK] = 0;
|
||
|
}
|
||
|
case EXT3_TIND_BLOCK:
|
||
|
;
|
||
|
}
|
||
|
|
||
|
ext3_discard_reservation(inode);
|
||
|
|
||
|
mutex_unlock(&ei->truncate_mutex);
|
||
|
inode->i_mtime = inode->i_ctime = CURRENT_TIME_SEC;
|
||
|
ext3_mark_inode_dirty(handle, inode);
|
||
|
|
||
|
/*
|
||
|
* In a multi-transaction truncate, we only make the final transaction
|
||
|
* synchronous
|
||
|
*/
|
||
|
if (IS_SYNC(inode))
|
||
|
handle->h_sync = 1;
|
||
|
out_stop:
|
||
|
/*
|
||
|
* If this was a simple ftruncate(), and the file will remain alive
|
||
|
* then we need to clear up the orphan record which we created above.
|
||
|
* However, if this was a real unlink then we were called by
|
||
|
* ext3_evict_inode(), and we allow that function to clean up the
|
||
|
* orphan info for us.
|
||
|
*/
|
||
|
if (inode->i_nlink)
|
||
|
ext3_orphan_del(handle, inode);
|
||
|
|
||
|
ext3_journal_stop(handle);
|
||
|
trace_ext3_truncate_exit(inode);
|
||
|
return;
|
||
|
out_notrans:
|
||
|
/*
|
||
|
* Delete the inode from orphan list so that it doesn't stay there
|
||
|
* forever and trigger assertion on umount.
|
||
|
*/
|
||
|
if (inode->i_nlink)
|
||
|
ext3_orphan_del(NULL, inode);
|
||
|
trace_ext3_truncate_exit(inode);
|
||
|
}
|
||
|
|
||
|
static ext3_fsblk_t ext3_get_inode_block(struct super_block *sb,
|
||
|
unsigned long ino, struct ext3_iloc *iloc)
|
||
|
{
|
||
|
unsigned long block_group;
|
||
|
unsigned long offset;
|
||
|
ext3_fsblk_t block;
|
||
|
struct ext3_group_desc *gdp;
|
||
|
|
||
|
if (!ext3_valid_inum(sb, ino)) {
|
||
|
/*
|
||
|
* This error is already checked for in namei.c unless we are
|
||
|
* looking at an NFS filehandle, in which case no error
|
||
|
* report is needed
|
||
|
*/
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
block_group = (ino - 1) / EXT3_INODES_PER_GROUP(sb);
|
||
|
gdp = ext3_get_group_desc(sb, block_group, NULL);
|
||
|
if (!gdp)
|
||
|
return 0;
|
||
|
/*
|
||
|
* Figure out the offset within the block group inode table
|
||
|
*/
|
||
|
offset = ((ino - 1) % EXT3_INODES_PER_GROUP(sb)) *
|
||
|
EXT3_INODE_SIZE(sb);
|
||
|
block = le32_to_cpu(gdp->bg_inode_table) +
|
||
|
(offset >> EXT3_BLOCK_SIZE_BITS(sb));
|
||
|
|
||
|
iloc->block_group = block_group;
|
||
|
iloc->offset = offset & (EXT3_BLOCK_SIZE(sb) - 1);
|
||
|
return block;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* ext3_get_inode_loc returns with an extra refcount against the inode's
|
||
|
* underlying buffer_head on success. If 'in_mem' is true, we have all
|
||
|
* data in memory that is needed to recreate the on-disk version of this
|
||
|
* inode.
|
||
|
*/
|
||
|
static int __ext3_get_inode_loc(struct inode *inode,
|
||
|
struct ext3_iloc *iloc, int in_mem)
|
||
|
{
|
||
|
ext3_fsblk_t block;
|
||
|
struct buffer_head *bh;
|
||
|
|
||
|
block = ext3_get_inode_block(inode->i_sb, inode->i_ino, iloc);
|
||
|
if (!block)
|
||
|
return -EIO;
|
||
|
|
||
|
bh = sb_getblk(inode->i_sb, block);
|
||
|
if (unlikely(!bh)) {
|
||
|
ext3_error (inode->i_sb, "ext3_get_inode_loc",
|
||
|
"unable to read inode block - "
|
||
|
"inode=%lu, block="E3FSBLK,
|
||
|
inode->i_ino, block);
|
||
|
return -ENOMEM;
|
||
|
}
|
||
|
if (!buffer_uptodate(bh)) {
|
||
|
lock_buffer(bh);
|
||
|
|
||
|
/*
|
||
|
* If the buffer has the write error flag, we have failed
|
||
|
* to write out another inode in the same block. In this
|
||
|
* case, we don't have to read the block because we may
|
||
|
* read the old inode data successfully.
|
||
|
*/
|
||
|
if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
|
||
|
set_buffer_uptodate(bh);
|
||
|
|
||
|
if (buffer_uptodate(bh)) {
|
||
|
/* someone brought it uptodate while we waited */
|
||
|
unlock_buffer(bh);
|
||
|
goto has_buffer;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* If we have all information of the inode in memory and this
|
||
|
* is the only valid inode in the block, we need not read the
|
||
|
* block.
|
||
|
*/
|
||
|
if (in_mem) {
|
||
|
struct buffer_head *bitmap_bh;
|
||
|
struct ext3_group_desc *desc;
|
||
|
int inodes_per_buffer;
|
||
|
int inode_offset, i;
|
||
|
int block_group;
|
||
|
int start;
|
||
|
|
||
|
block_group = (inode->i_ino - 1) /
|
||
|
EXT3_INODES_PER_GROUP(inode->i_sb);
|
||
|
inodes_per_buffer = bh->b_size /
|
||
|
EXT3_INODE_SIZE(inode->i_sb);
|
||
|
inode_offset = ((inode->i_ino - 1) %
|
||
|
EXT3_INODES_PER_GROUP(inode->i_sb));
|
||
|
start = inode_offset & ~(inodes_per_buffer - 1);
|
||
|
|
||
|
/* Is the inode bitmap in cache? */
|
||
|
desc = ext3_get_group_desc(inode->i_sb,
|
||
|
block_group, NULL);
|
||
|
if (!desc)
|
||
|
goto make_io;
|
||
|
|
||
|
bitmap_bh = sb_getblk(inode->i_sb,
|
||
|
le32_to_cpu(desc->bg_inode_bitmap));
|
||
|
if (unlikely(!bitmap_bh))
|
||
|
goto make_io;
|
||
|
|
||
|
/*
|
||
|
* If the inode bitmap isn't in cache then the
|
||
|
* optimisation may end up performing two reads instead
|
||
|
* of one, so skip it.
|
||
|
*/
|
||
|
if (!buffer_uptodate(bitmap_bh)) {
|
||
|
brelse(bitmap_bh);
|
||
|
goto make_io;
|
||
|
}
|
||
|
for (i = start; i < start + inodes_per_buffer; i++) {
|
||
|
if (i == inode_offset)
|
||
|
continue;
|
||
|
if (ext3_test_bit(i, bitmap_bh->b_data))
|
||
|
break;
|
||
|
}
|
||
|
brelse(bitmap_bh);
|
||
|
if (i == start + inodes_per_buffer) {
|
||
|
/* all other inodes are free, so skip I/O */
|
||
|
memset(bh->b_data, 0, bh->b_size);
|
||
|
set_buffer_uptodate(bh);
|
||
|
unlock_buffer(bh);
|
||
|
goto has_buffer;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
make_io:
|
||
|
/*
|
||
|
* There are other valid inodes in the buffer, this inode
|
||
|
* has in-inode xattrs, or we don't have this inode in memory.
|
||
|
* Read the block from disk.
|
||
|
*/
|
||
|
trace_ext3_load_inode(inode);
|
||
|
get_bh(bh);
|
||
|
bh->b_end_io = end_buffer_read_sync;
|
||
|
submit_bh(READ | REQ_META | REQ_PRIO, bh);
|
||
|
wait_on_buffer(bh);
|
||
|
if (!buffer_uptodate(bh)) {
|
||
|
ext3_error(inode->i_sb, "ext3_get_inode_loc",
|
||
|
"unable to read inode block - "
|
||
|
"inode=%lu, block="E3FSBLK,
|
||
|
inode->i_ino, block);
|
||
|
brelse(bh);
|
||
|
return -EIO;
|
||
|
}
|
||
|
}
|
||
|
has_buffer:
|
||
|
iloc->bh = bh;
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
int ext3_get_inode_loc(struct inode *inode, struct ext3_iloc *iloc)
|
||
|
{
|
||
|
/* We have all inode data except xattrs in memory here. */
|
||
|
return __ext3_get_inode_loc(inode, iloc,
|
||
|
!ext3_test_inode_state(inode, EXT3_STATE_XATTR));
|
||
|
}
|
||
|
|
||
|
void ext3_set_inode_flags(struct inode *inode)
|
||
|
{
|
||
|
unsigned int flags = EXT3_I(inode)->i_flags;
|
||
|
|
||
|
inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
|
||
|
if (flags & EXT3_SYNC_FL)
|
||
|
inode->i_flags |= S_SYNC;
|
||
|
if (flags & EXT3_APPEND_FL)
|
||
|
inode->i_flags |= S_APPEND;
|
||
|
if (flags & EXT3_IMMUTABLE_FL)
|
||
|
inode->i_flags |= S_IMMUTABLE;
|
||
|
if (flags & EXT3_NOATIME_FL)
|
||
|
inode->i_flags |= S_NOATIME;
|
||
|
if (flags & EXT3_DIRSYNC_FL)
|
||
|
inode->i_flags |= S_DIRSYNC;
|
||
|
}
|
||
|
|
||
|
/* Propagate flags from i_flags to EXT3_I(inode)->i_flags */
|
||
|
void ext3_get_inode_flags(struct ext3_inode_info *ei)
|
||
|
{
|
||
|
unsigned int flags = ei->vfs_inode.i_flags;
|
||
|
|
||
|
ei->i_flags &= ~(EXT3_SYNC_FL|EXT3_APPEND_FL|
|
||
|
EXT3_IMMUTABLE_FL|EXT3_NOATIME_FL|EXT3_DIRSYNC_FL);
|
||
|
if (flags & S_SYNC)
|
||
|
ei->i_flags |= EXT3_SYNC_FL;
|
||
|
if (flags & S_APPEND)
|
||
|
ei->i_flags |= EXT3_APPEND_FL;
|
||
|
if (flags & S_IMMUTABLE)
|
||
|
ei->i_flags |= EXT3_IMMUTABLE_FL;
|
||
|
if (flags & S_NOATIME)
|
||
|
ei->i_flags |= EXT3_NOATIME_FL;
|
||
|
if (flags & S_DIRSYNC)
|
||
|
ei->i_flags |= EXT3_DIRSYNC_FL;
|
||
|
}
|
||
|
|
||
|
struct inode *ext3_iget(struct super_block *sb, unsigned long ino)
|
||
|
{
|
||
|
struct ext3_iloc iloc;
|
||
|
struct ext3_inode *raw_inode;
|
||
|
struct ext3_inode_info *ei;
|
||
|
struct buffer_head *bh;
|
||
|
struct inode *inode;
|
||
|
journal_t *journal = EXT3_SB(sb)->s_journal;
|
||
|
transaction_t *transaction;
|
||
|
long ret;
|
||
|
int block;
|
||
|
uid_t i_uid;
|
||
|
gid_t i_gid;
|
||
|
|
||
|
inode = iget_locked(sb, ino);
|
||
|
if (!inode)
|
||
|
return ERR_PTR(-ENOMEM);
|
||
|
if (!(inode->i_state & I_NEW))
|
||
|
return inode;
|
||
|
|
||
|
ei = EXT3_I(inode);
|
||
|
ei->i_block_alloc_info = NULL;
|
||
|
|
||
|
ret = __ext3_get_inode_loc(inode, &iloc, 0);
|
||
|
if (ret < 0)
|
||
|
goto bad_inode;
|
||
|
bh = iloc.bh;
|
||
|
raw_inode = ext3_raw_inode(&iloc);
|
||
|
inode->i_mode = le16_to_cpu(raw_inode->i_mode);
|
||
|
i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
|
||
|
i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
|
||
|
if(!(test_opt (inode->i_sb, NO_UID32))) {
|
||
|
i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
|
||
|
i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
|
||
|
}
|
||
|
i_uid_write(inode, i_uid);
|
||
|
i_gid_write(inode, i_gid);
|
||
|
set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
|
||
|
inode->i_size = le32_to_cpu(raw_inode->i_size);
|
||
|
inode->i_atime.tv_sec = (signed)le32_to_cpu(raw_inode->i_atime);
|
||
|
inode->i_ctime.tv_sec = (signed)le32_to_cpu(raw_inode->i_ctime);
|
||
|
inode->i_mtime.tv_sec = (signed)le32_to_cpu(raw_inode->i_mtime);
|
||
|
inode->i_atime.tv_nsec = inode->i_ctime.tv_nsec = inode->i_mtime.tv_nsec = 0;
|
||
|
|
||
|
ei->i_state_flags = 0;
|
||
|
ei->i_dir_start_lookup = 0;
|
||
|
ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
|
||
|
/* We now have enough fields to check if the inode was active or not.
|
||
|
* This is needed because nfsd might try to access dead inodes
|
||
|
* the test is that same one that e2fsck uses
|
||
|
* NeilBrown 1999oct15
|
||
|
*/
|
||
|
if (inode->i_nlink == 0) {
|
||
|
if (inode->i_mode == 0 ||
|
||
|
!(EXT3_SB(inode->i_sb)->s_mount_state & EXT3_ORPHAN_FS)) {
|
||
|
/* this inode is deleted */
|
||
|
brelse (bh);
|
||
|
ret = -ESTALE;
|
||
|
goto bad_inode;
|
||
|
}
|
||
|
/* The only unlinked inodes we let through here have
|
||
|
* valid i_mode and are being read by the orphan
|
||
|
* recovery code: that's fine, we're about to complete
|
||
|
* the process of deleting those. */
|
||
|
}
|
||
|
inode->i_blocks = le32_to_cpu(raw_inode->i_blocks);
|
||
|
ei->i_flags = le32_to_cpu(raw_inode->i_flags);
|
||
|
#ifdef EXT3_FRAGMENTS
|
||
|
ei->i_faddr = le32_to_cpu(raw_inode->i_faddr);
|
||
|
ei->i_frag_no = raw_inode->i_frag;
|
||
|
ei->i_frag_size = raw_inode->i_fsize;
|
||
|
#endif
|
||
|
ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl);
|
||
|
if (!S_ISREG(inode->i_mode)) {
|
||
|
ei->i_dir_acl = le32_to_cpu(raw_inode->i_dir_acl);
|
||
|
} else {
|
||
|
inode->i_size |=
|
||
|
((__u64)le32_to_cpu(raw_inode->i_size_high)) << 32;
|
||
|
}
|
||
|
ei->i_disksize = inode->i_size;
|
||
|
inode->i_generation = le32_to_cpu(raw_inode->i_generation);
|
||
|
ei->i_block_group = iloc.block_group;
|
||
|
/*
|
||
|
* NOTE! The in-memory inode i_data array is in little-endian order
|
||
|
* even on big-endian machines: we do NOT byteswap the block numbers!
|
||
|
*/
|
||
|
for (block = 0; block < EXT3_N_BLOCKS; block++)
|
||
|
ei->i_data[block] = raw_inode->i_block[block];
|
||
|
INIT_LIST_HEAD(&ei->i_orphan);
|
||
|
|
||
|
/*
|
||
|
* Set transaction id's of transactions that have to be committed
|
||
|
* to finish f[data]sync. We set them to currently running transaction
|
||
|
* as we cannot be sure that the inode or some of its metadata isn't
|
||
|
* part of the transaction - the inode could have been reclaimed and
|
||
|
* now it is reread from disk.
|
||
|
*/
|
||
|
if (journal) {
|
||
|
tid_t tid;
|
||
|
|
||
|
spin_lock(&journal->j_state_lock);
|
||
|
if (journal->j_running_transaction)
|
||
|
transaction = journal->j_running_transaction;
|
||
|
else
|
||
|
transaction = journal->j_committing_transaction;
|
||
|
if (transaction)
|
||
|
tid = transaction->t_tid;
|
||
|
else
|
||
|
tid = journal->j_commit_sequence;
|
||
|
spin_unlock(&journal->j_state_lock);
|
||
|
atomic_set(&ei->i_sync_tid, tid);
|
||
|
atomic_set(&ei->i_datasync_tid, tid);
|
||
|
}
|
||
|
|
||
|
if (inode->i_ino >= EXT3_FIRST_INO(inode->i_sb) + 1 &&
|
||
|
EXT3_INODE_SIZE(inode->i_sb) > EXT3_GOOD_OLD_INODE_SIZE) {
|
||
|
/*
|
||
|
* When mke2fs creates big inodes it does not zero out
|
||
|
* the unused bytes above EXT3_GOOD_OLD_INODE_SIZE,
|
||
|
* so ignore those first few inodes.
|
||
|
*/
|
||
|
ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
|
||
|
if (EXT3_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
|
||
|
EXT3_INODE_SIZE(inode->i_sb)) {
|
||
|
brelse (bh);
|
||
|
ret = -EIO;
|
||
|
goto bad_inode;
|
||
|
}
|
||
|
if (ei->i_extra_isize == 0) {
|
||
|
/* The extra space is currently unused. Use it. */
|
||
|
ei->i_extra_isize = sizeof(struct ext3_inode) -
|
||
|
EXT3_GOOD_OLD_INODE_SIZE;
|
||
|
} else {
|
||
|
__le32 *magic = (void *)raw_inode +
|
||
|
EXT3_GOOD_OLD_INODE_SIZE +
|
||
|
ei->i_extra_isize;
|
||
|
if (*magic == cpu_to_le32(EXT3_XATTR_MAGIC))
|
||
|
ext3_set_inode_state(inode, EXT3_STATE_XATTR);
|
||
|
}
|
||
|
} else
|
||
|
ei->i_extra_isize = 0;
|
||
|
|
||
|
if (S_ISREG(inode->i_mode)) {
|
||
|
inode->i_op = &ext3_file_inode_operations;
|
||
|
inode->i_fop = &ext3_file_operations;
|
||
|
ext3_set_aops(inode);
|
||
|
} else if (S_ISDIR(inode->i_mode)) {
|
||
|
inode->i_op = &ext3_dir_inode_operations;
|
||
|
inode->i_fop = &ext3_dir_operations;
|
||
|
} else if (S_ISLNK(inode->i_mode)) {
|
||
|
if (ext3_inode_is_fast_symlink(inode)) {
|
||
|
inode->i_op = &ext3_fast_symlink_inode_operations;
|
||
|
nd_terminate_link(ei->i_data, inode->i_size,
|
||
|
sizeof(ei->i_data) - 1);
|
||
|
} else {
|
||
|
inode->i_op = &ext3_symlink_inode_operations;
|
||
|
ext3_set_aops(inode);
|
||
|
}
|
||
|
} else {
|
||
|
inode->i_op = &ext3_special_inode_operations;
|
||
|
if (raw_inode->i_block[0])
|
||
|
init_special_inode(inode, inode->i_mode,
|
||
|
old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
|
||
|
else
|
||
|
init_special_inode(inode, inode->i_mode,
|
||
|
new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
|
||
|
}
|
||
|
brelse (iloc.bh);
|
||
|
ext3_set_inode_flags(inode);
|
||
|
unlock_new_inode(inode);
|
||
|
return inode;
|
||
|
|
||
|
bad_inode:
|
||
|
iget_failed(inode);
|
||
|
return ERR_PTR(ret);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Post the struct inode info into an on-disk inode location in the
|
||
|
* buffer-cache. This gobbles the caller's reference to the
|
||
|
* buffer_head in the inode location struct.
|
||
|
*
|
||
|
* The caller must have write access to iloc->bh.
|
||
|
*/
|
||
|
static int ext3_do_update_inode(handle_t *handle,
|
||
|
struct inode *inode,
|
||
|
struct ext3_iloc *iloc)
|
||
|
{
|
||
|
struct ext3_inode *raw_inode = ext3_raw_inode(iloc);
|
||
|
struct ext3_inode_info *ei = EXT3_I(inode);
|
||
|
struct buffer_head *bh = iloc->bh;
|
||
|
int err = 0, rc, block;
|
||
|
int need_datasync = 0;
|
||
|
__le32 disksize;
|
||
|
uid_t i_uid;
|
||
|
gid_t i_gid;
|
||
|
|
||
|
again:
|
||
|
/* we can't allow multiple procs in here at once, its a bit racey */
|
||
|
lock_buffer(bh);
|
||
|
|
||
|
/* For fields not not tracking in the in-memory inode,
|
||
|
* initialise them to zero for new inodes. */
|
||
|
if (ext3_test_inode_state(inode, EXT3_STATE_NEW))
|
||
|
memset(raw_inode, 0, EXT3_SB(inode->i_sb)->s_inode_size);
|
||
|
|
||
|
ext3_get_inode_flags(ei);
|
||
|
raw_inode->i_mode = cpu_to_le16(inode->i_mode);
|
||
|
i_uid = i_uid_read(inode);
|
||
|
i_gid = i_gid_read(inode);
|
||
|
if(!(test_opt(inode->i_sb, NO_UID32))) {
|
||
|
raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
|
||
|
raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
|
||
|
/*
|
||
|
* Fix up interoperability with old kernels. Otherwise, old inodes get
|
||
|
* re-used with the upper 16 bits of the uid/gid intact
|
||
|
*/
|
||
|
if(!ei->i_dtime) {
|
||
|
raw_inode->i_uid_high =
|
||
|
cpu_to_le16(high_16_bits(i_uid));
|
||
|
raw_inode->i_gid_high =
|
||
|
cpu_to_le16(high_16_bits(i_gid));
|
||
|
} else {
|
||
|
raw_inode->i_uid_high = 0;
|
||
|
raw_inode->i_gid_high = 0;
|
||
|
}
|
||
|
} else {
|
||
|
raw_inode->i_uid_low =
|
||
|
cpu_to_le16(fs_high2lowuid(i_uid));
|
||
|
raw_inode->i_gid_low =
|
||
|
cpu_to_le16(fs_high2lowgid(i_gid));
|
||
|
raw_inode->i_uid_high = 0;
|
||
|
raw_inode->i_gid_high = 0;
|
||
|
}
|
||
|
raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
|
||
|
disksize = cpu_to_le32(ei->i_disksize);
|
||
|
if (disksize != raw_inode->i_size) {
|
||
|
need_datasync = 1;
|
||
|
raw_inode->i_size = disksize;
|
||
|
}
|
||
|
raw_inode->i_atime = cpu_to_le32(inode->i_atime.tv_sec);
|
||
|
raw_inode->i_ctime = cpu_to_le32(inode->i_ctime.tv_sec);
|
||
|
raw_inode->i_mtime = cpu_to_le32(inode->i_mtime.tv_sec);
|
||
|
raw_inode->i_blocks = cpu_to_le32(inode->i_blocks);
|
||
|
raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
|
||
|
raw_inode->i_flags = cpu_to_le32(ei->i_flags);
|
||
|
#ifdef EXT3_FRAGMENTS
|
||
|
raw_inode->i_faddr = cpu_to_le32(ei->i_faddr);
|
||
|
raw_inode->i_frag = ei->i_frag_no;
|
||
|
raw_inode->i_fsize = ei->i_frag_size;
|
||
|
#endif
|
||
|
raw_inode->i_file_acl = cpu_to_le32(ei->i_file_acl);
|
||
|
if (!S_ISREG(inode->i_mode)) {
|
||
|
raw_inode->i_dir_acl = cpu_to_le32(ei->i_dir_acl);
|
||
|
} else {
|
||
|
disksize = cpu_to_le32(ei->i_disksize >> 32);
|
||
|
if (disksize != raw_inode->i_size_high) {
|
||
|
raw_inode->i_size_high = disksize;
|
||
|
need_datasync = 1;
|
||
|
}
|
||
|
if (ei->i_disksize > 0x7fffffffULL) {
|
||
|
struct super_block *sb = inode->i_sb;
|
||
|
if (!EXT3_HAS_RO_COMPAT_FEATURE(sb,
|
||
|
EXT3_FEATURE_RO_COMPAT_LARGE_FILE) ||
|
||
|
EXT3_SB(sb)->s_es->s_rev_level ==
|
||
|
cpu_to_le32(EXT3_GOOD_OLD_REV)) {
|
||
|
/* If this is the first large file
|
||
|
* created, add a flag to the superblock.
|
||
|
*/
|
||
|
unlock_buffer(bh);
|
||
|
err = ext3_journal_get_write_access(handle,
|
||
|
EXT3_SB(sb)->s_sbh);
|
||
|
if (err)
|
||
|
goto out_brelse;
|
||
|
|
||
|
ext3_update_dynamic_rev(sb);
|
||
|
EXT3_SET_RO_COMPAT_FEATURE(sb,
|
||
|
EXT3_FEATURE_RO_COMPAT_LARGE_FILE);
|
||
|
handle->h_sync = 1;
|
||
|
err = ext3_journal_dirty_metadata(handle,
|
||
|
EXT3_SB(sb)->s_sbh);
|
||
|
/* get our lock and start over */
|
||
|
goto again;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
raw_inode->i_generation = cpu_to_le32(inode->i_generation);
|
||
|
if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
|
||
|
if (old_valid_dev(inode->i_rdev)) {
|
||
|
raw_inode->i_block[0] =
|
||
|
cpu_to_le32(old_encode_dev(inode->i_rdev));
|
||
|
raw_inode->i_block[1] = 0;
|
||
|
} else {
|
||
|
raw_inode->i_block[0] = 0;
|
||
|
raw_inode->i_block[1] =
|
||
|
cpu_to_le32(new_encode_dev(inode->i_rdev));
|
||
|
raw_inode->i_block[2] = 0;
|
||
|
}
|
||
|
} else for (block = 0; block < EXT3_N_BLOCKS; block++)
|
||
|
raw_inode->i_block[block] = ei->i_data[block];
|
||
|
|
||
|
if (ei->i_extra_isize)
|
||
|
raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
|
||
|
|
||
|
BUFFER_TRACE(bh, "call ext3_journal_dirty_metadata");
|
||
|
unlock_buffer(bh);
|
||
|
rc = ext3_journal_dirty_metadata(handle, bh);
|
||
|
if (!err)
|
||
|
err = rc;
|
||
|
ext3_clear_inode_state(inode, EXT3_STATE_NEW);
|
||
|
|
||
|
atomic_set(&ei->i_sync_tid, handle->h_transaction->t_tid);
|
||
|
if (need_datasync)
|
||
|
atomic_set(&ei->i_datasync_tid, handle->h_transaction->t_tid);
|
||
|
out_brelse:
|
||
|
brelse (bh);
|
||
|
ext3_std_error(inode->i_sb, err);
|
||
|
return err;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* ext3_write_inode()
|
||
|
*
|
||
|
* We are called from a few places:
|
||
|
*
|
||
|
* - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files.
|
||
|
* Here, there will be no transaction running. We wait for any running
|
||
|
* transaction to commit.
|
||
|
*
|
||
|
* - Within flush work (for sys_sync(), kupdate and such).
|
||
|
* We wait on commit, if told to.
|
||
|
*
|
||
|
* - Within iput_final() -> write_inode_now()
|
||
|
* We wait on commit, if told to.
|
||
|
*
|
||
|
* In all cases it is actually safe for us to return without doing anything,
|
||
|
* because the inode has been copied into a raw inode buffer in
|
||
|
* ext3_mark_inode_dirty(). This is a correctness thing for WB_SYNC_ALL
|
||
|
* writeback.
|
||
|
*
|
||
|
* Note that we are absolutely dependent upon all inode dirtiers doing the
|
||
|
* right thing: they *must* call mark_inode_dirty() after dirtying info in
|
||
|
* which we are interested.
|
||
|
*
|
||
|
* It would be a bug for them to not do this. The code:
|
||
|
*
|
||
|
* mark_inode_dirty(inode)
|
||
|
* stuff();
|
||
|
* inode->i_size = expr;
|
||
|
*
|
||
|
* is in error because write_inode() could occur while `stuff()' is running,
|
||
|
* and the new i_size will be lost. Plus the inode will no longer be on the
|
||
|
* superblock's dirty inode list.
|
||
|
*/
|
||
|
int ext3_write_inode(struct inode *inode, struct writeback_control *wbc)
|
||
|
{
|
||
|
if (WARN_ON_ONCE(current->flags & PF_MEMALLOC))
|
||
|
return 0;
|
||
|
|
||
|
if (ext3_journal_current_handle()) {
|
||
|
jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
|
||
|
dump_stack();
|
||
|
return -EIO;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* No need to force transaction in WB_SYNC_NONE mode. Also
|
||
|
* ext3_sync_fs() will force the commit after everything is
|
||
|
* written.
|
||
|
*/
|
||
|
if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync)
|
||
|
return 0;
|
||
|
|
||
|
return ext3_force_commit(inode->i_sb);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* ext3_setattr()
|
||
|
*
|
||
|
* Called from notify_change.
|
||
|
*
|
||
|
* We want to trap VFS attempts to truncate the file as soon as
|
||
|
* possible. In particular, we want to make sure that when the VFS
|
||
|
* shrinks i_size, we put the inode on the orphan list and modify
|
||
|
* i_disksize immediately, so that during the subsequent flushing of
|
||
|
* dirty pages and freeing of disk blocks, we can guarantee that any
|
||
|
* commit will leave the blocks being flushed in an unused state on
|
||
|
* disk. (On recovery, the inode will get truncated and the blocks will
|
||
|
* be freed, so we have a strong guarantee that no future commit will
|
||
|
* leave these blocks visible to the user.)
|
||
|
*
|
||
|
* Called with inode->sem down.
|
||
|
*/
|
||
|
int ext3_setattr(struct dentry *dentry, struct iattr *attr)
|
||
|
{
|
||
|
struct inode *inode = dentry->d_inode;
|
||
|
int error, rc = 0;
|
||
|
const unsigned int ia_valid = attr->ia_valid;
|
||
|
|
||
|
error = inode_change_ok(inode, attr);
|
||
|
if (error)
|
||
|
return error;
|
||
|
|
||
|
if (is_quota_modification(inode, attr))
|
||
|
dquot_initialize(inode);
|
||
|
if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
|
||
|
(ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
|
||
|
handle_t *handle;
|
||
|
|
||
|
/* (user+group)*(old+new) structure, inode write (sb,
|
||
|
* inode block, ? - but truncate inode update has it) */
|
||
|
handle = ext3_journal_start(inode, EXT3_MAXQUOTAS_INIT_BLOCKS(inode->i_sb)+
|
||
|
EXT3_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)+3);
|
||
|
if (IS_ERR(handle)) {
|
||
|
error = PTR_ERR(handle);
|
||
|
goto err_out;
|
||
|
}
|
||
|
error = dquot_transfer(inode, attr);
|
||
|
if (error) {
|
||
|
ext3_journal_stop(handle);
|
||
|
return error;
|
||
|
}
|
||
|
/* Update corresponding info in inode so that everything is in
|
||
|
* one transaction */
|
||
|
if (attr->ia_valid & ATTR_UID)
|
||
|
inode->i_uid = attr->ia_uid;
|
||
|
if (attr->ia_valid & ATTR_GID)
|
||
|
inode->i_gid = attr->ia_gid;
|
||
|
error = ext3_mark_inode_dirty(handle, inode);
|
||
|
ext3_journal_stop(handle);
|
||
|
}
|
||
|
|
||
|
if (attr->ia_valid & ATTR_SIZE)
|
||
|
inode_dio_wait(inode);
|
||
|
|
||
|
if (S_ISREG(inode->i_mode) &&
|
||
|
attr->ia_valid & ATTR_SIZE && attr->ia_size < inode->i_size) {
|
||
|
handle_t *handle;
|
||
|
|
||
|
handle = ext3_journal_start(inode, 3);
|
||
|
if (IS_ERR(handle)) {
|
||
|
error = PTR_ERR(handle);
|
||
|
goto err_out;
|
||
|
}
|
||
|
|
||
|
error = ext3_orphan_add(handle, inode);
|
||
|
if (error) {
|
||
|
ext3_journal_stop(handle);
|
||
|
goto err_out;
|
||
|
}
|
||
|
EXT3_I(inode)->i_disksize = attr->ia_size;
|
||
|
error = ext3_mark_inode_dirty(handle, inode);
|
||
|
ext3_journal_stop(handle);
|
||
|
if (error) {
|
||
|
/* Some hard fs error must have happened. Bail out. */
|
||
|
ext3_orphan_del(NULL, inode);
|
||
|
goto err_out;
|
||
|
}
|
||
|
rc = ext3_block_truncate_page(inode, attr->ia_size);
|
||
|
if (rc) {
|
||
|
/* Cleanup orphan list and exit */
|
||
|
handle = ext3_journal_start(inode, 3);
|
||
|
if (IS_ERR(handle)) {
|
||
|
ext3_orphan_del(NULL, inode);
|
||
|
goto err_out;
|
||
|
}
|
||
|
ext3_orphan_del(handle, inode);
|
||
|
ext3_journal_stop(handle);
|
||
|
goto err_out;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
if ((attr->ia_valid & ATTR_SIZE) &&
|
||
|
attr->ia_size != i_size_read(inode)) {
|
||
|
truncate_setsize(inode, attr->ia_size);
|
||
|
ext3_truncate(inode);
|
||
|
}
|
||
|
|
||
|
setattr_copy(inode, attr);
|
||
|
mark_inode_dirty(inode);
|
||
|
|
||
|
if (ia_valid & ATTR_MODE)
|
||
|
rc = posix_acl_chmod(inode, inode->i_mode);
|
||
|
|
||
|
err_out:
|
||
|
ext3_std_error(inode->i_sb, error);
|
||
|
if (!error)
|
||
|
error = rc;
|
||
|
return error;
|
||
|
}
|
||
|
|
||
|
|
||
|
/*
|
||
|
* How many blocks doth make a writepage()?
|
||
|
*
|
||
|
* With N blocks per page, it may be:
|
||
|
* N data blocks
|
||
|
* 2 indirect block
|
||
|
* 2 dindirect
|
||
|
* 1 tindirect
|
||
|
* N+5 bitmap blocks (from the above)
|
||
|
* N+5 group descriptor summary blocks
|
||
|
* 1 inode block
|
||
|
* 1 superblock.
|
||
|
* 2 * EXT3_SINGLEDATA_TRANS_BLOCKS for the quote files
|
||
|
*
|
||
|
* 3 * (N + 5) + 2 + 2 * EXT3_SINGLEDATA_TRANS_BLOCKS
|
||
|
*
|
||
|
* With ordered or writeback data it's the same, less the N data blocks.
|
||
|
*
|
||
|
* If the inode's direct blocks can hold an integral number of pages then a
|
||
|
* page cannot straddle two indirect blocks, and we can only touch one indirect
|
||
|
* and dindirect block, and the "5" above becomes "3".
|
||
|
*
|
||
|
* This still overestimates under most circumstances. If we were to pass the
|
||
|
* start and end offsets in here as well we could do block_to_path() on each
|
||
|
* block and work out the exact number of indirects which are touched. Pah.
|
||
|
*/
|
||
|
|
||
|
static int ext3_writepage_trans_blocks(struct inode *inode)
|
||
|
{
|
||
|
int bpp = ext3_journal_blocks_per_page(inode);
|
||
|
int indirects = (EXT3_NDIR_BLOCKS % bpp) ? 5 : 3;
|
||
|
int ret;
|
||
|
|
||
|
if (ext3_should_journal_data(inode))
|
||
|
ret = 3 * (bpp + indirects) + 2;
|
||
|
else
|
||
|
ret = 2 * (bpp + indirects) + indirects + 2;
|
||
|
|
||
|
#ifdef CONFIG_QUOTA
|
||
|
/* We know that structure was already allocated during dquot_initialize so
|
||
|
* we will be updating only the data blocks + inodes */
|
||
|
ret += EXT3_MAXQUOTAS_TRANS_BLOCKS(inode->i_sb);
|
||
|
#endif
|
||
|
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* The caller must have previously called ext3_reserve_inode_write().
|
||
|
* Give this, we know that the caller already has write access to iloc->bh.
|
||
|
*/
|
||
|
int ext3_mark_iloc_dirty(handle_t *handle,
|
||
|
struct inode *inode, struct ext3_iloc *iloc)
|
||
|
{
|
||
|
int err = 0;
|
||
|
|
||
|
/* the do_update_inode consumes one bh->b_count */
|
||
|
get_bh(iloc->bh);
|
||
|
|
||
|
/* ext3_do_update_inode() does journal_dirty_metadata */
|
||
|
err = ext3_do_update_inode(handle, inode, iloc);
|
||
|
put_bh(iloc->bh);
|
||
|
return err;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* On success, We end up with an outstanding reference count against
|
||
|
* iloc->bh. This _must_ be cleaned up later.
|
||
|
*/
|
||
|
|
||
|
int
|
||
|
ext3_reserve_inode_write(handle_t *handle, struct inode *inode,
|
||
|
struct ext3_iloc *iloc)
|
||
|
{
|
||
|
int err = 0;
|
||
|
if (handle) {
|
||
|
err = ext3_get_inode_loc(inode, iloc);
|
||
|
if (!err) {
|
||
|
BUFFER_TRACE(iloc->bh, "get_write_access");
|
||
|
err = ext3_journal_get_write_access(handle, iloc->bh);
|
||
|
if (err) {
|
||
|
brelse(iloc->bh);
|
||
|
iloc->bh = NULL;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
ext3_std_error(inode->i_sb, err);
|
||
|
return err;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* What we do here is to mark the in-core inode as clean with respect to inode
|
||
|
* dirtiness (it may still be data-dirty).
|
||
|
* This means that the in-core inode may be reaped by prune_icache
|
||
|
* without having to perform any I/O. This is a very good thing,
|
||
|
* because *any* task may call prune_icache - even ones which
|
||
|
* have a transaction open against a different journal.
|
||
|
*
|
||
|
* Is this cheating? Not really. Sure, we haven't written the
|
||
|
* inode out, but prune_icache isn't a user-visible syncing function.
|
||
|
* Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
|
||
|
* we start and wait on commits.
|
||
|
*/
|
||
|
int ext3_mark_inode_dirty(handle_t *handle, struct inode *inode)
|
||
|
{
|
||
|
struct ext3_iloc iloc;
|
||
|
int err;
|
||
|
|
||
|
might_sleep();
|
||
|
trace_ext3_mark_inode_dirty(inode, _RET_IP_);
|
||
|
err = ext3_reserve_inode_write(handle, inode, &iloc);
|
||
|
if (!err)
|
||
|
err = ext3_mark_iloc_dirty(handle, inode, &iloc);
|
||
|
return err;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* ext3_dirty_inode() is called from __mark_inode_dirty()
|
||
|
*
|
||
|
* We're really interested in the case where a file is being extended.
|
||
|
* i_size has been changed by generic_commit_write() and we thus need
|
||
|
* to include the updated inode in the current transaction.
|
||
|
*
|
||
|
* Also, dquot_alloc_space() will always dirty the inode when blocks
|
||
|
* are allocated to the file.
|
||
|
*
|
||
|
* If the inode is marked synchronous, we don't honour that here - doing
|
||
|
* so would cause a commit on atime updates, which we don't bother doing.
|
||
|
* We handle synchronous inodes at the highest possible level.
|
||
|
*/
|
||
|
void ext3_dirty_inode(struct inode *inode, int flags)
|
||
|
{
|
||
|
handle_t *current_handle = ext3_journal_current_handle();
|
||
|
handle_t *handle;
|
||
|
|
||
|
handle = ext3_journal_start(inode, 2);
|
||
|
if (IS_ERR(handle))
|
||
|
goto out;
|
||
|
if (current_handle &&
|
||
|
current_handle->h_transaction != handle->h_transaction) {
|
||
|
/* This task has a transaction open against a different fs */
|
||
|
printk(KERN_EMERG "%s: transactions do not match!\n",
|
||
|
__func__);
|
||
|
} else {
|
||
|
jbd_debug(5, "marking dirty. outer handle=%p\n",
|
||
|
current_handle);
|
||
|
ext3_mark_inode_dirty(handle, inode);
|
||
|
}
|
||
|
ext3_journal_stop(handle);
|
||
|
out:
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
#if 0
|
||
|
/*
|
||
|
* Bind an inode's backing buffer_head into this transaction, to prevent
|
||
|
* it from being flushed to disk early. Unlike
|
||
|
* ext3_reserve_inode_write, this leaves behind no bh reference and
|
||
|
* returns no iloc structure, so the caller needs to repeat the iloc
|
||
|
* lookup to mark the inode dirty later.
|
||
|
*/
|
||
|
static int ext3_pin_inode(handle_t *handle, struct inode *inode)
|
||
|
{
|
||
|
struct ext3_iloc iloc;
|
||
|
|
||
|
int err = 0;
|
||
|
if (handle) {
|
||
|
err = ext3_get_inode_loc(inode, &iloc);
|
||
|
if (!err) {
|
||
|
BUFFER_TRACE(iloc.bh, "get_write_access");
|
||
|
err = journal_get_write_access(handle, iloc.bh);
|
||
|
if (!err)
|
||
|
err = ext3_journal_dirty_metadata(handle,
|
||
|
iloc.bh);
|
||
|
brelse(iloc.bh);
|
||
|
}
|
||
|
}
|
||
|
ext3_std_error(inode->i_sb, err);
|
||
|
return err;
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
int ext3_change_inode_journal_flag(struct inode *inode, int val)
|
||
|
{
|
||
|
journal_t *journal;
|
||
|
handle_t *handle;
|
||
|
int err;
|
||
|
|
||
|
/*
|
||
|
* We have to be very careful here: changing a data block's
|
||
|
* journaling status dynamically is dangerous. If we write a
|
||
|
* data block to the journal, change the status and then delete
|
||
|
* that block, we risk forgetting to revoke the old log record
|
||
|
* from the journal and so a subsequent replay can corrupt data.
|
||
|
* So, first we make sure that the journal is empty and that
|
||
|
* nobody is changing anything.
|
||
|
*/
|
||
|
|
||
|
journal = EXT3_JOURNAL(inode);
|
||
|
if (is_journal_aborted(journal))
|
||
|
return -EROFS;
|
||
|
|
||
|
journal_lock_updates(journal);
|
||
|
journal_flush(journal);
|
||
|
|
||
|
/*
|
||
|
* OK, there are no updates running now, and all cached data is
|
||
|
* synced to disk. We are now in a completely consistent state
|
||
|
* which doesn't have anything in the journal, and we know that
|
||
|
* no filesystem updates are running, so it is safe to modify
|
||
|
* the inode's in-core data-journaling state flag now.
|
||
|
*/
|
||
|
|
||
|
if (val)
|
||
|
EXT3_I(inode)->i_flags |= EXT3_JOURNAL_DATA_FL;
|
||
|
else
|
||
|
EXT3_I(inode)->i_flags &= ~EXT3_JOURNAL_DATA_FL;
|
||
|
ext3_set_aops(inode);
|
||
|
|
||
|
journal_unlock_updates(journal);
|
||
|
|
||
|
/* Finally we can mark the inode as dirty. */
|
||
|
|
||
|
handle = ext3_journal_start(inode, 1);
|
||
|
if (IS_ERR(handle))
|
||
|
return PTR_ERR(handle);
|
||
|
|
||
|
err = ext3_mark_inode_dirty(handle, inode);
|
||
|
handle->h_sync = 1;
|
||
|
ext3_journal_stop(handle);
|
||
|
ext3_std_error(inode->i_sb, err);
|
||
|
|
||
|
return err;
|
||
|
}
|