/* Copyright (c) 2012-2016, The Linux Foundation. All rights reserved. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 and * only version 2 as published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. */ #define pr_fmt(fmt) "%s: " fmt, __func__ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* 16 slave_ids, 256 per_ids per slave, and 8 ints per per_id */ #define QPNPINT_NR_IRQS (16 * 256 * 8) /* This value is guaranteed not to be valid for private data */ #define QPNPINT_INVALID_DATA 0x80000000 enum qpnpint_regs { QPNPINT_REG_RT_STS = 0x10, QPNPINT_REG_SET_TYPE = 0x11, QPNPINT_REG_POLARITY_HIGH = 0x12, QPNPINT_REG_POLARITY_LOW = 0x13, QPNPINT_REG_LATCHED_CLR = 0x14, QPNPINT_REG_EN_SET = 0x15, QPNPINT_REG_EN_CLR = 0x16, QPNPINT_REG_LATCHED_STS = 0x18, }; struct q_perip_data { uint8_t type; /* bitmap */ uint8_t pol_high; /* bitmap */ uint8_t pol_low; /* bitmap */ uint8_t int_en; /* bitmap */ uint8_t use_count; spinlock_t lock; }; struct q_irq_data { uint32_t priv_d; /* data to optimize arbiter interactions */ struct q_chip_data *chip_d; struct q_perip_data *per_d; uint8_t mask_shift; uint8_t spmi_slave; uint16_t spmi_offset; }; struct q_chip_data { int bus_nr; struct irq_domain *domain; struct qpnp_local_int *cb; struct spmi_controller *spmi_ctrl; struct radix_tree_root per_tree; struct list_head list; }; static LIST_HEAD(qpnpint_chips); static DEFINE_MUTEX(qpnpint_chips_mutex); #define QPNPINT_MAX_BUSSES 4 struct q_chip_data *chip_lookup[QPNPINT_MAX_BUSSES]; /** * qpnpint_encode_hwirq - translate between qpnp_irq_spec and * hwirq representation. * * slave_offset = (addr->slave * 256 * 8); * perip_offset = slave_offset + (addr->perip * 8); * return perip_offset + addr->irq; */ static inline int qpnpint_encode_hwirq(struct qpnp_irq_spec *spec) { uint32_t hwirq; if (spec->slave > 15 || spec->irq > 7) return -EINVAL; hwirq = (spec->slave << 11); hwirq |= (spec->per << 3); hwirq |= spec->irq; return hwirq; } /** * qpnpint_decode_hwirq - translate between hwirq and * qpnp_irq_spec representation. */ static inline int qpnpint_decode_hwirq(unsigned long hwirq, struct qpnp_irq_spec *spec) { if (hwirq > 65535) return -EINVAL; spec->slave = (hwirq >> 11) & 0xF; spec->per = (hwirq >> 3) & 0xFF; spec->irq = hwirq & 0x7; return 0; } static int qpnpint_spmi_read(struct q_irq_data *irq_d, uint8_t reg, void *buf, uint32_t len) { struct q_chip_data *chip_d = irq_d->chip_d; if (!chip_d->spmi_ctrl) return -ENODEV; return spmi_ext_register_readl(chip_d->spmi_ctrl, irq_d->spmi_slave, irq_d->spmi_offset + reg, buf, len); } static int qpnpint_spmi_write(struct q_irq_data *irq_d, uint8_t reg, void *buf, uint32_t len) { struct q_chip_data *chip_d = irq_d->chip_d; int rc; if (!chip_d->spmi_ctrl) return -ENODEV; rc = spmi_ext_register_writel(chip_d->spmi_ctrl, irq_d->spmi_slave, irq_d->spmi_offset + reg, buf, len); return rc; } static int qpnpint_arbiter_op(struct irq_data *d, struct q_irq_data *irq_d, int (*arb_op)(struct spmi_controller *, struct qpnp_irq_spec *, uint32_t)) { struct q_chip_data *chip_d = irq_d->chip_d; struct qpnp_irq_spec q_spec; int rc; if (!arb_op) return 0; if (!chip_d->cb->register_priv_data) { pr_warn_ratelimited("No ability to register arbiter registration data\n"); return -ENODEV; } rc = qpnpint_decode_hwirq(d->hwirq, &q_spec); if (rc) { pr_err_ratelimited("%s: decode failed on hwirq %lu\n", __func__, d->hwirq); return rc; } if (irq_d->priv_d == QPNPINT_INVALID_DATA) { rc = chip_d->cb->register_priv_data(chip_d->spmi_ctrl, &q_spec, &irq_d->priv_d); if (rc) { pr_err_ratelimited( "%s: decode failed on hwirq %lu rc = %d\n", __func__, d->hwirq, rc); return rc; } } arb_op(chip_d->spmi_ctrl, &q_spec, irq_d->priv_d); return 0; } static void qpnpint_irq_ack(struct irq_data *d) { struct q_irq_data *irq_d = irq_data_get_irq_chip_data(d); int rc; pr_debug("hwirq %lu irq: %d\n", d->hwirq, d->irq); rc = qpnpint_spmi_write(irq_d, QPNPINT_REG_LATCHED_CLR, &irq_d->mask_shift, 1); if (rc) { pr_err_ratelimited("spmi write failure on irq %d, rc=%d\n", d->irq, rc); return; } } static void qpnpint_irq_mask(struct irq_data *d) { struct q_irq_data *irq_d = irq_data_get_irq_chip_data(d); struct q_chip_data *chip_d = irq_d->chip_d; struct q_perip_data *per_d = irq_d->per_d; int rc; uint8_t prev_int_en; pr_debug("hwirq %lu irq: %d\n", d->hwirq, d->irq); if (!chip_d->cb) { pr_warn_ratelimited("No arbiter on bus=%u slave=%u offset=%u\n", chip_d->bus_nr, irq_d->spmi_slave, irq_d->spmi_offset); return; } spin_lock(&per_d->lock); prev_int_en = per_d->int_en; per_d->int_en &= ~irq_d->mask_shift; if (prev_int_en && !(per_d->int_en)) { /* * no interrupt on this peripheral is enabled * ask the arbiter to ignore this peripheral */ qpnpint_arbiter_op(d, irq_d, chip_d->cb->mask); } spin_unlock(&per_d->lock); rc = qpnpint_spmi_write(irq_d, QPNPINT_REG_EN_CLR, (u8 *)&irq_d->mask_shift, 1); if (rc) { pr_err_ratelimited("spmi failure on irq %d\n", d->irq); return; } pr_debug("done hwirq %lu irq: %d\n", d->hwirq, d->irq); } static void qpnpint_irq_mask_ack(struct irq_data *d) { pr_debug("hwirq %lu irq: %d\n", d->hwirq, d->irq); qpnpint_irq_mask(d); qpnpint_irq_ack(d); } static void qpnpint_irq_unmask(struct irq_data *d) { struct q_irq_data *irq_d = irq_data_get_irq_chip_data(d); struct q_chip_data *chip_d = irq_d->chip_d; struct q_perip_data *per_d = irq_d->per_d; int rc; uint8_t buf[2]; uint8_t prev_int_en; pr_debug("hwirq %lu irq: %d\n", d->hwirq, d->irq); if (!chip_d->cb) { pr_warn_ratelimited("No arbiter on bus=%u slave=%u offset=%u\n", chip_d->bus_nr, irq_d->spmi_slave, irq_d->spmi_offset); return; } spin_lock(&per_d->lock); prev_int_en = per_d->int_en; per_d->int_en |= irq_d->mask_shift; if (!prev_int_en && per_d->int_en) { /* * no interrupt prior to this call was enabled for the * peripheral. Ask the arbiter to enable interrupts for * this peripheral */ qpnpint_arbiter_op(d, irq_d, chip_d->cb->unmask); } spin_unlock(&per_d->lock); /* Check the current state of the interrupt enable bit. */ rc = qpnpint_spmi_read(irq_d, QPNPINT_REG_EN_SET, buf, 1); if (rc) { pr_err("SPMI read failure for IRQ %d, rc=%d\n", d->irq, rc); return; } if (!(buf[0] & irq_d->mask_shift)) { /* * Since the interrupt is currently disabled, write to both the * LATCHED_CLR and EN_SET registers so that a spurious interrupt * cannot be triggered when the interrupt is enabled. */ buf[0] = irq_d->mask_shift; buf[1] = irq_d->mask_shift; rc = qpnpint_spmi_write(irq_d, QPNPINT_REG_LATCHED_CLR, buf, 2); if (rc) { pr_err("SPMI write failure for IRQ %d, rc=%d\n", d->irq, rc); return; } } } static int qpnpint_irq_set_type(struct irq_data *d, unsigned int flow_type) { struct q_irq_data *irq_d = irq_data_get_irq_chip_data(d); struct q_perip_data *per_d = irq_d->per_d; int rc; u8 buf[3]; pr_debug("hwirq %lu irq: %d flow: 0x%x\n", d->hwirq, d->irq, flow_type); per_d->pol_high &= ~irq_d->mask_shift; per_d->pol_low &= ~irq_d->mask_shift; if (flow_type & (IRQF_TRIGGER_RISING | IRQF_TRIGGER_FALLING)) { per_d->type |= irq_d->mask_shift; /* edge trig */ if (flow_type & IRQF_TRIGGER_RISING) per_d->pol_high |= irq_d->mask_shift; if (flow_type & IRQF_TRIGGER_FALLING) per_d->pol_low |= irq_d->mask_shift; } else { if ((flow_type & IRQF_TRIGGER_HIGH) && (flow_type & IRQF_TRIGGER_LOW)) return -EINVAL; per_d->type &= ~irq_d->mask_shift; /* level trig */ if (flow_type & IRQF_TRIGGER_HIGH) per_d->pol_high |= irq_d->mask_shift; else per_d->pol_low |= irq_d->mask_shift; } buf[0] = per_d->type; buf[1] = per_d->pol_high; buf[2] = per_d->pol_low; rc = qpnpint_spmi_write(irq_d, QPNPINT_REG_SET_TYPE, &buf, 3); if (rc) { pr_err("spmi failure on irq %d\n", d->irq); return rc; } if (flow_type & IRQ_TYPE_EDGE_BOTH) __irq_set_handler_locked(d->irq, handle_edge_irq); else __irq_set_handler_locked(d->irq, handle_level_irq); return 0; } static int qpnpint_irq_read_line(struct irq_data *d) { struct q_irq_data *irq_d = irq_data_get_irq_chip_data(d); int rc; u8 buf; pr_debug("hwirq %lu irq: %d\n", d->hwirq, d->irq); rc = qpnpint_spmi_read(irq_d, QPNPINT_REG_RT_STS, &buf, 1); if (rc) { pr_err("spmi failure on irq %d\n", d->irq); return rc; } return (buf & irq_d->mask_shift) ? 1 : 0; } static int qpnpint_irq_set_wake(struct irq_data *d, unsigned int on) { return 0; } static struct irq_chip qpnpint_chip = { .name = "qpnp-int", .irq_ack = qpnpint_irq_ack, .irq_mask = qpnpint_irq_mask, .irq_mask_ack = qpnpint_irq_mask_ack, .irq_unmask = qpnpint_irq_unmask, .irq_set_type = qpnpint_irq_set_type, .irq_read_line = qpnpint_irq_read_line, .irq_set_wake = qpnpint_irq_set_wake, .flags = IRQCHIP_MASK_ON_SUSPEND, }; static int qpnpint_init_irq_data(struct q_chip_data *chip_d, struct q_irq_data *irq_d, unsigned long hwirq) { struct qpnp_irq_spec q_spec; int rc; irq_d->mask_shift = 1 << (hwirq & 0x7); rc = qpnpint_decode_hwirq(hwirq, &q_spec); if (rc < 0) return rc; irq_d->spmi_slave = q_spec.slave; irq_d->spmi_offset = q_spec.per << 8; irq_d->chip_d = chip_d; irq_d->priv_d = QPNPINT_INVALID_DATA; if (chip_d->cb && chip_d->cb->register_priv_data) { rc = chip_d->cb->register_priv_data(chip_d->spmi_ctrl, &q_spec, &irq_d->priv_d); if (rc) return rc; } irq_d->per_d->use_count++; return 0; } static struct q_irq_data *qpnpint_alloc_irq_data( struct q_chip_data *chip_d, unsigned long hwirq) { struct q_irq_data *irq_d; struct q_perip_data *per_d; int rc; irq_d = kzalloc(sizeof(struct q_irq_data), GFP_KERNEL); if (!irq_d) return ERR_PTR(-ENOMEM); /** * The Peripheral Tree is keyed from the slave + per_id. We're * ignoring the irq bits here since this peripheral structure * should be common for all irqs on the same peripheral. */ per_d = radix_tree_lookup(&chip_d->per_tree, (hwirq & ~0x7)); if (!per_d) { per_d = kzalloc(sizeof(struct q_perip_data), GFP_KERNEL); if (!per_d) { rc = -ENOMEM; goto alloc_fail; } spin_lock_init(&per_d->lock); rc = radix_tree_preload(GFP_KERNEL); if (rc) goto alloc_fail; rc = radix_tree_insert(&chip_d->per_tree, (hwirq & ~0x7), per_d); if (rc) goto alloc_fail; radix_tree_preload_end(); } irq_d->per_d = per_d; return irq_d; alloc_fail: kfree(per_d); kfree(irq_d); return ERR_PTR(rc); } static int qpnpint_irq_domain_dt_translate(struct irq_domain *d, struct device_node *controller, const u32 *intspec, unsigned int intsize, unsigned long *out_hwirq, unsigned int *out_type) { struct qpnp_irq_spec addr; int ret; pr_debug("intspec[0] 0x%x intspec[1] 0x%x intspec[2] 0x%x\n", intspec[0], intspec[1], intspec[2]); if (d->of_node != controller) return -EINVAL; if (intsize != 3) return -EINVAL; addr.irq = intspec[2] & 0x7; addr.per = intspec[1] & 0xFF; addr.slave = intspec[0] & 0xF; ret = qpnpint_encode_hwirq(&addr); if (ret < 0) { pr_err("invalid intspec\n"); return ret; } *out_hwirq = ret; *out_type = IRQ_TYPE_NONE; pr_debug("out_hwirq = %lu\n", *out_hwirq); return 0; } static void qpnpint_free_irq_data(struct q_irq_data *irq_d) { if (irq_d->per_d->use_count == 1) kfree(irq_d->per_d); else irq_d->per_d->use_count--; kfree(irq_d); } static int qpnpint_irq_domain_map(struct irq_domain *d, unsigned int virq, irq_hw_number_t hwirq) { struct q_chip_data *chip_d = d->host_data; struct q_irq_data *irq_d; int rc; pr_debug("hwirq = %lu\n", hwirq); if (hwirq < 0 || hwirq >= QPNPINT_NR_IRQS) { pr_err("hwirq %lu out of bounds\n", hwirq); return -EINVAL; } irq_d = qpnpint_alloc_irq_data(chip_d, hwirq); if (IS_ERR(irq_d)) { pr_err("failed to alloc irq data for hwirq %lu\n", hwirq); return PTR_ERR(irq_d); } rc = qpnpint_init_irq_data(chip_d, irq_d, hwirq); if (rc) { pr_err("failed to init irq data for hwirq %lu\n", hwirq); goto map_err; } irq_set_chip_and_handler(virq, &qpnpint_chip, handle_level_irq); irq_set_chip_data(virq, irq_d); #ifdef CONFIG_ARM set_irq_flags(virq, IRQF_VALID); #else irq_set_noprobe(virq); #endif return 0; map_err: qpnpint_free_irq_data(irq_d); return rc; } void qpnpint_irq_domain_unmap(struct irq_domain *d, unsigned int virq) { struct q_irq_data *irq_d = irq_get_chip_data(virq); if (WARN_ON(!irq_d)) return; qpnpint_free_irq_data(irq_d); } const struct irq_domain_ops qpnpint_irq_domain_ops = { .map = qpnpint_irq_domain_map, .unmap = qpnpint_irq_domain_unmap, .xlate = qpnpint_irq_domain_dt_translate, }; int qpnpint_register_controller(struct device_node *node, struct spmi_controller *ctrl, struct qpnp_local_int *li_cb) { struct q_chip_data *chip_d; if (!node || !ctrl || ctrl->nr >= QPNPINT_MAX_BUSSES) return -EINVAL; list_for_each_entry(chip_d, &qpnpint_chips, list) if (node == chip_d->domain->of_node) { chip_d->cb = kmemdup(li_cb, sizeof(*li_cb), GFP_ATOMIC); if (!chip_d->cb) return -ENOMEM; chip_d->spmi_ctrl = ctrl; chip_lookup[ctrl->nr] = chip_d; return 0; } return -ENOENT; } EXPORT_SYMBOL(qpnpint_register_controller); int qpnpint_unregister_controller(struct device_node *node) { struct q_chip_data *chip_d; if (!node) return -EINVAL; list_for_each_entry(chip_d, &qpnpint_chips, list) if (node == chip_d->domain->of_node) { kfree(chip_d->cb); chip_d->cb = NULL; if (chip_d->spmi_ctrl) chip_lookup[chip_d->spmi_ctrl->nr] = NULL; chip_d->spmi_ctrl = NULL; return 0; } return -ENOENT; } EXPORT_SYMBOL(qpnpint_unregister_controller); static int __qpnpint_handle_irq(struct spmi_controller *spmi_ctrl, struct qpnp_irq_spec *spec, bool show) { struct irq_domain *domain; unsigned long hwirq, busno; int irq; if (!spec || !spmi_ctrl) return -EINVAL; pr_debug("spec slave = %u per = %u irq = %u\n", spec->slave, spec->per, spec->irq); busno = spmi_ctrl->nr; if (busno >= QPNPINT_MAX_BUSSES) return -EINVAL; hwirq = qpnpint_encode_hwirq(spec); if (hwirq < 0) { pr_err("invalid irq spec passed\n"); return -EINVAL; } domain = chip_lookup[busno]->domain; irq = irq_find_mapping(domain, hwirq); if (show) { struct irq_desc *desc; const char *name = "null"; desc = irq_to_desc(irq); if (desc == NULL) name = "stray irq"; else if (desc->action && desc->action->name) name = desc->action->name; pr_warn("%d triggered [0x%01x, 0x%02x,0x%01x] %s\n", irq, spec->slave, spec->per, spec->irq, name); } else { generic_handle_irq(irq); } return 0; } int qpnpint_handle_irq(struct spmi_controller *spmi_ctrl, struct qpnp_irq_spec *spec) { return __qpnpint_handle_irq(spmi_ctrl, spec, false); } EXPORT_SYMBOL(qpnpint_handle_irq); int qpnpint_show_irq(struct spmi_controller *spmi_ctrl, struct qpnp_irq_spec *spec) { return __qpnpint_handle_irq(spmi_ctrl, spec, true); } EXPORT_SYMBOL(qpnpint_show_irq); int __init qpnpint_of_init(struct device_node *node, struct device_node *parent) { struct q_chip_data *chip_d; chip_d = kzalloc(sizeof(struct q_chip_data), GFP_KERNEL); if (!chip_d) return -ENOMEM; chip_d->domain = irq_domain_add_tree(node, &qpnpint_irq_domain_ops, chip_d); if (!chip_d->domain) { pr_err("Unable to allocate irq_domain\n"); kfree(chip_d); return -ENOMEM; } INIT_RADIX_TREE(&chip_d->per_tree, GFP_ATOMIC); list_add(&chip_d->list, &qpnpint_chips); return 0; } EXPORT_SYMBOL(qpnpint_of_init);