3342 lines
76 KiB
C
3342 lines
76 KiB
C
|
/*
|
||
|
* Kernel-based Virtual Machine driver for Linux
|
||
|
*
|
||
|
* This module enables machines with Intel VT-x extensions to run virtual
|
||
|
* machines without emulation or binary translation.
|
||
|
*
|
||
|
* Copyright (C) 2006 Qumranet, Inc.
|
||
|
* Copyright 2010 Red Hat, Inc. and/or its affiliates.
|
||
|
*
|
||
|
* Authors:
|
||
|
* Avi Kivity <avi@qumranet.com>
|
||
|
* Yaniv Kamay <yaniv@qumranet.com>
|
||
|
*
|
||
|
* This work is licensed under the terms of the GNU GPL, version 2. See
|
||
|
* the COPYING file in the top-level directory.
|
||
|
*
|
||
|
*/
|
||
|
|
||
|
#include "iodev.h"
|
||
|
|
||
|
#include <linux/kvm_host.h>
|
||
|
#include <linux/kvm.h>
|
||
|
#include <linux/module.h>
|
||
|
#include <linux/errno.h>
|
||
|
#include <linux/percpu.h>
|
||
|
#include <linux/mm.h>
|
||
|
#include <linux/miscdevice.h>
|
||
|
#include <linux/vmalloc.h>
|
||
|
#include <linux/reboot.h>
|
||
|
#include <linux/debugfs.h>
|
||
|
#include <linux/highmem.h>
|
||
|
#include <linux/file.h>
|
||
|
#include <linux/syscore_ops.h>
|
||
|
#include <linux/cpu.h>
|
||
|
#include <linux/sched.h>
|
||
|
#include <linux/cpumask.h>
|
||
|
#include <linux/smp.h>
|
||
|
#include <linux/anon_inodes.h>
|
||
|
#include <linux/profile.h>
|
||
|
#include <linux/kvm_para.h>
|
||
|
#include <linux/pagemap.h>
|
||
|
#include <linux/mman.h>
|
||
|
#include <linux/swap.h>
|
||
|
#include <linux/bitops.h>
|
||
|
#include <linux/spinlock.h>
|
||
|
#include <linux/compat.h>
|
||
|
#include <linux/srcu.h>
|
||
|
#include <linux/hugetlb.h>
|
||
|
#include <linux/slab.h>
|
||
|
#include <linux/sort.h>
|
||
|
#include <linux/bsearch.h>
|
||
|
|
||
|
#include <asm/processor.h>
|
||
|
#include <asm/io.h>
|
||
|
#include <asm/ioctl.h>
|
||
|
#include <asm/uaccess.h>
|
||
|
#include <asm/pgtable.h>
|
||
|
|
||
|
#include "coalesced_mmio.h"
|
||
|
#include "async_pf.h"
|
||
|
#include "vfio.h"
|
||
|
|
||
|
#define CREATE_TRACE_POINTS
|
||
|
#include <trace/events/kvm.h>
|
||
|
|
||
|
MODULE_AUTHOR("Qumranet");
|
||
|
MODULE_LICENSE("GPL");
|
||
|
|
||
|
/*
|
||
|
* Ordering of locks:
|
||
|
*
|
||
|
* kvm->lock --> kvm->slots_lock --> kvm->irq_lock
|
||
|
*/
|
||
|
|
||
|
DEFINE_SPINLOCK(kvm_lock);
|
||
|
static DEFINE_RAW_SPINLOCK(kvm_count_lock);
|
||
|
LIST_HEAD(vm_list);
|
||
|
|
||
|
static cpumask_var_t cpus_hardware_enabled;
|
||
|
static int kvm_usage_count = 0;
|
||
|
static atomic_t hardware_enable_failed;
|
||
|
|
||
|
struct kmem_cache *kvm_vcpu_cache;
|
||
|
EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
|
||
|
|
||
|
static __read_mostly struct preempt_ops kvm_preempt_ops;
|
||
|
|
||
|
struct dentry *kvm_debugfs_dir;
|
||
|
|
||
|
static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
|
||
|
unsigned long arg);
|
||
|
#ifdef CONFIG_COMPAT
|
||
|
static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
|
||
|
unsigned long arg);
|
||
|
#endif
|
||
|
static int hardware_enable_all(void);
|
||
|
static void hardware_disable_all(void);
|
||
|
|
||
|
static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
|
||
|
|
||
|
static void kvm_release_pfn_dirty(pfn_t pfn);
|
||
|
static void mark_page_dirty_in_slot(struct kvm *kvm,
|
||
|
struct kvm_memory_slot *memslot, gfn_t gfn);
|
||
|
|
||
|
__visible bool kvm_rebooting;
|
||
|
EXPORT_SYMBOL_GPL(kvm_rebooting);
|
||
|
|
||
|
static bool largepages_enabled = true;
|
||
|
|
||
|
bool kvm_is_reserved_pfn(pfn_t pfn)
|
||
|
{
|
||
|
if (pfn_valid(pfn))
|
||
|
return PageReserved(pfn_to_page(pfn));
|
||
|
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Switches to specified vcpu, until a matching vcpu_put()
|
||
|
*/
|
||
|
int vcpu_load(struct kvm_vcpu *vcpu)
|
||
|
{
|
||
|
int cpu;
|
||
|
|
||
|
if (mutex_lock_killable(&vcpu->mutex))
|
||
|
return -EINTR;
|
||
|
if (unlikely(vcpu->pid != current->pids[PIDTYPE_PID].pid)) {
|
||
|
/* The thread running this VCPU changed. */
|
||
|
struct pid *oldpid = vcpu->pid;
|
||
|
struct pid *newpid = get_task_pid(current, PIDTYPE_PID);
|
||
|
rcu_assign_pointer(vcpu->pid, newpid);
|
||
|
if (oldpid)
|
||
|
synchronize_rcu();
|
||
|
put_pid(oldpid);
|
||
|
}
|
||
|
cpu = get_cpu();
|
||
|
preempt_notifier_register(&vcpu->preempt_notifier);
|
||
|
kvm_arch_vcpu_load(vcpu, cpu);
|
||
|
put_cpu();
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
void vcpu_put(struct kvm_vcpu *vcpu)
|
||
|
{
|
||
|
preempt_disable();
|
||
|
kvm_arch_vcpu_put(vcpu);
|
||
|
preempt_notifier_unregister(&vcpu->preempt_notifier);
|
||
|
preempt_enable();
|
||
|
mutex_unlock(&vcpu->mutex);
|
||
|
}
|
||
|
|
||
|
static void ack_flush(void *_completed)
|
||
|
{
|
||
|
}
|
||
|
|
||
|
bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req)
|
||
|
{
|
||
|
int i, cpu, me;
|
||
|
cpumask_var_t cpus;
|
||
|
bool called = true;
|
||
|
struct kvm_vcpu *vcpu;
|
||
|
|
||
|
zalloc_cpumask_var(&cpus, GFP_ATOMIC);
|
||
|
|
||
|
me = get_cpu();
|
||
|
kvm_for_each_vcpu(i, vcpu, kvm) {
|
||
|
kvm_make_request(req, vcpu);
|
||
|
cpu = vcpu->cpu;
|
||
|
|
||
|
/* Set ->requests bit before we read ->mode */
|
||
|
smp_mb();
|
||
|
|
||
|
if (cpus != NULL && cpu != -1 && cpu != me &&
|
||
|
kvm_vcpu_exiting_guest_mode(vcpu) != OUTSIDE_GUEST_MODE)
|
||
|
cpumask_set_cpu(cpu, cpus);
|
||
|
}
|
||
|
if (unlikely(cpus == NULL))
|
||
|
smp_call_function_many(cpu_online_mask, ack_flush, NULL, 1);
|
||
|
else if (!cpumask_empty(cpus))
|
||
|
smp_call_function_many(cpus, ack_flush, NULL, 1);
|
||
|
else
|
||
|
called = false;
|
||
|
put_cpu();
|
||
|
free_cpumask_var(cpus);
|
||
|
return called;
|
||
|
}
|
||
|
|
||
|
void kvm_flush_remote_tlbs(struct kvm *kvm)
|
||
|
{
|
||
|
long dirty_count = kvm->tlbs_dirty;
|
||
|
|
||
|
smp_mb();
|
||
|
if (kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
|
||
|
++kvm->stat.remote_tlb_flush;
|
||
|
cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
|
||
|
}
|
||
|
EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
|
||
|
|
||
|
void kvm_reload_remote_mmus(struct kvm *kvm)
|
||
|
{
|
||
|
kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
|
||
|
}
|
||
|
|
||
|
void kvm_make_mclock_inprogress_request(struct kvm *kvm)
|
||
|
{
|
||
|
kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
|
||
|
}
|
||
|
|
||
|
void kvm_make_scan_ioapic_request(struct kvm *kvm)
|
||
|
{
|
||
|
kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
|
||
|
}
|
||
|
|
||
|
int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
|
||
|
{
|
||
|
struct page *page;
|
||
|
int r;
|
||
|
|
||
|
mutex_init(&vcpu->mutex);
|
||
|
vcpu->cpu = -1;
|
||
|
vcpu->kvm = kvm;
|
||
|
vcpu->vcpu_id = id;
|
||
|
vcpu->pid = NULL;
|
||
|
init_waitqueue_head(&vcpu->wq);
|
||
|
kvm_async_pf_vcpu_init(vcpu);
|
||
|
|
||
|
page = alloc_page(GFP_KERNEL | __GFP_ZERO);
|
||
|
if (!page) {
|
||
|
r = -ENOMEM;
|
||
|
goto fail;
|
||
|
}
|
||
|
vcpu->run = page_address(page);
|
||
|
|
||
|
kvm_vcpu_set_in_spin_loop(vcpu, false);
|
||
|
kvm_vcpu_set_dy_eligible(vcpu, false);
|
||
|
vcpu->preempted = false;
|
||
|
|
||
|
r = kvm_arch_vcpu_init(vcpu);
|
||
|
if (r < 0)
|
||
|
goto fail_free_run;
|
||
|
return 0;
|
||
|
|
||
|
fail_free_run:
|
||
|
free_page((unsigned long)vcpu->run);
|
||
|
fail:
|
||
|
return r;
|
||
|
}
|
||
|
EXPORT_SYMBOL_GPL(kvm_vcpu_init);
|
||
|
|
||
|
void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
|
||
|
{
|
||
|
put_pid(vcpu->pid);
|
||
|
kvm_arch_vcpu_uninit(vcpu);
|
||
|
free_page((unsigned long)vcpu->run);
|
||
|
}
|
||
|
EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
|
||
|
|
||
|
#if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
|
||
|
static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
|
||
|
{
|
||
|
return container_of(mn, struct kvm, mmu_notifier);
|
||
|
}
|
||
|
|
||
|
static void kvm_mmu_notifier_invalidate_page(struct mmu_notifier *mn,
|
||
|
struct mm_struct *mm,
|
||
|
unsigned long address)
|
||
|
{
|
||
|
struct kvm *kvm = mmu_notifier_to_kvm(mn);
|
||
|
int need_tlb_flush, idx;
|
||
|
|
||
|
/*
|
||
|
* When ->invalidate_page runs, the linux pte has been zapped
|
||
|
* already but the page is still allocated until
|
||
|
* ->invalidate_page returns. So if we increase the sequence
|
||
|
* here the kvm page fault will notice if the spte can't be
|
||
|
* established because the page is going to be freed. If
|
||
|
* instead the kvm page fault establishes the spte before
|
||
|
* ->invalidate_page runs, kvm_unmap_hva will release it
|
||
|
* before returning.
|
||
|
*
|
||
|
* The sequence increase only need to be seen at spin_unlock
|
||
|
* time, and not at spin_lock time.
|
||
|
*
|
||
|
* Increasing the sequence after the spin_unlock would be
|
||
|
* unsafe because the kvm page fault could then establish the
|
||
|
* pte after kvm_unmap_hva returned, without noticing the page
|
||
|
* is going to be freed.
|
||
|
*/
|
||
|
idx = srcu_read_lock(&kvm->srcu);
|
||
|
spin_lock(&kvm->mmu_lock);
|
||
|
|
||
|
kvm->mmu_notifier_seq++;
|
||
|
need_tlb_flush = kvm_unmap_hva(kvm, address) | kvm->tlbs_dirty;
|
||
|
/* we've to flush the tlb before the pages can be freed */
|
||
|
if (need_tlb_flush)
|
||
|
kvm_flush_remote_tlbs(kvm);
|
||
|
|
||
|
spin_unlock(&kvm->mmu_lock);
|
||
|
|
||
|
kvm_arch_mmu_notifier_invalidate_page(kvm, address);
|
||
|
|
||
|
srcu_read_unlock(&kvm->srcu, idx);
|
||
|
}
|
||
|
|
||
|
static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
|
||
|
struct mm_struct *mm,
|
||
|
unsigned long address,
|
||
|
pte_t pte)
|
||
|
{
|
||
|
struct kvm *kvm = mmu_notifier_to_kvm(mn);
|
||
|
int idx;
|
||
|
|
||
|
idx = srcu_read_lock(&kvm->srcu);
|
||
|
spin_lock(&kvm->mmu_lock);
|
||
|
kvm->mmu_notifier_seq++;
|
||
|
kvm_set_spte_hva(kvm, address, pte);
|
||
|
spin_unlock(&kvm->mmu_lock);
|
||
|
srcu_read_unlock(&kvm->srcu, idx);
|
||
|
}
|
||
|
|
||
|
static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
|
||
|
struct mm_struct *mm,
|
||
|
unsigned long start,
|
||
|
unsigned long end)
|
||
|
{
|
||
|
struct kvm *kvm = mmu_notifier_to_kvm(mn);
|
||
|
int need_tlb_flush = 0, idx;
|
||
|
|
||
|
idx = srcu_read_lock(&kvm->srcu);
|
||
|
spin_lock(&kvm->mmu_lock);
|
||
|
/*
|
||
|
* The count increase must become visible at unlock time as no
|
||
|
* spte can be established without taking the mmu_lock and
|
||
|
* count is also read inside the mmu_lock critical section.
|
||
|
*/
|
||
|
kvm->mmu_notifier_count++;
|
||
|
need_tlb_flush = kvm_unmap_hva_range(kvm, start, end);
|
||
|
need_tlb_flush |= kvm->tlbs_dirty;
|
||
|
/* we've to flush the tlb before the pages can be freed */
|
||
|
if (need_tlb_flush)
|
||
|
kvm_flush_remote_tlbs(kvm);
|
||
|
|
||
|
spin_unlock(&kvm->mmu_lock);
|
||
|
srcu_read_unlock(&kvm->srcu, idx);
|
||
|
}
|
||
|
|
||
|
static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
|
||
|
struct mm_struct *mm,
|
||
|
unsigned long start,
|
||
|
unsigned long end)
|
||
|
{
|
||
|
struct kvm *kvm = mmu_notifier_to_kvm(mn);
|
||
|
|
||
|
spin_lock(&kvm->mmu_lock);
|
||
|
/*
|
||
|
* This sequence increase will notify the kvm page fault that
|
||
|
* the page that is going to be mapped in the spte could have
|
||
|
* been freed.
|
||
|
*/
|
||
|
kvm->mmu_notifier_seq++;
|
||
|
smp_wmb();
|
||
|
/*
|
||
|
* The above sequence increase must be visible before the
|
||
|
* below count decrease, which is ensured by the smp_wmb above
|
||
|
* in conjunction with the smp_rmb in mmu_notifier_retry().
|
||
|
*/
|
||
|
kvm->mmu_notifier_count--;
|
||
|
spin_unlock(&kvm->mmu_lock);
|
||
|
|
||
|
BUG_ON(kvm->mmu_notifier_count < 0);
|
||
|
}
|
||
|
|
||
|
static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
|
||
|
struct mm_struct *mm,
|
||
|
unsigned long start,
|
||
|
unsigned long end)
|
||
|
{
|
||
|
struct kvm *kvm = mmu_notifier_to_kvm(mn);
|
||
|
int young, idx;
|
||
|
|
||
|
idx = srcu_read_lock(&kvm->srcu);
|
||
|
spin_lock(&kvm->mmu_lock);
|
||
|
|
||
|
young = kvm_age_hva(kvm, start, end);
|
||
|
if (young)
|
||
|
kvm_flush_remote_tlbs(kvm);
|
||
|
|
||
|
spin_unlock(&kvm->mmu_lock);
|
||
|
srcu_read_unlock(&kvm->srcu, idx);
|
||
|
|
||
|
return young;
|
||
|
}
|
||
|
|
||
|
static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
|
||
|
struct mm_struct *mm,
|
||
|
unsigned long address)
|
||
|
{
|
||
|
struct kvm *kvm = mmu_notifier_to_kvm(mn);
|
||
|
int young, idx;
|
||
|
|
||
|
idx = srcu_read_lock(&kvm->srcu);
|
||
|
spin_lock(&kvm->mmu_lock);
|
||
|
young = kvm_test_age_hva(kvm, address);
|
||
|
spin_unlock(&kvm->mmu_lock);
|
||
|
srcu_read_unlock(&kvm->srcu, idx);
|
||
|
|
||
|
return young;
|
||
|
}
|
||
|
|
||
|
static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
|
||
|
struct mm_struct *mm)
|
||
|
{
|
||
|
struct kvm *kvm = mmu_notifier_to_kvm(mn);
|
||
|
int idx;
|
||
|
|
||
|
idx = srcu_read_lock(&kvm->srcu);
|
||
|
kvm_arch_flush_shadow_all(kvm);
|
||
|
srcu_read_unlock(&kvm->srcu, idx);
|
||
|
}
|
||
|
|
||
|
static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
|
||
|
.invalidate_page = kvm_mmu_notifier_invalidate_page,
|
||
|
.invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
|
||
|
.invalidate_range_end = kvm_mmu_notifier_invalidate_range_end,
|
||
|
.clear_flush_young = kvm_mmu_notifier_clear_flush_young,
|
||
|
.test_young = kvm_mmu_notifier_test_young,
|
||
|
.change_pte = kvm_mmu_notifier_change_pte,
|
||
|
.release = kvm_mmu_notifier_release,
|
||
|
};
|
||
|
|
||
|
static int kvm_init_mmu_notifier(struct kvm *kvm)
|
||
|
{
|
||
|
kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
|
||
|
return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
|
||
|
}
|
||
|
|
||
|
#else /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
|
||
|
|
||
|
static int kvm_init_mmu_notifier(struct kvm *kvm)
|
||
|
{
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
#endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
|
||
|
|
||
|
static void kvm_init_memslots_id(struct kvm *kvm)
|
||
|
{
|
||
|
int i;
|
||
|
struct kvm_memslots *slots = kvm->memslots;
|
||
|
|
||
|
for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
|
||
|
slots->id_to_index[i] = slots->memslots[i].id = i;
|
||
|
}
|
||
|
|
||
|
static struct kvm *kvm_create_vm(unsigned long type)
|
||
|
{
|
||
|
int r, i;
|
||
|
struct kvm *kvm = kvm_arch_alloc_vm();
|
||
|
|
||
|
if (!kvm)
|
||
|
return ERR_PTR(-ENOMEM);
|
||
|
|
||
|
r = kvm_arch_init_vm(kvm, type);
|
||
|
if (r)
|
||
|
goto out_err_no_disable;
|
||
|
|
||
|
r = hardware_enable_all();
|
||
|
if (r)
|
||
|
goto out_err_no_disable;
|
||
|
|
||
|
#ifdef CONFIG_HAVE_KVM_IRQCHIP
|
||
|
INIT_HLIST_HEAD(&kvm->mask_notifier_list);
|
||
|
#endif
|
||
|
#ifdef CONFIG_HAVE_KVM_IRQFD
|
||
|
INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
|
||
|
#endif
|
||
|
|
||
|
BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
|
||
|
|
||
|
r = -ENOMEM;
|
||
|
kvm->memslots = kvm_kvzalloc(sizeof(struct kvm_memslots));
|
||
|
if (!kvm->memslots)
|
||
|
goto out_err_no_srcu;
|
||
|
|
||
|
/*
|
||
|
* Init kvm generation close to the maximum to easily test the
|
||
|
* code of handling generation number wrap-around.
|
||
|
*/
|
||
|
kvm->memslots->generation = -150;
|
||
|
|
||
|
kvm_init_memslots_id(kvm);
|
||
|
if (init_srcu_struct(&kvm->srcu))
|
||
|
goto out_err_no_srcu;
|
||
|
if (init_srcu_struct(&kvm->irq_srcu))
|
||
|
goto out_err_no_irq_srcu;
|
||
|
for (i = 0; i < KVM_NR_BUSES; i++) {
|
||
|
kvm->buses[i] = kzalloc(sizeof(struct kvm_io_bus),
|
||
|
GFP_KERNEL);
|
||
|
if (!kvm->buses[i])
|
||
|
goto out_err;
|
||
|
}
|
||
|
|
||
|
spin_lock_init(&kvm->mmu_lock);
|
||
|
kvm->mm = current->mm;
|
||
|
atomic_inc(&kvm->mm->mm_count);
|
||
|
kvm_eventfd_init(kvm);
|
||
|
mutex_init(&kvm->lock);
|
||
|
mutex_init(&kvm->irq_lock);
|
||
|
mutex_init(&kvm->slots_lock);
|
||
|
atomic_set(&kvm->users_count, 1);
|
||
|
INIT_LIST_HEAD(&kvm->devices);
|
||
|
|
||
|
r = kvm_init_mmu_notifier(kvm);
|
||
|
if (r)
|
||
|
goto out_err;
|
||
|
|
||
|
spin_lock(&kvm_lock);
|
||
|
list_add(&kvm->vm_list, &vm_list);
|
||
|
spin_unlock(&kvm_lock);
|
||
|
|
||
|
return kvm;
|
||
|
|
||
|
out_err:
|
||
|
cleanup_srcu_struct(&kvm->irq_srcu);
|
||
|
out_err_no_irq_srcu:
|
||
|
cleanup_srcu_struct(&kvm->srcu);
|
||
|
out_err_no_srcu:
|
||
|
hardware_disable_all();
|
||
|
out_err_no_disable:
|
||
|
for (i = 0; i < KVM_NR_BUSES; i++)
|
||
|
kfree(kvm->buses[i]);
|
||
|
kvfree(kvm->memslots);
|
||
|
kvm_arch_free_vm(kvm);
|
||
|
return ERR_PTR(r);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Avoid using vmalloc for a small buffer.
|
||
|
* Should not be used when the size is statically known.
|
||
|
*/
|
||
|
void *kvm_kvzalloc(unsigned long size)
|
||
|
{
|
||
|
if (size > PAGE_SIZE)
|
||
|
return vzalloc(size);
|
||
|
else
|
||
|
return kzalloc(size, GFP_KERNEL);
|
||
|
}
|
||
|
|
||
|
void kvm_kvfree(const void *addr)
|
||
|
{
|
||
|
if (is_vmalloc_addr(addr))
|
||
|
vfree(addr);
|
||
|
else
|
||
|
kfree(addr);
|
||
|
}
|
||
|
|
||
|
static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
|
||
|
{
|
||
|
if (!memslot->dirty_bitmap)
|
||
|
return;
|
||
|
|
||
|
kvm_kvfree(memslot->dirty_bitmap);
|
||
|
memslot->dirty_bitmap = NULL;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Free any memory in @free but not in @dont.
|
||
|
*/
|
||
|
static void kvm_free_physmem_slot(struct kvm *kvm, struct kvm_memory_slot *free,
|
||
|
struct kvm_memory_slot *dont)
|
||
|
{
|
||
|
if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
|
||
|
kvm_destroy_dirty_bitmap(free);
|
||
|
|
||
|
kvm_arch_free_memslot(kvm, free, dont);
|
||
|
|
||
|
free->npages = 0;
|
||
|
}
|
||
|
|
||
|
static void kvm_free_physmem(struct kvm *kvm)
|
||
|
{
|
||
|
struct kvm_memslots *slots = kvm->memslots;
|
||
|
struct kvm_memory_slot *memslot;
|
||
|
|
||
|
kvm_for_each_memslot(memslot, slots)
|
||
|
kvm_free_physmem_slot(kvm, memslot, NULL);
|
||
|
|
||
|
kvfree(kvm->memslots);
|
||
|
}
|
||
|
|
||
|
static void kvm_destroy_devices(struct kvm *kvm)
|
||
|
{
|
||
|
struct list_head *node, *tmp;
|
||
|
|
||
|
list_for_each_safe(node, tmp, &kvm->devices) {
|
||
|
struct kvm_device *dev =
|
||
|
list_entry(node, struct kvm_device, vm_node);
|
||
|
|
||
|
list_del(node);
|
||
|
dev->ops->destroy(dev);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static void kvm_destroy_vm(struct kvm *kvm)
|
||
|
{
|
||
|
int i;
|
||
|
struct mm_struct *mm = kvm->mm;
|
||
|
|
||
|
kvm_arch_sync_events(kvm);
|
||
|
spin_lock(&kvm_lock);
|
||
|
list_del(&kvm->vm_list);
|
||
|
spin_unlock(&kvm_lock);
|
||
|
kvm_free_irq_routing(kvm);
|
||
|
for (i = 0; i < KVM_NR_BUSES; i++)
|
||
|
kvm_io_bus_destroy(kvm->buses[i]);
|
||
|
kvm_coalesced_mmio_free(kvm);
|
||
|
#if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
|
||
|
mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
|
||
|
#else
|
||
|
kvm_arch_flush_shadow_all(kvm);
|
||
|
#endif
|
||
|
kvm_arch_destroy_vm(kvm);
|
||
|
kvm_destroy_devices(kvm);
|
||
|
kvm_free_physmem(kvm);
|
||
|
cleanup_srcu_struct(&kvm->irq_srcu);
|
||
|
cleanup_srcu_struct(&kvm->srcu);
|
||
|
kvm_arch_free_vm(kvm);
|
||
|
hardware_disable_all();
|
||
|
mmdrop(mm);
|
||
|
}
|
||
|
|
||
|
void kvm_get_kvm(struct kvm *kvm)
|
||
|
{
|
||
|
atomic_inc(&kvm->users_count);
|
||
|
}
|
||
|
EXPORT_SYMBOL_GPL(kvm_get_kvm);
|
||
|
|
||
|
void kvm_put_kvm(struct kvm *kvm)
|
||
|
{
|
||
|
if (atomic_dec_and_test(&kvm->users_count))
|
||
|
kvm_destroy_vm(kvm);
|
||
|
}
|
||
|
EXPORT_SYMBOL_GPL(kvm_put_kvm);
|
||
|
|
||
|
|
||
|
static int kvm_vm_release(struct inode *inode, struct file *filp)
|
||
|
{
|
||
|
struct kvm *kvm = filp->private_data;
|
||
|
|
||
|
kvm_irqfd_release(kvm);
|
||
|
|
||
|
kvm_put_kvm(kvm);
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Allocation size is twice as large as the actual dirty bitmap size.
|
||
|
* See x86's kvm_vm_ioctl_get_dirty_log() why this is needed.
|
||
|
*/
|
||
|
static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot)
|
||
|
{
|
||
|
unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
|
||
|
|
||
|
memslot->dirty_bitmap = kvm_kvzalloc(dirty_bytes);
|
||
|
if (!memslot->dirty_bitmap)
|
||
|
return -ENOMEM;
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static int cmp_memslot(const void *slot1, const void *slot2)
|
||
|
{
|
||
|
struct kvm_memory_slot *s1, *s2;
|
||
|
|
||
|
s1 = (struct kvm_memory_slot *)slot1;
|
||
|
s2 = (struct kvm_memory_slot *)slot2;
|
||
|
|
||
|
if (s1->npages < s2->npages)
|
||
|
return 1;
|
||
|
if (s1->npages > s2->npages)
|
||
|
return -1;
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Sort the memslots base on its size, so the larger slots
|
||
|
* will get better fit.
|
||
|
*/
|
||
|
static void sort_memslots(struct kvm_memslots *slots)
|
||
|
{
|
||
|
int i;
|
||
|
|
||
|
sort(slots->memslots, KVM_MEM_SLOTS_NUM,
|
||
|
sizeof(struct kvm_memory_slot), cmp_memslot, NULL);
|
||
|
|
||
|
for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
|
||
|
slots->id_to_index[slots->memslots[i].id] = i;
|
||
|
}
|
||
|
|
||
|
static void update_memslots(struct kvm_memslots *slots,
|
||
|
struct kvm_memory_slot *new)
|
||
|
{
|
||
|
if (new) {
|
||
|
int id = new->id;
|
||
|
struct kvm_memory_slot *old = id_to_memslot(slots, id);
|
||
|
unsigned long npages = old->npages;
|
||
|
|
||
|
*old = *new;
|
||
|
if (new->npages != npages)
|
||
|
sort_memslots(slots);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static int check_memory_region_flags(struct kvm_userspace_memory_region *mem)
|
||
|
{
|
||
|
u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
|
||
|
|
||
|
#ifdef __KVM_HAVE_READONLY_MEM
|
||
|
valid_flags |= KVM_MEM_READONLY;
|
||
|
#endif
|
||
|
|
||
|
if (mem->flags & ~valid_flags)
|
||
|
return -EINVAL;
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static struct kvm_memslots *install_new_memslots(struct kvm *kvm,
|
||
|
struct kvm_memslots *slots, struct kvm_memory_slot *new)
|
||
|
{
|
||
|
struct kvm_memslots *old_memslots = kvm->memslots;
|
||
|
|
||
|
/*
|
||
|
* Set the low bit in the generation, which disables SPTE caching
|
||
|
* until the end of synchronize_srcu_expedited.
|
||
|
*/
|
||
|
WARN_ON(old_memslots->generation & 1);
|
||
|
slots->generation = old_memslots->generation + 1;
|
||
|
|
||
|
update_memslots(slots, new);
|
||
|
rcu_assign_pointer(kvm->memslots, slots);
|
||
|
synchronize_srcu_expedited(&kvm->srcu);
|
||
|
|
||
|
/*
|
||
|
* Increment the new memslot generation a second time. This prevents
|
||
|
* vm exits that race with memslot updates from caching a memslot
|
||
|
* generation that will (potentially) be valid forever.
|
||
|
*/
|
||
|
slots->generation++;
|
||
|
|
||
|
kvm_arch_memslots_updated(kvm);
|
||
|
|
||
|
return old_memslots;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Allocate some memory and give it an address in the guest physical address
|
||
|
* space.
|
||
|
*
|
||
|
* Discontiguous memory is allowed, mostly for framebuffers.
|
||
|
*
|
||
|
* Must be called holding mmap_sem for write.
|
||
|
*/
|
||
|
int __kvm_set_memory_region(struct kvm *kvm,
|
||
|
struct kvm_userspace_memory_region *mem)
|
||
|
{
|
||
|
int r;
|
||
|
gfn_t base_gfn;
|
||
|
unsigned long npages;
|
||
|
struct kvm_memory_slot *slot;
|
||
|
struct kvm_memory_slot old, new;
|
||
|
struct kvm_memslots *slots = NULL, *old_memslots;
|
||
|
enum kvm_mr_change change;
|
||
|
|
||
|
r = check_memory_region_flags(mem);
|
||
|
if (r)
|
||
|
goto out;
|
||
|
|
||
|
r = -EINVAL;
|
||
|
/* General sanity checks */
|
||
|
if (mem->memory_size & (PAGE_SIZE - 1))
|
||
|
goto out;
|
||
|
if (mem->guest_phys_addr & (PAGE_SIZE - 1))
|
||
|
goto out;
|
||
|
/* We can read the guest memory with __xxx_user() later on. */
|
||
|
if ((mem->slot < KVM_USER_MEM_SLOTS) &&
|
||
|
((mem->userspace_addr & (PAGE_SIZE - 1)) ||
|
||
|
!access_ok(VERIFY_WRITE,
|
||
|
(void __user *)(unsigned long)mem->userspace_addr,
|
||
|
mem->memory_size)))
|
||
|
goto out;
|
||
|
if (mem->slot >= KVM_MEM_SLOTS_NUM)
|
||
|
goto out;
|
||
|
if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
|
||
|
goto out;
|
||
|
|
||
|
slot = id_to_memslot(kvm->memslots, mem->slot);
|
||
|
base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
|
||
|
npages = mem->memory_size >> PAGE_SHIFT;
|
||
|
|
||
|
if (npages > KVM_MEM_MAX_NR_PAGES)
|
||
|
goto out;
|
||
|
|
||
|
if (!npages)
|
||
|
mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
|
||
|
|
||
|
new = old = *slot;
|
||
|
|
||
|
new.id = mem->slot;
|
||
|
new.base_gfn = base_gfn;
|
||
|
new.npages = npages;
|
||
|
new.flags = mem->flags;
|
||
|
|
||
|
if (npages) {
|
||
|
if (!old.npages)
|
||
|
change = KVM_MR_CREATE;
|
||
|
else { /* Modify an existing slot. */
|
||
|
if ((mem->userspace_addr != old.userspace_addr) ||
|
||
|
(npages != old.npages) ||
|
||
|
((new.flags ^ old.flags) & KVM_MEM_READONLY))
|
||
|
goto out;
|
||
|
|
||
|
if (base_gfn != old.base_gfn)
|
||
|
change = KVM_MR_MOVE;
|
||
|
else if (new.flags != old.flags)
|
||
|
change = KVM_MR_FLAGS_ONLY;
|
||
|
else { /* Nothing to change. */
|
||
|
r = 0;
|
||
|
goto out;
|
||
|
}
|
||
|
}
|
||
|
} else if (old.npages) {
|
||
|
change = KVM_MR_DELETE;
|
||
|
} else /* Modify a non-existent slot: disallowed. */
|
||
|
goto out;
|
||
|
|
||
|
if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
|
||
|
/* Check for overlaps */
|
||
|
r = -EEXIST;
|
||
|
kvm_for_each_memslot(slot, kvm->memslots) {
|
||
|
if ((slot->id >= KVM_USER_MEM_SLOTS) ||
|
||
|
(slot->id == mem->slot))
|
||
|
continue;
|
||
|
if (!((base_gfn + npages <= slot->base_gfn) ||
|
||
|
(base_gfn >= slot->base_gfn + slot->npages)))
|
||
|
goto out;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* Free page dirty bitmap if unneeded */
|
||
|
if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
|
||
|
new.dirty_bitmap = NULL;
|
||
|
|
||
|
r = -ENOMEM;
|
||
|
if (change == KVM_MR_CREATE) {
|
||
|
new.userspace_addr = mem->userspace_addr;
|
||
|
|
||
|
if (kvm_arch_create_memslot(kvm, &new, npages))
|
||
|
goto out_free;
|
||
|
}
|
||
|
|
||
|
/* Allocate page dirty bitmap if needed */
|
||
|
if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
|
||
|
if (kvm_create_dirty_bitmap(&new) < 0)
|
||
|
goto out_free;
|
||
|
}
|
||
|
|
||
|
if ((change == KVM_MR_DELETE) || (change == KVM_MR_MOVE)) {
|
||
|
slots = kvm_kvzalloc(sizeof(struct kvm_memslots));
|
||
|
if (!slots)
|
||
|
goto out_free;
|
||
|
memcpy(slots, kvm->memslots, sizeof(struct kvm_memslots));
|
||
|
|
||
|
slot = id_to_memslot(slots, mem->slot);
|
||
|
slot->flags |= KVM_MEMSLOT_INVALID;
|
||
|
|
||
|
old_memslots = install_new_memslots(kvm, slots, NULL);
|
||
|
|
||
|
/* slot was deleted or moved, clear iommu mapping */
|
||
|
kvm_iommu_unmap_pages(kvm, &old);
|
||
|
/* From this point no new shadow pages pointing to a deleted,
|
||
|
* or moved, memslot will be created.
|
||
|
*
|
||
|
* validation of sp->gfn happens in:
|
||
|
* - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
|
||
|
* - kvm_is_visible_gfn (mmu_check_roots)
|
||
|
*/
|
||
|
kvm_arch_flush_shadow_memslot(kvm, slot);
|
||
|
slots = old_memslots;
|
||
|
}
|
||
|
|
||
|
r = kvm_arch_prepare_memory_region(kvm, &new, mem, change);
|
||
|
if (r)
|
||
|
goto out_slots;
|
||
|
|
||
|
r = -ENOMEM;
|
||
|
/*
|
||
|
* We can re-use the old_memslots from above, the only difference
|
||
|
* from the currently installed memslots is the invalid flag. This
|
||
|
* will get overwritten by update_memslots anyway.
|
||
|
*/
|
||
|
if (!slots) {
|
||
|
slots = kvm_kvzalloc(sizeof(struct kvm_memslots));
|
||
|
if (!slots)
|
||
|
goto out_free;
|
||
|
memcpy(slots, kvm->memslots, sizeof(struct kvm_memslots));
|
||
|
}
|
||
|
|
||
|
/* actual memory is freed via old in kvm_free_physmem_slot below */
|
||
|
if (change == KVM_MR_DELETE) {
|
||
|
new.dirty_bitmap = NULL;
|
||
|
memset(&new.arch, 0, sizeof(new.arch));
|
||
|
}
|
||
|
|
||
|
old_memslots = install_new_memslots(kvm, slots, &new);
|
||
|
|
||
|
kvm_arch_commit_memory_region(kvm, mem, &old, change);
|
||
|
|
||
|
kvm_free_physmem_slot(kvm, &old, &new);
|
||
|
kvfree(old_memslots);
|
||
|
|
||
|
/*
|
||
|
* IOMMU mapping: New slots need to be mapped. Old slots need to be
|
||
|
* un-mapped and re-mapped if their base changes. Since base change
|
||
|
* unmapping is handled above with slot deletion, mapping alone is
|
||
|
* needed here. Anything else the iommu might care about for existing
|
||
|
* slots (size changes, userspace addr changes and read-only flag
|
||
|
* changes) is disallowed above, so any other attribute changes getting
|
||
|
* here can be skipped.
|
||
|
*/
|
||
|
if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
|
||
|
r = kvm_iommu_map_pages(kvm, &new);
|
||
|
return r;
|
||
|
}
|
||
|
|
||
|
return 0;
|
||
|
|
||
|
out_slots:
|
||
|
kvfree(slots);
|
||
|
out_free:
|
||
|
kvm_free_physmem_slot(kvm, &new, &old);
|
||
|
out:
|
||
|
return r;
|
||
|
}
|
||
|
EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
|
||
|
|
||
|
int kvm_set_memory_region(struct kvm *kvm,
|
||
|
struct kvm_userspace_memory_region *mem)
|
||
|
{
|
||
|
int r;
|
||
|
|
||
|
mutex_lock(&kvm->slots_lock);
|
||
|
r = __kvm_set_memory_region(kvm, mem);
|
||
|
mutex_unlock(&kvm->slots_lock);
|
||
|
return r;
|
||
|
}
|
||
|
EXPORT_SYMBOL_GPL(kvm_set_memory_region);
|
||
|
|
||
|
static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
|
||
|
struct kvm_userspace_memory_region *mem)
|
||
|
{
|
||
|
if (mem->slot >= KVM_USER_MEM_SLOTS)
|
||
|
return -EINVAL;
|
||
|
return kvm_set_memory_region(kvm, mem);
|
||
|
}
|
||
|
|
||
|
int kvm_get_dirty_log(struct kvm *kvm,
|
||
|
struct kvm_dirty_log *log, int *is_dirty)
|
||
|
{
|
||
|
struct kvm_memory_slot *memslot;
|
||
|
int r, i;
|
||
|
unsigned long n;
|
||
|
unsigned long any = 0;
|
||
|
|
||
|
r = -EINVAL;
|
||
|
if (log->slot >= KVM_USER_MEM_SLOTS)
|
||
|
goto out;
|
||
|
|
||
|
memslot = id_to_memslot(kvm->memslots, log->slot);
|
||
|
r = -ENOENT;
|
||
|
if (!memslot->dirty_bitmap)
|
||
|
goto out;
|
||
|
|
||
|
n = kvm_dirty_bitmap_bytes(memslot);
|
||
|
|
||
|
for (i = 0; !any && i < n/sizeof(long); ++i)
|
||
|
any = memslot->dirty_bitmap[i];
|
||
|
|
||
|
r = -EFAULT;
|
||
|
if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
|
||
|
goto out;
|
||
|
|
||
|
if (any)
|
||
|
*is_dirty = 1;
|
||
|
|
||
|
r = 0;
|
||
|
out:
|
||
|
return r;
|
||
|
}
|
||
|
EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
|
||
|
|
||
|
bool kvm_largepages_enabled(void)
|
||
|
{
|
||
|
return largepages_enabled;
|
||
|
}
|
||
|
|
||
|
void kvm_disable_largepages(void)
|
||
|
{
|
||
|
largepages_enabled = false;
|
||
|
}
|
||
|
EXPORT_SYMBOL_GPL(kvm_disable_largepages);
|
||
|
|
||
|
struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
|
||
|
{
|
||
|
return __gfn_to_memslot(kvm_memslots(kvm), gfn);
|
||
|
}
|
||
|
EXPORT_SYMBOL_GPL(gfn_to_memslot);
|
||
|
|
||
|
int kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
|
||
|
{
|
||
|
struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
|
||
|
|
||
|
if (!memslot || memslot->id >= KVM_USER_MEM_SLOTS ||
|
||
|
memslot->flags & KVM_MEMSLOT_INVALID)
|
||
|
return 0;
|
||
|
|
||
|
return 1;
|
||
|
}
|
||
|
EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
|
||
|
|
||
|
unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn)
|
||
|
{
|
||
|
struct vm_area_struct *vma;
|
||
|
unsigned long addr, size;
|
||
|
|
||
|
size = PAGE_SIZE;
|
||
|
|
||
|
addr = gfn_to_hva(kvm, gfn);
|
||
|
if (kvm_is_error_hva(addr))
|
||
|
return PAGE_SIZE;
|
||
|
|
||
|
down_read(¤t->mm->mmap_sem);
|
||
|
vma = find_vma(current->mm, addr);
|
||
|
if (!vma)
|
||
|
goto out;
|
||
|
|
||
|
size = vma_kernel_pagesize(vma);
|
||
|
|
||
|
out:
|
||
|
up_read(¤t->mm->mmap_sem);
|
||
|
|
||
|
return size;
|
||
|
}
|
||
|
|
||
|
static bool memslot_is_readonly(struct kvm_memory_slot *slot)
|
||
|
{
|
||
|
return slot->flags & KVM_MEM_READONLY;
|
||
|
}
|
||
|
|
||
|
static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
|
||
|
gfn_t *nr_pages, bool write)
|
||
|
{
|
||
|
if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
|
||
|
return KVM_HVA_ERR_BAD;
|
||
|
|
||
|
if (memslot_is_readonly(slot) && write)
|
||
|
return KVM_HVA_ERR_RO_BAD;
|
||
|
|
||
|
if (nr_pages)
|
||
|
*nr_pages = slot->npages - (gfn - slot->base_gfn);
|
||
|
|
||
|
return __gfn_to_hva_memslot(slot, gfn);
|
||
|
}
|
||
|
|
||
|
static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
|
||
|
gfn_t *nr_pages)
|
||
|
{
|
||
|
return __gfn_to_hva_many(slot, gfn, nr_pages, true);
|
||
|
}
|
||
|
|
||
|
unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
|
||
|
gfn_t gfn)
|
||
|
{
|
||
|
return gfn_to_hva_many(slot, gfn, NULL);
|
||
|
}
|
||
|
EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
|
||
|
|
||
|
unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
|
||
|
{
|
||
|
return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
|
||
|
}
|
||
|
EXPORT_SYMBOL_GPL(gfn_to_hva);
|
||
|
|
||
|
/*
|
||
|
* If writable is set to false, the hva returned by this function is only
|
||
|
* allowed to be read.
|
||
|
*/
|
||
|
unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot,
|
||
|
gfn_t gfn, bool *writable)
|
||
|
{
|
||
|
unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
|
||
|
|
||
|
if (!kvm_is_error_hva(hva) && writable)
|
||
|
*writable = !memslot_is_readonly(slot);
|
||
|
|
||
|
return hva;
|
||
|
}
|
||
|
|
||
|
unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
|
||
|
{
|
||
|
struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
|
||
|
|
||
|
return gfn_to_hva_memslot_prot(slot, gfn, writable);
|
||
|
}
|
||
|
|
||
|
static int kvm_read_hva(void *data, void __user *hva, int len)
|
||
|
{
|
||
|
return __copy_from_user(data, hva, len);
|
||
|
}
|
||
|
|
||
|
static int kvm_read_hva_atomic(void *data, void __user *hva, int len)
|
||
|
{
|
||
|
return __copy_from_user_inatomic(data, hva, len);
|
||
|
}
|
||
|
|
||
|
static int get_user_page_nowait(struct task_struct *tsk, struct mm_struct *mm,
|
||
|
unsigned long start, int write, struct page **page)
|
||
|
{
|
||
|
int flags = FOLL_TOUCH | FOLL_NOWAIT | FOLL_HWPOISON | FOLL_GET;
|
||
|
|
||
|
if (write)
|
||
|
flags |= FOLL_WRITE;
|
||
|
|
||
|
return __get_user_pages(tsk, mm, start, 1, flags, page, NULL, NULL);
|
||
|
}
|
||
|
|
||
|
int kvm_get_user_page_io(struct task_struct *tsk, struct mm_struct *mm,
|
||
|
unsigned long addr, bool write_fault,
|
||
|
struct page **pagep)
|
||
|
{
|
||
|
int npages;
|
||
|
int locked = 1;
|
||
|
int flags = FOLL_TOUCH | FOLL_HWPOISON |
|
||
|
(pagep ? FOLL_GET : 0) |
|
||
|
(write_fault ? FOLL_WRITE : 0);
|
||
|
|
||
|
/*
|
||
|
* If retrying the fault, we get here *not* having allowed the filemap
|
||
|
* to wait on the page lock. We should now allow waiting on the IO with
|
||
|
* the mmap semaphore released.
|
||
|
*/
|
||
|
down_read(&mm->mmap_sem);
|
||
|
npages = __get_user_pages(tsk, mm, addr, 1, flags, pagep, NULL,
|
||
|
&locked);
|
||
|
if (!locked) {
|
||
|
VM_BUG_ON(npages);
|
||
|
|
||
|
if (!pagep)
|
||
|
return 0;
|
||
|
|
||
|
/*
|
||
|
* The previous call has now waited on the IO. Now we can
|
||
|
* retry and complete. Pass TRIED to ensure we do not re
|
||
|
* schedule async IO (see e.g. filemap_fault).
|
||
|
*/
|
||
|
down_read(&mm->mmap_sem);
|
||
|
npages = __get_user_pages(tsk, mm, addr, 1, flags | FOLL_TRIED,
|
||
|
pagep, NULL, NULL);
|
||
|
}
|
||
|
up_read(&mm->mmap_sem);
|
||
|
return npages;
|
||
|
}
|
||
|
|
||
|
static inline int check_user_page_hwpoison(unsigned long addr)
|
||
|
{
|
||
|
int rc, flags = FOLL_TOUCH | FOLL_HWPOISON | FOLL_WRITE;
|
||
|
|
||
|
rc = __get_user_pages(current, current->mm, addr, 1,
|
||
|
flags, NULL, NULL, NULL);
|
||
|
return rc == -EHWPOISON;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* The atomic path to get the writable pfn which will be stored in @pfn,
|
||
|
* true indicates success, otherwise false is returned.
|
||
|
*/
|
||
|
static bool hva_to_pfn_fast(unsigned long addr, bool atomic, bool *async,
|
||
|
bool write_fault, bool *writable, pfn_t *pfn)
|
||
|
{
|
||
|
struct page *page[1];
|
||
|
int npages;
|
||
|
|
||
|
if (!(async || atomic))
|
||
|
return false;
|
||
|
|
||
|
/*
|
||
|
* Fast pin a writable pfn only if it is a write fault request
|
||
|
* or the caller allows to map a writable pfn for a read fault
|
||
|
* request.
|
||
|
*/
|
||
|
if (!(write_fault || writable))
|
||
|
return false;
|
||
|
|
||
|
npages = __get_user_pages_fast(addr, 1, 1, page);
|
||
|
if (npages == 1) {
|
||
|
*pfn = page_to_pfn(page[0]);
|
||
|
|
||
|
if (writable)
|
||
|
*writable = true;
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* The slow path to get the pfn of the specified host virtual address,
|
||
|
* 1 indicates success, -errno is returned if error is detected.
|
||
|
*/
|
||
|
static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
|
||
|
bool *writable, pfn_t *pfn)
|
||
|
{
|
||
|
struct page *page[1];
|
||
|
int npages = 0;
|
||
|
|
||
|
might_sleep();
|
||
|
|
||
|
if (writable)
|
||
|
*writable = write_fault;
|
||
|
|
||
|
if (async) {
|
||
|
down_read(¤t->mm->mmap_sem);
|
||
|
npages = get_user_page_nowait(current, current->mm,
|
||
|
addr, write_fault, page);
|
||
|
up_read(¤t->mm->mmap_sem);
|
||
|
} else {
|
||
|
/*
|
||
|
* By now we have tried gup_fast, and possibly async_pf, and we
|
||
|
* are certainly not atomic. Time to retry the gup, allowing
|
||
|
* mmap semaphore to be relinquished in the case of IO.
|
||
|
*/
|
||
|
npages = kvm_get_user_page_io(current, current->mm, addr,
|
||
|
write_fault, page);
|
||
|
}
|
||
|
if (npages != 1)
|
||
|
return npages;
|
||
|
|
||
|
/* map read fault as writable if possible */
|
||
|
if (unlikely(!write_fault) && writable) {
|
||
|
struct page *wpage[1];
|
||
|
|
||
|
npages = __get_user_pages_fast(addr, 1, 1, wpage);
|
||
|
if (npages == 1) {
|
||
|
*writable = true;
|
||
|
put_page(page[0]);
|
||
|
page[0] = wpage[0];
|
||
|
}
|
||
|
|
||
|
npages = 1;
|
||
|
}
|
||
|
*pfn = page_to_pfn(page[0]);
|
||
|
return npages;
|
||
|
}
|
||
|
|
||
|
static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
|
||
|
{
|
||
|
if (unlikely(!(vma->vm_flags & VM_READ)))
|
||
|
return false;
|
||
|
|
||
|
if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
|
||
|
return false;
|
||
|
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Pin guest page in memory and return its pfn.
|
||
|
* @addr: host virtual address which maps memory to the guest
|
||
|
* @atomic: whether this function can sleep
|
||
|
* @async: whether this function need to wait IO complete if the
|
||
|
* host page is not in the memory
|
||
|
* @write_fault: whether we should get a writable host page
|
||
|
* @writable: whether it allows to map a writable host page for !@write_fault
|
||
|
*
|
||
|
* The function will map a writable host page for these two cases:
|
||
|
* 1): @write_fault = true
|
||
|
* 2): @write_fault = false && @writable, @writable will tell the caller
|
||
|
* whether the mapping is writable.
|
||
|
*/
|
||
|
static pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async,
|
||
|
bool write_fault, bool *writable)
|
||
|
{
|
||
|
struct vm_area_struct *vma;
|
||
|
pfn_t pfn = 0;
|
||
|
int npages;
|
||
|
|
||
|
/* we can do it either atomically or asynchronously, not both */
|
||
|
BUG_ON(atomic && async);
|
||
|
|
||
|
if (hva_to_pfn_fast(addr, atomic, async, write_fault, writable, &pfn))
|
||
|
return pfn;
|
||
|
|
||
|
if (atomic)
|
||
|
return KVM_PFN_ERR_FAULT;
|
||
|
|
||
|
npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn);
|
||
|
if (npages == 1)
|
||
|
return pfn;
|
||
|
|
||
|
down_read(¤t->mm->mmap_sem);
|
||
|
if (npages == -EHWPOISON ||
|
||
|
(!async && check_user_page_hwpoison(addr))) {
|
||
|
pfn = KVM_PFN_ERR_HWPOISON;
|
||
|
goto exit;
|
||
|
}
|
||
|
|
||
|
vma = find_vma_intersection(current->mm, addr, addr + 1);
|
||
|
|
||
|
if (vma == NULL)
|
||
|
pfn = KVM_PFN_ERR_FAULT;
|
||
|
else if ((vma->vm_flags & VM_PFNMAP)) {
|
||
|
pfn = ((addr - vma->vm_start) >> PAGE_SHIFT) +
|
||
|
vma->vm_pgoff;
|
||
|
BUG_ON(!kvm_is_reserved_pfn(pfn));
|
||
|
} else {
|
||
|
if (async && vma_is_valid(vma, write_fault))
|
||
|
*async = true;
|
||
|
pfn = KVM_PFN_ERR_FAULT;
|
||
|
}
|
||
|
exit:
|
||
|
up_read(¤t->mm->mmap_sem);
|
||
|
return pfn;
|
||
|
}
|
||
|
|
||
|
static pfn_t
|
||
|
__gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn, bool atomic,
|
||
|
bool *async, bool write_fault, bool *writable)
|
||
|
{
|
||
|
unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
|
||
|
|
||
|
if (addr == KVM_HVA_ERR_RO_BAD)
|
||
|
return KVM_PFN_ERR_RO_FAULT;
|
||
|
|
||
|
if (kvm_is_error_hva(addr))
|
||
|
return KVM_PFN_NOSLOT;
|
||
|
|
||
|
/* Do not map writable pfn in the readonly memslot. */
|
||
|
if (writable && memslot_is_readonly(slot)) {
|
||
|
*writable = false;
|
||
|
writable = NULL;
|
||
|
}
|
||
|
|
||
|
return hva_to_pfn(addr, atomic, async, write_fault,
|
||
|
writable);
|
||
|
}
|
||
|
|
||
|
static pfn_t __gfn_to_pfn(struct kvm *kvm, gfn_t gfn, bool atomic, bool *async,
|
||
|
bool write_fault, bool *writable)
|
||
|
{
|
||
|
struct kvm_memory_slot *slot;
|
||
|
|
||
|
if (async)
|
||
|
*async = false;
|
||
|
|
||
|
slot = gfn_to_memslot(kvm, gfn);
|
||
|
|
||
|
return __gfn_to_pfn_memslot(slot, gfn, atomic, async, write_fault,
|
||
|
writable);
|
||
|
}
|
||
|
|
||
|
pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn)
|
||
|
{
|
||
|
return __gfn_to_pfn(kvm, gfn, true, NULL, true, NULL);
|
||
|
}
|
||
|
EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic);
|
||
|
|
||
|
pfn_t gfn_to_pfn_async(struct kvm *kvm, gfn_t gfn, bool *async,
|
||
|
bool write_fault, bool *writable)
|
||
|
{
|
||
|
return __gfn_to_pfn(kvm, gfn, false, async, write_fault, writable);
|
||
|
}
|
||
|
EXPORT_SYMBOL_GPL(gfn_to_pfn_async);
|
||
|
|
||
|
pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
|
||
|
{
|
||
|
return __gfn_to_pfn(kvm, gfn, false, NULL, true, NULL);
|
||
|
}
|
||
|
EXPORT_SYMBOL_GPL(gfn_to_pfn);
|
||
|
|
||
|
pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
|
||
|
bool *writable)
|
||
|
{
|
||
|
return __gfn_to_pfn(kvm, gfn, false, NULL, write_fault, writable);
|
||
|
}
|
||
|
EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
|
||
|
|
||
|
pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
|
||
|
{
|
||
|
return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL);
|
||
|
}
|
||
|
|
||
|
pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn)
|
||
|
{
|
||
|
return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL);
|
||
|
}
|
||
|
EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
|
||
|
|
||
|
int gfn_to_page_many_atomic(struct kvm *kvm, gfn_t gfn, struct page **pages,
|
||
|
int nr_pages)
|
||
|
{
|
||
|
unsigned long addr;
|
||
|
gfn_t entry;
|
||
|
|
||
|
addr = gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, &entry);
|
||
|
if (kvm_is_error_hva(addr))
|
||
|
return -1;
|
||
|
|
||
|
if (entry < nr_pages)
|
||
|
return 0;
|
||
|
|
||
|
return __get_user_pages_fast(addr, nr_pages, 1, pages);
|
||
|
}
|
||
|
EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
|
||
|
|
||
|
static struct page *kvm_pfn_to_page(pfn_t pfn)
|
||
|
{
|
||
|
if (is_error_noslot_pfn(pfn))
|
||
|
return KVM_ERR_PTR_BAD_PAGE;
|
||
|
|
||
|
if (kvm_is_reserved_pfn(pfn)) {
|
||
|
WARN_ON(1);
|
||
|
return KVM_ERR_PTR_BAD_PAGE;
|
||
|
}
|
||
|
|
||
|
return pfn_to_page(pfn);
|
||
|
}
|
||
|
|
||
|
struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
|
||
|
{
|
||
|
pfn_t pfn;
|
||
|
|
||
|
pfn = gfn_to_pfn(kvm, gfn);
|
||
|
|
||
|
return kvm_pfn_to_page(pfn);
|
||
|
}
|
||
|
|
||
|
EXPORT_SYMBOL_GPL(gfn_to_page);
|
||
|
|
||
|
void kvm_release_page_clean(struct page *page)
|
||
|
{
|
||
|
WARN_ON(is_error_page(page));
|
||
|
|
||
|
kvm_release_pfn_clean(page_to_pfn(page));
|
||
|
}
|
||
|
EXPORT_SYMBOL_GPL(kvm_release_page_clean);
|
||
|
|
||
|
void kvm_release_pfn_clean(pfn_t pfn)
|
||
|
{
|
||
|
if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn))
|
||
|
put_page(pfn_to_page(pfn));
|
||
|
}
|
||
|
EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
|
||
|
|
||
|
void kvm_release_page_dirty(struct page *page)
|
||
|
{
|
||
|
WARN_ON(is_error_page(page));
|
||
|
|
||
|
kvm_release_pfn_dirty(page_to_pfn(page));
|
||
|
}
|
||
|
EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
|
||
|
|
||
|
static void kvm_release_pfn_dirty(pfn_t pfn)
|
||
|
{
|
||
|
kvm_set_pfn_dirty(pfn);
|
||
|
kvm_release_pfn_clean(pfn);
|
||
|
}
|
||
|
|
||
|
void kvm_set_pfn_dirty(pfn_t pfn)
|
||
|
{
|
||
|
if (!kvm_is_reserved_pfn(pfn)) {
|
||
|
struct page *page = pfn_to_page(pfn);
|
||
|
if (!PageReserved(page))
|
||
|
SetPageDirty(page);
|
||
|
}
|
||
|
}
|
||
|
EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
|
||
|
|
||
|
void kvm_set_pfn_accessed(pfn_t pfn)
|
||
|
{
|
||
|
if (!kvm_is_reserved_pfn(pfn))
|
||
|
mark_page_accessed(pfn_to_page(pfn));
|
||
|
}
|
||
|
EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
|
||
|
|
||
|
void kvm_get_pfn(pfn_t pfn)
|
||
|
{
|
||
|
if (!kvm_is_reserved_pfn(pfn))
|
||
|
get_page(pfn_to_page(pfn));
|
||
|
}
|
||
|
EXPORT_SYMBOL_GPL(kvm_get_pfn);
|
||
|
|
||
|
static int next_segment(unsigned long len, int offset)
|
||
|
{
|
||
|
if (len > PAGE_SIZE - offset)
|
||
|
return PAGE_SIZE - offset;
|
||
|
else
|
||
|
return len;
|
||
|
}
|
||
|
|
||
|
int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
|
||
|
int len)
|
||
|
{
|
||
|
int r;
|
||
|
unsigned long addr;
|
||
|
|
||
|
addr = gfn_to_hva_prot(kvm, gfn, NULL);
|
||
|
if (kvm_is_error_hva(addr))
|
||
|
return -EFAULT;
|
||
|
r = kvm_read_hva(data, (void __user *)addr + offset, len);
|
||
|
if (r)
|
||
|
return -EFAULT;
|
||
|
return 0;
|
||
|
}
|
||
|
EXPORT_SYMBOL_GPL(kvm_read_guest_page);
|
||
|
|
||
|
int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
|
||
|
{
|
||
|
gfn_t gfn = gpa >> PAGE_SHIFT;
|
||
|
int seg;
|
||
|
int offset = offset_in_page(gpa);
|
||
|
int ret;
|
||
|
|
||
|
while ((seg = next_segment(len, offset)) != 0) {
|
||
|
ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
|
||
|
if (ret < 0)
|
||
|
return ret;
|
||
|
offset = 0;
|
||
|
len -= seg;
|
||
|
data += seg;
|
||
|
++gfn;
|
||
|
}
|
||
|
return 0;
|
||
|
}
|
||
|
EXPORT_SYMBOL_GPL(kvm_read_guest);
|
||
|
|
||
|
int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
|
||
|
unsigned long len)
|
||
|
{
|
||
|
int r;
|
||
|
unsigned long addr;
|
||
|
gfn_t gfn = gpa >> PAGE_SHIFT;
|
||
|
int offset = offset_in_page(gpa);
|
||
|
|
||
|
addr = gfn_to_hva_prot(kvm, gfn, NULL);
|
||
|
if (kvm_is_error_hva(addr))
|
||
|
return -EFAULT;
|
||
|
pagefault_disable();
|
||
|
r = kvm_read_hva_atomic(data, (void __user *)addr + offset, len);
|
||
|
pagefault_enable();
|
||
|
if (r)
|
||
|
return -EFAULT;
|
||
|
return 0;
|
||
|
}
|
||
|
EXPORT_SYMBOL(kvm_read_guest_atomic);
|
||
|
|
||
|
int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
|
||
|
int offset, int len)
|
||
|
{
|
||
|
int r;
|
||
|
unsigned long addr;
|
||
|
|
||
|
addr = gfn_to_hva(kvm, gfn);
|
||
|
if (kvm_is_error_hva(addr))
|
||
|
return -EFAULT;
|
||
|
r = __copy_to_user((void __user *)addr + offset, data, len);
|
||
|
if (r)
|
||
|
return -EFAULT;
|
||
|
mark_page_dirty(kvm, gfn);
|
||
|
return 0;
|
||
|
}
|
||
|
EXPORT_SYMBOL_GPL(kvm_write_guest_page);
|
||
|
|
||
|
int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
|
||
|
unsigned long len)
|
||
|
{
|
||
|
gfn_t gfn = gpa >> PAGE_SHIFT;
|
||
|
int seg;
|
||
|
int offset = offset_in_page(gpa);
|
||
|
int ret;
|
||
|
|
||
|
while ((seg = next_segment(len, offset)) != 0) {
|
||
|
ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
|
||
|
if (ret < 0)
|
||
|
return ret;
|
||
|
offset = 0;
|
||
|
len -= seg;
|
||
|
data += seg;
|
||
|
++gfn;
|
||
|
}
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
|
||
|
gpa_t gpa, unsigned long len)
|
||
|
{
|
||
|
struct kvm_memslots *slots = kvm_memslots(kvm);
|
||
|
int offset = offset_in_page(gpa);
|
||
|
gfn_t start_gfn = gpa >> PAGE_SHIFT;
|
||
|
gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
|
||
|
gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
|
||
|
gfn_t nr_pages_avail;
|
||
|
|
||
|
ghc->gpa = gpa;
|
||
|
ghc->generation = slots->generation;
|
||
|
ghc->len = len;
|
||
|
ghc->memslot = gfn_to_memslot(kvm, start_gfn);
|
||
|
ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn, NULL);
|
||
|
if (!kvm_is_error_hva(ghc->hva) && nr_pages_needed <= 1) {
|
||
|
ghc->hva += offset;
|
||
|
} else {
|
||
|
/*
|
||
|
* If the requested region crosses two memslots, we still
|
||
|
* verify that the entire region is valid here.
|
||
|
*/
|
||
|
while (start_gfn <= end_gfn) {
|
||
|
ghc->memslot = gfn_to_memslot(kvm, start_gfn);
|
||
|
ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
|
||
|
&nr_pages_avail);
|
||
|
if (kvm_is_error_hva(ghc->hva))
|
||
|
return -EFAULT;
|
||
|
start_gfn += nr_pages_avail;
|
||
|
}
|
||
|
/* Use the slow path for cross page reads and writes. */
|
||
|
ghc->memslot = NULL;
|
||
|
}
|
||
|
return 0;
|
||
|
}
|
||
|
EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
|
||
|
|
||
|
int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
|
||
|
void *data, unsigned long len)
|
||
|
{
|
||
|
struct kvm_memslots *slots = kvm_memslots(kvm);
|
||
|
int r;
|
||
|
|
||
|
BUG_ON(len > ghc->len);
|
||
|
|
||
|
if (slots->generation != ghc->generation)
|
||
|
kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa, ghc->len);
|
||
|
|
||
|
if (unlikely(!ghc->memslot))
|
||
|
return kvm_write_guest(kvm, ghc->gpa, data, len);
|
||
|
|
||
|
if (kvm_is_error_hva(ghc->hva))
|
||
|
return -EFAULT;
|
||
|
|
||
|
r = __copy_to_user((void __user *)ghc->hva, data, len);
|
||
|
if (r)
|
||
|
return -EFAULT;
|
||
|
mark_page_dirty_in_slot(kvm, ghc->memslot, ghc->gpa >> PAGE_SHIFT);
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
|
||
|
|
||
|
int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
|
||
|
void *data, unsigned long len)
|
||
|
{
|
||
|
struct kvm_memslots *slots = kvm_memslots(kvm);
|
||
|
int r;
|
||
|
|
||
|
BUG_ON(len > ghc->len);
|
||
|
|
||
|
if (slots->generation != ghc->generation)
|
||
|
kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa, ghc->len);
|
||
|
|
||
|
if (unlikely(!ghc->memslot))
|
||
|
return kvm_read_guest(kvm, ghc->gpa, data, len);
|
||
|
|
||
|
if (kvm_is_error_hva(ghc->hva))
|
||
|
return -EFAULT;
|
||
|
|
||
|
r = __copy_from_user(data, (void __user *)ghc->hva, len);
|
||
|
if (r)
|
||
|
return -EFAULT;
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
|
||
|
|
||
|
int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
|
||
|
{
|
||
|
const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
|
||
|
|
||
|
return kvm_write_guest_page(kvm, gfn, zero_page, offset, len);
|
||
|
}
|
||
|
EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
|
||
|
|
||
|
int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
|
||
|
{
|
||
|
gfn_t gfn = gpa >> PAGE_SHIFT;
|
||
|
int seg;
|
||
|
int offset = offset_in_page(gpa);
|
||
|
int ret;
|
||
|
|
||
|
while ((seg = next_segment(len, offset)) != 0) {
|
||
|
ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
|
||
|
if (ret < 0)
|
||
|
return ret;
|
||
|
offset = 0;
|
||
|
len -= seg;
|
||
|
++gfn;
|
||
|
}
|
||
|
return 0;
|
||
|
}
|
||
|
EXPORT_SYMBOL_GPL(kvm_clear_guest);
|
||
|
|
||
|
static void mark_page_dirty_in_slot(struct kvm *kvm,
|
||
|
struct kvm_memory_slot *memslot,
|
||
|
gfn_t gfn)
|
||
|
{
|
||
|
if (memslot && memslot->dirty_bitmap) {
|
||
|
unsigned long rel_gfn = gfn - memslot->base_gfn;
|
||
|
|
||
|
set_bit_le(rel_gfn, memslot->dirty_bitmap);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
|
||
|
{
|
||
|
struct kvm_memory_slot *memslot;
|
||
|
|
||
|
memslot = gfn_to_memslot(kvm, gfn);
|
||
|
mark_page_dirty_in_slot(kvm, memslot, gfn);
|
||
|
}
|
||
|
EXPORT_SYMBOL_GPL(mark_page_dirty);
|
||
|
|
||
|
/*
|
||
|
* The vCPU has executed a HLT instruction with in-kernel mode enabled.
|
||
|
*/
|
||
|
void kvm_vcpu_block(struct kvm_vcpu *vcpu)
|
||
|
{
|
||
|
DEFINE_WAIT(wait);
|
||
|
|
||
|
for (;;) {
|
||
|
prepare_to_wait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
|
||
|
|
||
|
if (kvm_arch_vcpu_runnable(vcpu)) {
|
||
|
kvm_make_request(KVM_REQ_UNHALT, vcpu);
|
||
|
break;
|
||
|
}
|
||
|
if (kvm_cpu_has_pending_timer(vcpu))
|
||
|
break;
|
||
|
if (signal_pending(current))
|
||
|
break;
|
||
|
|
||
|
schedule();
|
||
|
}
|
||
|
|
||
|
finish_wait(&vcpu->wq, &wait);
|
||
|
}
|
||
|
EXPORT_SYMBOL_GPL(kvm_vcpu_block);
|
||
|
|
||
|
#ifndef CONFIG_S390
|
||
|
/*
|
||
|
* Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
|
||
|
*/
|
||
|
void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
|
||
|
{
|
||
|
int me;
|
||
|
int cpu = vcpu->cpu;
|
||
|
wait_queue_head_t *wqp;
|
||
|
|
||
|
wqp = kvm_arch_vcpu_wq(vcpu);
|
||
|
if (waitqueue_active(wqp)) {
|
||
|
wake_up_interruptible(wqp);
|
||
|
++vcpu->stat.halt_wakeup;
|
||
|
}
|
||
|
|
||
|
me = get_cpu();
|
||
|
if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
|
||
|
if (kvm_arch_vcpu_should_kick(vcpu))
|
||
|
smp_send_reschedule(cpu);
|
||
|
put_cpu();
|
||
|
}
|
||
|
EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
|
||
|
#endif /* !CONFIG_S390 */
|
||
|
|
||
|
int kvm_vcpu_yield_to(struct kvm_vcpu *target)
|
||
|
{
|
||
|
struct pid *pid;
|
||
|
struct task_struct *task = NULL;
|
||
|
int ret = 0;
|
||
|
|
||
|
rcu_read_lock();
|
||
|
pid = rcu_dereference(target->pid);
|
||
|
if (pid)
|
||
|
task = get_pid_task(pid, PIDTYPE_PID);
|
||
|
rcu_read_unlock();
|
||
|
if (!task)
|
||
|
return ret;
|
||
|
if (task->flags & PF_VCPU) {
|
||
|
put_task_struct(task);
|
||
|
return ret;
|
||
|
}
|
||
|
ret = yield_to(task, 1);
|
||
|
put_task_struct(task);
|
||
|
|
||
|
return ret;
|
||
|
}
|
||
|
EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
|
||
|
|
||
|
/*
|
||
|
* Helper that checks whether a VCPU is eligible for directed yield.
|
||
|
* Most eligible candidate to yield is decided by following heuristics:
|
||
|
*
|
||
|
* (a) VCPU which has not done pl-exit or cpu relax intercepted recently
|
||
|
* (preempted lock holder), indicated by @in_spin_loop.
|
||
|
* Set at the beiginning and cleared at the end of interception/PLE handler.
|
||
|
*
|
||
|
* (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
|
||
|
* chance last time (mostly it has become eligible now since we have probably
|
||
|
* yielded to lockholder in last iteration. This is done by toggling
|
||
|
* @dy_eligible each time a VCPU checked for eligibility.)
|
||
|
*
|
||
|
* Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
|
||
|
* to preempted lock-holder could result in wrong VCPU selection and CPU
|
||
|
* burning. Giving priority for a potential lock-holder increases lock
|
||
|
* progress.
|
||
|
*
|
||
|
* Since algorithm is based on heuristics, accessing another VCPU data without
|
||
|
* locking does not harm. It may result in trying to yield to same VCPU, fail
|
||
|
* and continue with next VCPU and so on.
|
||
|
*/
|
||
|
static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
|
||
|
{
|
||
|
#ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
|
||
|
bool eligible;
|
||
|
|
||
|
eligible = !vcpu->spin_loop.in_spin_loop ||
|
||
|
vcpu->spin_loop.dy_eligible;
|
||
|
|
||
|
if (vcpu->spin_loop.in_spin_loop)
|
||
|
kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
|
||
|
|
||
|
return eligible;
|
||
|
#else
|
||
|
return true;
|
||
|
#endif
|
||
|
}
|
||
|
|
||
|
void kvm_vcpu_on_spin(struct kvm_vcpu *me)
|
||
|
{
|
||
|
struct kvm *kvm = me->kvm;
|
||
|
struct kvm_vcpu *vcpu;
|
||
|
int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
|
||
|
int yielded = 0;
|
||
|
int try = 3;
|
||
|
int pass;
|
||
|
int i;
|
||
|
|
||
|
kvm_vcpu_set_in_spin_loop(me, true);
|
||
|
/*
|
||
|
* We boost the priority of a VCPU that is runnable but not
|
||
|
* currently running, because it got preempted by something
|
||
|
* else and called schedule in __vcpu_run. Hopefully that
|
||
|
* VCPU is holding the lock that we need and will release it.
|
||
|
* We approximate round-robin by starting at the last boosted VCPU.
|
||
|
*/
|
||
|
for (pass = 0; pass < 2 && !yielded && try; pass++) {
|
||
|
kvm_for_each_vcpu(i, vcpu, kvm) {
|
||
|
if (!pass && i <= last_boosted_vcpu) {
|
||
|
i = last_boosted_vcpu;
|
||
|
continue;
|
||
|
} else if (pass && i > last_boosted_vcpu)
|
||
|
break;
|
||
|
if (!ACCESS_ONCE(vcpu->preempted))
|
||
|
continue;
|
||
|
if (vcpu == me)
|
||
|
continue;
|
||
|
if (waitqueue_active(&vcpu->wq) && !kvm_arch_vcpu_runnable(vcpu))
|
||
|
continue;
|
||
|
if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
|
||
|
continue;
|
||
|
|
||
|
yielded = kvm_vcpu_yield_to(vcpu);
|
||
|
if (yielded > 0) {
|
||
|
kvm->last_boosted_vcpu = i;
|
||
|
break;
|
||
|
} else if (yielded < 0) {
|
||
|
try--;
|
||
|
if (!try)
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
kvm_vcpu_set_in_spin_loop(me, false);
|
||
|
|
||
|
/* Ensure vcpu is not eligible during next spinloop */
|
||
|
kvm_vcpu_set_dy_eligible(me, false);
|
||
|
}
|
||
|
EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
|
||
|
|
||
|
static int kvm_vcpu_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
|
||
|
{
|
||
|
struct kvm_vcpu *vcpu = vma->vm_file->private_data;
|
||
|
struct page *page;
|
||
|
|
||
|
if (vmf->pgoff == 0)
|
||
|
page = virt_to_page(vcpu->run);
|
||
|
#ifdef CONFIG_X86
|
||
|
else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
|
||
|
page = virt_to_page(vcpu->arch.pio_data);
|
||
|
#endif
|
||
|
#ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
|
||
|
else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
|
||
|
page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
|
||
|
#endif
|
||
|
else
|
||
|
return kvm_arch_vcpu_fault(vcpu, vmf);
|
||
|
get_page(page);
|
||
|
vmf->page = page;
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static const struct vm_operations_struct kvm_vcpu_vm_ops = {
|
||
|
.fault = kvm_vcpu_fault,
|
||
|
};
|
||
|
|
||
|
static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
|
||
|
{
|
||
|
vma->vm_ops = &kvm_vcpu_vm_ops;
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static int kvm_vcpu_release(struct inode *inode, struct file *filp)
|
||
|
{
|
||
|
struct kvm_vcpu *vcpu = filp->private_data;
|
||
|
|
||
|
kvm_put_kvm(vcpu->kvm);
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static struct file_operations kvm_vcpu_fops = {
|
||
|
.release = kvm_vcpu_release,
|
||
|
.unlocked_ioctl = kvm_vcpu_ioctl,
|
||
|
#ifdef CONFIG_COMPAT
|
||
|
.compat_ioctl = kvm_vcpu_compat_ioctl,
|
||
|
#endif
|
||
|
.mmap = kvm_vcpu_mmap,
|
||
|
.llseek = noop_llseek,
|
||
|
};
|
||
|
|
||
|
/*
|
||
|
* Allocates an inode for the vcpu.
|
||
|
*/
|
||
|
static int create_vcpu_fd(struct kvm_vcpu *vcpu)
|
||
|
{
|
||
|
return anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Creates some virtual cpus. Good luck creating more than one.
|
||
|
*/
|
||
|
static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
|
||
|
{
|
||
|
int r;
|
||
|
struct kvm_vcpu *vcpu, *v;
|
||
|
|
||
|
if (id >= KVM_MAX_VCPUS)
|
||
|
return -EINVAL;
|
||
|
|
||
|
vcpu = kvm_arch_vcpu_create(kvm, id);
|
||
|
if (IS_ERR(vcpu))
|
||
|
return PTR_ERR(vcpu);
|
||
|
|
||
|
preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
|
||
|
|
||
|
r = kvm_arch_vcpu_setup(vcpu);
|
||
|
if (r)
|
||
|
goto vcpu_destroy;
|
||
|
|
||
|
mutex_lock(&kvm->lock);
|
||
|
if (!kvm_vcpu_compatible(vcpu)) {
|
||
|
r = -EINVAL;
|
||
|
goto unlock_vcpu_destroy;
|
||
|
}
|
||
|
if (atomic_read(&kvm->online_vcpus) == KVM_MAX_VCPUS) {
|
||
|
r = -EINVAL;
|
||
|
goto unlock_vcpu_destroy;
|
||
|
}
|
||
|
|
||
|
kvm_for_each_vcpu(r, v, kvm)
|
||
|
if (v->vcpu_id == id) {
|
||
|
r = -EEXIST;
|
||
|
goto unlock_vcpu_destroy;
|
||
|
}
|
||
|
|
||
|
BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]);
|
||
|
|
||
|
/* Now it's all set up, let userspace reach it */
|
||
|
kvm_get_kvm(kvm);
|
||
|
r = create_vcpu_fd(vcpu);
|
||
|
if (r < 0) {
|
||
|
kvm_put_kvm(kvm);
|
||
|
goto unlock_vcpu_destroy;
|
||
|
}
|
||
|
|
||
|
kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu;
|
||
|
smp_wmb();
|
||
|
atomic_inc(&kvm->online_vcpus);
|
||
|
|
||
|
mutex_unlock(&kvm->lock);
|
||
|
kvm_arch_vcpu_postcreate(vcpu);
|
||
|
return r;
|
||
|
|
||
|
unlock_vcpu_destroy:
|
||
|
mutex_unlock(&kvm->lock);
|
||
|
vcpu_destroy:
|
||
|
kvm_arch_vcpu_destroy(vcpu);
|
||
|
return r;
|
||
|
}
|
||
|
|
||
|
static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
|
||
|
{
|
||
|
if (sigset) {
|
||
|
sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
|
||
|
vcpu->sigset_active = 1;
|
||
|
vcpu->sigset = *sigset;
|
||
|
} else
|
||
|
vcpu->sigset_active = 0;
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static long kvm_vcpu_ioctl(struct file *filp,
|
||
|
unsigned int ioctl, unsigned long arg)
|
||
|
{
|
||
|
struct kvm_vcpu *vcpu = filp->private_data;
|
||
|
void __user *argp = (void __user *)arg;
|
||
|
int r;
|
||
|
struct kvm_fpu *fpu = NULL;
|
||
|
struct kvm_sregs *kvm_sregs = NULL;
|
||
|
|
||
|
if (vcpu->kvm->mm != current->mm)
|
||
|
return -EIO;
|
||
|
|
||
|
if (unlikely(_IOC_TYPE(ioctl) != KVMIO))
|
||
|
return -EINVAL;
|
||
|
|
||
|
#if defined(CONFIG_S390) || defined(CONFIG_PPC) || defined(CONFIG_MIPS)
|
||
|
/*
|
||
|
* Special cases: vcpu ioctls that are asynchronous to vcpu execution,
|
||
|
* so vcpu_load() would break it.
|
||
|
*/
|
||
|
if (ioctl == KVM_S390_INTERRUPT || ioctl == KVM_INTERRUPT)
|
||
|
return kvm_arch_vcpu_ioctl(filp, ioctl, arg);
|
||
|
#endif
|
||
|
|
||
|
|
||
|
r = vcpu_load(vcpu);
|
||
|
if (r)
|
||
|
return r;
|
||
|
switch (ioctl) {
|
||
|
case KVM_RUN:
|
||
|
r = -EINVAL;
|
||
|
if (arg)
|
||
|
goto out;
|
||
|
r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
|
||
|
trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
|
||
|
break;
|
||
|
case KVM_GET_REGS: {
|
||
|
struct kvm_regs *kvm_regs;
|
||
|
|
||
|
r = -ENOMEM;
|
||
|
kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
|
||
|
if (!kvm_regs)
|
||
|
goto out;
|
||
|
r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
|
||
|
if (r)
|
||
|
goto out_free1;
|
||
|
r = -EFAULT;
|
||
|
if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
|
||
|
goto out_free1;
|
||
|
r = 0;
|
||
|
out_free1:
|
||
|
kfree(kvm_regs);
|
||
|
break;
|
||
|
}
|
||
|
case KVM_SET_REGS: {
|
||
|
struct kvm_regs *kvm_regs;
|
||
|
|
||
|
r = -ENOMEM;
|
||
|
kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
|
||
|
if (IS_ERR(kvm_regs)) {
|
||
|
r = PTR_ERR(kvm_regs);
|
||
|
goto out;
|
||
|
}
|
||
|
r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
|
||
|
kfree(kvm_regs);
|
||
|
break;
|
||
|
}
|
||
|
case KVM_GET_SREGS: {
|
||
|
kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
|
||
|
r = -ENOMEM;
|
||
|
if (!kvm_sregs)
|
||
|
goto out;
|
||
|
r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
|
||
|
if (r)
|
||
|
goto out;
|
||
|
r = -EFAULT;
|
||
|
if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
|
||
|
goto out;
|
||
|
r = 0;
|
||
|
break;
|
||
|
}
|
||
|
case KVM_SET_SREGS: {
|
||
|
kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
|
||
|
if (IS_ERR(kvm_sregs)) {
|
||
|
r = PTR_ERR(kvm_sregs);
|
||
|
kvm_sregs = NULL;
|
||
|
goto out;
|
||
|
}
|
||
|
r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
|
||
|
break;
|
||
|
}
|
||
|
case KVM_GET_MP_STATE: {
|
||
|
struct kvm_mp_state mp_state;
|
||
|
|
||
|
r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
|
||
|
if (r)
|
||
|
goto out;
|
||
|
r = -EFAULT;
|
||
|
if (copy_to_user(argp, &mp_state, sizeof mp_state))
|
||
|
goto out;
|
||
|
r = 0;
|
||
|
break;
|
||
|
}
|
||
|
case KVM_SET_MP_STATE: {
|
||
|
struct kvm_mp_state mp_state;
|
||
|
|
||
|
r = -EFAULT;
|
||
|
if (copy_from_user(&mp_state, argp, sizeof mp_state))
|
||
|
goto out;
|
||
|
r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
|
||
|
break;
|
||
|
}
|
||
|
case KVM_TRANSLATE: {
|
||
|
struct kvm_translation tr;
|
||
|
|
||
|
r = -EFAULT;
|
||
|
if (copy_from_user(&tr, argp, sizeof tr))
|
||
|
goto out;
|
||
|
r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
|
||
|
if (r)
|
||
|
goto out;
|
||
|
r = -EFAULT;
|
||
|
if (copy_to_user(argp, &tr, sizeof tr))
|
||
|
goto out;
|
||
|
r = 0;
|
||
|
break;
|
||
|
}
|
||
|
case KVM_SET_GUEST_DEBUG: {
|
||
|
struct kvm_guest_debug dbg;
|
||
|
|
||
|
r = -EFAULT;
|
||
|
if (copy_from_user(&dbg, argp, sizeof dbg))
|
||
|
goto out;
|
||
|
r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
|
||
|
break;
|
||
|
}
|
||
|
case KVM_SET_SIGNAL_MASK: {
|
||
|
struct kvm_signal_mask __user *sigmask_arg = argp;
|
||
|
struct kvm_signal_mask kvm_sigmask;
|
||
|
sigset_t sigset, *p;
|
||
|
|
||
|
p = NULL;
|
||
|
if (argp) {
|
||
|
r = -EFAULT;
|
||
|
if (copy_from_user(&kvm_sigmask, argp,
|
||
|
sizeof kvm_sigmask))
|
||
|
goto out;
|
||
|
r = -EINVAL;
|
||
|
if (kvm_sigmask.len != sizeof sigset)
|
||
|
goto out;
|
||
|
r = -EFAULT;
|
||
|
if (copy_from_user(&sigset, sigmask_arg->sigset,
|
||
|
sizeof sigset))
|
||
|
goto out;
|
||
|
p = &sigset;
|
||
|
}
|
||
|
r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
|
||
|
break;
|
||
|
}
|
||
|
case KVM_GET_FPU: {
|
||
|
fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
|
||
|
r = -ENOMEM;
|
||
|
if (!fpu)
|
||
|
goto out;
|
||
|
r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
|
||
|
if (r)
|
||
|
goto out;
|
||
|
r = -EFAULT;
|
||
|
if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
|
||
|
goto out;
|
||
|
r = 0;
|
||
|
break;
|
||
|
}
|
||
|
case KVM_SET_FPU: {
|
||
|
fpu = memdup_user(argp, sizeof(*fpu));
|
||
|
if (IS_ERR(fpu)) {
|
||
|
r = PTR_ERR(fpu);
|
||
|
fpu = NULL;
|
||
|
goto out;
|
||
|
}
|
||
|
r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
|
||
|
break;
|
||
|
}
|
||
|
default:
|
||
|
r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
|
||
|
}
|
||
|
out:
|
||
|
vcpu_put(vcpu);
|
||
|
kfree(fpu);
|
||
|
kfree(kvm_sregs);
|
||
|
return r;
|
||
|
}
|
||
|
|
||
|
#ifdef CONFIG_COMPAT
|
||
|
static long kvm_vcpu_compat_ioctl(struct file *filp,
|
||
|
unsigned int ioctl, unsigned long arg)
|
||
|
{
|
||
|
struct kvm_vcpu *vcpu = filp->private_data;
|
||
|
void __user *argp = compat_ptr(arg);
|
||
|
int r;
|
||
|
|
||
|
if (vcpu->kvm->mm != current->mm)
|
||
|
return -EIO;
|
||
|
|
||
|
switch (ioctl) {
|
||
|
case KVM_SET_SIGNAL_MASK: {
|
||
|
struct kvm_signal_mask __user *sigmask_arg = argp;
|
||
|
struct kvm_signal_mask kvm_sigmask;
|
||
|
compat_sigset_t csigset;
|
||
|
sigset_t sigset;
|
||
|
|
||
|
if (argp) {
|
||
|
r = -EFAULT;
|
||
|
if (copy_from_user(&kvm_sigmask, argp,
|
||
|
sizeof kvm_sigmask))
|
||
|
goto out;
|
||
|
r = -EINVAL;
|
||
|
if (kvm_sigmask.len != sizeof csigset)
|
||
|
goto out;
|
||
|
r = -EFAULT;
|
||
|
if (copy_from_user(&csigset, sigmask_arg->sigset,
|
||
|
sizeof csigset))
|
||
|
goto out;
|
||
|
sigset_from_compat(&sigset, &csigset);
|
||
|
r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
|
||
|
} else
|
||
|
r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
|
||
|
break;
|
||
|
}
|
||
|
default:
|
||
|
r = kvm_vcpu_ioctl(filp, ioctl, arg);
|
||
|
}
|
||
|
|
||
|
out:
|
||
|
return r;
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
static int kvm_device_ioctl_attr(struct kvm_device *dev,
|
||
|
int (*accessor)(struct kvm_device *dev,
|
||
|
struct kvm_device_attr *attr),
|
||
|
unsigned long arg)
|
||
|
{
|
||
|
struct kvm_device_attr attr;
|
||
|
|
||
|
if (!accessor)
|
||
|
return -EPERM;
|
||
|
|
||
|
if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
|
||
|
return -EFAULT;
|
||
|
|
||
|
return accessor(dev, &attr);
|
||
|
}
|
||
|
|
||
|
static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
|
||
|
unsigned long arg)
|
||
|
{
|
||
|
struct kvm_device *dev = filp->private_data;
|
||
|
|
||
|
switch (ioctl) {
|
||
|
case KVM_SET_DEVICE_ATTR:
|
||
|
return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
|
||
|
case KVM_GET_DEVICE_ATTR:
|
||
|
return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
|
||
|
case KVM_HAS_DEVICE_ATTR:
|
||
|
return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
|
||
|
default:
|
||
|
if (dev->ops->ioctl)
|
||
|
return dev->ops->ioctl(dev, ioctl, arg);
|
||
|
|
||
|
return -ENOTTY;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static int kvm_device_release(struct inode *inode, struct file *filp)
|
||
|
{
|
||
|
struct kvm_device *dev = filp->private_data;
|
||
|
struct kvm *kvm = dev->kvm;
|
||
|
|
||
|
kvm_put_kvm(kvm);
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static const struct file_operations kvm_device_fops = {
|
||
|
.unlocked_ioctl = kvm_device_ioctl,
|
||
|
#ifdef CONFIG_COMPAT
|
||
|
.compat_ioctl = kvm_device_ioctl,
|
||
|
#endif
|
||
|
.release = kvm_device_release,
|
||
|
};
|
||
|
|
||
|
struct kvm_device *kvm_device_from_filp(struct file *filp)
|
||
|
{
|
||
|
if (filp->f_op != &kvm_device_fops)
|
||
|
return NULL;
|
||
|
|
||
|
return filp->private_data;
|
||
|
}
|
||
|
|
||
|
static struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = {
|
||
|
#ifdef CONFIG_KVM_MPIC
|
||
|
[KVM_DEV_TYPE_FSL_MPIC_20] = &kvm_mpic_ops,
|
||
|
[KVM_DEV_TYPE_FSL_MPIC_42] = &kvm_mpic_ops,
|
||
|
#endif
|
||
|
|
||
|
#ifdef CONFIG_KVM_XICS
|
||
|
[KVM_DEV_TYPE_XICS] = &kvm_xics_ops,
|
||
|
#endif
|
||
|
};
|
||
|
|
||
|
int kvm_register_device_ops(struct kvm_device_ops *ops, u32 type)
|
||
|
{
|
||
|
if (type >= ARRAY_SIZE(kvm_device_ops_table))
|
||
|
return -ENOSPC;
|
||
|
|
||
|
if (kvm_device_ops_table[type] != NULL)
|
||
|
return -EEXIST;
|
||
|
|
||
|
kvm_device_ops_table[type] = ops;
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
void kvm_unregister_device_ops(u32 type)
|
||
|
{
|
||
|
if (kvm_device_ops_table[type] != NULL)
|
||
|
kvm_device_ops_table[type] = NULL;
|
||
|
}
|
||
|
|
||
|
static int kvm_ioctl_create_device(struct kvm *kvm,
|
||
|
struct kvm_create_device *cd)
|
||
|
{
|
||
|
struct kvm_device_ops *ops = NULL;
|
||
|
struct kvm_device *dev;
|
||
|
bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
|
||
|
int ret;
|
||
|
|
||
|
if (cd->type >= ARRAY_SIZE(kvm_device_ops_table))
|
||
|
return -ENODEV;
|
||
|
|
||
|
ops = kvm_device_ops_table[cd->type];
|
||
|
if (ops == NULL)
|
||
|
return -ENODEV;
|
||
|
|
||
|
if (test)
|
||
|
return 0;
|
||
|
|
||
|
dev = kzalloc(sizeof(*dev), GFP_KERNEL);
|
||
|
if (!dev)
|
||
|
return -ENOMEM;
|
||
|
|
||
|
dev->ops = ops;
|
||
|
dev->kvm = kvm;
|
||
|
|
||
|
ret = ops->create(dev, cd->type);
|
||
|
if (ret < 0) {
|
||
|
kfree(dev);
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
|
||
|
if (ret < 0) {
|
||
|
ops->destroy(dev);
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
list_add(&dev->vm_node, &kvm->devices);
|
||
|
kvm_get_kvm(kvm);
|
||
|
cd->fd = ret;
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
|
||
|
{
|
||
|
switch (arg) {
|
||
|
case KVM_CAP_USER_MEMORY:
|
||
|
case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
|
||
|
case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
|
||
|
#ifdef CONFIG_KVM_APIC_ARCHITECTURE
|
||
|
case KVM_CAP_SET_BOOT_CPU_ID:
|
||
|
#endif
|
||
|
case KVM_CAP_INTERNAL_ERROR_DATA:
|
||
|
#ifdef CONFIG_HAVE_KVM_MSI
|
||
|
case KVM_CAP_SIGNAL_MSI:
|
||
|
#endif
|
||
|
#ifdef CONFIG_HAVE_KVM_IRQFD
|
||
|
case KVM_CAP_IRQFD:
|
||
|
case KVM_CAP_IRQFD_RESAMPLE:
|
||
|
#endif
|
||
|
case KVM_CAP_CHECK_EXTENSION_VM:
|
||
|
return 1;
|
||
|
#ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
|
||
|
case KVM_CAP_IRQ_ROUTING:
|
||
|
return KVM_MAX_IRQ_ROUTES;
|
||
|
#endif
|
||
|
default:
|
||
|
break;
|
||
|
}
|
||
|
return kvm_vm_ioctl_check_extension(kvm, arg);
|
||
|
}
|
||
|
|
||
|
static long kvm_vm_ioctl(struct file *filp,
|
||
|
unsigned int ioctl, unsigned long arg)
|
||
|
{
|
||
|
struct kvm *kvm = filp->private_data;
|
||
|
void __user *argp = (void __user *)arg;
|
||
|
int r;
|
||
|
|
||
|
if (kvm->mm != current->mm)
|
||
|
return -EIO;
|
||
|
switch (ioctl) {
|
||
|
case KVM_CREATE_VCPU:
|
||
|
r = kvm_vm_ioctl_create_vcpu(kvm, arg);
|
||
|
break;
|
||
|
case KVM_SET_USER_MEMORY_REGION: {
|
||
|
struct kvm_userspace_memory_region kvm_userspace_mem;
|
||
|
|
||
|
r = -EFAULT;
|
||
|
if (copy_from_user(&kvm_userspace_mem, argp,
|
||
|
sizeof kvm_userspace_mem))
|
||
|
goto out;
|
||
|
|
||
|
r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem);
|
||
|
break;
|
||
|
}
|
||
|
case KVM_GET_DIRTY_LOG: {
|
||
|
struct kvm_dirty_log log;
|
||
|
|
||
|
r = -EFAULT;
|
||
|
if (copy_from_user(&log, argp, sizeof log))
|
||
|
goto out;
|
||
|
r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
|
||
|
break;
|
||
|
}
|
||
|
#ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
|
||
|
case KVM_REGISTER_COALESCED_MMIO: {
|
||
|
struct kvm_coalesced_mmio_zone zone;
|
||
|
r = -EFAULT;
|
||
|
if (copy_from_user(&zone, argp, sizeof zone))
|
||
|
goto out;
|
||
|
r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
|
||
|
break;
|
||
|
}
|
||
|
case KVM_UNREGISTER_COALESCED_MMIO: {
|
||
|
struct kvm_coalesced_mmio_zone zone;
|
||
|
r = -EFAULT;
|
||
|
if (copy_from_user(&zone, argp, sizeof zone))
|
||
|
goto out;
|
||
|
r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
|
||
|
break;
|
||
|
}
|
||
|
#endif
|
||
|
case KVM_IRQFD: {
|
||
|
struct kvm_irqfd data;
|
||
|
|
||
|
r = -EFAULT;
|
||
|
if (copy_from_user(&data, argp, sizeof data))
|
||
|
goto out;
|
||
|
r = kvm_irqfd(kvm, &data);
|
||
|
break;
|
||
|
}
|
||
|
case KVM_IOEVENTFD: {
|
||
|
struct kvm_ioeventfd data;
|
||
|
|
||
|
r = -EFAULT;
|
||
|
if (copy_from_user(&data, argp, sizeof data))
|
||
|
goto out;
|
||
|
r = kvm_ioeventfd(kvm, &data);
|
||
|
break;
|
||
|
}
|
||
|
#ifdef CONFIG_KVM_APIC_ARCHITECTURE
|
||
|
case KVM_SET_BOOT_CPU_ID:
|
||
|
r = 0;
|
||
|
mutex_lock(&kvm->lock);
|
||
|
if (atomic_read(&kvm->online_vcpus) != 0)
|
||
|
r = -EBUSY;
|
||
|
else
|
||
|
kvm->bsp_vcpu_id = arg;
|
||
|
mutex_unlock(&kvm->lock);
|
||
|
break;
|
||
|
#endif
|
||
|
#ifdef CONFIG_HAVE_KVM_MSI
|
||
|
case KVM_SIGNAL_MSI: {
|
||
|
struct kvm_msi msi;
|
||
|
|
||
|
r = -EFAULT;
|
||
|
if (copy_from_user(&msi, argp, sizeof msi))
|
||
|
goto out;
|
||
|
r = kvm_send_userspace_msi(kvm, &msi);
|
||
|
break;
|
||
|
}
|
||
|
#endif
|
||
|
#ifdef __KVM_HAVE_IRQ_LINE
|
||
|
case KVM_IRQ_LINE_STATUS:
|
||
|
case KVM_IRQ_LINE: {
|
||
|
struct kvm_irq_level irq_event;
|
||
|
|
||
|
r = -EFAULT;
|
||
|
if (copy_from_user(&irq_event, argp, sizeof irq_event))
|
||
|
goto out;
|
||
|
|
||
|
r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
|
||
|
ioctl == KVM_IRQ_LINE_STATUS);
|
||
|
if (r)
|
||
|
goto out;
|
||
|
|
||
|
r = -EFAULT;
|
||
|
if (ioctl == KVM_IRQ_LINE_STATUS) {
|
||
|
if (copy_to_user(argp, &irq_event, sizeof irq_event))
|
||
|
goto out;
|
||
|
}
|
||
|
|
||
|
r = 0;
|
||
|
break;
|
||
|
}
|
||
|
#endif
|
||
|
#ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
|
||
|
case KVM_SET_GSI_ROUTING: {
|
||
|
struct kvm_irq_routing routing;
|
||
|
struct kvm_irq_routing __user *urouting;
|
||
|
struct kvm_irq_routing_entry *entries;
|
||
|
|
||
|
r = -EFAULT;
|
||
|
if (copy_from_user(&routing, argp, sizeof(routing)))
|
||
|
goto out;
|
||
|
r = -EINVAL;
|
||
|
if (routing.nr >= KVM_MAX_IRQ_ROUTES)
|
||
|
goto out;
|
||
|
if (routing.flags)
|
||
|
goto out;
|
||
|
r = -ENOMEM;
|
||
|
entries = vmalloc(routing.nr * sizeof(*entries));
|
||
|
if (!entries)
|
||
|
goto out;
|
||
|
r = -EFAULT;
|
||
|
urouting = argp;
|
||
|
if (copy_from_user(entries, urouting->entries,
|
||
|
routing.nr * sizeof(*entries)))
|
||
|
goto out_free_irq_routing;
|
||
|
r = kvm_set_irq_routing(kvm, entries, routing.nr,
|
||
|
routing.flags);
|
||
|
out_free_irq_routing:
|
||
|
vfree(entries);
|
||
|
break;
|
||
|
}
|
||
|
#endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
|
||
|
case KVM_CREATE_DEVICE: {
|
||
|
struct kvm_create_device cd;
|
||
|
|
||
|
r = -EFAULT;
|
||
|
if (copy_from_user(&cd, argp, sizeof(cd)))
|
||
|
goto out;
|
||
|
|
||
|
r = kvm_ioctl_create_device(kvm, &cd);
|
||
|
if (r)
|
||
|
goto out;
|
||
|
|
||
|
r = -EFAULT;
|
||
|
if (copy_to_user(argp, &cd, sizeof(cd)))
|
||
|
goto out;
|
||
|
|
||
|
r = 0;
|
||
|
break;
|
||
|
}
|
||
|
case KVM_CHECK_EXTENSION:
|
||
|
r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
|
||
|
break;
|
||
|
default:
|
||
|
r = kvm_arch_vm_ioctl(filp, ioctl, arg);
|
||
|
if (r == -ENOTTY)
|
||
|
r = kvm_vm_ioctl_assigned_device(kvm, ioctl, arg);
|
||
|
}
|
||
|
out:
|
||
|
return r;
|
||
|
}
|
||
|
|
||
|
#ifdef CONFIG_COMPAT
|
||
|
struct compat_kvm_dirty_log {
|
||
|
__u32 slot;
|
||
|
__u32 padding1;
|
||
|
union {
|
||
|
compat_uptr_t dirty_bitmap; /* one bit per page */
|
||
|
__u64 padding2;
|
||
|
};
|
||
|
};
|
||
|
|
||
|
static long kvm_vm_compat_ioctl(struct file *filp,
|
||
|
unsigned int ioctl, unsigned long arg)
|
||
|
{
|
||
|
struct kvm *kvm = filp->private_data;
|
||
|
int r;
|
||
|
|
||
|
if (kvm->mm != current->mm)
|
||
|
return -EIO;
|
||
|
switch (ioctl) {
|
||
|
case KVM_GET_DIRTY_LOG: {
|
||
|
struct compat_kvm_dirty_log compat_log;
|
||
|
struct kvm_dirty_log log;
|
||
|
|
||
|
r = -EFAULT;
|
||
|
if (copy_from_user(&compat_log, (void __user *)arg,
|
||
|
sizeof(compat_log)))
|
||
|
goto out;
|
||
|
log.slot = compat_log.slot;
|
||
|
log.padding1 = compat_log.padding1;
|
||
|
log.padding2 = compat_log.padding2;
|
||
|
log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
|
||
|
|
||
|
r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
|
||
|
break;
|
||
|
}
|
||
|
default:
|
||
|
r = kvm_vm_ioctl(filp, ioctl, arg);
|
||
|
}
|
||
|
|
||
|
out:
|
||
|
return r;
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
static struct file_operations kvm_vm_fops = {
|
||
|
.release = kvm_vm_release,
|
||
|
.unlocked_ioctl = kvm_vm_ioctl,
|
||
|
#ifdef CONFIG_COMPAT
|
||
|
.compat_ioctl = kvm_vm_compat_ioctl,
|
||
|
#endif
|
||
|
.llseek = noop_llseek,
|
||
|
};
|
||
|
|
||
|
static int kvm_dev_ioctl_create_vm(unsigned long type)
|
||
|
{
|
||
|
int r;
|
||
|
struct kvm *kvm;
|
||
|
|
||
|
kvm = kvm_create_vm(type);
|
||
|
if (IS_ERR(kvm))
|
||
|
return PTR_ERR(kvm);
|
||
|
#ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
|
||
|
r = kvm_coalesced_mmio_init(kvm);
|
||
|
if (r < 0) {
|
||
|
kvm_put_kvm(kvm);
|
||
|
return r;
|
||
|
}
|
||
|
#endif
|
||
|
r = anon_inode_getfd("kvm-vm", &kvm_vm_fops, kvm, O_RDWR | O_CLOEXEC);
|
||
|
if (r < 0)
|
||
|
kvm_put_kvm(kvm);
|
||
|
|
||
|
return r;
|
||
|
}
|
||
|
|
||
|
static long kvm_dev_ioctl(struct file *filp,
|
||
|
unsigned int ioctl, unsigned long arg)
|
||
|
{
|
||
|
long r = -EINVAL;
|
||
|
|
||
|
switch (ioctl) {
|
||
|
case KVM_GET_API_VERSION:
|
||
|
if (arg)
|
||
|
goto out;
|
||
|
r = KVM_API_VERSION;
|
||
|
break;
|
||
|
case KVM_CREATE_VM:
|
||
|
r = kvm_dev_ioctl_create_vm(arg);
|
||
|
break;
|
||
|
case KVM_CHECK_EXTENSION:
|
||
|
r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
|
||
|
break;
|
||
|
case KVM_GET_VCPU_MMAP_SIZE:
|
||
|
if (arg)
|
||
|
goto out;
|
||
|
r = PAGE_SIZE; /* struct kvm_run */
|
||
|
#ifdef CONFIG_X86
|
||
|
r += PAGE_SIZE; /* pio data page */
|
||
|
#endif
|
||
|
#ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
|
||
|
r += PAGE_SIZE; /* coalesced mmio ring page */
|
||
|
#endif
|
||
|
break;
|
||
|
case KVM_TRACE_ENABLE:
|
||
|
case KVM_TRACE_PAUSE:
|
||
|
case KVM_TRACE_DISABLE:
|
||
|
r = -EOPNOTSUPP;
|
||
|
break;
|
||
|
default:
|
||
|
return kvm_arch_dev_ioctl(filp, ioctl, arg);
|
||
|
}
|
||
|
out:
|
||
|
return r;
|
||
|
}
|
||
|
|
||
|
static struct file_operations kvm_chardev_ops = {
|
||
|
.unlocked_ioctl = kvm_dev_ioctl,
|
||
|
.compat_ioctl = kvm_dev_ioctl,
|
||
|
.llseek = noop_llseek,
|
||
|
};
|
||
|
|
||
|
static struct miscdevice kvm_dev = {
|
||
|
KVM_MINOR,
|
||
|
"kvm",
|
||
|
&kvm_chardev_ops,
|
||
|
};
|
||
|
|
||
|
static void hardware_enable_nolock(void *junk)
|
||
|
{
|
||
|
int cpu = raw_smp_processor_id();
|
||
|
int r;
|
||
|
|
||
|
if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
|
||
|
return;
|
||
|
|
||
|
cpumask_set_cpu(cpu, cpus_hardware_enabled);
|
||
|
|
||
|
r = kvm_arch_hardware_enable();
|
||
|
|
||
|
if (r) {
|
||
|
cpumask_clear_cpu(cpu, cpus_hardware_enabled);
|
||
|
atomic_inc(&hardware_enable_failed);
|
||
|
printk(KERN_INFO "kvm: enabling virtualization on "
|
||
|
"CPU%d failed\n", cpu);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static void hardware_enable(void)
|
||
|
{
|
||
|
raw_spin_lock(&kvm_count_lock);
|
||
|
if (kvm_usage_count)
|
||
|
hardware_enable_nolock(NULL);
|
||
|
raw_spin_unlock(&kvm_count_lock);
|
||
|
}
|
||
|
|
||
|
static void hardware_disable_nolock(void *junk)
|
||
|
{
|
||
|
int cpu = raw_smp_processor_id();
|
||
|
|
||
|
if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
|
||
|
return;
|
||
|
cpumask_clear_cpu(cpu, cpus_hardware_enabled);
|
||
|
kvm_arch_hardware_disable();
|
||
|
}
|
||
|
|
||
|
static void hardware_disable(void)
|
||
|
{
|
||
|
raw_spin_lock(&kvm_count_lock);
|
||
|
if (kvm_usage_count)
|
||
|
hardware_disable_nolock(NULL);
|
||
|
raw_spin_unlock(&kvm_count_lock);
|
||
|
}
|
||
|
|
||
|
static void hardware_disable_all_nolock(void)
|
||
|
{
|
||
|
BUG_ON(!kvm_usage_count);
|
||
|
|
||
|
kvm_usage_count--;
|
||
|
if (!kvm_usage_count)
|
||
|
on_each_cpu(hardware_disable_nolock, NULL, 1);
|
||
|
}
|
||
|
|
||
|
static void hardware_disable_all(void)
|
||
|
{
|
||
|
raw_spin_lock(&kvm_count_lock);
|
||
|
hardware_disable_all_nolock();
|
||
|
raw_spin_unlock(&kvm_count_lock);
|
||
|
}
|
||
|
|
||
|
static int hardware_enable_all(void)
|
||
|
{
|
||
|
int r = 0;
|
||
|
|
||
|
raw_spin_lock(&kvm_count_lock);
|
||
|
|
||
|
kvm_usage_count++;
|
||
|
if (kvm_usage_count == 1) {
|
||
|
atomic_set(&hardware_enable_failed, 0);
|
||
|
on_each_cpu(hardware_enable_nolock, NULL, 1);
|
||
|
|
||
|
if (atomic_read(&hardware_enable_failed)) {
|
||
|
hardware_disable_all_nolock();
|
||
|
r = -EBUSY;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
raw_spin_unlock(&kvm_count_lock);
|
||
|
|
||
|
return r;
|
||
|
}
|
||
|
|
||
|
static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
|
||
|
void *v)
|
||
|
{
|
||
|
int cpu = (long)v;
|
||
|
|
||
|
val &= ~CPU_TASKS_FROZEN;
|
||
|
switch (val) {
|
||
|
case CPU_DYING:
|
||
|
printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
|
||
|
cpu);
|
||
|
hardware_disable();
|
||
|
break;
|
||
|
case CPU_STARTING:
|
||
|
printk(KERN_INFO "kvm: enabling virtualization on CPU%d\n",
|
||
|
cpu);
|
||
|
hardware_enable();
|
||
|
break;
|
||
|
}
|
||
|
return NOTIFY_OK;
|
||
|
}
|
||
|
|
||
|
static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
|
||
|
void *v)
|
||
|
{
|
||
|
/*
|
||
|
* Some (well, at least mine) BIOSes hang on reboot if
|
||
|
* in vmx root mode.
|
||
|
*
|
||
|
* And Intel TXT required VMX off for all cpu when system shutdown.
|
||
|
*/
|
||
|
printk(KERN_INFO "kvm: exiting hardware virtualization\n");
|
||
|
kvm_rebooting = true;
|
||
|
on_each_cpu(hardware_disable_nolock, NULL, 1);
|
||
|
return NOTIFY_OK;
|
||
|
}
|
||
|
|
||
|
static struct notifier_block kvm_reboot_notifier = {
|
||
|
.notifier_call = kvm_reboot,
|
||
|
.priority = 0,
|
||
|
};
|
||
|
|
||
|
static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
|
||
|
{
|
||
|
int i;
|
||
|
|
||
|
for (i = 0; i < bus->dev_count; i++) {
|
||
|
struct kvm_io_device *pos = bus->range[i].dev;
|
||
|
|
||
|
kvm_iodevice_destructor(pos);
|
||
|
}
|
||
|
kfree(bus);
|
||
|
}
|
||
|
|
||
|
static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
|
||
|
const struct kvm_io_range *r2)
|
||
|
{
|
||
|
if (r1->addr < r2->addr)
|
||
|
return -1;
|
||
|
if (r1->addr + r1->len > r2->addr + r2->len)
|
||
|
return 1;
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
|
||
|
{
|
||
|
return kvm_io_bus_cmp(p1, p2);
|
||
|
}
|
||
|
|
||
|
static int kvm_io_bus_insert_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev,
|
||
|
gpa_t addr, int len)
|
||
|
{
|
||
|
bus->range[bus->dev_count++] = (struct kvm_io_range) {
|
||
|
.addr = addr,
|
||
|
.len = len,
|
||
|
.dev = dev,
|
||
|
};
|
||
|
|
||
|
sort(bus->range, bus->dev_count, sizeof(struct kvm_io_range),
|
||
|
kvm_io_bus_sort_cmp, NULL);
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
|
||
|
gpa_t addr, int len)
|
||
|
{
|
||
|
struct kvm_io_range *range, key;
|
||
|
int off;
|
||
|
|
||
|
key = (struct kvm_io_range) {
|
||
|
.addr = addr,
|
||
|
.len = len,
|
||
|
};
|
||
|
|
||
|
range = bsearch(&key, bus->range, bus->dev_count,
|
||
|
sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
|
||
|
if (range == NULL)
|
||
|
return -ENOENT;
|
||
|
|
||
|
off = range - bus->range;
|
||
|
|
||
|
while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
|
||
|
off--;
|
||
|
|
||
|
return off;
|
||
|
}
|
||
|
|
||
|
static int __kvm_io_bus_write(struct kvm_io_bus *bus,
|
||
|
struct kvm_io_range *range, const void *val)
|
||
|
{
|
||
|
int idx;
|
||
|
|
||
|
idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
|
||
|
if (idx < 0)
|
||
|
return -EOPNOTSUPP;
|
||
|
|
||
|
while (idx < bus->dev_count &&
|
||
|
kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
|
||
|
if (!kvm_iodevice_write(bus->range[idx].dev, range->addr,
|
||
|
range->len, val))
|
||
|
return idx;
|
||
|
idx++;
|
||
|
}
|
||
|
|
||
|
return -EOPNOTSUPP;
|
||
|
}
|
||
|
|
||
|
/* kvm_io_bus_write - called under kvm->slots_lock */
|
||
|
int kvm_io_bus_write(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
|
||
|
int len, const void *val)
|
||
|
{
|
||
|
struct kvm_io_bus *bus;
|
||
|
struct kvm_io_range range;
|
||
|
int r;
|
||
|
|
||
|
range = (struct kvm_io_range) {
|
||
|
.addr = addr,
|
||
|
.len = len,
|
||
|
};
|
||
|
|
||
|
bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
|
||
|
r = __kvm_io_bus_write(bus, &range, val);
|
||
|
return r < 0 ? r : 0;
|
||
|
}
|
||
|
|
||
|
/* kvm_io_bus_write_cookie - called under kvm->slots_lock */
|
||
|
int kvm_io_bus_write_cookie(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
|
||
|
int len, const void *val, long cookie)
|
||
|
{
|
||
|
struct kvm_io_bus *bus;
|
||
|
struct kvm_io_range range;
|
||
|
|
||
|
range = (struct kvm_io_range) {
|
||
|
.addr = addr,
|
||
|
.len = len,
|
||
|
};
|
||
|
|
||
|
bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
|
||
|
|
||
|
/* First try the device referenced by cookie. */
|
||
|
if ((cookie >= 0) && (cookie < bus->dev_count) &&
|
||
|
(kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
|
||
|
if (!kvm_iodevice_write(bus->range[cookie].dev, addr, len,
|
||
|
val))
|
||
|
return cookie;
|
||
|
|
||
|
/*
|
||
|
* cookie contained garbage; fall back to search and return the
|
||
|
* correct cookie value.
|
||
|
*/
|
||
|
return __kvm_io_bus_write(bus, &range, val);
|
||
|
}
|
||
|
|
||
|
static int __kvm_io_bus_read(struct kvm_io_bus *bus, struct kvm_io_range *range,
|
||
|
void *val)
|
||
|
{
|
||
|
int idx;
|
||
|
|
||
|
idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
|
||
|
if (idx < 0)
|
||
|
return -EOPNOTSUPP;
|
||
|
|
||
|
while (idx < bus->dev_count &&
|
||
|
kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
|
||
|
if (!kvm_iodevice_read(bus->range[idx].dev, range->addr,
|
||
|
range->len, val))
|
||
|
return idx;
|
||
|
idx++;
|
||
|
}
|
||
|
|
||
|
return -EOPNOTSUPP;
|
||
|
}
|
||
|
EXPORT_SYMBOL_GPL(kvm_io_bus_write);
|
||
|
|
||
|
/* kvm_io_bus_read - called under kvm->slots_lock */
|
||
|
int kvm_io_bus_read(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
|
||
|
int len, void *val)
|
||
|
{
|
||
|
struct kvm_io_bus *bus;
|
||
|
struct kvm_io_range range;
|
||
|
int r;
|
||
|
|
||
|
range = (struct kvm_io_range) {
|
||
|
.addr = addr,
|
||
|
.len = len,
|
||
|
};
|
||
|
|
||
|
bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
|
||
|
r = __kvm_io_bus_read(bus, &range, val);
|
||
|
return r < 0 ? r : 0;
|
||
|
}
|
||
|
|
||
|
|
||
|
/* Caller must hold slots_lock. */
|
||
|
int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
|
||
|
int len, struct kvm_io_device *dev)
|
||
|
{
|
||
|
struct kvm_io_bus *new_bus, *bus;
|
||
|
|
||
|
bus = kvm->buses[bus_idx];
|
||
|
/* exclude ioeventfd which is limited by maximum fd */
|
||
|
if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
|
||
|
return -ENOSPC;
|
||
|
|
||
|
new_bus = kzalloc(sizeof(*bus) + ((bus->dev_count + 1) *
|
||
|
sizeof(struct kvm_io_range)), GFP_KERNEL);
|
||
|
if (!new_bus)
|
||
|
return -ENOMEM;
|
||
|
memcpy(new_bus, bus, sizeof(*bus) + (bus->dev_count *
|
||
|
sizeof(struct kvm_io_range)));
|
||
|
kvm_io_bus_insert_dev(new_bus, dev, addr, len);
|
||
|
rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
|
||
|
synchronize_srcu_expedited(&kvm->srcu);
|
||
|
kfree(bus);
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/* Caller must hold slots_lock. */
|
||
|
int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
|
||
|
struct kvm_io_device *dev)
|
||
|
{
|
||
|
int i, r;
|
||
|
struct kvm_io_bus *new_bus, *bus;
|
||
|
|
||
|
bus = kvm->buses[bus_idx];
|
||
|
r = -ENOENT;
|
||
|
for (i = 0; i < bus->dev_count; i++)
|
||
|
if (bus->range[i].dev == dev) {
|
||
|
r = 0;
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
if (r)
|
||
|
return r;
|
||
|
|
||
|
new_bus = kzalloc(sizeof(*bus) + ((bus->dev_count - 1) *
|
||
|
sizeof(struct kvm_io_range)), GFP_KERNEL);
|
||
|
if (!new_bus)
|
||
|
return -ENOMEM;
|
||
|
|
||
|
memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
|
||
|
new_bus->dev_count--;
|
||
|
memcpy(new_bus->range + i, bus->range + i + 1,
|
||
|
(new_bus->dev_count - i) * sizeof(struct kvm_io_range));
|
||
|
|
||
|
rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
|
||
|
synchronize_srcu_expedited(&kvm->srcu);
|
||
|
kfree(bus);
|
||
|
return r;
|
||
|
}
|
||
|
|
||
|
static struct notifier_block kvm_cpu_notifier = {
|
||
|
.notifier_call = kvm_cpu_hotplug,
|
||
|
};
|
||
|
|
||
|
static int vm_stat_get(void *_offset, u64 *val)
|
||
|
{
|
||
|
unsigned offset = (long)_offset;
|
||
|
struct kvm *kvm;
|
||
|
|
||
|
*val = 0;
|
||
|
spin_lock(&kvm_lock);
|
||
|
list_for_each_entry(kvm, &vm_list, vm_list)
|
||
|
*val += *(u32 *)((void *)kvm + offset);
|
||
|
spin_unlock(&kvm_lock);
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, NULL, "%llu\n");
|
||
|
|
||
|
static int vcpu_stat_get(void *_offset, u64 *val)
|
||
|
{
|
||
|
unsigned offset = (long)_offset;
|
||
|
struct kvm *kvm;
|
||
|
struct kvm_vcpu *vcpu;
|
||
|
int i;
|
||
|
|
||
|
*val = 0;
|
||
|
spin_lock(&kvm_lock);
|
||
|
list_for_each_entry(kvm, &vm_list, vm_list)
|
||
|
kvm_for_each_vcpu(i, vcpu, kvm)
|
||
|
*val += *(u32 *)((void *)vcpu + offset);
|
||
|
|
||
|
spin_unlock(&kvm_lock);
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, NULL, "%llu\n");
|
||
|
|
||
|
static const struct file_operations *stat_fops[] = {
|
||
|
[KVM_STAT_VCPU] = &vcpu_stat_fops,
|
||
|
[KVM_STAT_VM] = &vm_stat_fops,
|
||
|
};
|
||
|
|
||
|
static int kvm_init_debug(void)
|
||
|
{
|
||
|
int r = -EEXIST;
|
||
|
struct kvm_stats_debugfs_item *p;
|
||
|
|
||
|
kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
|
||
|
if (kvm_debugfs_dir == NULL)
|
||
|
goto out;
|
||
|
|
||
|
for (p = debugfs_entries; p->name; ++p) {
|
||
|
p->dentry = debugfs_create_file(p->name, 0444, kvm_debugfs_dir,
|
||
|
(void *)(long)p->offset,
|
||
|
stat_fops[p->kind]);
|
||
|
if (p->dentry == NULL)
|
||
|
goto out_dir;
|
||
|
}
|
||
|
|
||
|
return 0;
|
||
|
|
||
|
out_dir:
|
||
|
debugfs_remove_recursive(kvm_debugfs_dir);
|
||
|
out:
|
||
|
return r;
|
||
|
}
|
||
|
|
||
|
static void kvm_exit_debug(void)
|
||
|
{
|
||
|
struct kvm_stats_debugfs_item *p;
|
||
|
|
||
|
for (p = debugfs_entries; p->name; ++p)
|
||
|
debugfs_remove(p->dentry);
|
||
|
debugfs_remove(kvm_debugfs_dir);
|
||
|
}
|
||
|
|
||
|
static int kvm_suspend(void)
|
||
|
{
|
||
|
if (kvm_usage_count)
|
||
|
hardware_disable_nolock(NULL);
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static void kvm_resume(void)
|
||
|
{
|
||
|
if (kvm_usage_count) {
|
||
|
WARN_ON(raw_spin_is_locked(&kvm_count_lock));
|
||
|
hardware_enable_nolock(NULL);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static struct syscore_ops kvm_syscore_ops = {
|
||
|
.suspend = kvm_suspend,
|
||
|
.resume = kvm_resume,
|
||
|
};
|
||
|
|
||
|
static inline
|
||
|
struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
|
||
|
{
|
||
|
return container_of(pn, struct kvm_vcpu, preempt_notifier);
|
||
|
}
|
||
|
|
||
|
static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
|
||
|
{
|
||
|
struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
|
||
|
if (vcpu->preempted)
|
||
|
vcpu->preempted = false;
|
||
|
|
||
|
kvm_arch_sched_in(vcpu, cpu);
|
||
|
|
||
|
kvm_arch_vcpu_load(vcpu, cpu);
|
||
|
}
|
||
|
|
||
|
static void kvm_sched_out(struct preempt_notifier *pn,
|
||
|
struct task_struct *next)
|
||
|
{
|
||
|
struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
|
||
|
|
||
|
if (current->state == TASK_RUNNING)
|
||
|
vcpu->preempted = true;
|
||
|
kvm_arch_vcpu_put(vcpu);
|
||
|
}
|
||
|
|
||
|
int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
|
||
|
struct module *module)
|
||
|
{
|
||
|
int r;
|
||
|
int cpu;
|
||
|
|
||
|
r = kvm_arch_init(opaque);
|
||
|
if (r)
|
||
|
goto out_fail;
|
||
|
|
||
|
/*
|
||
|
* kvm_arch_init makes sure there's at most one caller
|
||
|
* for architectures that support multiple implementations,
|
||
|
* like intel and amd on x86.
|
||
|
* kvm_arch_init must be called before kvm_irqfd_init to avoid creating
|
||
|
* conflicts in case kvm is already setup for another implementation.
|
||
|
*/
|
||
|
r = kvm_irqfd_init();
|
||
|
if (r)
|
||
|
goto out_irqfd;
|
||
|
|
||
|
if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
|
||
|
r = -ENOMEM;
|
||
|
goto out_free_0;
|
||
|
}
|
||
|
|
||
|
r = kvm_arch_hardware_setup();
|
||
|
if (r < 0)
|
||
|
goto out_free_0a;
|
||
|
|
||
|
for_each_online_cpu(cpu) {
|
||
|
smp_call_function_single(cpu,
|
||
|
kvm_arch_check_processor_compat,
|
||
|
&r, 1);
|
||
|
if (r < 0)
|
||
|
goto out_free_1;
|
||
|
}
|
||
|
|
||
|
r = register_cpu_notifier(&kvm_cpu_notifier);
|
||
|
if (r)
|
||
|
goto out_free_2;
|
||
|
register_reboot_notifier(&kvm_reboot_notifier);
|
||
|
|
||
|
/* A kmem cache lets us meet the alignment requirements of fx_save. */
|
||
|
if (!vcpu_align)
|
||
|
vcpu_align = __alignof__(struct kvm_vcpu);
|
||
|
kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size, vcpu_align,
|
||
|
0, NULL);
|
||
|
if (!kvm_vcpu_cache) {
|
||
|
r = -ENOMEM;
|
||
|
goto out_free_3;
|
||
|
}
|
||
|
|
||
|
r = kvm_async_pf_init();
|
||
|
if (r)
|
||
|
goto out_free;
|
||
|
|
||
|
kvm_chardev_ops.owner = module;
|
||
|
kvm_vm_fops.owner = module;
|
||
|
kvm_vcpu_fops.owner = module;
|
||
|
|
||
|
r = misc_register(&kvm_dev);
|
||
|
if (r) {
|
||
|
printk(KERN_ERR "kvm: misc device register failed\n");
|
||
|
goto out_unreg;
|
||
|
}
|
||
|
|
||
|
register_syscore_ops(&kvm_syscore_ops);
|
||
|
|
||
|
kvm_preempt_ops.sched_in = kvm_sched_in;
|
||
|
kvm_preempt_ops.sched_out = kvm_sched_out;
|
||
|
|
||
|
r = kvm_init_debug();
|
||
|
if (r) {
|
||
|
printk(KERN_ERR "kvm: create debugfs files failed\n");
|
||
|
goto out_undebugfs;
|
||
|
}
|
||
|
|
||
|
r = kvm_vfio_ops_init();
|
||
|
WARN_ON(r);
|
||
|
|
||
|
return 0;
|
||
|
|
||
|
out_undebugfs:
|
||
|
unregister_syscore_ops(&kvm_syscore_ops);
|
||
|
misc_deregister(&kvm_dev);
|
||
|
out_unreg:
|
||
|
kvm_async_pf_deinit();
|
||
|
out_free:
|
||
|
kmem_cache_destroy(kvm_vcpu_cache);
|
||
|
out_free_3:
|
||
|
unregister_reboot_notifier(&kvm_reboot_notifier);
|
||
|
unregister_cpu_notifier(&kvm_cpu_notifier);
|
||
|
out_free_2:
|
||
|
out_free_1:
|
||
|
kvm_arch_hardware_unsetup();
|
||
|
out_free_0a:
|
||
|
free_cpumask_var(cpus_hardware_enabled);
|
||
|
out_free_0:
|
||
|
kvm_irqfd_exit();
|
||
|
out_irqfd:
|
||
|
kvm_arch_exit();
|
||
|
out_fail:
|
||
|
return r;
|
||
|
}
|
||
|
EXPORT_SYMBOL_GPL(kvm_init);
|
||
|
|
||
|
void kvm_exit(void)
|
||
|
{
|
||
|
kvm_exit_debug();
|
||
|
misc_deregister(&kvm_dev);
|
||
|
kmem_cache_destroy(kvm_vcpu_cache);
|
||
|
kvm_async_pf_deinit();
|
||
|
unregister_syscore_ops(&kvm_syscore_ops);
|
||
|
unregister_reboot_notifier(&kvm_reboot_notifier);
|
||
|
unregister_cpu_notifier(&kvm_cpu_notifier);
|
||
|
on_each_cpu(hardware_disable_nolock, NULL, 1);
|
||
|
kvm_arch_hardware_unsetup();
|
||
|
kvm_arch_exit();
|
||
|
kvm_irqfd_exit();
|
||
|
free_cpumask_var(cpus_hardware_enabled);
|
||
|
kvm_vfio_ops_exit();
|
||
|
}
|
||
|
EXPORT_SYMBOL_GPL(kvm_exit);
|