154 lines
6.9 KiB
Text
154 lines
6.9 KiB
Text
|
irq_domain interrupt number mapping library
|
||
|
|
||
|
The current design of the Linux kernel uses a single large number
|
||
|
space where each separate IRQ source is assigned a different number.
|
||
|
This is simple when there is only one interrupt controller, but in
|
||
|
systems with multiple interrupt controllers the kernel must ensure
|
||
|
that each one gets assigned non-overlapping allocations of Linux
|
||
|
IRQ numbers.
|
||
|
|
||
|
The number of interrupt controllers registered as unique irqchips
|
||
|
show a rising tendency: for example subdrivers of different kinds
|
||
|
such as GPIO controllers avoid reimplementing identical callback
|
||
|
mechanisms as the IRQ core system by modelling their interrupt
|
||
|
handlers as irqchips, i.e. in effect cascading interrupt controllers.
|
||
|
|
||
|
Here the interrupt number loose all kind of correspondence to
|
||
|
hardware interrupt numbers: whereas in the past, IRQ numbers could
|
||
|
be chosen so they matched the hardware IRQ line into the root
|
||
|
interrupt controller (i.e. the component actually fireing the
|
||
|
interrupt line to the CPU) nowadays this number is just a number.
|
||
|
|
||
|
For this reason we need a mechanism to separate controller-local
|
||
|
interrupt numbers, called hardware irq's, from Linux IRQ numbers.
|
||
|
|
||
|
The irq_alloc_desc*() and irq_free_desc*() APIs provide allocation of
|
||
|
irq numbers, but they don't provide any support for reverse mapping of
|
||
|
the controller-local IRQ (hwirq) number into the Linux IRQ number
|
||
|
space.
|
||
|
|
||
|
The irq_domain library adds mapping between hwirq and IRQ numbers on
|
||
|
top of the irq_alloc_desc*() API. An irq_domain to manage mapping is
|
||
|
preferred over interrupt controller drivers open coding their own
|
||
|
reverse mapping scheme.
|
||
|
|
||
|
irq_domain also implements translation from Device Tree interrupt
|
||
|
specifiers to hwirq numbers, and can be easily extended to support
|
||
|
other IRQ topology data sources.
|
||
|
|
||
|
=== irq_domain usage ===
|
||
|
An interrupt controller driver creates and registers an irq_domain by
|
||
|
calling one of the irq_domain_add_*() functions (each mapping method
|
||
|
has a different allocator function, more on that later). The function
|
||
|
will return a pointer to the irq_domain on success. The caller must
|
||
|
provide the allocator function with an irq_domain_ops structure.
|
||
|
|
||
|
In most cases, the irq_domain will begin empty without any mappings
|
||
|
between hwirq and IRQ numbers. Mappings are added to the irq_domain
|
||
|
by calling irq_create_mapping() which accepts the irq_domain and a
|
||
|
hwirq number as arguments. If a mapping for the hwirq doesn't already
|
||
|
exist then it will allocate a new Linux irq_desc, associate it with
|
||
|
the hwirq, and call the .map() callback so the driver can perform any
|
||
|
required hardware setup.
|
||
|
|
||
|
When an interrupt is received, irq_find_mapping() function should
|
||
|
be used to find the Linux IRQ number from the hwirq number.
|
||
|
|
||
|
The irq_create_mapping() function must be called *atleast once*
|
||
|
before any call to irq_find_mapping(), lest the descriptor will not
|
||
|
be allocated.
|
||
|
|
||
|
If the driver has the Linux IRQ number or the irq_data pointer, and
|
||
|
needs to know the associated hwirq number (such as in the irq_chip
|
||
|
callbacks) then it can be directly obtained from irq_data->hwirq.
|
||
|
|
||
|
=== Types of irq_domain mappings ===
|
||
|
There are several mechanisms available for reverse mapping from hwirq
|
||
|
to Linux irq, and each mechanism uses a different allocation function.
|
||
|
Which reverse map type should be used depends on the use case. Each
|
||
|
of the reverse map types are described below:
|
||
|
|
||
|
==== Linear ====
|
||
|
irq_domain_add_linear()
|
||
|
|
||
|
The linear reverse map maintains a fixed size table indexed by the
|
||
|
hwirq number. When a hwirq is mapped, an irq_desc is allocated for
|
||
|
the hwirq, and the IRQ number is stored in the table.
|
||
|
|
||
|
The Linear map is a good choice when the maximum number of hwirqs is
|
||
|
fixed and a relatively small number (~ < 256). The advantages of this
|
||
|
map are fixed time lookup for IRQ numbers, and irq_descs are only
|
||
|
allocated for in-use IRQs. The disadvantage is that the table must be
|
||
|
as large as the largest possible hwirq number.
|
||
|
|
||
|
The majority of drivers should use the linear map.
|
||
|
|
||
|
==== Tree ====
|
||
|
irq_domain_add_tree()
|
||
|
|
||
|
The irq_domain maintains a radix tree map from hwirq numbers to Linux
|
||
|
IRQs. When an hwirq is mapped, an irq_desc is allocated and the
|
||
|
hwirq is used as the lookup key for the radix tree.
|
||
|
|
||
|
The tree map is a good choice if the hwirq number can be very large
|
||
|
since it doesn't need to allocate a table as large as the largest
|
||
|
hwirq number. The disadvantage is that hwirq to IRQ number lookup is
|
||
|
dependent on how many entries are in the table.
|
||
|
|
||
|
Very few drivers should need this mapping. At the moment, powerpc
|
||
|
iseries is the only user.
|
||
|
|
||
|
==== No Map ===-
|
||
|
irq_domain_add_nomap()
|
||
|
|
||
|
The No Map mapping is to be used when the hwirq number is
|
||
|
programmable in the hardware. In this case it is best to program the
|
||
|
Linux IRQ number into the hardware itself so that no mapping is
|
||
|
required. Calling irq_create_direct_mapping() will allocate a Linux
|
||
|
IRQ number and call the .map() callback so that driver can program the
|
||
|
Linux IRQ number into the hardware.
|
||
|
|
||
|
Most drivers cannot use this mapping.
|
||
|
|
||
|
==== Legacy ====
|
||
|
irq_domain_add_simple()
|
||
|
irq_domain_add_legacy()
|
||
|
irq_domain_add_legacy_isa()
|
||
|
|
||
|
The Legacy mapping is a special case for drivers that already have a
|
||
|
range of irq_descs allocated for the hwirqs. It is used when the
|
||
|
driver cannot be immediately converted to use the linear mapping. For
|
||
|
example, many embedded system board support files use a set of #defines
|
||
|
for IRQ numbers that are passed to struct device registrations. In that
|
||
|
case the Linux IRQ numbers cannot be dynamically assigned and the legacy
|
||
|
mapping should be used.
|
||
|
|
||
|
The legacy map assumes a contiguous range of IRQ numbers has already
|
||
|
been allocated for the controller and that the IRQ number can be
|
||
|
calculated by adding a fixed offset to the hwirq number, and
|
||
|
visa-versa. The disadvantage is that it requires the interrupt
|
||
|
controller to manage IRQ allocations and it requires an irq_desc to be
|
||
|
allocated for every hwirq, even if it is unused.
|
||
|
|
||
|
The legacy map should only be used if fixed IRQ mappings must be
|
||
|
supported. For example, ISA controllers would use the legacy map for
|
||
|
mapping Linux IRQs 0-15 so that existing ISA drivers get the correct IRQ
|
||
|
numbers.
|
||
|
|
||
|
Most users of legacy mappings should use irq_domain_add_simple() which
|
||
|
will use a legacy domain only if an IRQ range is supplied by the
|
||
|
system and will otherwise use a linear domain mapping. The semantics
|
||
|
of this call are such that if an IRQ range is specified then
|
||
|
descriptors will be allocated on-the-fly for it, and if no range is
|
||
|
specified it will fall through to irq_domain_add_linear() which means
|
||
|
*no* irq descriptors will be allocated.
|
||
|
|
||
|
A typical use case for simple domains is where an irqchip provider
|
||
|
is supporting both dynamic and static IRQ assignments.
|
||
|
|
||
|
In order to avoid ending up in a situation where a linear domain is
|
||
|
used and no descriptor gets allocated it is very important to make sure
|
||
|
that the driver using the simple domain call irq_create_mapping()
|
||
|
before any irq_find_mapping() since the latter will actually work
|
||
|
for the static IRQ assignment case.
|