/* * Synaptics RMI4 touchscreen driver * * Copyright (C) 2012 Synaptics Incorporated * * Copyright (C) 2012 Alexandra Chin * Copyright (C) 2012 Scott Lin * Copyright (c) 2013-2015, The Linux Foundation. All rights reserved. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. */ #include #include #include #include #include #include #include #include #include #include #include #include #if defined(CONFIG_SECURE_TOUCH) #include #include #endif #include "synaptics_i2c_rmi4.h" #include #define DRIVER_NAME "synaptics_rmi4_i2c" #define INPUT_PHYS_NAME "synaptics_rmi4_i2c/input0" #define DEBUGFS_DIR_NAME "ts_debug" #define RESET_DELAY 100 #define TYPE_B_PROTOCOL #define NO_0D_WHILE_2D /* #define REPORT_2D_Z */ #define REPORT_2D_W #define RPT_TYPE (1 << 0) #define RPT_X_LSB (1 << 1) #define RPT_X_MSB (1 << 2) #define RPT_Y_LSB (1 << 3) #define RPT_Y_MSB (1 << 4) #define RPT_Z (1 << 5) #define RPT_WX (1 << 6) #define RPT_WY (1 << 7) #define RPT_DEFAULT (RPT_TYPE | RPT_X_LSB | RPT_X_MSB | RPT_Y_LSB | RPT_Y_MSB) #define EXP_FN_DET_INTERVAL 1000 /* ms */ #define POLLING_PERIOD 1 /* ms */ #define SYN_I2C_RETRY_TIMES 10 #define MAX_ABS_MT_TOUCH_MAJOR 15 #define F01_STD_QUERY_LEN 21 #define F01_PACKAGE_ID_OFFSET 17 #define F01_BUID_ID_OFFSET 18 #define F11_STD_QUERY_LEN 9 #define F11_STD_CTRL_LEN 10 #define F11_STD_DATA_LEN 12 #define NORMAL_OPERATION 0 #define SENSOR_SLEEP 1 #define NO_SLEEP_OFF 0 #define NO_SLEEP_ON 1 enum device_status { STATUS_NO_ERROR = 0x00, STATUS_RESET_OCCURRED = 0x01, STATUS_INVALID_CONFIG = 0x02, STATUS_DEVICE_FAILURE = 0x03, STATUS_CONFIG_CRC_FAILURE = 0x04, STATUS_FIRMWARE_CRC_FAILURE = 0x05, STATUS_CRC_IN_PROGRESS = 0x06, STATUS_UNCONFIGURED = 0x80 }; #define DEVICE_CONFIGURED 0x1 #define RMI4_VTG_MIN_UV 2700000 #define RMI4_VTG_MAX_UV 3300000 #define RMI4_ACTIVE_LOAD_UA 15000 #define RMI4_LPM_LOAD_UA 10 #define RMI4_I2C_VTG_MIN_UV 1800000 #define RMI4_I2C_VTG_MAX_UV 1800000 #define RMI4_I2C_LOAD_UA 10000 #define RMI4_I2C_LPM_LOAD_UA 10 #define RMI4_GPIO_SLEEP_LOW_US 10000 #define F12_FINGERS_TO_SUPPORT 10 #define MAX_F11_TOUCH_WIDTH 15 #define RMI4_COORDS_ARR_SIZE 4 #define F11_MAX_X 4096 #define F11_MAX_Y 4096 #define F12_MAX_X 65536 #define F12_MAX_Y 65536 static int synaptics_rmi4_i2c_read(struct synaptics_rmi4_data *rmi4_data, unsigned short addr, unsigned char *data, unsigned short length); static int synaptics_rmi4_i2c_write(struct synaptics_rmi4_data *rmi4_data, unsigned short addr, unsigned char *data, unsigned short length); static int synaptics_rmi4_reset_device(struct synaptics_rmi4_data *rmi4_data); static void synaptics_rmi4_sensor_wake(struct synaptics_rmi4_data *rmi4_data); static void __maybe_unused synaptics_rmi4_sensor_sleep( struct synaptics_rmi4_data *rmi4_data); static int __maybe_unused synaptics_rmi4_regulator_lpm( struct synaptics_rmi4_data *rmi4_data, bool on); static void __maybe_unused synaptics_rmi4_release_all( struct synaptics_rmi4_data *rmi4_data); static int synaptics_rmi4_check_configuration(struct synaptics_rmi4_data *rmi4_data); static int synaptics_rmi4_suspend(struct device *dev); static int synaptics_rmi4_resume(struct device *dev); static ssize_t synaptics_rmi4_full_pm_cycle_show(struct device *dev, struct device_attribute *attr, char *buf); static ssize_t synaptics_rmi4_full_pm_cycle_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count); #if defined(CONFIG_FB) static int fb_notifier_callback(struct notifier_block *self, unsigned long event, void *data); #elif defined(CONFIG_HAS_EARLYSUSPEND) static void synaptics_rmi4_early_suspend(struct early_suspend *h); static void synaptics_rmi4_late_resume(struct early_suspend *h); #endif static ssize_t synaptics_rmi4_f01_reset_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count); static ssize_t synaptics_rmi4_f01_productinfo_show(struct device *dev, struct device_attribute *attr, char *buf); static ssize_t synaptics_rmi4_f01_buildid_show(struct device *dev, struct device_attribute *attr, char *buf); static ssize_t synaptics_rmi4_f01_flashprog_show(struct device *dev, struct device_attribute *attr, char *buf); static ssize_t synaptics_rmi4_0dbutton_show(struct device *dev, struct device_attribute *attr, char *buf); static ssize_t synaptics_rmi4_0dbutton_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count); static ssize_t synaptics_rmi4_flipx_show(struct device *dev, struct device_attribute *attr, char *buf); static ssize_t synaptics_rmi4_flipx_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count); static ssize_t synaptics_rmi4_flipy_show(struct device *dev, struct device_attribute *attr, char *buf); static ssize_t synaptics_rmi4_flipy_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count); static int synaptics_rmi4_capacitance_button_map( struct synaptics_rmi4_data *rmi4_data, struct synaptics_rmi4_fn *fhandler); static irqreturn_t synaptics_rmi4_irq(int irq, void *data); #if defined(CONFIG_SECURE_TOUCH) static ssize_t synaptics_secure_touch_enable_show(struct device *dev, struct device_attribute *attr, char *buf); static ssize_t synaptics_secure_touch_enable_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count); static ssize_t synaptics_secure_touch_show(struct device *dev, struct device_attribute *attr, char *buf); #endif struct synaptics_rmi4_f01_device_status { union { struct { unsigned char status_code:4; unsigned char reserved:2; unsigned char flash_prog:1; unsigned char unconfigured:1; } __packed; unsigned char data[1]; }; }; struct synaptics_rmi4_f01_device_control_0 { union { struct { unsigned char sleep_mode:2; unsigned char nosleep:1; unsigned char reserved:2; unsigned char charger_input:1; unsigned char report_rate:1; unsigned char configured:1; } __packed; unsigned char data[1]; }; }; struct synaptics_rmi4_f12_query_5 { union { struct { unsigned char size_of_query6; struct { unsigned char ctrl0_is_present:1; unsigned char ctrl1_is_present:1; unsigned char ctrl2_is_present:1; unsigned char ctrl3_is_present:1; unsigned char ctrl4_is_present:1; unsigned char ctrl5_is_present:1; unsigned char ctrl6_is_present:1; unsigned char ctrl7_is_present:1; } __packed; struct { unsigned char ctrl8_is_present:1; unsigned char ctrl9_is_present:1; unsigned char ctrl10_is_present:1; unsigned char ctrl11_is_present:1; unsigned char ctrl12_is_present:1; unsigned char ctrl13_is_present:1; unsigned char ctrl14_is_present:1; unsigned char ctrl15_is_present:1; } __packed; struct { unsigned char ctrl16_is_present:1; unsigned char ctrl17_is_present:1; unsigned char ctrl18_is_present:1; unsigned char ctrl19_is_present:1; unsigned char ctrl20_is_present:1; unsigned char ctrl21_is_present:1; unsigned char ctrl22_is_present:1; unsigned char ctrl23_is_present:1; } __packed; struct { unsigned char ctrl24_is_present:1; unsigned char ctrl25_is_present:1; unsigned char ctrl26_is_present:1; unsigned char ctrl27_is_present:1; unsigned char ctrl28_is_present:1; unsigned char ctrl29_is_present:1; unsigned char ctrl30_is_present:1; unsigned char ctrl31_is_present:1; } __packed; }; unsigned char data[5]; }; }; struct synaptics_rmi4_f12_query_8 { union { struct { unsigned char size_of_query9; struct { unsigned char data0_is_present:1; unsigned char data1_is_present:1; unsigned char data2_is_present:1; unsigned char data3_is_present:1; unsigned char data4_is_present:1; unsigned char data5_is_present:1; unsigned char data6_is_present:1; unsigned char data7_is_present:1; } __packed; struct { unsigned char data8_is_present:1; unsigned char data9_is_present:1; unsigned char data10_is_present:1; unsigned char data11_is_present:1; unsigned char data12_is_present:1; unsigned char data13_is_present:1; unsigned char data14_is_present:1; unsigned char data15_is_present:1; } __packed; }; unsigned char data[3]; }; }; struct synaptics_rmi4_f12_ctrl_8 { union { struct { unsigned char max_x_coord_lsb; unsigned char max_x_coord_msb; unsigned char max_y_coord_lsb; unsigned char max_y_coord_msb; unsigned char rx_pitch_lsb; unsigned char rx_pitch_msb; unsigned char tx_pitch_lsb; unsigned char tx_pitch_msb; unsigned char low_rx_clip; unsigned char high_rx_clip; unsigned char low_tx_clip; unsigned char high_tx_clip; unsigned char num_of_rx; unsigned char num_of_tx; }; unsigned char data[14]; }; }; struct synaptics_rmi4_f12_ctrl_23 { union { struct { unsigned char obj_type_enable; unsigned char max_reported_objects; }; unsigned char data[2]; }; }; struct synaptics_rmi4_f12_finger_data { unsigned char object_type_and_status; unsigned char x_lsb; unsigned char x_msb; unsigned char y_lsb; unsigned char y_msb; #ifdef REPORT_2D_Z unsigned char z; #endif #ifdef REPORT_2D_W unsigned char wx; unsigned char wy; #endif }; struct synaptics_rmi4_f1a_query { union { struct { unsigned char max_button_count:3; unsigned char reserved:5; unsigned char has_general_control:1; unsigned char has_interrupt_enable:1; unsigned char has_multibutton_select:1; unsigned char has_tx_rx_map:1; unsigned char has_perbutton_threshold:1; unsigned char has_release_threshold:1; unsigned char has_strongestbtn_hysteresis:1; unsigned char has_filter_strength:1; } __packed; unsigned char data[2]; }; }; struct synaptics_rmi4_f1a_control_0 { union { struct { unsigned char multibutton_report:2; unsigned char filter_mode:2; unsigned char reserved:4; } __packed; unsigned char data[1]; }; }; struct synaptics_rmi4_f1a_control_3_4 { unsigned char transmitterbutton; unsigned char receiverbutton; }; struct synaptics_rmi4_f1a_control { struct synaptics_rmi4_f1a_control_0 general_control; unsigned char *button_int_enable; unsigned char *multi_button; struct synaptics_rmi4_f1a_control_3_4 *electrode_map; unsigned char *button_threshold; unsigned char button_release_threshold; unsigned char strongest_button_hysteresis; unsigned char filter_strength; }; struct synaptics_rmi4_f1a_handle { int button_bitmask_size; unsigned char button_count; unsigned char valid_button_count; unsigned char *button_data_buffer; unsigned char *button_map; struct synaptics_rmi4_f1a_query button_query; struct synaptics_rmi4_f1a_control button_control; }; struct synaptics_rmi4_f12_extra_data { unsigned char data1_offset; unsigned char data15_offset; unsigned char data15_size; unsigned char data15_data[(F12_FINGERS_TO_SUPPORT + 7) / 8]; }; struct synaptics_rmi4_exp_fn { enum exp_fn fn_type; bool inserted; int (*func_init)(struct synaptics_rmi4_data *rmi4_data); void (*func_remove)(struct synaptics_rmi4_data *rmi4_data); void (*func_attn)(struct synaptics_rmi4_data *rmi4_data, unsigned char intr_mask); struct list_head link; }; static struct device_attribute attrs[] = { __ATTR(full_pm_cycle, (S_IRUGO | S_IWUSR | S_IWGRP), synaptics_rmi4_full_pm_cycle_show, synaptics_rmi4_full_pm_cycle_store), __ATTR(reset, S_IWUSR | S_IWGRP, NULL, synaptics_rmi4_f01_reset_store), __ATTR(productinfo, S_IRUGO, synaptics_rmi4_f01_productinfo_show, synaptics_rmi4_store_error), __ATTR(buildid, S_IRUGO, synaptics_rmi4_f01_buildid_show, synaptics_rmi4_store_error), __ATTR(flashprog, S_IRUGO, synaptics_rmi4_f01_flashprog_show, synaptics_rmi4_store_error), __ATTR(0dbutton, (S_IRUGO | S_IWUSR | S_IWGRP), synaptics_rmi4_0dbutton_show, synaptics_rmi4_0dbutton_store), __ATTR(flipx, (S_IRUGO | S_IWUSR | S_IWGRP), synaptics_rmi4_flipx_show, synaptics_rmi4_flipx_store), __ATTR(flipy, (S_IRUGO | S_IWUSR | S_IWGRP), synaptics_rmi4_flipy_show, synaptics_rmi4_flipy_store), #if defined(CONFIG_SECURE_TOUCH) __ATTR(secure_touch_enable, (S_IRUGO | S_IWUSR | S_IWGRP), synaptics_secure_touch_enable_show, synaptics_secure_touch_enable_store), __ATTR(secure_touch, S_IRUGO , synaptics_secure_touch_show, NULL), #endif }; static bool exp_fn_inited; static struct mutex exp_fn_list_mutex; static struct list_head exp_fn_list; #if defined(CONFIG_SECURE_TOUCH) static int synaptics_secure_touch_clk_prepare_enable( struct synaptics_rmi4_data *rmi4_data) { int ret; ret = clk_prepare_enable(rmi4_data->iface_clk); if (ret) { dev_err(&rmi4_data->i2c_client->dev, "error on clk_prepare_enable(iface_clk):%d\n", ret); return ret; } ret = clk_prepare_enable(rmi4_data->core_clk); if (ret) { clk_disable_unprepare(rmi4_data->iface_clk); dev_err(&rmi4_data->i2c_client->dev, "error clk_prepare_enable(core_clk):%d\n", ret); } return ret; } static void synaptics_secure_touch_clk_disable_unprepare( struct synaptics_rmi4_data *rmi4_data) { clk_disable_unprepare(rmi4_data->core_clk); clk_disable_unprepare(rmi4_data->iface_clk); } static void synaptics_secure_touch_init(struct synaptics_rmi4_data *data) { int ret = 0; data->st_initialized = 0; init_completion(&data->st_powerdown); init_completion(&data->st_irq_processed); /* Get clocks */ data->core_clk = clk_get(&data->i2c_client->dev, "core_clk"); if (IS_ERR(data->core_clk)) { ret = PTR_ERR(data->core_clk); dev_err(&data->i2c_client->dev, "%s: error on clk_get(core_clk):%d\n", __func__, ret); return; } data->iface_clk = clk_get(&data->i2c_client->dev, "iface_clk"); if (IS_ERR(data->iface_clk)) { ret = PTR_ERR(data->iface_clk); dev_err(&data->i2c_client->dev, "%s: error on clk_get(iface_clk)\n", __func__); goto err_iface_clk; } data->st_initialized = 1; return; err_iface_clk: clk_put(data->core_clk); data->core_clk = NULL; } static void synaptics_secure_touch_notify(struct synaptics_rmi4_data *data) { sysfs_notify(&data->i2c_client->dev.kobj, NULL, "secure_touch"); } static irqreturn_t synaptics_filter_interrupt(struct synaptics_rmi4_data *data) { if (atomic_read(&data->st_enabled)) { if (atomic_cmpxchg(&data->st_pending_irqs, 0, 1) == 0) { synaptics_secure_touch_notify(data); wait_for_completion_interruptible( &data->st_irq_processed); } return IRQ_HANDLED; } return IRQ_NONE; } static void synaptics_secure_touch_stop( struct synaptics_rmi4_data *data, int blocking) { if (atomic_read(&data->st_enabled)) { atomic_set(&data->st_pending_irqs, -1); synaptics_secure_touch_notify(data); if (blocking) wait_for_completion_interruptible(&data->st_powerdown); } } #else static void synaptics_secure_touch_init(struct synaptics_rmi4_data *data) { } static irqreturn_t synaptics_filter_interrupt(struct synaptics_rmi4_data *data) { return IRQ_NONE; } static void synaptics_secure_touch_stop( struct synaptics_rmi4_data *data, int blocking) { } #endif #if defined(CONFIG_SECURE_TOUCH) static ssize_t synaptics_secure_touch_enable_show(struct device *dev, struct device_attribute *attr, char *buf) { struct synaptics_rmi4_data *data = dev_get_drvdata(dev); return scnprintf(buf, PAGE_SIZE, "%d", atomic_read(&data->st_enabled)); } /* * Accept only "0" and "1" valid values. * "0" will reset the st_enabled flag, then wake up the reading process and * the interrupt handler. * The bus driver is notified via pm_runtime that it is not required to stay * awake anymore. * It will also make sure the queue of events is emptied in the controller, * in case a touch happened in between the secure touch being disabled and * the local ISR being ungated. * "1" will set the st_enabled flag and clear the st_pending_irqs flag. * The bus driver is requested via pm_runtime to stay awake. */ static ssize_t synaptics_secure_touch_enable_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct synaptics_rmi4_data *data = dev_get_drvdata(dev); struct device *adapter = data->i2c_client->adapter->dev.parent; unsigned long value; int err = 0; if (count > 2) return -EINVAL; err = kstrtoul(buf, 10, &value); if (err != 0) return err; if (!data->st_initialized) return -EIO; err = count; switch (value) { case 0: if (atomic_read(&data->st_enabled) == 0) break; synaptics_secure_touch_clk_disable_unprepare(data); pm_runtime_put_sync(adapter); atomic_set(&data->st_enabled, 0); synaptics_secure_touch_notify(data); complete(&data->st_irq_processed); synaptics_rmi4_irq(data->irq, data); complete(&data->st_powerdown); break; case 1: if (atomic_read(&data->st_enabled)) { err = -EBUSY; break; } synchronize_irq(data->irq); if (pm_runtime_get_sync(adapter) < 0) { dev_err(&data->i2c_client->dev, "pm_runtime_get_sync failed\n"); err = -EIO; break; } if (synaptics_secure_touch_clk_prepare_enable(data) < 0) { pm_runtime_put_sync(adapter); err = -EIO; break; } reinit_completion(&data->st_powerdown); reinit_completion(&data->st_irq_processed); atomic_set(&data->st_enabled, 1); atomic_set(&data->st_pending_irqs, 0); break; default: dev_err(&data->i2c_client->dev, "unsupported value: %lu\n", value); err = -EINVAL; break; } return err; } /* * This function returns whether there are pending interrupts, or * other error conditions that need to be signaled to the userspace library, * according tot he following logic: * - st_enabled is 0 if secure touch is not enabled, returning -EBADF * - st_pending_irqs is -1 to signal that secure touch is in being stopped, * returning -EINVAL * - st_pending_irqs is 1 to signal that there is a pending irq, returning * the value "1" to the sysfs read operation * - st_pending_irqs is 0 (only remaining case left) if the pending interrupt * has been processed, so the interrupt handler can be allowed to continue. */ static ssize_t synaptics_secure_touch_show(struct device *dev, struct device_attribute *attr, char *buf) { struct synaptics_rmi4_data *data = dev_get_drvdata(dev); int val = 0; if (atomic_read(&data->st_enabled) == 0) return -EBADF; if (atomic_cmpxchg(&data->st_pending_irqs, -1, 0) == -1) return -EINVAL; if (atomic_cmpxchg(&data->st_pending_irqs, 1, 0) == 1) val = 1; else complete(&data->st_irq_processed); return scnprintf(buf, PAGE_SIZE, "%u", val); } #endif static int synaptics_rmi4_debug_suspend_set(void *_data, u64 val) { struct synaptics_rmi4_data *rmi4_data = _data; if (val) synaptics_rmi4_suspend(&rmi4_data->input_dev->dev); else synaptics_rmi4_resume(&rmi4_data->input_dev->dev); return 0; } static int synaptics_rmi4_debug_suspend_get(void *_data, u64 *val) { struct synaptics_rmi4_data *rmi4_data = _data; *val = rmi4_data->suspended; return 0; } DEFINE_SIMPLE_ATTRIBUTE(debug_suspend_fops, synaptics_rmi4_debug_suspend_get, synaptics_rmi4_debug_suspend_set, "%lld\n"); static ssize_t synaptics_rmi4_full_pm_cycle_show(struct device *dev, struct device_attribute *attr, char *buf) { struct synaptics_rmi4_data *rmi4_data = dev_get_drvdata(dev); return snprintf(buf, PAGE_SIZE, "%u\n", rmi4_data->full_pm_cycle); } static ssize_t synaptics_rmi4_full_pm_cycle_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { unsigned int input, retval; struct synaptics_rmi4_data *rmi4_data = dev_get_drvdata(dev); retval = kstrtouint(buf, 10, &input); if (retval) return retval; rmi4_data->full_pm_cycle = input > 0 ? 1 : 0; return count; } #ifdef CONFIG_FB static void configure_sleep(struct synaptics_rmi4_data *rmi4_data) { int retval = 0; rmi4_data->fb_notif.notifier_call = fb_notifier_callback; retval = fb_register_client(&rmi4_data->fb_notif); if (retval) dev_err(&rmi4_data->i2c_client->dev, "Unable to register fb_notifier: %d\n", retval); } #elif defined CONFIG_HAS_EARLYSUSPEND static void configure_sleep(struct synaptics_rmi4_data *rmi4_data) { rmi4_data->early_suspend.level = EARLY_SUSPEND_LEVEL_BLANK_SCREEN + 1; rmi4_data->early_suspend.suspend = synaptics_rmi4_early_suspend; rmi4_data->early_suspend.resume = synaptics_rmi4_late_resume; register_early_suspend(&rmi4_data->early_suspend); } #else static void configure_sleep(struct synaptics_rmi4_data *rmi4_data) { } #endif static ssize_t synaptics_rmi4_f01_reset_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { int retval; unsigned int reset; struct synaptics_rmi4_data *rmi4_data = dev_get_drvdata(dev); retval = kstrtouint(buf, 10, &reset); if (retval) return retval; if (reset != 1) return -EINVAL; retval = synaptics_rmi4_reset_device(rmi4_data); if (retval < 0) { dev_err(dev, "%s: Failed to issue reset command, error = %d\n", __func__, retval); return retval; } return count; } static ssize_t synaptics_rmi4_f01_productinfo_show(struct device *dev, struct device_attribute *attr, char *buf) { struct synaptics_rmi4_data *rmi4_data = dev_get_drvdata(dev); return snprintf(buf, PAGE_SIZE, "0x%02x 0x%02x\n", (rmi4_data->rmi4_mod_info.product_info[0]), (rmi4_data->rmi4_mod_info.product_info[1])); } static ssize_t synaptics_rmi4_f01_buildid_show(struct device *dev, struct device_attribute *attr, char *buf) { unsigned int build_id; struct synaptics_rmi4_data *rmi4_data = dev_get_drvdata(dev); struct synaptics_rmi4_device_info *rmi; rmi = &(rmi4_data->rmi4_mod_info); build_id = (unsigned int)rmi->build_id[0] + (unsigned int)rmi->build_id[1] * 0x100 + (unsigned int)rmi->build_id[2] * 0x10000; return snprintf(buf, PAGE_SIZE, "%u\n", build_id); } static ssize_t synaptics_rmi4_f01_flashprog_show(struct device *dev, struct device_attribute *attr, char *buf) { int retval; struct synaptics_rmi4_f01_device_status device_status; struct synaptics_rmi4_data *rmi4_data = dev_get_drvdata(dev); retval = synaptics_rmi4_i2c_read(rmi4_data, rmi4_data->f01_data_base_addr, device_status.data, sizeof(device_status.data)); if (retval < 0) { dev_err(dev, "%s: Failed to read device status, error = %d\n", __func__, retval); return retval; } return snprintf(buf, PAGE_SIZE, "%u\n", device_status.flash_prog); } static ssize_t synaptics_rmi4_0dbutton_show(struct device *dev, struct device_attribute *attr, char *buf) { struct synaptics_rmi4_data *rmi4_data = dev_get_drvdata(dev); return snprintf(buf, PAGE_SIZE, "%u\n", rmi4_data->button_0d_enabled); } static ssize_t synaptics_rmi4_0dbutton_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { int retval; unsigned int input; unsigned char ii; unsigned char intr_enable; struct synaptics_rmi4_fn *fhandler; struct synaptics_rmi4_data *rmi4_data = dev_get_drvdata(dev); struct synaptics_rmi4_device_info *rmi; rmi = &(rmi4_data->rmi4_mod_info); retval = kstrtouint(buf, 10, &input); if (retval) return retval; input = input > 0 ? 1 : 0; if (rmi4_data->button_0d_enabled == input) return count; mutex_lock(&rmi->support_fn_list_mutex); if (!list_empty(&rmi->support_fn_list)) { list_for_each_entry(fhandler, &rmi->support_fn_list, link) { if (fhandler->fn_number == SYNAPTICS_RMI4_F1A) { ii = fhandler->intr_reg_num; retval = synaptics_rmi4_i2c_read(rmi4_data, rmi4_data->f01_ctrl_base_addr + 1 + ii, &intr_enable, sizeof(intr_enable)); if (retval < 0) goto exit; if (input == 1) intr_enable |= fhandler->intr_mask; else intr_enable &= ~fhandler->intr_mask; retval = synaptics_rmi4_i2c_write(rmi4_data, rmi4_data->f01_ctrl_base_addr + 1 + ii, &intr_enable, sizeof(intr_enable)); if (retval < 0) goto exit; } } } mutex_unlock(&rmi->support_fn_list_mutex); rmi4_data->button_0d_enabled = input; return count; exit: mutex_unlock(&rmi->support_fn_list_mutex); return retval; } static ssize_t synaptics_rmi4_flipx_show(struct device *dev, struct device_attribute *attr, char *buf) { struct synaptics_rmi4_data *rmi4_data = dev_get_drvdata(dev); return snprintf(buf, PAGE_SIZE, "%u\n", rmi4_data->flip_x); } static ssize_t synaptics_rmi4_flipx_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { unsigned int input; struct synaptics_rmi4_data *rmi4_data = dev_get_drvdata(dev); if (sscanf(buf, "%u", &input) != 1) return -EINVAL; rmi4_data->flip_x = input > 0 ? 1 : 0; return count; } static ssize_t synaptics_rmi4_flipy_show(struct device *dev, struct device_attribute *attr, char *buf) { struct synaptics_rmi4_data *rmi4_data = dev_get_drvdata(dev); return snprintf(buf, PAGE_SIZE, "%u\n", rmi4_data->flip_y); } static ssize_t synaptics_rmi4_flipy_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { unsigned int input; struct synaptics_rmi4_data *rmi4_data = dev_get_drvdata(dev); if (sscanf(buf, "%u", &input) != 1) return -EINVAL; rmi4_data->flip_y = input > 0 ? 1 : 0; return count; } /** * synaptics_rmi4_set_page() * * Called by synaptics_rmi4_i2c_read() and synaptics_rmi4_i2c_write(). * * This function writes to the page select register to switch to the * assigned page. */ static int synaptics_rmi4_set_page(struct synaptics_rmi4_data *rmi4_data, unsigned int address) { int retval = 0; unsigned char retry; unsigned char buf[PAGE_SELECT_LEN]; unsigned char page; struct i2c_client *i2c = rmi4_data->i2c_client; page = ((address >> 8) & MASK_8BIT); if (page != rmi4_data->current_page) { buf[0] = MASK_8BIT; buf[1] = page; for (retry = 0; retry < SYN_I2C_RETRY_TIMES; retry++) { retval = i2c_master_send(i2c, buf, PAGE_SELECT_LEN); if (retval != PAGE_SELECT_LEN) { dev_err(&i2c->dev, "%s: I2C retry %d\n", __func__, retry + 1); msleep(20); } else { rmi4_data->current_page = page; break; } } } else return PAGE_SELECT_LEN; return (retval == PAGE_SELECT_LEN) ? retval : -EIO; } /** * synaptics_rmi4_i2c_read() * * Called by various functions in this driver, and also exported to * other expansion Function modules such as rmi_dev. * * This function reads data of an arbitrary length from the sensor, * starting from an assigned register address of the sensor, via I2C * with a retry mechanism. */ static int synaptics_rmi4_i2c_read(struct synaptics_rmi4_data *rmi4_data, unsigned short addr, unsigned char *data, unsigned short length) { int retval; unsigned char retry; unsigned char buf; struct i2c_msg msg[] = { { .addr = rmi4_data->i2c_client->addr, .flags = 0, .len = 1, .buf = &buf, }, { .addr = rmi4_data->i2c_client->addr, .flags = I2C_M_RD, .len = length, .buf = data, }, }; buf = addr & MASK_8BIT; mutex_lock(&(rmi4_data->rmi4_io_ctrl_mutex)); retval = synaptics_rmi4_set_page(rmi4_data, addr); if (retval != PAGE_SELECT_LEN) goto exit; for (retry = 0; retry < SYN_I2C_RETRY_TIMES; retry++) { if (i2c_transfer(rmi4_data->i2c_client->adapter, msg, 2) == 2) { retval = length; break; } dev_err(&rmi4_data->i2c_client->dev, "%s: I2C retry %d\n", __func__, retry + 1); msleep(20); } if (retry == SYN_I2C_RETRY_TIMES) { dev_err(&rmi4_data->i2c_client->dev, "%s: I2C read over retry limit\n", __func__); retval = -EIO; } exit: mutex_unlock(&(rmi4_data->rmi4_io_ctrl_mutex)); return retval; } /** * synaptics_rmi4_i2c_write() * * Called by various functions in this driver, and also exported to * other expansion Function modules such as rmi_dev. * * This function writes data of an arbitrary length to the sensor, * starting from an assigned register address of the sensor, via I2C with * a retry mechanism. */ static int synaptics_rmi4_i2c_write(struct synaptics_rmi4_data *rmi4_data, unsigned short addr, unsigned char *data, unsigned short length) { int retval; unsigned char retry; unsigned char buf[length + 1]; struct i2c_msg msg[] = { { .addr = rmi4_data->i2c_client->addr, .flags = 0, .len = length + 1, .buf = buf, } }; mutex_lock(&(rmi4_data->rmi4_io_ctrl_mutex)); retval = synaptics_rmi4_set_page(rmi4_data, addr); if (retval != PAGE_SELECT_LEN) goto exit; buf[0] = addr & MASK_8BIT; memcpy(&buf[1], &data[0], length); for (retry = 0; retry < SYN_I2C_RETRY_TIMES; retry++) { if (i2c_transfer(rmi4_data->i2c_client->adapter, msg, 1) == 1) { retval = length; break; } dev_err(&rmi4_data->i2c_client->dev, "%s: I2C retry %d\n", __func__, retry + 1); msleep(20); } if (retry == SYN_I2C_RETRY_TIMES) { dev_err(&rmi4_data->i2c_client->dev, "%s: I2C write over retry limit\n", __func__); retval = -EIO; } exit: mutex_unlock(&(rmi4_data->rmi4_io_ctrl_mutex)); return retval; } /** * synaptics_rmi4_release_all() * * Called by synaptics_rmi4_suspend() * * Release all touch data during the touch device switch to suspend state. */ static void synaptics_rmi4_release_all(struct synaptics_rmi4_data *rmi4_data) { int finger; int max_num_fingers = rmi4_data->num_of_fingers; for (finger = 0; finger < max_num_fingers; finger++) { input_mt_slot(rmi4_data->input_dev, finger); input_mt_report_slot_state(rmi4_data->input_dev, MT_TOOL_FINGER, 0); } input_report_key(rmi4_data->input_dev, BTN_TOUCH, 0); input_report_key(rmi4_data->input_dev, BTN_TOOL_FINGER, 0); input_sync(rmi4_data->input_dev); } /** * synaptics_rmi4_f11_abs_report() * * Called by synaptics_rmi4_report_touch() when valid Function $11 * finger data has been detected. * * This function reads the Function $11 data registers, determines the * status of each finger supported by the Function, processes any * necessary coordinate manipulation, reports the finger data to * the input subsystem, and returns the number of fingers detected. */ static int synaptics_rmi4_f11_abs_report(struct synaptics_rmi4_data *rmi4_data, struct synaptics_rmi4_fn *fhandler) { int retval; unsigned char touch_count = 0; /* number of touch points */ unsigned char reg_index; unsigned char finger; unsigned char fingers_supported; unsigned char num_of_finger_status_regs; unsigned char finger_shift; unsigned char finger_status; unsigned char data_reg_blk_size; unsigned char finger_status_reg[3]; unsigned char data[F11_STD_DATA_LEN]; unsigned short data_addr; unsigned short data_offset; int x; int y; int wx; int wy; int z; /* * The number of finger status registers is determined by the * maximum number of fingers supported - 2 bits per finger. So * the number of finger status registers to read is: * register_count = ceil(max_num_of_fingers / 4) */ fingers_supported = fhandler->num_of_data_points; num_of_finger_status_regs = (fingers_supported + 3) / 4; data_addr = fhandler->full_addr.data_base; data_reg_blk_size = fhandler->size_of_data_register_block; retval = synaptics_rmi4_i2c_read(rmi4_data, data_addr, finger_status_reg, num_of_finger_status_regs); if (retval < 0) return 0; for (finger = 0; finger < fingers_supported; finger++) { reg_index = finger / 4; finger_shift = (finger % 4) * 2; finger_status = (finger_status_reg[reg_index] >> finger_shift) & MASK_2BIT; /* * Each 2-bit finger status field represents the following: * 00 = finger not present * 01 = finger present and data accurate * 10 = finger present but data may be inaccurate * 11 = reserved */ #ifdef TYPE_B_PROTOCOL input_mt_slot(rmi4_data->input_dev, finger); input_mt_report_slot_state(rmi4_data->input_dev, MT_TOOL_FINGER, finger_status != 0); #endif if (finger_status) { data_offset = data_addr + num_of_finger_status_regs + (finger * data_reg_blk_size); retval = synaptics_rmi4_i2c_read(rmi4_data, data_offset, data, data_reg_blk_size); if (retval < 0) return 0; x = (data[0] << 4) | (data[2] & MASK_4BIT); y = (data[1] << 4) | ((data[2] >> 4) & MASK_4BIT); wx = (data[3] & MASK_4BIT); wy = (data[3] >> 4) & MASK_4BIT; z = data[4]; if (rmi4_data->flip_x) x = rmi4_data->sensor_max_x - x; if (rmi4_data->flip_y) y = rmi4_data->sensor_max_y - y; dev_dbg(&rmi4_data->i2c_client->dev, "%s: Finger %d:\n" "status = 0x%02x\n" "x = %d\n" "y = %d\n" "wx = %d\n" "wy = %d\n", __func__, finger, finger_status, x, y, wx, wy); input_report_abs(rmi4_data->input_dev, ABS_MT_POSITION_X, x); input_report_abs(rmi4_data->input_dev, ABS_MT_POSITION_Y, y); input_report_abs(rmi4_data->input_dev, ABS_MT_PRESSURE, z); #ifdef REPORT_2D_W input_report_abs(rmi4_data->input_dev, ABS_MT_TOUCH_MAJOR, max(wx, wy)); input_report_abs(rmi4_data->input_dev, ABS_MT_TOUCH_MINOR, min(wx, wy)); #endif #ifndef TYPE_B_PROTOCOL input_mt_sync(rmi4_data->input_dev); #endif touch_count++; } } input_report_key(rmi4_data->input_dev, BTN_TOUCH, touch_count > 0); input_report_key(rmi4_data->input_dev, BTN_TOOL_FINGER, touch_count > 0); #ifndef TYPE_B_PROTOCOL if (!touch_count) input_mt_sync(rmi4_data->input_dev); #else input_mt_report_pointer_emulation(rmi4_data->input_dev, false); #endif input_sync(rmi4_data->input_dev); return touch_count; } /** * synaptics_rmi4_f12_abs_report() * * Called by synaptics_rmi4_report_touch() when valid Function $12 * finger data has been detected. * * This function reads the Function $12 data registers, determines the * status of each finger supported by the Function, processes any * necessary coordinate manipulation, reports the finger data to * the input subsystem, and returns the number of fingers detected. */ static int synaptics_rmi4_f12_abs_report(struct synaptics_rmi4_data *rmi4_data, struct synaptics_rmi4_fn *fhandler) { int retval; unsigned char touch_count = 0; /* number of touch points */ unsigned char finger; unsigned char fingers_to_process; unsigned char finger_status; unsigned char size_of_2d_data; unsigned short data_addr; int x; int y; int wx; int wy; struct synaptics_rmi4_f12_extra_data *extra_data; struct synaptics_rmi4_f12_finger_data *data; struct synaptics_rmi4_f12_finger_data *finger_data; fingers_to_process = fhandler->num_of_data_points; data_addr = fhandler->full_addr.data_base; extra_data = (struct synaptics_rmi4_f12_extra_data *)fhandler->extra; size_of_2d_data = sizeof(struct synaptics_rmi4_f12_finger_data); retval = synaptics_rmi4_i2c_read(rmi4_data, data_addr + extra_data->data1_offset, (unsigned char *)fhandler->data, fingers_to_process * size_of_2d_data); if (retval < 0) return 0; data = (struct synaptics_rmi4_f12_finger_data *)fhandler->data; for (finger = 0; finger < fingers_to_process; finger++) { finger_data = data + finger; finger_status = finger_data->object_type_and_status & MASK_2BIT; /* * Each 2-bit finger status field represents the following: * 00 = finger not present * 01 = finger present and data accurate * 10 = finger present but data may be inaccurate * 11 = reserved */ #ifdef TYPE_B_PROTOCOL input_mt_slot(rmi4_data->input_dev, finger); input_mt_report_slot_state(rmi4_data->input_dev, MT_TOOL_FINGER, finger_status != 0); #endif if (finger_status) { x = (finger_data->x_msb << 8) | (finger_data->x_lsb); y = (finger_data->y_msb << 8) | (finger_data->y_lsb); #ifdef REPORT_2D_W wx = finger_data->wx; wy = finger_data->wy; #endif if (rmi4_data->flip_x) x = rmi4_data->sensor_max_x - x; if (rmi4_data->flip_y) y = rmi4_data->sensor_max_y - y; dev_dbg(&rmi4_data->i2c_client->dev, "%s: Finger %d:\n" "status = 0x%02x\n" "x = %d\n" "y = %d\n" "wx = %d\n" "wy = %d\n", __func__, finger, finger_status, x, y, wx, wy); input_report_key(rmi4_data->input_dev, BTN_TOUCH, 1); input_report_key(rmi4_data->input_dev, BTN_TOOL_FINGER, 1); input_report_abs(rmi4_data->input_dev, ABS_MT_POSITION_X, x); input_report_abs(rmi4_data->input_dev, ABS_MT_POSITION_Y, y); #ifdef REPORT_2D_W input_report_abs(rmi4_data->input_dev, ABS_MT_TOUCH_MAJOR, max(wx, wy)); input_report_abs(rmi4_data->input_dev, ABS_MT_TOUCH_MINOR, min(wx, wy)); #endif #ifndef TYPE_B_PROTOCOL input_mt_sync(rmi4_data->input_dev); #endif touch_count++; } } input_report_key(rmi4_data->input_dev, BTN_TOUCH, touch_count > 0); input_report_key(rmi4_data->input_dev, BTN_TOOL_FINGER, touch_count > 0); #ifndef TYPE_B_PROTOCOL if (!touch_count) input_mt_sync(rmi4_data->input_dev); #endif input_mt_report_pointer_emulation(rmi4_data->input_dev, false); input_sync(rmi4_data->input_dev); return touch_count; } static void synaptics_rmi4_f1a_report(struct synaptics_rmi4_data *rmi4_data, struct synaptics_rmi4_fn *fhandler) { int retval; unsigned char button; unsigned char index; unsigned char shift; unsigned char status; unsigned char *data; unsigned short data_addr = fhandler->full_addr.data_base; struct synaptics_rmi4_f1a_handle *f1a = fhandler->data; static unsigned char do_once = 1; static bool current_status[MAX_NUMBER_OF_BUTTONS]; #ifdef NO_0D_WHILE_2D static bool before_2d_status[MAX_NUMBER_OF_BUTTONS]; static bool while_2d_status[MAX_NUMBER_OF_BUTTONS]; #endif if (do_once) { memset(current_status, 0, sizeof(current_status)); #ifdef NO_0D_WHILE_2D memset(before_2d_status, 0, sizeof(before_2d_status)); memset(while_2d_status, 0, sizeof(while_2d_status)); #endif do_once = 0; } retval = synaptics_rmi4_i2c_read(rmi4_data, data_addr, f1a->button_data_buffer, f1a->button_bitmask_size); if (retval < 0) { dev_err(&rmi4_data->i2c_client->dev, "%s: Failed to read button data registers\n", __func__); return; } data = f1a->button_data_buffer; for (button = 0; button < f1a->valid_button_count; button++) { index = button / 8; shift = button % 8; status = ((data[index] >> shift) & MASK_1BIT); if (current_status[button] == status) continue; else current_status[button] = status; dev_dbg(&rmi4_data->i2c_client->dev, "%s: Button %d (code %d) ->%d\n", __func__, button, f1a->button_map[button], status); #ifdef NO_0D_WHILE_2D if (rmi4_data->fingers_on_2d == false) { if (status == 1) { before_2d_status[button] = 1; } else { if (while_2d_status[button] == 1) { while_2d_status[button] = 0; continue; } else { before_2d_status[button] = 0; } } input_report_key(rmi4_data->input_dev, f1a->button_map[button], status); } else { if (before_2d_status[button] == 1) { before_2d_status[button] = 0; input_report_key(rmi4_data->input_dev, f1a->button_map[button], status); } else { if (status == 1) while_2d_status[button] = 1; else while_2d_status[button] = 0; } } #else input_report_key(rmi4_data->input_dev, f1a->button_map[button], status); #endif } input_sync(rmi4_data->input_dev); } /** * synaptics_rmi4_report_touch() * * Called by synaptics_rmi4_sensor_report(). * * This function calls the appropriate finger data reporting function * based on the function handler it receives and returns the number of * fingers detected. */ static void synaptics_rmi4_report_touch(struct synaptics_rmi4_data *rmi4_data, struct synaptics_rmi4_fn *fhandler, unsigned char *touch_count) { unsigned char touch_count_2d; dev_dbg(&rmi4_data->i2c_client->dev, "%s: Function %02x reporting\n", __func__, fhandler->fn_number); switch (fhandler->fn_number) { case SYNAPTICS_RMI4_F11: touch_count_2d = synaptics_rmi4_f11_abs_report(rmi4_data, fhandler); *touch_count += touch_count_2d; if (touch_count_2d) rmi4_data->fingers_on_2d = true; else rmi4_data->fingers_on_2d = false; break; case SYNAPTICS_RMI4_F12: touch_count_2d = synaptics_rmi4_f12_abs_report(rmi4_data, fhandler); if (touch_count_2d) rmi4_data->fingers_on_2d = true; else rmi4_data->fingers_on_2d = false; break; case SYNAPTICS_RMI4_F1A: synaptics_rmi4_f1a_report(rmi4_data, fhandler); break; default: break; } } /** * synaptics_rmi4_sensor_report() * * Called by synaptics_rmi4_irq(). * * This function determines the interrupt source(s) from the sensor * and calls synaptics_rmi4_report_touch() with the appropriate * function handler for each function with valid data inputs. */ static int synaptics_rmi4_sensor_report(struct synaptics_rmi4_data *rmi4_data) { int retval; unsigned char touch_count = 0; unsigned char intr[MAX_INTR_REGISTERS]; struct synaptics_rmi4_fn *fhandler; struct synaptics_rmi4_exp_fn *exp_fhandler; struct synaptics_rmi4_device_info *rmi; rmi = &(rmi4_data->rmi4_mod_info); /* * Get interrupt status information from F01 Data1 register to * determine the source(s) that are flagging the interrupt. */ retval = synaptics_rmi4_i2c_read(rmi4_data, rmi4_data->f01_data_base_addr + 1, intr, rmi4_data->num_of_intr_regs); if (retval < 0) return retval; /* * Traverse the function handler list and service the source(s) * of the interrupt accordingly. */ mutex_lock(&rmi->support_fn_list_mutex); if (!list_empty(&rmi->support_fn_list)) { list_for_each_entry(fhandler, &rmi->support_fn_list, link) { if (fhandler->num_of_data_sources) { if (fhandler->intr_mask & intr[fhandler->intr_reg_num]) { synaptics_rmi4_report_touch(rmi4_data, fhandler, &touch_count); } } } } mutex_unlock(&rmi->support_fn_list_mutex); mutex_lock(&exp_fn_list_mutex); if (!list_empty(&exp_fn_list)) { list_for_each_entry(exp_fhandler, &exp_fn_list, link) { if (exp_fhandler->inserted && (exp_fhandler->func_attn != NULL)) exp_fhandler->func_attn(rmi4_data, intr[0]); } } mutex_unlock(&exp_fn_list_mutex); return touch_count; } /** * synaptics_rmi4_irq() * * Called by the kernel when an interrupt occurs (when the sensor * asserts the attention irq). * * This function is the ISR thread and handles the acquisition * and the reporting of finger data when the presence of fingers * is detected. */ static irqreturn_t synaptics_rmi4_irq(int irq, void *data) { struct synaptics_rmi4_data *rmi4_data = data; if (IRQ_HANDLED == synaptics_filter_interrupt(data)) return IRQ_HANDLED; synaptics_rmi4_sensor_report(rmi4_data); return IRQ_HANDLED; } #ifdef CONFIG_OF static int synaptics_rmi4_get_button_map(struct device *dev, char *name, struct synaptics_rmi4_platform_data *rmi4_pdata, struct device_node *np) { struct property *prop; int rc, i; u32 temp_val, num_buttons; u32 button_map[MAX_NUMBER_OF_BUTTONS]; prop = of_find_property(np, "synaptics,button-map", NULL); if (prop) { num_buttons = prop->length / sizeof(temp_val); rmi4_pdata->capacitance_button_map = devm_kzalloc(dev, sizeof(*rmi4_pdata->capacitance_button_map), GFP_KERNEL); if (!rmi4_pdata->capacitance_button_map) return -ENOMEM; rmi4_pdata->capacitance_button_map->map = devm_kzalloc(dev, sizeof(*rmi4_pdata->capacitance_button_map->map) * MAX_NUMBER_OF_BUTTONS, GFP_KERNEL); if (!rmi4_pdata->capacitance_button_map->map) return -ENOMEM; if (num_buttons <= MAX_NUMBER_OF_BUTTONS) { rc = of_property_read_u32_array(np, "synaptics,button-map", button_map, num_buttons); if (rc) { dev_err(dev, "Unable to read key codes\n"); return rc; } for (i = 0; i < num_buttons; i++) rmi4_pdata->capacitance_button_map->map[i] = button_map[i]; rmi4_pdata->capacitance_button_map->nbuttons = num_buttons; } else { return -EINVAL; } } return 0; } static int synaptics_rmi4_get_dt_coords(struct device *dev, char *name, struct synaptics_rmi4_platform_data *pdata, struct device_node *node) { u32 coords[RMI4_COORDS_ARR_SIZE]; struct property *prop; struct device_node *np = (node == NULL) ? (dev->of_node) : (node); int coords_size, rc; prop = of_find_property(np, name, NULL); if (!prop) return -EINVAL; if (!prop->value) return -ENODATA; coords_size = prop->length / sizeof(u32); if (coords_size != RMI4_COORDS_ARR_SIZE) { dev_err(dev, "invalid %s\n", name); return -EINVAL; } rc = of_property_read_u32_array(np, name, coords, coords_size); if (rc && (rc != -EINVAL)) { dev_err(dev, "Unable to read %s\n", name); return rc; } if (strcmp(name, "synaptics,panel-coords") == 0) { pdata->panel_minx = coords[0]; pdata->panel_miny = coords[1]; pdata->panel_maxx = coords[2]; pdata->panel_maxy = coords[3]; if (pdata->panel_maxx == 0 || pdata->panel_minx > 0) rc = -EINVAL; else if (pdata->panel_maxy == 0 || pdata->panel_miny > 0) rc = -EINVAL; if (rc) { dev_err(dev, "Invalid panel resolution %d\n", rc); return rc; } } else if (strcmp(name, "synaptics,display-coords") == 0) { pdata->disp_minx = coords[0]; pdata->disp_miny = coords[1]; pdata->disp_maxx = coords[2]; pdata->disp_maxy = coords[3]; } else { dev_err(dev, "unsupported property %s\n", name); return -EINVAL; } return 0; } static int synaptics_rmi4_parse_dt_children(struct device *dev, struct synaptics_rmi4_platform_data *rmi4_pdata, struct synaptics_rmi4_data *rmi4_data) { struct synaptics_rmi4_device_info *rmi = &(rmi4_data->rmi4_mod_info); struct device_node *node = dev->of_node, *child; int rc = 0; struct synaptics_rmi4_fn *fhandler = NULL; for_each_child_of_node(node, child) { rc = of_property_read_u32(child, "synaptics,package-id", &rmi4_pdata->package_id); if (rc && (rc != -EINVAL)) { dev_err(dev, "Unable to read package_id\n"); return rc; } else if (rc == -EINVAL) { rmi4_pdata->package_id = 0x00; } if (rmi4_pdata->package_id) { if (rmi4_pdata->package_id != rmi->package_id) { dev_err(dev, "%s: Synaptics package id don't match %d %d\n", __func__, rmi4_pdata->package_id, rmi->package_id); continue; } else { /* * If package id read from DT matches the * package id value read from touch controller, * also check if sensor dimensions read from DT * match those read from controller, before * moving further. For this first check if touch * panel coordinates are defined in DT or not. */ if (of_find_property(child, "synaptics,panel-coords", NULL)) { synaptics_rmi4_get_dt_coords(dev, "synaptics,panel-coords", rmi4_pdata, child); dev_info(dev, "Pmax_x Pmax_y = %d:%d\n", rmi4_pdata->panel_maxx, rmi4_pdata->panel_maxy); dev_info(dev, "Smax_x Smax_y = %d:%d\n", rmi4_data->sensor_max_x, rmi4_data->sensor_max_y); if ((rmi4_pdata->panel_maxx != rmi4_data->sensor_max_x) || (rmi4_pdata->panel_maxy != rmi4_data->sensor_max_y)) continue; } } } rc = synaptics_rmi4_get_dt_coords(dev, "synaptics,display-coords", rmi4_pdata, child); if (rc && (rc != -EINVAL)) return rc; rc = synaptics_rmi4_get_button_map(dev, "synaptics,button-map", rmi4_pdata, child); if (rc < 0) { dev_err(dev, "Unable to read key codes\n"); return rc; } mutex_lock(&rmi->support_fn_list_mutex); if (!list_empty(&rmi->support_fn_list)) { list_for_each_entry(fhandler, &rmi->support_fn_list, link) { if (fhandler->fn_number == SYNAPTICS_RMI4_F1A) break; } } mutex_unlock(&rmi->support_fn_list_mutex); if (fhandler != NULL && fhandler->fn_number == SYNAPTICS_RMI4_F1A) { rc = synaptics_rmi4_capacitance_button_map(rmi4_data, fhandler); if (rc < 0) { dev_err(dev, "Fail to register F1A %d\n", rc); return rc; } } break; } return 0; } static int synaptics_rmi4_parse_dt(struct device *dev, struct synaptics_rmi4_platform_data *rmi4_pdata) { struct device_node *np = dev->of_node; struct property *prop; u32 temp_val, num_buttons; u32 button_map[MAX_NUMBER_OF_BUTTONS]; int rc, i; rmi4_pdata->i2c_pull_up = of_property_read_bool(np, "synaptics,i2c-pull-up"); rmi4_pdata->power_down_enable = of_property_read_bool(np, "synaptics,power-down"); rmi4_pdata->disable_gpios = of_property_read_bool(np, "synaptics,disable-gpios"); rmi4_pdata->modify_reso = of_property_read_bool(np, "synaptics,modify-reso"); rmi4_pdata->x_flip = of_property_read_bool(np, "synaptics,x-flip"); rmi4_pdata->y_flip = of_property_read_bool(np, "synaptics,y-flip"); rmi4_pdata->do_lockdown = of_property_read_bool(np, "synaptics,do-lockdown"); rc = synaptics_rmi4_get_dt_coords(dev, "synaptics,display-coords", rmi4_pdata, NULL); if (rc && (rc != -EINVAL)) return rc; rc = synaptics_rmi4_get_dt_coords(dev, "synaptics,panel-coords", rmi4_pdata, NULL); if (rc && (rc != -EINVAL)) return rc; rmi4_pdata->reset_delay = RESET_DELAY; rc = of_property_read_u32(np, "synaptics,reset-delay", &temp_val); if (!rc) rmi4_pdata->reset_delay = temp_val; else if (rc != -EINVAL) { dev_err(dev, "Unable to read reset delay\n"); return rc; } rc = of_property_read_string(np, "synaptics,fw-image-name", &rmi4_pdata->fw_image_name); if (rc && (rc != -EINVAL)) { dev_err(dev, "Unable to read fw image name\n"); return rc; } /* reset, irq gpio info */ rmi4_pdata->reset_gpio = of_get_named_gpio_flags(np, "synaptics,reset-gpio", 0, &rmi4_pdata->reset_flags); rmi4_pdata->irq_gpio = of_get_named_gpio_flags(np, "synaptics,irq-gpio", 0, &rmi4_pdata->irq_flags); rmi4_pdata->detect_device = of_property_read_bool(np, "synaptics,detect-device"); if (rmi4_pdata->detect_device) return 0; prop = of_find_property(np, "synaptics,button-map", NULL); if (prop) { num_buttons = prop->length / sizeof(temp_val); rmi4_pdata->capacitance_button_map = devm_kzalloc(dev, sizeof(*rmi4_pdata->capacitance_button_map), GFP_KERNEL); if (!rmi4_pdata->capacitance_button_map) return -ENOMEM; rmi4_pdata->capacitance_button_map->map = devm_kzalloc(dev, sizeof(*rmi4_pdata->capacitance_button_map->map) * MAX_NUMBER_OF_BUTTONS, GFP_KERNEL); if (!rmi4_pdata->capacitance_button_map->map) return -ENOMEM; if (num_buttons <= MAX_NUMBER_OF_BUTTONS) { rc = of_property_read_u32_array(np, "synaptics,button-map", button_map, num_buttons); if (rc) { dev_err(dev, "Unable to read key codes\n"); return rc; } for (i = 0; i < num_buttons; i++) rmi4_pdata->capacitance_button_map->map[i] = button_map[i]; rmi4_pdata->capacitance_button_map->nbuttons = num_buttons; } else { return -EINVAL; } } return 0; } #else static inline int synaptics_rmi4_parse_dt(struct device *dev, struct synaptics_rmi4_platform_data *rmi4_pdata) { return 0; } #endif /** * synaptics_rmi4_irq_enable() * * Called by synaptics_rmi4_probe() and the power management functions * in this driver and also exported to other expansion Function modules * such as rmi_dev. * * This function handles the enabling and disabling of the attention * irq including the setting up of the ISR thread. */ static int synaptics_rmi4_irq_enable(struct synaptics_rmi4_data *rmi4_data, bool enable) { int retval = 0; unsigned char *intr_status; if (enable) { if (rmi4_data->irq_enabled) return retval; intr_status = kzalloc(rmi4_data->num_of_intr_regs, GFP_KERNEL); if (!intr_status) return -ENOMEM; /* Clear interrupts first */ retval = synaptics_rmi4_i2c_read(rmi4_data, rmi4_data->f01_data_base_addr + 1, intr_status, rmi4_data->num_of_intr_regs); kfree(intr_status); if (retval < 0) return retval; enable_irq(rmi4_data->irq); rmi4_data->irq_enabled = true; } else { if (rmi4_data->irq_enabled) { disable_irq(rmi4_data->irq); rmi4_data->irq_enabled = false; } } return retval; } /** * synaptics_rmi4_f11_init() * * Called by synaptics_rmi4_query_device(). * * This function parses information from the Function 11 registers * and determines the number of fingers supported, x and y data ranges, * offset to the associated interrupt status register, interrupt bit * mask, and gathers finger data acquisition capabilities from the query * registers. */ static int synaptics_rmi4_f11_init(struct synaptics_rmi4_data *rmi4_data, struct synaptics_rmi4_fn *fhandler, struct synaptics_rmi4_fn_desc *fd, unsigned int intr_count) { int retval; unsigned char ii; unsigned char intr_offset; unsigned char abs_data_size; unsigned char abs_data_blk_size; unsigned char query[F11_STD_QUERY_LEN]; unsigned char control[F11_STD_CTRL_LEN]; fhandler->fn_number = fd->fn_number; fhandler->num_of_data_sources = fd->intr_src_count; retval = synaptics_rmi4_i2c_read(rmi4_data, fhandler->full_addr.query_base, query, sizeof(query)); if (retval < 0) return retval; /* Maximum number of fingers supported */ if ((query[1] & MASK_3BIT) <= 4) fhandler->num_of_data_points = (query[1] & MASK_3BIT) + 1; else if ((query[1] & MASK_3BIT) == 5) fhandler->num_of_data_points = 10; rmi4_data->num_of_fingers = fhandler->num_of_data_points; retval = synaptics_rmi4_i2c_read(rmi4_data, fhandler->full_addr.ctrl_base, control, sizeof(control)); if (retval < 0) return retval; /* Maximum x */ rmi4_data->sensor_max_x = ((control[6] & MASK_8BIT) << 0) | ((control[7] & MASK_4BIT) << 8); if (rmi4_data->board->modify_reso) { if (rmi4_data->board->panel_maxx) { if (rmi4_data->board->panel_maxx >= F11_MAX_X) { dev_err(&rmi4_data->i2c_client->dev, "F11 max_x value out of bound."); return -EINVAL; } if (rmi4_data->sensor_max_x != rmi4_data->board->panel_maxx) { rmi4_data->sensor_max_x = rmi4_data->board->panel_maxx; control[6] = rmi4_data->board->panel_maxx & MASK_8BIT; control[7] = (rmi4_data->board->panel_maxx >> 8) & MASK_4BIT; retval = synaptics_rmi4_i2c_write(rmi4_data, fhandler->full_addr.ctrl_base, control, sizeof(control)); if (retval < 0) return retval; } } } /* Maximum y */ rmi4_data->sensor_max_y = ((control[8] & MASK_8BIT) << 0) | ((control[9] & MASK_4BIT) << 8); if (rmi4_data->board->modify_reso) { if (rmi4_data->board->panel_maxy) { if (rmi4_data->board->panel_maxy >= F11_MAX_Y) { dev_err(&rmi4_data->i2c_client->dev, "F11 max_y value out of bound."); return -EINVAL; } if (rmi4_data->sensor_max_y != rmi4_data->board->panel_maxy) { rmi4_data->sensor_max_y = rmi4_data->board->panel_maxy; control[8] = rmi4_data->board->panel_maxy & MASK_8BIT; control[9] = (rmi4_data->board->panel_maxy >> 8) & MASK_4BIT; retval = synaptics_rmi4_i2c_write(rmi4_data, fhandler->full_addr.ctrl_base, control, sizeof(control)); if (retval < 0) return retval; } } } dev_dbg(&rmi4_data->i2c_client->dev, "%s: Function %02x max x = %d max y = %d\n", __func__, fhandler->fn_number, rmi4_data->sensor_max_x, rmi4_data->sensor_max_y); rmi4_data->max_touch_width = MAX_F11_TOUCH_WIDTH; fhandler->intr_reg_num = (intr_count + 7) / 8; if (fhandler->intr_reg_num != 0) fhandler->intr_reg_num -= 1; /* Set an enable bit for each data source */ intr_offset = intr_count % 8; fhandler->intr_mask = 0; for (ii = intr_offset; ii < ((fd->intr_src_count & MASK_3BIT) + intr_offset); ii++) fhandler->intr_mask |= 1 << ii; abs_data_size = query[5] & MASK_2BIT; abs_data_blk_size = 3 + (2 * (abs_data_size == 0 ? 1 : 0)); fhandler->size_of_data_register_block = abs_data_blk_size; return retval; } static int synaptics_rmi4_f12_set_enables(struct synaptics_rmi4_data *rmi4_data, unsigned short ctrl28) { int retval; static unsigned short ctrl_28_address; if (ctrl28) ctrl_28_address = ctrl28; retval = synaptics_rmi4_i2c_write(rmi4_data, ctrl_28_address, &rmi4_data->report_enable, sizeof(rmi4_data->report_enable)); if (retval < 0) return retval; return retval; } /** * synaptics_rmi4_f12_init() * * Called by synaptics_rmi4_query_device(). * * This funtion parses information from the Function 12 registers and * determines the number of fingers supported, offset to the data1 * register, x and y data ranges, offset to the associated interrupt * status register, interrupt bit mask, and allocates memory resources * for finger data acquisition. */ static int synaptics_rmi4_f12_init(struct synaptics_rmi4_data *rmi4_data, struct synaptics_rmi4_fn *fhandler, struct synaptics_rmi4_fn_desc *fd, unsigned int intr_count) { int retval; unsigned char ii; unsigned char intr_offset; unsigned char size_of_2d_data; unsigned char size_of_query8; unsigned char ctrl_8_offset; unsigned char ctrl_23_offset; unsigned char ctrl_28_offset; unsigned char num_of_fingers; struct synaptics_rmi4_f12_extra_data *extra_data; struct synaptics_rmi4_f12_query_5 query_5; struct synaptics_rmi4_f12_query_8 query_8; struct synaptics_rmi4_f12_ctrl_8 ctrl_8; struct synaptics_rmi4_f12_ctrl_23 ctrl_23; fhandler->fn_number = fd->fn_number; fhandler->num_of_data_sources = fd->intr_src_count; size_of_2d_data = sizeof(struct synaptics_rmi4_f12_finger_data); fhandler->extra = kmalloc(sizeof(*extra_data), GFP_KERNEL); if (!fhandler->extra) return -ENOMEM; extra_data = (struct synaptics_rmi4_f12_extra_data *)fhandler->extra; retval = synaptics_rmi4_i2c_read(rmi4_data, fhandler->full_addr.query_base + 5, query_5.data, sizeof(query_5.data)); if (retval < 0) goto free_function_handler_mem; ctrl_8_offset = query_5.ctrl0_is_present + query_5.ctrl1_is_present + query_5.ctrl2_is_present + query_5.ctrl3_is_present + query_5.ctrl4_is_present + query_5.ctrl5_is_present + query_5.ctrl6_is_present + query_5.ctrl7_is_present; ctrl_23_offset = ctrl_8_offset + query_5.ctrl8_is_present + query_5.ctrl9_is_present + query_5.ctrl10_is_present + query_5.ctrl11_is_present + query_5.ctrl12_is_present + query_5.ctrl13_is_present + query_5.ctrl14_is_present + query_5.ctrl15_is_present + query_5.ctrl16_is_present + query_5.ctrl17_is_present + query_5.ctrl18_is_present + query_5.ctrl19_is_present + query_5.ctrl20_is_present + query_5.ctrl21_is_present + query_5.ctrl22_is_present; ctrl_28_offset = ctrl_23_offset + query_5.ctrl23_is_present + query_5.ctrl24_is_present + query_5.ctrl25_is_present + query_5.ctrl26_is_present + query_5.ctrl27_is_present; retval = synaptics_rmi4_i2c_read(rmi4_data, fhandler->full_addr.ctrl_base + ctrl_23_offset, ctrl_23.data, sizeof(ctrl_23.data)); if (retval < 0) goto free_function_handler_mem; /* Maximum number of fingers supported */ fhandler->num_of_data_points = min(ctrl_23.max_reported_objects, (unsigned char)F12_FINGERS_TO_SUPPORT); num_of_fingers = fhandler->num_of_data_points; rmi4_data->num_of_fingers = num_of_fingers; retval = synaptics_rmi4_i2c_read(rmi4_data, fhandler->full_addr.query_base + 7, &size_of_query8, sizeof(size_of_query8)); if (retval < 0) goto free_function_handler_mem; retval = synaptics_rmi4_i2c_read(rmi4_data, fhandler->full_addr.query_base + 8, query_8.data, size_of_query8); if (retval < 0) goto free_function_handler_mem; /* Determine the presence of the Data0 register */ extra_data->data1_offset = query_8.data0_is_present; if ((size_of_query8 >= 3) && (query_8.data15_is_present)) { extra_data->data15_offset = query_8.data0_is_present + query_8.data1_is_present + query_8.data2_is_present + query_8.data3_is_present + query_8.data4_is_present + query_8.data5_is_present + query_8.data6_is_present + query_8.data7_is_present + query_8.data8_is_present + query_8.data9_is_present + query_8.data10_is_present + query_8.data11_is_present + query_8.data12_is_present + query_8.data13_is_present + query_8.data14_is_present; extra_data->data15_size = (num_of_fingers + 7) / 8; } else { extra_data->data15_size = 0; } rmi4_data->report_enable = RPT_DEFAULT; #ifdef REPORT_2D_Z rmi4_data->report_enable |= RPT_Z; #endif #ifdef REPORT_2D_W rmi4_data->report_enable |= (RPT_WX | RPT_WY); #endif retval = synaptics_rmi4_f12_set_enables(rmi4_data, fhandler->full_addr.ctrl_base + ctrl_28_offset); if (retval < 0) goto free_function_handler_mem; retval = synaptics_rmi4_i2c_read(rmi4_data, fhandler->full_addr.ctrl_base + ctrl_8_offset, ctrl_8.data, sizeof(ctrl_8.data)); if (retval < 0) goto free_function_handler_mem; /* Maximum x */ rmi4_data->sensor_max_x = ((unsigned short)ctrl_8.max_x_coord_lsb << 0) | ((unsigned short)ctrl_8.max_x_coord_msb << 8); if (rmi4_data->board->modify_reso) { if (rmi4_data->board->panel_maxx) { if (rmi4_data->board->panel_maxx >= F12_MAX_X) { dev_err(&rmi4_data->i2c_client->dev, "F12 max_x value out of bound."); retval = -EINVAL; goto free_function_handler_mem; } if (rmi4_data->sensor_max_x != rmi4_data->board->panel_maxx) { rmi4_data->sensor_max_x = rmi4_data->board->panel_maxx; ctrl_8.max_x_coord_lsb = (unsigned char) (rmi4_data->board->panel_maxx & MASK_8BIT); ctrl_8.max_x_coord_msb = (unsigned char) ((rmi4_data->board->panel_maxx >> 8) & MASK_8BIT); retval = synaptics_rmi4_i2c_write(rmi4_data, fhandler->full_addr.ctrl_base + ctrl_8_offset, ctrl_8.data, sizeof(ctrl_8.data)); if (retval < 0) goto free_function_handler_mem; } } } /* Maximum y */ rmi4_data->sensor_max_y = ((unsigned short)ctrl_8.max_y_coord_lsb << 0) | ((unsigned short)ctrl_8.max_y_coord_msb << 8); if (rmi4_data->board->modify_reso) { if (rmi4_data->board->panel_maxy) { if (rmi4_data->board->panel_maxy >= F12_MAX_Y) { dev_err(&rmi4_data->i2c_client->dev, "F12 max_y value out of bound."); retval = -EINVAL; goto free_function_handler_mem; } if (rmi4_data->sensor_max_y != rmi4_data->board->panel_maxy) { rmi4_data->sensor_max_y = rmi4_data->board->panel_maxy; ctrl_8.max_y_coord_lsb = (unsigned char) (rmi4_data->board->panel_maxy & MASK_8BIT); ctrl_8.max_y_coord_msb = (unsigned char) ((rmi4_data->board->panel_maxy >> 8) & MASK_8BIT); retval = synaptics_rmi4_i2c_write(rmi4_data, fhandler->full_addr.ctrl_base + ctrl_8_offset, ctrl_8.data, sizeof(ctrl_8.data)); if (retval < 0) goto free_function_handler_mem; } } } dev_dbg(&rmi4_data->i2c_client->dev, "%s: Function %02x max x = %d max y = %d\n", __func__, fhandler->fn_number, rmi4_data->sensor_max_x, rmi4_data->sensor_max_y); rmi4_data->num_of_rx = ctrl_8.num_of_rx; rmi4_data->num_of_tx = ctrl_8.num_of_tx; rmi4_data->max_touch_width = max(rmi4_data->num_of_rx, rmi4_data->num_of_tx); fhandler->intr_reg_num = (intr_count + 7) / 8; if (fhandler->intr_reg_num != 0) fhandler->intr_reg_num -= 1; /* Set an enable bit for each data source */ intr_offset = intr_count % 8; fhandler->intr_mask = 0; for (ii = intr_offset; ii < ((fd->intr_src_count & MASK_3BIT) + intr_offset); ii++) fhandler->intr_mask |= 1 << ii; /* Allocate memory for finger data storage space */ fhandler->data_size = num_of_fingers * size_of_2d_data; fhandler->data = kmalloc(fhandler->data_size, GFP_KERNEL); if (!fhandler->data) { dev_err(&rmi4_data->i2c_client->dev, "%s: Failed to alloc mem for function handler data\n", __func__); retval = -ENOMEM; goto free_function_handler_mem; } return retval; free_function_handler_mem: kfree(fhandler->extra); return retval; } static int synaptics_rmi4_f1a_alloc_mem(struct synaptics_rmi4_data *rmi4_data, struct synaptics_rmi4_fn *fhandler) { int retval; struct synaptics_rmi4_f1a_handle *f1a; f1a = kzalloc(sizeof(*f1a), GFP_KERNEL); if (!f1a) return -ENOMEM; fhandler->data = (void *)f1a; retval = synaptics_rmi4_i2c_read(rmi4_data, fhandler->full_addr.query_base, f1a->button_query.data, sizeof(f1a->button_query.data)); if (retval < 0) { dev_err(&rmi4_data->i2c_client->dev, "%s: Failed to read query registers\n", __func__); return retval; } f1a->button_count = f1a->button_query.max_button_count + 1; f1a->button_bitmask_size = (f1a->button_count + 7) / 8; f1a->button_data_buffer = kcalloc(f1a->button_bitmask_size, sizeof(*(f1a->button_data_buffer)), GFP_KERNEL); if (!f1a->button_data_buffer) return -ENOMEM; f1a->button_map = kcalloc(f1a->button_count, sizeof(*(f1a->button_map)), GFP_KERNEL); if (!f1a->button_map) return -ENOMEM; return 0; } static int synaptics_rmi4_capacitance_button_map( struct synaptics_rmi4_data *rmi4_data, struct synaptics_rmi4_fn *fhandler) { unsigned char ii; struct synaptics_rmi4_f1a_handle *f1a = fhandler->data; const struct synaptics_rmi4_platform_data *pdata = rmi4_data->board; if (!pdata->capacitance_button_map) { dev_info(&rmi4_data->i2c_client->dev, "%s: capacitance_button_map not in use\n", __func__); return 0; } else if (!pdata->capacitance_button_map->map) { dev_err(&rmi4_data->i2c_client->dev, "%s: Button map is missing in board file\n", __func__); return -ENODEV; } else { if (pdata->capacitance_button_map->nbuttons != f1a->button_count) { f1a->valid_button_count = min(f1a->button_count, pdata->capacitance_button_map->nbuttons); } else { f1a->valid_button_count = f1a->button_count; } for (ii = 0; ii < f1a->valid_button_count; ii++) f1a->button_map[ii] = pdata->capacitance_button_map->map[ii]; } return 0; } static void synaptics_rmi4_f1a_kfree(struct synaptics_rmi4_fn *fhandler) { struct synaptics_rmi4_f1a_handle *f1a = fhandler->data; if (f1a) { kfree(f1a->button_data_buffer); kfree(f1a->button_map); kfree(f1a); fhandler->data = NULL; } } static int synaptics_rmi4_f1a_init(struct synaptics_rmi4_data *rmi4_data, struct synaptics_rmi4_fn *fhandler, struct synaptics_rmi4_fn_desc *fd, unsigned int intr_count) { int retval; unsigned char ii; unsigned short intr_offset; fhandler->fn_number = fd->fn_number; fhandler->num_of_data_sources = fd->intr_src_count; fhandler->intr_reg_num = (intr_count + 7) / 8; if (fhandler->intr_reg_num != 0) fhandler->intr_reg_num -= 1; /* Set an enable bit for each data source */ intr_offset = intr_count % 8; fhandler->intr_mask = 0; for (ii = intr_offset; ii < ((fd->intr_src_count & MASK_3BIT) + intr_offset); ii++) fhandler->intr_mask |= 1 << ii; retval = synaptics_rmi4_f1a_alloc_mem(rmi4_data, fhandler); if (retval < 0) goto error_exit; retval = synaptics_rmi4_capacitance_button_map(rmi4_data, fhandler); if (retval < 0) goto error_exit; rmi4_data->button_0d_enabled = 1; return 0; error_exit: synaptics_rmi4_f1a_kfree(fhandler); return retval; } static int synaptics_rmi4_alloc_fh(struct synaptics_rmi4_fn **fhandler, struct synaptics_rmi4_fn_desc *rmi_fd, int page_number) { *fhandler = kzalloc(sizeof(**fhandler), GFP_KERNEL); if (!(*fhandler)) return -ENOMEM; (*fhandler)->full_addr.data_base = (rmi_fd->data_base_addr | (page_number << 8)); (*fhandler)->full_addr.ctrl_base = (rmi_fd->ctrl_base_addr | (page_number << 8)); (*fhandler)->full_addr.cmd_base = (rmi_fd->cmd_base_addr | (page_number << 8)); (*fhandler)->full_addr.query_base = (rmi_fd->query_base_addr | (page_number << 8)); (*fhandler)->fn_number = rmi_fd->fn_number; return 0; } /** * synaptics_rmi4_query_device_info() * * Called by synaptics_rmi4_query_device(). * */ static int synaptics_rmi4_query_device_info( struct synaptics_rmi4_data *rmi4_data) { int retval; unsigned char f01_query[F01_STD_QUERY_LEN]; struct synaptics_rmi4_device_info *rmi = &(rmi4_data->rmi4_mod_info); unsigned char pkg_id[4]; retval = synaptics_rmi4_i2c_read(rmi4_data, rmi4_data->f01_query_base_addr, f01_query, sizeof(f01_query)); if (retval < 0) return retval; /* RMI Version 4.0 currently supported */ rmi->version_major = 4; rmi->version_minor = 0; rmi->manufacturer_id = f01_query[0]; rmi->product_props = f01_query[1]; rmi->product_info[0] = f01_query[2] & MASK_7BIT; rmi->product_info[1] = f01_query[3] & MASK_7BIT; rmi->date_code[0] = f01_query[4] & MASK_5BIT; rmi->date_code[1] = f01_query[5] & MASK_4BIT; rmi->date_code[2] = f01_query[6] & MASK_5BIT; rmi->tester_id = ((f01_query[7] & MASK_7BIT) << 8) | (f01_query[8] & MASK_7BIT); rmi->serial_number = ((f01_query[9] & MASK_7BIT) << 8) | (f01_query[10] & MASK_7BIT); memcpy(rmi->product_id_string, &f01_query[11], 10); if (rmi->manufacturer_id != 1) { dev_err(&rmi4_data->i2c_client->dev, "%s: Non-Synaptics device found, manufacturer ID = %d\n", __func__, rmi->manufacturer_id); } retval = synaptics_rmi4_i2c_read(rmi4_data, rmi4_data->f01_query_base_addr + F01_PACKAGE_ID_OFFSET, pkg_id, sizeof(pkg_id)); if (retval < 0) { dev_err(&rmi4_data->i2c_client->dev, "%s: Failed to read device package id (code %d)\n", __func__, retval); return retval; } rmi->package_id = (pkg_id[1] << 8) | pkg_id[0]; rmi->package_id_rev = (pkg_id[3] << 8) | pkg_id[2]; retval = synaptics_rmi4_i2c_read(rmi4_data, rmi4_data->f01_query_base_addr + F01_BUID_ID_OFFSET, rmi->build_id, sizeof(rmi->build_id)); if (retval < 0) { dev_err(&rmi4_data->i2c_client->dev, "%s: Failed to read firmware build id (code %d)\n", __func__, retval); return retval; } return 0; } /* * This function checks whether the fhandler already existis in the * support_fn_list or not. * If it exists then return 1 as found or return 0 as not found. * * Called by synaptics_rmi4_query_device(). */ static int synaptics_rmi4_check_fn_list(struct synaptics_rmi4_data *rmi4_data, struct synaptics_rmi4_fn *fhandler) { int found = 0; struct synaptics_rmi4_fn *new_fhandler; struct synaptics_rmi4_device_info *rmi; rmi = &(rmi4_data->rmi4_mod_info); mutex_lock(&rmi->support_fn_list_mutex); if (!list_empty(&rmi->support_fn_list)) list_for_each_entry(new_fhandler, &rmi->support_fn_list, link) if (new_fhandler->fn_number == fhandler->fn_number) found = 1; mutex_unlock(&rmi->support_fn_list_mutex); return found; } /** * synaptics_rmi4_query_device() * * Called by synaptics_rmi4_probe(). * * This function scans the page description table, records the offsets * to the register types of Function $01, sets up the function handlers * for Function $11 and Function $12, determines the number of interrupt * sources from the sensor, adds valid Functions with data inputs to the * Function linked list, parses information from the query registers of * Function $01, and enables the interrupt sources from the valid Functions * with data inputs. */ static int synaptics_rmi4_query_device(struct synaptics_rmi4_data *rmi4_data) { int retval, found; unsigned char ii; unsigned char page_number; unsigned char intr_count = 0; unsigned char data_sources = 0; unsigned short pdt_entry_addr; unsigned short intr_addr; struct synaptics_rmi4_f01_device_status status; struct synaptics_rmi4_fn_desc rmi_fd; struct synaptics_rmi4_fn *fhandler; struct synaptics_rmi4_device_info *rmi; rmi = &(rmi4_data->rmi4_mod_info); /* Scan the page description tables of the pages to service */ for (page_number = 0; page_number < PAGES_TO_SERVICE; page_number++) { for (pdt_entry_addr = PDT_START; pdt_entry_addr > PDT_END; pdt_entry_addr -= PDT_ENTRY_SIZE) { pdt_entry_addr |= (page_number << 8); retval = synaptics_rmi4_i2c_read(rmi4_data, pdt_entry_addr, (unsigned char *)&rmi_fd, sizeof(rmi_fd)); if (retval < 0) return retval; fhandler = NULL; found = 0; if (rmi_fd.fn_number == 0) { dev_dbg(&rmi4_data->i2c_client->dev, "%s: Reached end of PDT\n", __func__); break; } dev_dbg(&rmi4_data->i2c_client->dev, "%s: F%02x found (page %d)\n", __func__, rmi_fd.fn_number, page_number); switch (rmi_fd.fn_number) { case SYNAPTICS_RMI4_F01: rmi4_data->f01_query_base_addr = rmi_fd.query_base_addr; rmi4_data->f01_ctrl_base_addr = rmi_fd.ctrl_base_addr; rmi4_data->f01_data_base_addr = rmi_fd.data_base_addr; rmi4_data->f01_cmd_base_addr = rmi_fd.cmd_base_addr; retval = synaptics_rmi4_query_device_info(rmi4_data); if (retval < 0) return retval; retval = synaptics_rmi4_i2c_read(rmi4_data, rmi4_data->f01_data_base_addr, status.data, sizeof(status.data)); if (retval < 0) return retval; while (status.status_code == STATUS_CRC_IN_PROGRESS) { usleep_range(1000, 1001); retval = synaptics_rmi4_i2c_read( rmi4_data, rmi4_data->f01_data_base_addr, status.data, sizeof(status.data)); if (retval < 0) return retval; } if (status.flash_prog == 1) { pr_notice("%s: In flash prog mode, status = 0x%02x\n", __func__, status.status_code); goto flash_prog_mode; } break; case SYNAPTICS_RMI4_F11: if (rmi_fd.intr_src_count == 0) break; retval = synaptics_rmi4_alloc_fh(&fhandler, &rmi_fd, page_number); if (retval < 0) { dev_err(&rmi4_data->i2c_client->dev, "%s: Failed to alloc for F%d\n", __func__, rmi_fd.fn_number); return retval; } retval = synaptics_rmi4_f11_init(rmi4_data, fhandler, &rmi_fd, intr_count); if (retval < 0) return retval; break; case SYNAPTICS_RMI4_F12: if (rmi_fd.intr_src_count == 0) break; retval = synaptics_rmi4_alloc_fh(&fhandler, &rmi_fd, page_number); if (retval < 0) { dev_err(&rmi4_data->i2c_client->dev, "%s: Failed to alloc for F%d\n", __func__, rmi_fd.fn_number); return retval; } retval = synaptics_rmi4_f12_init(rmi4_data, fhandler, &rmi_fd, intr_count); if (retval < 0) return retval; break; case SYNAPTICS_RMI4_F1A: if (rmi_fd.intr_src_count == 0) break; retval = synaptics_rmi4_alloc_fh(&fhandler, &rmi_fd, page_number); if (retval < 0) { dev_err(&rmi4_data->i2c_client->dev, "%s: Failed to alloc for F%d\n", __func__, rmi_fd.fn_number); return retval; } retval = synaptics_rmi4_f1a_init(rmi4_data, fhandler, &rmi_fd, intr_count); if (retval < 0) return retval; break; } /* Accumulate the interrupt count */ intr_count += (rmi_fd.intr_src_count & MASK_3BIT); if (fhandler && rmi_fd.intr_src_count) { /* Want to check whether the fhandler already exists in the support_fn_list or not. If not found then add it to the list, otherwise free the memory allocated to it. */ found = synaptics_rmi4_check_fn_list(rmi4_data, fhandler); if (!found) { mutex_lock(&rmi->support_fn_list_mutex); list_add_tail(&fhandler->link, &rmi->support_fn_list); mutex_unlock( &rmi->support_fn_list_mutex); } else { if (fhandler->fn_number == SYNAPTICS_RMI4_F1A) { synaptics_rmi4_f1a_kfree( fhandler); } else { kfree(fhandler->data); kfree(fhandler->extra); } kfree(fhandler); } } } } flash_prog_mode: rmi4_data->num_of_intr_regs = (intr_count + 7) / 8; dev_dbg(&rmi4_data->i2c_client->dev, "%s: Number of interrupt registers = %d\n", __func__, rmi4_data->num_of_intr_regs); memset(rmi4_data->intr_mask, 0x00, sizeof(rmi4_data->intr_mask)); /* * Map out the interrupt bit masks for the interrupt sources * from the registered function handlers. */ mutex_lock(&rmi->support_fn_list_mutex); if (!list_empty(&rmi->support_fn_list)) { list_for_each_entry(fhandler, &rmi->support_fn_list, link) data_sources += fhandler->num_of_data_sources; } mutex_unlock(&rmi->support_fn_list_mutex); if (data_sources) { mutex_lock(&rmi->support_fn_list_mutex); if (!list_empty(&rmi->support_fn_list)) { list_for_each_entry(fhandler, &rmi->support_fn_list, link) { if (fhandler->num_of_data_sources) { rmi4_data->intr_mask[fhandler-> intr_reg_num] |= fhandler->intr_mask; } } } mutex_unlock(&rmi->support_fn_list_mutex); } /* Enable the interrupt sources */ for (ii = 0; ii < rmi4_data->num_of_intr_regs; ii++) { if (rmi4_data->intr_mask[ii] != 0x00) { dev_dbg(&rmi4_data->i2c_client->dev, "%s: Interrupt enable mask %d = 0x%02x\n", __func__, ii, rmi4_data->intr_mask[ii]); intr_addr = rmi4_data->f01_ctrl_base_addr + 1 + ii; retval = synaptics_rmi4_i2c_write(rmi4_data, intr_addr, &(rmi4_data->intr_mask[ii]), sizeof(rmi4_data->intr_mask[ii])); if (retval < 0) return retval; } } return 0; } static int synaptics_rmi4_reset_command(struct synaptics_rmi4_data *rmi4_data) { int retval; int page_number; unsigned char command = 0x01; unsigned short pdt_entry_addr; struct synaptics_rmi4_fn_desc rmi_fd; bool done = false; /* Scan the page description tables of the pages to service */ for (page_number = 0; page_number < PAGES_TO_SERVICE; page_number++) { for (pdt_entry_addr = PDT_START; pdt_entry_addr > PDT_END; pdt_entry_addr -= PDT_ENTRY_SIZE) { retval = synaptics_rmi4_i2c_read(rmi4_data, pdt_entry_addr, (unsigned char *)&rmi_fd, sizeof(rmi_fd)); if (retval < 0) return retval; if (rmi_fd.fn_number == 0) break; switch (rmi_fd.fn_number) { case SYNAPTICS_RMI4_F01: rmi4_data->f01_cmd_base_addr = rmi_fd.cmd_base_addr; done = true; break; } } if (done) { dev_info(&rmi4_data->i2c_client->dev, "%s: Find F01 in page description table 0x%x\n", __func__, rmi4_data->f01_cmd_base_addr); break; } } if (!done) { dev_err(&rmi4_data->i2c_client->dev, "%s: Cannot find F01 in page description table\n", __func__); return -EINVAL; } retval = synaptics_rmi4_i2c_write(rmi4_data, rmi4_data->f01_cmd_base_addr, &command, sizeof(command)); if (retval < 0) { dev_err(&rmi4_data->i2c_client->dev, "%s: Failed to issue reset command, error = %d\n", __func__, retval); return retval; } msleep(rmi4_data->board->reset_delay); return retval; }; static int synaptics_rmi4_reset_device(struct synaptics_rmi4_data *rmi4_data) { int retval; struct synaptics_rmi4_fn *fhandler; struct synaptics_rmi4_fn *next_fhandler; struct synaptics_rmi4_device_info *rmi; rmi = &(rmi4_data->rmi4_mod_info); retval = synaptics_rmi4_reset_command(rmi4_data); if (retval < 0) { dev_err(&rmi4_data->i2c_client->dev, "%s: Failed to send command reset\n", __func__); return retval; } if (!list_empty(&rmi->support_fn_list)) { list_for_each_entry_safe(fhandler, next_fhandler, &rmi->support_fn_list, link) { if (fhandler->fn_number == SYNAPTICS_RMI4_F1A) synaptics_rmi4_f1a_kfree(fhandler); else { kfree(fhandler->data); kfree(fhandler->extra); } kfree(fhandler); } } INIT_LIST_HEAD(&rmi->support_fn_list); retval = synaptics_rmi4_query_device(rmi4_data); if (retval < 0) { dev_err(&rmi4_data->i2c_client->dev, "%s: Failed to query device\n", __func__); return retval; } return 0; } /** * synaptics_rmi4_detection_work() * * Called by the kernel at the scheduled time. * * This function is a self-rearming work thread that checks for the * insertion and removal of other expansion Function modules such as * rmi_dev and calls their initialization and removal callback functions * accordingly. */ static void synaptics_rmi4_detection_work(struct work_struct *work) { struct synaptics_rmi4_exp_fn *exp_fhandler, *next_list_entry; struct synaptics_rmi4_data *rmi4_data = container_of(work, struct synaptics_rmi4_data, det_work.work); mutex_lock(&exp_fn_list_mutex); if (!list_empty(&exp_fn_list)) { list_for_each_entry_safe(exp_fhandler, next_list_entry, &exp_fn_list, link) { if ((exp_fhandler->func_init != NULL) && (exp_fhandler->inserted == false)) { if (exp_fhandler->func_init(rmi4_data) < 0) { list_del(&exp_fhandler->link); kfree(exp_fhandler); } else { exp_fhandler->inserted = true; } } else if ((exp_fhandler->func_init == NULL) && (exp_fhandler->inserted == true)) { exp_fhandler->func_remove(rmi4_data); list_del(&exp_fhandler->link); kfree(exp_fhandler); } } } mutex_unlock(&exp_fn_list_mutex); } /** * synaptics_rmi4_new_function() * * Called by other expansion Function modules in their module init and * module exit functions. * * This function is used by other expansion Function modules such as * rmi_dev to register themselves with the driver by providing their * initialization and removal callback function pointers so that they * can be inserted or removed dynamically at module init and exit times, * respectively. */ void synaptics_rmi4_new_function(enum exp_fn fn_type, bool insert, int (*func_init)(struct synaptics_rmi4_data *rmi4_data), void (*func_remove)(struct synaptics_rmi4_data *rmi4_data), void (*func_attn)(struct synaptics_rmi4_data *rmi4_data, unsigned char intr_mask)) { struct synaptics_rmi4_exp_fn *exp_fhandler; if (!exp_fn_inited) { mutex_init(&exp_fn_list_mutex); INIT_LIST_HEAD(&exp_fn_list); exp_fn_inited = 1; } mutex_lock(&exp_fn_list_mutex); if (insert) { exp_fhandler = kzalloc(sizeof(*exp_fhandler), GFP_KERNEL); if (!exp_fhandler) { pr_err("%s: Failed to alloc mem for expansion function\n", __func__); goto exit; } exp_fhandler->fn_type = fn_type; exp_fhandler->func_init = func_init; exp_fhandler->func_attn = func_attn; exp_fhandler->func_remove = func_remove; exp_fhandler->inserted = false; list_add_tail(&exp_fhandler->link, &exp_fn_list); } else { if (!list_empty(&exp_fn_list)) { list_for_each_entry(exp_fhandler, &exp_fn_list, link) { if (exp_fhandler->func_init == func_init) { exp_fhandler->inserted = false; exp_fhandler->func_init = NULL; exp_fhandler->func_attn = NULL; goto exit; } } } } exit: mutex_unlock(&exp_fn_list_mutex); } EXPORT_SYMBOL(synaptics_rmi4_new_function); static int reg_set_optimum_mode_check(struct regulator *reg, int load_uA) { return (regulator_count_voltages(reg) > 0) ? regulator_set_optimum_mode(reg, load_uA) : 0; } static int synaptics_rmi4_regulator_configure(struct synaptics_rmi4_data *rmi4_data, bool on) { int retval; if (on == false) goto hw_shutdown; rmi4_data->vdd = regulator_get(&rmi4_data->i2c_client->dev, "vdd"); if (IS_ERR(rmi4_data->vdd)) { dev_err(&rmi4_data->i2c_client->dev, "%s: Failed to get vdd regulator\n", __func__); return PTR_ERR(rmi4_data->vdd); } if (regulator_count_voltages(rmi4_data->vdd) > 0) { retval = regulator_set_voltage(rmi4_data->vdd, RMI4_VTG_MIN_UV, RMI4_VTG_MAX_UV); if (retval) { dev_err(&rmi4_data->i2c_client->dev, "regulator set_vtg failed retval =%d\n", retval); goto err_set_vtg_vdd; } } if (rmi4_data->board->i2c_pull_up) { rmi4_data->vcc_i2c = regulator_get(&rmi4_data->i2c_client->dev, "vcc_i2c"); if (IS_ERR(rmi4_data->vcc_i2c)) { dev_err(&rmi4_data->i2c_client->dev, "%s: Failed to get i2c regulator\n", __func__); retval = PTR_ERR(rmi4_data->vcc_i2c); goto err_get_vtg_i2c; } if (regulator_count_voltages(rmi4_data->vcc_i2c) > 0) { retval = regulator_set_voltage(rmi4_data->vcc_i2c, RMI4_I2C_VTG_MIN_UV, RMI4_I2C_VTG_MAX_UV); if (retval) { dev_err(&rmi4_data->i2c_client->dev, "reg set i2c vtg failed retval =%d\n", retval); goto err_set_vtg_i2c; } } } return 0; err_set_vtg_i2c: if (rmi4_data->board->i2c_pull_up) regulator_put(rmi4_data->vcc_i2c); err_get_vtg_i2c: if (regulator_count_voltages(rmi4_data->vdd) > 0) regulator_set_voltage(rmi4_data->vdd, 0, RMI4_VTG_MAX_UV); err_set_vtg_vdd: regulator_put(rmi4_data->vdd); return retval; hw_shutdown: if (regulator_count_voltages(rmi4_data->vdd) > 0) regulator_set_voltage(rmi4_data->vdd, 0, RMI4_VTG_MAX_UV); regulator_put(rmi4_data->vdd); if (rmi4_data->board->i2c_pull_up) { if (regulator_count_voltages(rmi4_data->vcc_i2c) > 0) regulator_set_voltage(rmi4_data->vcc_i2c, 0, RMI4_I2C_VTG_MAX_UV); regulator_put(rmi4_data->vcc_i2c); } return 0; }; static int synaptics_rmi4_power_on(struct synaptics_rmi4_data *rmi4_data, bool on) { int retval; if (on == false) goto power_off; retval = reg_set_optimum_mode_check(rmi4_data->vdd, RMI4_ACTIVE_LOAD_UA); if (retval < 0) { dev_err(&rmi4_data->i2c_client->dev, "Regulator vdd set_opt failed rc=%d\n", retval); return retval; } retval = regulator_enable(rmi4_data->vdd); if (retval) { dev_err(&rmi4_data->i2c_client->dev, "Regulator vdd enable failed rc=%d\n", retval); goto error_reg_en_vdd; } if (rmi4_data->board->i2c_pull_up) { retval = reg_set_optimum_mode_check(rmi4_data->vcc_i2c, RMI4_I2C_LOAD_UA); if (retval < 0) { dev_err(&rmi4_data->i2c_client->dev, "Regulator vcc_i2c set_opt failed rc=%d\n", retval); goto error_reg_opt_i2c; } retval = regulator_enable(rmi4_data->vcc_i2c); if (retval) { dev_err(&rmi4_data->i2c_client->dev, "Regulator vcc_i2c enable failed rc=%d\n", retval); goto error_reg_en_vcc_i2c; } } return 0; error_reg_en_vcc_i2c: if (rmi4_data->board->i2c_pull_up) reg_set_optimum_mode_check(rmi4_data->vcc_i2c, 0); error_reg_opt_i2c: regulator_disable(rmi4_data->vdd); error_reg_en_vdd: reg_set_optimum_mode_check(rmi4_data->vdd, 0); return retval; power_off: reg_set_optimum_mode_check(rmi4_data->vdd, 0); regulator_disable(rmi4_data->vdd); if (rmi4_data->board->i2c_pull_up) { reg_set_optimum_mode_check(rmi4_data->vcc_i2c, 0); regulator_disable(rmi4_data->vcc_i2c); } return 0; } static int synaptics_rmi4_pinctrl_init(struct synaptics_rmi4_data *rmi4_data) { int retval; /* Get pinctrl if target uses pinctrl */ rmi4_data->ts_pinctrl = devm_pinctrl_get(&(rmi4_data->i2c_client->dev)); if (IS_ERR_OR_NULL(rmi4_data->ts_pinctrl)) { retval = PTR_ERR(rmi4_data->ts_pinctrl); dev_dbg(&rmi4_data->i2c_client->dev, "Target does not use pinctrl %d\n", retval); goto err_pinctrl_get; } rmi4_data->pinctrl_state_active = pinctrl_lookup_state(rmi4_data->ts_pinctrl, PINCTRL_STATE_ACTIVE); if (IS_ERR_OR_NULL(rmi4_data->pinctrl_state_active)) { retval = PTR_ERR(rmi4_data->pinctrl_state_active); dev_err(&rmi4_data->i2c_client->dev, "Can not lookup %s pinstate %d\n", PINCTRL_STATE_ACTIVE, retval); goto err_pinctrl_lookup; } rmi4_data->pinctrl_state_suspend = pinctrl_lookup_state(rmi4_data->ts_pinctrl, PINCTRL_STATE_SUSPEND); if (IS_ERR_OR_NULL(rmi4_data->pinctrl_state_suspend)) { retval = PTR_ERR(rmi4_data->pinctrl_state_suspend); dev_err(&rmi4_data->i2c_client->dev, "Can not lookup %s pinstate %d\n", PINCTRL_STATE_SUSPEND, retval); goto err_pinctrl_lookup; } rmi4_data->pinctrl_state_release = pinctrl_lookup_state(rmi4_data->ts_pinctrl, PINCTRL_STATE_RELEASE); if (IS_ERR_OR_NULL(rmi4_data->pinctrl_state_release)) { retval = PTR_ERR(rmi4_data->pinctrl_state_release); dev_dbg(&rmi4_data->i2c_client->dev, "Can not lookup %s pinstate %d\n", PINCTRL_STATE_RELEASE, retval); } return 0; err_pinctrl_lookup: devm_pinctrl_put(rmi4_data->ts_pinctrl); err_pinctrl_get: rmi4_data->ts_pinctrl = NULL; return retval; } static int synaptics_rmi4_gpio_configure(struct synaptics_rmi4_data *rmi4_data, bool on) { int retval = 0; if (on) { if (gpio_is_valid(rmi4_data->board->irq_gpio)) { /* configure touchscreen irq gpio */ retval = gpio_request(rmi4_data->board->irq_gpio, "rmi4_irq_gpio"); if (retval) { dev_err(&rmi4_data->i2c_client->dev, "unable to request gpio [%d]\n", rmi4_data->board->irq_gpio); goto err_irq_gpio_req; } retval = gpio_direction_input(rmi4_data->board-> irq_gpio); if (retval) { dev_err(&rmi4_data->i2c_client->dev, "unable to set direction for gpio [%d]\n", rmi4_data->board->irq_gpio); goto err_irq_gpio_dir; } } else { dev_err(&rmi4_data->i2c_client->dev, "irq gpio not provided\n"); goto err_irq_gpio_req; } if (gpio_is_valid(rmi4_data->board->reset_gpio)) { /* configure touchscreen reset out gpio */ retval = gpio_request(rmi4_data->board->reset_gpio, "rmi4_reset_gpio"); if (retval) { dev_err(&rmi4_data->i2c_client->dev, "unable to request gpio [%d]\n", rmi4_data->board->reset_gpio); goto err_irq_gpio_dir; } retval = gpio_direction_output(rmi4_data->board-> reset_gpio, 1); if (retval) { dev_err(&rmi4_data->i2c_client->dev, "unable to set direction for gpio [%d]\n", rmi4_data->board->reset_gpio); goto err_reset_gpio_dir; } gpio_set_value(rmi4_data->board->reset_gpio, 1); msleep(rmi4_data->board->reset_delay); } else synaptics_rmi4_reset_command(rmi4_data); return 0; } if (rmi4_data->board->disable_gpios) { if (gpio_is_valid(rmi4_data->board->irq_gpio)) gpio_free(rmi4_data->board->irq_gpio); if (gpio_is_valid(rmi4_data->board->reset_gpio)) { /* * This is intended to save leakage current * only. Even if the call(gpio_direction_input) * fails, only leakage current will be more but * functionality will not be affected. */ retval = gpio_direction_input(rmi4_data-> board->reset_gpio); if (retval) { dev_err(&rmi4_data->i2c_client->dev, "unable to set direction for gpio [%d]\n", rmi4_data->board->irq_gpio); } gpio_free(rmi4_data->board->reset_gpio); } } return 0; err_reset_gpio_dir: if (gpio_is_valid(rmi4_data->board->reset_gpio)) gpio_free(rmi4_data->board->reset_gpio); err_irq_gpio_dir: if (gpio_is_valid(rmi4_data->board->irq_gpio)) gpio_free(rmi4_data->board->irq_gpio); err_irq_gpio_req: return retval; } /** * synaptics_rmi4_probe() * * Called by the kernel when an association with an I2C device of the * same name is made (after doing i2c_add_driver). * * This function allocates and initializes the resources for the driver * as an input driver, turns on the power to the sensor, queries the * sensor for its supported Functions and characteristics, registers * the driver to the input subsystem, sets up the interrupt, handles * the registration of the early_suspend and late_resume functions, * and creates a work queue for detection of other expansion Function * modules. */ static int synaptics_rmi4_probe(struct i2c_client *client, const struct i2c_device_id *dev_id) { int retval = 0; unsigned char ii; unsigned char attr_count; struct synaptics_rmi4_f1a_handle *f1a; struct synaptics_rmi4_fn *fhandler; struct synaptics_rmi4_fn *next_fhandler; struct synaptics_rmi4_data *rmi4_data; struct synaptics_rmi4_device_info *rmi; struct synaptics_rmi4_platform_data *platform_data = client->dev.platform_data; struct dentry *temp; if (!i2c_check_functionality(client->adapter, I2C_FUNC_SMBUS_BYTE_DATA)) { dev_err(&client->dev, "%s: SMBus byte data not supported\n", __func__); return -EIO; } if (client->dev.of_node) { platform_data = devm_kzalloc(&client->dev, sizeof(*platform_data), GFP_KERNEL); if (!platform_data) { dev_err(&client->dev, "Failed to allocate memory\n"); return -ENOMEM; } retval = synaptics_rmi4_parse_dt(&client->dev, platform_data); if (retval) return retval; } else { platform_data = client->dev.platform_data; } if (!platform_data) { dev_err(&client->dev, "%s: No platform data found\n", __func__); return -EINVAL; } rmi4_data = kzalloc(sizeof(*rmi4_data) * 2, GFP_KERNEL); if (!rmi4_data) return -ENOMEM; rmi = &(rmi4_data->rmi4_mod_info); rmi4_data->input_dev = input_allocate_device(); if (rmi4_data->input_dev == NULL) { retval = -ENOMEM; goto err_input_device; } rmi4_data->i2c_client = client; rmi4_data->current_page = MASK_8BIT; rmi4_data->board = platform_data; rmi4_data->touch_stopped = false; rmi4_data->sensor_sleep = false; rmi4_data->irq_enabled = false; rmi4_data->fw_updating = false; rmi4_data->suspended = false; rmi4_data->i2c_read = synaptics_rmi4_i2c_read; rmi4_data->i2c_write = synaptics_rmi4_i2c_write; rmi4_data->irq_enable = synaptics_rmi4_irq_enable; rmi4_data->reset_device = synaptics_rmi4_reset_device; rmi4_data->flip_x = rmi4_data->board->x_flip; rmi4_data->flip_y = rmi4_data->board->y_flip; if (rmi4_data->board->fw_image_name) snprintf(rmi4_data->fw_image_name, NAME_BUFFER_SIZE, "%s", rmi4_data->board->fw_image_name); rmi4_data->input_dev->name = DRIVER_NAME; rmi4_data->input_dev->phys = INPUT_PHYS_NAME; rmi4_data->input_dev->id.bustype = BUS_I2C; rmi4_data->input_dev->id.product = SYNAPTICS_DSX_DRIVER_PRODUCT; rmi4_data->input_dev->id.version = SYNAPTICS_DSX_DRIVER_VERSION; rmi4_data->input_dev->dev.parent = &client->dev; input_set_drvdata(rmi4_data->input_dev, rmi4_data); set_bit(EV_SYN, rmi4_data->input_dev->evbit); set_bit(EV_KEY, rmi4_data->input_dev->evbit); set_bit(EV_ABS, rmi4_data->input_dev->evbit); set_bit(BTN_TOUCH, rmi4_data->input_dev->keybit); set_bit(BTN_TOOL_FINGER, rmi4_data->input_dev->keybit); #ifdef INPUT_PROP_DIRECT set_bit(INPUT_PROP_DIRECT, rmi4_data->input_dev->propbit); #endif retval = synaptics_rmi4_regulator_configure(rmi4_data, true); if (retval < 0) { dev_err(&client->dev, "Failed to configure regulators\n"); goto err_reg_configure; } retval = synaptics_rmi4_power_on(rmi4_data, true); if (retval < 0) { dev_err(&client->dev, "Failed to power on\n"); goto err_power_device; } retval = synaptics_rmi4_pinctrl_init(rmi4_data); if (!retval && rmi4_data->ts_pinctrl) { /* * Pinctrl handle is optional. If pinctrl handle is found * let pins to be configured in active state. If not found * continue further without error */ if (pinctrl_select_state(rmi4_data->ts_pinctrl, rmi4_data->pinctrl_state_active)) dev_err(&rmi4_data->i2c_client->dev, "Can not select %s pinstate\n", PINCTRL_STATE_ACTIVE); } retval = synaptics_rmi4_gpio_configure(rmi4_data, true); if (retval < 0) { dev_err(&client->dev, "Failed to configure gpios\n"); goto err_gpio_config; } init_waitqueue_head(&rmi4_data->wait); mutex_init(&(rmi4_data->rmi4_io_ctrl_mutex)); INIT_LIST_HEAD(&rmi->support_fn_list); mutex_init(&rmi->support_fn_list_mutex); retval = synaptics_rmi4_query_device(rmi4_data); if (retval < 0) { dev_err(&client->dev, "%s: Failed to query device\n", __func__); goto err_free_gpios; } if (platform_data->detect_device) { retval = synaptics_rmi4_parse_dt_children(&client->dev, platform_data, rmi4_data); if (retval < 0) dev_err(&client->dev, "%s: Failed to parse device tree property\n", __func__); } if (rmi4_data->board->disp_maxx) rmi4_data->disp_maxx = rmi4_data->board->disp_maxx; else rmi4_data->disp_maxx = rmi4_data->sensor_max_x; if (rmi4_data->board->disp_maxy) rmi4_data->disp_maxy = rmi4_data->board->disp_maxy; else rmi4_data->disp_maxy = rmi4_data->sensor_max_y; if (rmi4_data->board->disp_minx) rmi4_data->disp_minx = rmi4_data->board->disp_minx; else rmi4_data->disp_minx = 0; if (rmi4_data->board->disp_miny) rmi4_data->disp_miny = rmi4_data->board->disp_miny; else rmi4_data->disp_miny = 0; input_set_abs_params(rmi4_data->input_dev, ABS_MT_POSITION_X, rmi4_data->disp_minx, rmi4_data->disp_maxx, 0, 0); input_set_abs_params(rmi4_data->input_dev, ABS_MT_POSITION_Y, rmi4_data->disp_miny, rmi4_data->disp_maxy, 0, 0); input_set_abs_params(rmi4_data->input_dev, ABS_PRESSURE, 0, 255, 0, 0); #ifdef REPORT_2D_W input_set_abs_params(rmi4_data->input_dev, ABS_MT_TOUCH_MAJOR, 0, rmi4_data->max_touch_width, 0, 0); input_set_abs_params(rmi4_data->input_dev, ABS_MT_TOUCH_MINOR, 0, rmi4_data->max_touch_width, 0, 0); #endif #ifdef TYPE_B_PROTOCOL input_mt_init_slots(rmi4_data->input_dev, rmi4_data->num_of_fingers, 0); #endif i2c_set_clientdata(client, rmi4_data); f1a = NULL; mutex_lock(&rmi->support_fn_list_mutex); if (!list_empty(&rmi->support_fn_list)) { list_for_each_entry(fhandler, &rmi->support_fn_list, link) { if (fhandler->fn_number == SYNAPTICS_RMI4_F1A) f1a = fhandler->data; } } mutex_unlock(&rmi->support_fn_list_mutex); if (f1a) { for (ii = 0; ii < f1a->valid_button_count; ii++) { set_bit(f1a->button_map[ii], rmi4_data->input_dev->keybit); input_set_capability(rmi4_data->input_dev, EV_KEY, f1a->button_map[ii]); } } retval = input_register_device(rmi4_data->input_dev); if (retval) { dev_err(&client->dev, "%s: Failed to register input device\n", __func__); goto err_register_input; } configure_sleep(rmi4_data); if (!exp_fn_inited) { mutex_init(&exp_fn_list_mutex); INIT_LIST_HEAD(&exp_fn_list); exp_fn_inited = 1; } rmi4_data->det_workqueue = create_singlethread_workqueue("rmi_det_workqueue"); INIT_DELAYED_WORK(&rmi4_data->det_work, synaptics_rmi4_detection_work); queue_delayed_work(rmi4_data->det_workqueue, &rmi4_data->det_work, msecs_to_jiffies(EXP_FN_DET_INTERVAL)); rmi4_data->irq = gpio_to_irq(platform_data->irq_gpio); retval = request_threaded_irq(rmi4_data->irq, NULL, synaptics_rmi4_irq, platform_data->irq_flags, DRIVER_NAME, rmi4_data); rmi4_data->irq_enabled = true; if (retval < 0) { dev_err(&client->dev, "%s: Failed to create irq thread\n", __func__); goto err_enable_irq; } rmi4_data->dir = debugfs_create_dir(DEBUGFS_DIR_NAME, NULL); if (rmi4_data->dir == NULL || IS_ERR(rmi4_data->dir)) { dev_err(&client->dev, "%s: Failed to create debugfs directory, rc = %ld\n", __func__, PTR_ERR(rmi4_data->dir)); retval = PTR_ERR(rmi4_data->dir); goto err_create_debugfs_dir; } temp = debugfs_create_file("suspend", S_IRUSR | S_IWUSR, rmi4_data->dir, rmi4_data, &debug_suspend_fops); if (temp == NULL || IS_ERR(temp)) { dev_err(&client->dev, "%s: Failed to create suspend debugfs file, rc = %ld\n", __func__, PTR_ERR(temp)); retval = PTR_ERR(temp); goto err_create_debugfs_file; } for (attr_count = 0; attr_count < ARRAY_SIZE(attrs); attr_count++) { retval = sysfs_create_file(&client->dev.kobj, &attrs[attr_count].attr); if (retval < 0) { dev_err(&client->dev, "%s: Failed to create sysfs attributes\n", __func__); goto err_sysfs; } } synaptics_rmi4_sensor_wake(rmi4_data); retval = synaptics_rmi4_irq_enable(rmi4_data, true); if (retval < 0) { dev_err(&client->dev, "%s: Failed to enable attention interrupt\n", __func__); goto err_sysfs; } synaptics_secure_touch_init(rmi4_data); synaptics_secure_touch_stop(rmi4_data, 1); retval = synaptics_rmi4_check_configuration(rmi4_data); if (retval < 0) { dev_err(&client->dev, "Failed to check configuration\n"); return retval; } return retval; err_sysfs: for (attr_count--; attr_count >= 0; attr_count--) { sysfs_remove_file(&rmi4_data->input_dev->dev.kobj, &attrs[attr_count].attr); } err_create_debugfs_file: debugfs_remove_recursive(rmi4_data->dir); err_create_debugfs_dir: free_irq(rmi4_data->irq, rmi4_data); err_enable_irq: cancel_delayed_work_sync(&rmi4_data->det_work); flush_workqueue(rmi4_data->det_workqueue); destroy_workqueue(rmi4_data->det_workqueue); input_unregister_device(rmi4_data->input_dev); err_register_input: mutex_lock(&rmi->support_fn_list_mutex); if (!list_empty(&rmi->support_fn_list)) { list_for_each_entry_safe(fhandler, next_fhandler, &rmi->support_fn_list, link) { if (fhandler->fn_number == SYNAPTICS_RMI4_F1A) synaptics_rmi4_f1a_kfree(fhandler); else { kfree(fhandler->data); kfree(fhandler->extra); } kfree(fhandler); } } mutex_unlock(&rmi->support_fn_list_mutex); err_free_gpios: if (gpio_is_valid(rmi4_data->board->reset_gpio)) gpio_free(rmi4_data->board->reset_gpio); if (gpio_is_valid(rmi4_data->board->irq_gpio)) gpio_free(rmi4_data->board->irq_gpio); err_gpio_config: if (rmi4_data->ts_pinctrl) { if (IS_ERR_OR_NULL(rmi4_data->pinctrl_state_release)) { devm_pinctrl_put(rmi4_data->ts_pinctrl); rmi4_data->ts_pinctrl = NULL; } else { retval = pinctrl_select_state(rmi4_data->ts_pinctrl, rmi4_data->pinctrl_state_release); if (retval) pr_err("failed to select release pinctrl state\n"); } } synaptics_rmi4_power_on(rmi4_data, false); err_power_device: synaptics_rmi4_regulator_configure(rmi4_data, false); err_reg_configure: input_free_device(rmi4_data->input_dev); rmi4_data->input_dev = NULL; err_input_device: kfree(rmi4_data); return retval; } /** * synaptics_rmi4_remove() * * Called by the kernel when the association with an I2C device of the * same name is broken (when the driver is unloaded). * * This function terminates the work queue, stops sensor data acquisition, * frees the interrupt, unregisters the driver from the input subsystem, * turns off the power to the sensor, and frees other allocated resources. */ static int synaptics_rmi4_remove(struct i2c_client *client) { unsigned char attr_count; struct synaptics_rmi4_fn *fhandler; struct synaptics_rmi4_fn *next_fhandler; struct synaptics_rmi4_data *rmi4_data = i2c_get_clientdata(client); struct synaptics_rmi4_device_info *rmi; int retval; rmi = &(rmi4_data->rmi4_mod_info); debugfs_remove_recursive(rmi4_data->dir); cancel_delayed_work_sync(&rmi4_data->det_work); flush_workqueue(rmi4_data->det_workqueue); destroy_workqueue(rmi4_data->det_workqueue); rmi4_data->touch_stopped = true; wake_up(&rmi4_data->wait); free_irq(rmi4_data->irq, rmi4_data); for (attr_count = 0; attr_count < ARRAY_SIZE(attrs); attr_count++) { sysfs_remove_file(&rmi4_data->input_dev->dev.kobj, &attrs[attr_count].attr); } input_unregister_device(rmi4_data->input_dev); mutex_lock(&rmi->support_fn_list_mutex); if (!list_empty(&rmi->support_fn_list)) { list_for_each_entry_safe(fhandler, next_fhandler, &rmi->support_fn_list, link) { if (fhandler->fn_number == SYNAPTICS_RMI4_F1A) synaptics_rmi4_f1a_kfree(fhandler); else { kfree(fhandler->data); kfree(fhandler->extra); } kfree(fhandler); } } mutex_unlock(&rmi->support_fn_list_mutex); if (gpio_is_valid(rmi4_data->board->reset_gpio)) gpio_free(rmi4_data->board->reset_gpio); if (gpio_is_valid(rmi4_data->board->irq_gpio)) gpio_free(rmi4_data->board->irq_gpio); if (rmi4_data->ts_pinctrl) { if (IS_ERR_OR_NULL(rmi4_data->pinctrl_state_release)) { devm_pinctrl_put(rmi4_data->ts_pinctrl); rmi4_data->ts_pinctrl = NULL; } else { retval = pinctrl_select_state(rmi4_data->ts_pinctrl, rmi4_data->pinctrl_state_release); if (retval < 0) pr_err("failed to select release pinctrl state\n"); } } synaptics_rmi4_power_on(rmi4_data, false); synaptics_rmi4_regulator_configure(rmi4_data, false); kfree(rmi4_data); return 0; } /** * synaptics_rmi4_sensor_sleep() * * Called by synaptics_rmi4_early_suspend() and synaptics_rmi4_suspend(). * * This function stops finger data acquisition and puts the sensor to sleep. */ static void synaptics_rmi4_sensor_sleep(struct synaptics_rmi4_data *rmi4_data) { int retval; struct synaptics_rmi4_f01_device_control_0 device_ctrl; retval = synaptics_rmi4_i2c_read(rmi4_data, rmi4_data->f01_ctrl_base_addr, device_ctrl.data, sizeof(device_ctrl.data)); if (retval < 0) { dev_err(&(rmi4_data->input_dev->dev), "%s: Failed to enter sleep mode\n", __func__); rmi4_data->sensor_sleep = false; return; } device_ctrl.sleep_mode = SENSOR_SLEEP; device_ctrl.nosleep = NO_SLEEP_OFF; retval = synaptics_rmi4_i2c_write(rmi4_data, rmi4_data->f01_ctrl_base_addr, device_ctrl.data, sizeof(device_ctrl.data)); if (retval < 0) { dev_err(&(rmi4_data->input_dev->dev), "%s: Failed to enter sleep mode\n", __func__); rmi4_data->sensor_sleep = false; return; } rmi4_data->sensor_sleep = true; } /** * synaptics_rmi4_sensor_wake() * * Called by synaptics_rmi4_resume() and synaptics_rmi4_late_resume(). * * This function wakes the sensor from sleep. */ static void synaptics_rmi4_sensor_wake(struct synaptics_rmi4_data *rmi4_data) { int retval; struct synaptics_rmi4_f01_device_control_0 device_ctrl; retval = synaptics_rmi4_i2c_read(rmi4_data, rmi4_data->f01_ctrl_base_addr, device_ctrl.data, sizeof(device_ctrl.data)); if (retval < 0) { dev_err(&(rmi4_data->input_dev->dev), "%s: Failed to wake from sleep mode\n", __func__); rmi4_data->sensor_sleep = true; return; } if (device_ctrl.nosleep == NO_SLEEP_OFF && device_ctrl.sleep_mode == NORMAL_OPERATION) { rmi4_data->sensor_sleep = false; return; } device_ctrl.sleep_mode = NORMAL_OPERATION; device_ctrl.nosleep = NO_SLEEP_OFF; retval = synaptics_rmi4_i2c_write(rmi4_data, rmi4_data->f01_ctrl_base_addr, device_ctrl.data, sizeof(device_ctrl.data)); if (retval < 0) { dev_err(&(rmi4_data->input_dev->dev), "%s: Failed to wake from sleep mode\n", __func__); rmi4_data->sensor_sleep = true; return; } rmi4_data->sensor_sleep = false; } #if defined(CONFIG_FB) static int fb_notifier_callback(struct notifier_block *self, unsigned long event, void *data) { struct fb_event *evdata = data; int *blank; struct synaptics_rmi4_data *rmi4_data = container_of(self, struct synaptics_rmi4_data, fb_notif); if (evdata && evdata->data && rmi4_data && rmi4_data->i2c_client) { if (event == FB_EARLY_EVENT_BLANK) synaptics_secure_touch_stop(rmi4_data, 0); else if (event == FB_EVENT_BLANK) { blank = evdata->data; if (*blank == FB_BLANK_UNBLANK) synaptics_rmi4_resume( &(rmi4_data->input_dev->dev)); else if (*blank == FB_BLANK_POWERDOWN) synaptics_rmi4_suspend( &(rmi4_data->input_dev->dev)); } } return 0; } #elif defined(CONFIG_HAS_EARLYSUSPEND) /** * synaptics_rmi4_early_suspend() * * Called by the kernel during the early suspend phase when the system * enters suspend. * * This function calls synaptics_rmi4_sensor_sleep() to stop finger * data acquisition and put the sensor to sleep. */ static void synaptics_rmi4_early_suspend(struct early_suspend *h) { struct synaptics_rmi4_data *rmi4_data = container_of(h, struct synaptics_rmi4_data, early_suspend); if (rmi4_data->stay_awake) rmi4_data->staying_awake = true; else rmi4_data->staying_awake = false; synaptics_secure_touch_stop(rmi4_data, 0); rmi4_data->touch_stopped = true; wake_up(&rmi4_data->wait); synaptics_rmi4_irq_enable(rmi4_data, false); synaptics_rmi4_sensor_sleep(rmi4_data); if (rmi4_data->full_pm_cycle) synaptics_rmi4_suspend(&(rmi4_data->input_dev->dev)); } /** * synaptics_rmi4_late_resume() * * Called by the kernel during the late resume phase when the system * wakes up from suspend. * * This function goes through the sensor wake process if the system wakes * up from early suspend (without going into suspend). */ static void synaptics_rmi4_late_resume(struct early_suspend *h) { struct synaptics_rmi4_data *rmi4_data = container_of(h, struct synaptics_rmi4_data, early_suspend); if (rmi4_data->staying_awake) return; synaptics_secure_touch_stop(rmi4_data, 0); if (rmi4_data->full_pm_cycle) synaptics_rmi4_resume(&(rmi4_data->input_dev->dev)); if (rmi4_data->sensor_sleep == true) { synaptics_rmi4_sensor_wake(rmi4_data); rmi4_data->touch_stopped = false; synaptics_rmi4_irq_enable(rmi4_data, true); } } #endif static int synaptics_rmi4_regulator_lpm(struct synaptics_rmi4_data *rmi4_data, bool on) { int retval; int load_ua; if (on == false) goto regulator_hpm; if (rmi4_data->board->i2c_pull_up) { load_ua = rmi4_data->board->power_down_enable ? 0 : RMI4_I2C_LPM_LOAD_UA; retval = reg_set_optimum_mode_check(rmi4_data->vcc_i2c, load_ua); if (retval < 0) { dev_err(&rmi4_data->i2c_client->dev, "Regulator vcc_i2c set_opt failed rc=%d\n", retval); goto fail_regulator_lpm; } if (rmi4_data->board->power_down_enable) { retval = regulator_disable(rmi4_data->vcc_i2c); if (retval) { dev_err(&rmi4_data->i2c_client->dev, "Regulator vcc_i2c disable failed rc=%d\n", retval); goto fail_regulator_lpm; } } } load_ua = rmi4_data->board->power_down_enable ? 0 : RMI4_LPM_LOAD_UA; retval = reg_set_optimum_mode_check(rmi4_data->vdd, load_ua); if (retval < 0) { dev_err(&rmi4_data->i2c_client->dev, "Regulator vdd_ana set_opt failed rc=%d\n", retval); goto fail_regulator_lpm; } if (rmi4_data->board->power_down_enable) { retval = regulator_disable(rmi4_data->vdd); if (retval) { dev_err(&rmi4_data->i2c_client->dev, "Regulator vdd disable failed rc=%d\n", retval); goto fail_regulator_lpm; } } return 0; regulator_hpm: retval = reg_set_optimum_mode_check(rmi4_data->vdd, RMI4_ACTIVE_LOAD_UA); if (retval < 0) { dev_err(&rmi4_data->i2c_client->dev, "Regulator vcc_ana set_opt failed rc=%d\n", retval); goto fail_regulator_hpm; } if (rmi4_data->board->power_down_enable) { retval = regulator_enable(rmi4_data->vdd); if (retval) { dev_err(&rmi4_data->i2c_client->dev, "Regulator vdd enable failed rc=%d\n", retval); goto fail_regulator_hpm; } } if (rmi4_data->board->i2c_pull_up) { retval = reg_set_optimum_mode_check(rmi4_data->vcc_i2c, RMI4_I2C_LOAD_UA); if (retval < 0) { dev_err(&rmi4_data->i2c_client->dev, "Regulator vcc_i2c set_opt failed rc=%d\n", retval); goto fail_regulator_hpm; } if (rmi4_data->board->power_down_enable) { retval = regulator_enable(rmi4_data->vcc_i2c); if (retval) { dev_err(&rmi4_data->i2c_client->dev, "Regulator vcc_i2c enable failed rc=%d\n", retval); goto fail_regulator_hpm; } } } return 0; fail_regulator_lpm: reg_set_optimum_mode_check(rmi4_data->vdd, RMI4_ACTIVE_LOAD_UA); if (rmi4_data->board->i2c_pull_up) reg_set_optimum_mode_check(rmi4_data->vcc_i2c, RMI4_I2C_LOAD_UA); return retval; fail_regulator_hpm: load_ua = rmi4_data->board->power_down_enable ? 0 : RMI4_LPM_LOAD_UA; reg_set_optimum_mode_check(rmi4_data->vdd, load_ua); if (rmi4_data->board->i2c_pull_up) { load_ua = rmi4_data->board->power_down_enable ? 0 : RMI4_I2C_LPM_LOAD_UA; reg_set_optimum_mode_check(rmi4_data->vcc_i2c, load_ua); } return retval; } static int synaptics_rmi4_check_configuration(struct synaptics_rmi4_data *rmi4_data) { int retval; struct synaptics_rmi4_f01_device_control_0 device_control; struct synaptics_rmi4_f01_device_status device_status; retval = synaptics_rmi4_i2c_read(rmi4_data, rmi4_data->f01_data_base_addr, device_status.data, sizeof(device_status.data)); if (retval < 0) { dev_err(&rmi4_data->i2c_client->dev, "Failed to read device status, rc=%d\n", retval); return retval; } if (device_status.unconfigured) { retval = synaptics_rmi4_query_device(rmi4_data); if (retval < 0) { dev_err(&rmi4_data->i2c_client->dev, "Failed to query device, rc=%d\n", retval); return retval; } retval = synaptics_rmi4_i2c_read(rmi4_data, rmi4_data->f01_ctrl_base_addr, device_control.data, sizeof(device_control.data)); if (retval < 0) return retval; device_control.configured = DEVICE_CONFIGURED; retval = synaptics_rmi4_i2c_write(rmi4_data, rmi4_data->f01_ctrl_base_addr, device_control.data, sizeof(device_control.data)); if (retval < 0) return retval; } return 0; } /** * synaptics_rmi4_suspend() * * Called by the kernel during the suspend phase when the system * enters suspend. * * This function stops finger data acquisition and puts the sensor to * sleep (if not already done so during the early suspend phase), * disables the interrupt, and turns off the power to the sensor. */ #ifdef CONFIG_PM static int synaptics_rmi4_suspend(struct device *dev) { struct synaptics_rmi4_data *rmi4_data = dev_get_drvdata(dev); int retval; if (rmi4_data->stay_awake) { rmi4_data->staying_awake = true; return 0; } else rmi4_data->staying_awake = false; if (rmi4_data->suspended) { dev_info(dev, "Already in suspend state\n"); return 0; } synaptics_secure_touch_stop(rmi4_data, 1); if (!rmi4_data->fw_updating) { if (!rmi4_data->sensor_sleep) { rmi4_data->touch_stopped = true; wake_up(&rmi4_data->wait); synaptics_rmi4_irq_enable(rmi4_data, false); synaptics_rmi4_sensor_sleep(rmi4_data); } synaptics_rmi4_release_all(rmi4_data); retval = synaptics_rmi4_regulator_lpm(rmi4_data, true); if (retval < 0) { dev_err(dev, "failed to enter low power mode\n"); goto err_lpm_regulator; } } else { dev_err(dev, "Firmware updating, cannot go into suspend mode\n"); return 0; } if (rmi4_data->board->disable_gpios) { if (rmi4_data->ts_pinctrl) { retval = pinctrl_select_state(rmi4_data->ts_pinctrl, rmi4_data->pinctrl_state_suspend); if (retval < 0) dev_err(dev, "failed to select idle pinctrl state\n"); } retval = synaptics_rmi4_gpio_configure(rmi4_data, false); if (retval < 0) { dev_err(dev, "failed to put gpios in suspend state\n"); goto err_gpio_configure; } } rmi4_data->suspended = true; return 0; err_gpio_configure: if (rmi4_data->ts_pinctrl) { retval = pinctrl_select_state(rmi4_data->ts_pinctrl, rmi4_data->pinctrl_state_active); if (retval < 0) dev_err(dev, "failed to select get default pinctrl state\n"); } synaptics_rmi4_regulator_lpm(rmi4_data, false); err_lpm_regulator: if (rmi4_data->sensor_sleep) { synaptics_rmi4_sensor_wake(rmi4_data); synaptics_rmi4_irq_enable(rmi4_data, true); rmi4_data->touch_stopped = false; } return retval; } /** * synaptics_rmi4_resume() * * Called by the kernel during the resume phase when the system * wakes up from suspend. * * This function turns on the power to the sensor, wakes the sensor * from sleep, enables the interrupt, and starts finger data * acquisition. */ static int synaptics_rmi4_resume(struct device *dev) { struct synaptics_rmi4_data *rmi4_data = dev_get_drvdata(dev); int retval; if (rmi4_data->staying_awake) return 0; if (!rmi4_data->suspended) { dev_info(dev, "Already in awake state\n"); return 0; } synaptics_secure_touch_stop(rmi4_data, 1); retval = synaptics_rmi4_regulator_lpm(rmi4_data, false); if (retval < 0) { dev_err(dev, "Failed to enter active power mode\n"); return retval; } if (rmi4_data->board->disable_gpios) { if (rmi4_data->ts_pinctrl) { retval = pinctrl_select_state(rmi4_data->ts_pinctrl, rmi4_data->pinctrl_state_active); if (retval < 0) dev_err(dev, "failed to select default pinctrl state\n"); } retval = synaptics_rmi4_gpio_configure(rmi4_data, true); if (retval < 0) { dev_err(dev, "Failed to put gpios in active state\n"); goto err_gpio_configure; } } synaptics_rmi4_sensor_wake(rmi4_data); rmi4_data->touch_stopped = false; synaptics_rmi4_irq_enable(rmi4_data, true); retval = synaptics_rmi4_check_configuration(rmi4_data); if (retval < 0) { dev_err(dev, "Failed to check configuration\n"); goto err_check_configuration; } rmi4_data->suspended = false; return 0; err_check_configuration: synaptics_rmi4_irq_enable(rmi4_data, false); rmi4_data->touch_stopped = true; synaptics_rmi4_sensor_sleep(rmi4_data); if (rmi4_data->board->disable_gpios) { if (rmi4_data->ts_pinctrl) { retval = pinctrl_select_state(rmi4_data->ts_pinctrl, rmi4_data->pinctrl_state_suspend); if (retval < 0) dev_err(dev, "failed to select idle pinctrl state\n"); } synaptics_rmi4_gpio_configure(rmi4_data, false); } synaptics_rmi4_regulator_lpm(rmi4_data, true); wake_up(&rmi4_data->wait); return retval; err_gpio_configure: if (rmi4_data->ts_pinctrl) { retval = pinctrl_select_state(rmi4_data->ts_pinctrl, rmi4_data->pinctrl_state_suspend); if (retval < 0) pr_err("failed to select idle pinctrl state\n"); } synaptics_rmi4_regulator_lpm(rmi4_data, true); wake_up(&rmi4_data->wait); return retval; } #if (!defined(CONFIG_FB) && !defined(CONFIG_HAS_EARLYSUSPEND)) static const struct dev_pm_ops synaptics_rmi4_dev_pm_ops = { .suspend = synaptics_rmi4_suspend, .resume = synaptics_rmi4_resume, }; #else static const struct dev_pm_ops synaptics_rmi4_dev_pm_ops = { }; #endif #else static int synaptics_rmi4_suspend(struct device *dev) { return 0; } static int synaptics_rmi4_resume(struct device *dev) { return 0; } #endif static const struct i2c_device_id synaptics_rmi4_id_table[] = { {DRIVER_NAME, 0}, {}, }; MODULE_DEVICE_TABLE(i2c, synaptics_rmi4_id_table); #ifdef CONFIG_OF static struct of_device_id rmi4_match_table[] = { { .compatible = "synaptics,rmi4",}, { }, }; #else #define rmi4_match_table NULL #endif static struct i2c_driver synaptics_rmi4_driver = { .driver = { .name = DRIVER_NAME, .owner = THIS_MODULE, .of_match_table = rmi4_match_table, #ifdef CONFIG_PM .pm = &synaptics_rmi4_dev_pm_ops, #endif }, .probe = synaptics_rmi4_probe, .remove = synaptics_rmi4_remove, .id_table = synaptics_rmi4_id_table, }; /** * synaptics_rmi4_init() * * Called by the kernel during do_initcalls (if built-in) * or when the driver is loaded (if a module). * * This function registers the driver to the I2C subsystem. * */ static int __init synaptics_rmi4_init(void) { return i2c_add_driver(&synaptics_rmi4_driver); } /** * synaptics_rmi4_exit() * * Called by the kernel when the driver is unloaded. * * This function unregisters the driver from the I2C subsystem. * */ static void __exit synaptics_rmi4_exit(void) { i2c_del_driver(&synaptics_rmi4_driver); } module_init(synaptics_rmi4_init); module_exit(synaptics_rmi4_exit); MODULE_AUTHOR("Synaptics, Inc."); MODULE_DESCRIPTION("Synaptics RMI4 I2C Touch Driver"); MODULE_LICENSE("GPL v2");