android_kernel_samsung_hero.../drivers/media/i2c/ks0127.c
2016-08-17 16:41:52 +08:00

719 lines
20 KiB
C

/*
* Video Capture Driver (Video for Linux 1/2)
* for the Matrox Marvel G200,G400 and Rainbow Runner-G series
*
* This module is an interface to the KS0127 video decoder chip.
*
* Copyright (C) 1999 Ryan Drake <stiletto@mediaone.net>
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*
*****************************************************************************
*
* Modified and extended by
* Mike Bernson <mike@mlb.org>
* Gerard v.d. Horst
* Leon van Stuivenberg <l.vanstuivenberg@chello.nl>
* Gernot Ziegler <gz@lysator.liu.se>
*
* Version History:
* V1.0 Ryan Drake Initial version by Ryan Drake
* V1.1 Gerard v.d. Horst Added some debugoutput, reset the video-standard
*/
#include <linux/init.h>
#include <linux/module.h>
#include <linux/delay.h>
#include <linux/errno.h>
#include <linux/kernel.h>
#include <linux/i2c.h>
#include <linux/videodev2.h>
#include <linux/slab.h>
#include <media/v4l2-device.h>
#include "ks0127.h"
MODULE_DESCRIPTION("KS0127 video decoder driver");
MODULE_AUTHOR("Ryan Drake");
MODULE_LICENSE("GPL");
/* Addresses */
#define I2C_KS0127_ADDON 0xD8
#define I2C_KS0127_ONBOARD 0xDA
/* ks0127 control registers */
#define KS_STAT 0x00
#define KS_CMDA 0x01
#define KS_CMDB 0x02
#define KS_CMDC 0x03
#define KS_CMDD 0x04
#define KS_HAVB 0x05
#define KS_HAVE 0x06
#define KS_HS1B 0x07
#define KS_HS1E 0x08
#define KS_HS2B 0x09
#define KS_HS2E 0x0a
#define KS_AGC 0x0b
#define KS_HXTRA 0x0c
#define KS_CDEM 0x0d
#define KS_PORTAB 0x0e
#define KS_LUMA 0x0f
#define KS_CON 0x10
#define KS_BRT 0x11
#define KS_CHROMA 0x12
#define KS_CHROMB 0x13
#define KS_DEMOD 0x14
#define KS_SAT 0x15
#define KS_HUE 0x16
#define KS_VERTIA 0x17
#define KS_VERTIB 0x18
#define KS_VERTIC 0x19
#define KS_HSCLL 0x1a
#define KS_HSCLH 0x1b
#define KS_VSCLL 0x1c
#define KS_VSCLH 0x1d
#define KS_OFMTA 0x1e
#define KS_OFMTB 0x1f
#define KS_VBICTL 0x20
#define KS_CCDAT2 0x21
#define KS_CCDAT1 0x22
#define KS_VBIL30 0x23
#define KS_VBIL74 0x24
#define KS_VBIL118 0x25
#define KS_VBIL1512 0x26
#define KS_TTFRAM 0x27
#define KS_TESTA 0x28
#define KS_UVOFFH 0x29
#define KS_UVOFFL 0x2a
#define KS_UGAIN 0x2b
#define KS_VGAIN 0x2c
#define KS_VAVB 0x2d
#define KS_VAVE 0x2e
#define KS_CTRACK 0x2f
#define KS_POLCTL 0x30
#define KS_REFCOD 0x31
#define KS_INVALY 0x32
#define KS_INVALU 0x33
#define KS_INVALV 0x34
#define KS_UNUSEY 0x35
#define KS_UNUSEU 0x36
#define KS_UNUSEV 0x37
#define KS_USRSAV 0x38
#define KS_USREAV 0x39
#define KS_SHS1A 0x3a
#define KS_SHS1B 0x3b
#define KS_SHS1C 0x3c
#define KS_CMDE 0x3d
#define KS_VSDEL 0x3e
#define KS_CMDF 0x3f
#define KS_GAMMA0 0x40
#define KS_GAMMA1 0x41
#define KS_GAMMA2 0x42
#define KS_GAMMA3 0x43
#define KS_GAMMA4 0x44
#define KS_GAMMA5 0x45
#define KS_GAMMA6 0x46
#define KS_GAMMA7 0x47
#define KS_GAMMA8 0x48
#define KS_GAMMA9 0x49
#define KS_GAMMA10 0x4a
#define KS_GAMMA11 0x4b
#define KS_GAMMA12 0x4c
#define KS_GAMMA13 0x4d
#define KS_GAMMA14 0x4e
#define KS_GAMMA15 0x4f
#define KS_GAMMA16 0x50
#define KS_GAMMA17 0x51
#define KS_GAMMA18 0x52
#define KS_GAMMA19 0x53
#define KS_GAMMA20 0x54
#define KS_GAMMA21 0x55
#define KS_GAMMA22 0x56
#define KS_GAMMA23 0x57
#define KS_GAMMA24 0x58
#define KS_GAMMA25 0x59
#define KS_GAMMA26 0x5a
#define KS_GAMMA27 0x5b
#define KS_GAMMA28 0x5c
#define KS_GAMMA29 0x5d
#define KS_GAMMA30 0x5e
#define KS_GAMMA31 0x5f
#define KS_GAMMAD0 0x60
#define KS_GAMMAD1 0x61
#define KS_GAMMAD2 0x62
#define KS_GAMMAD3 0x63
#define KS_GAMMAD4 0x64
#define KS_GAMMAD5 0x65
#define KS_GAMMAD6 0x66
#define KS_GAMMAD7 0x67
#define KS_GAMMAD8 0x68
#define KS_GAMMAD9 0x69
#define KS_GAMMAD10 0x6a
#define KS_GAMMAD11 0x6b
#define KS_GAMMAD12 0x6c
#define KS_GAMMAD13 0x6d
#define KS_GAMMAD14 0x6e
#define KS_GAMMAD15 0x6f
#define KS_GAMMAD16 0x70
#define KS_GAMMAD17 0x71
#define KS_GAMMAD18 0x72
#define KS_GAMMAD19 0x73
#define KS_GAMMAD20 0x74
#define KS_GAMMAD21 0x75
#define KS_GAMMAD22 0x76
#define KS_GAMMAD23 0x77
#define KS_GAMMAD24 0x78
#define KS_GAMMAD25 0x79
#define KS_GAMMAD26 0x7a
#define KS_GAMMAD27 0x7b
#define KS_GAMMAD28 0x7c
#define KS_GAMMAD29 0x7d
#define KS_GAMMAD30 0x7e
#define KS_GAMMAD31 0x7f
/****************************************************************************
* mga_dev : represents one ks0127 chip.
****************************************************************************/
struct adjust {
int contrast;
int bright;
int hue;
int ugain;
int vgain;
};
struct ks0127 {
struct v4l2_subdev sd;
v4l2_std_id norm;
u8 regs[256];
};
static inline struct ks0127 *to_ks0127(struct v4l2_subdev *sd)
{
return container_of(sd, struct ks0127, sd);
}
static int debug; /* insmod parameter */
module_param(debug, int, 0);
MODULE_PARM_DESC(debug, "Debug output");
static u8 reg_defaults[64];
static void init_reg_defaults(void)
{
static int initialized;
u8 *table = reg_defaults;
if (initialized)
return;
initialized = 1;
table[KS_CMDA] = 0x2c; /* VSE=0, CCIR 601, autodetect standard */
table[KS_CMDB] = 0x12; /* VALIGN=0, AGC control and input */
table[KS_CMDC] = 0x00; /* Test options */
/* clock & input select, write 1 to PORTA */
table[KS_CMDD] = 0x01;
table[KS_HAVB] = 0x00; /* HAV Start Control */
table[KS_HAVE] = 0x00; /* HAV End Control */
table[KS_HS1B] = 0x10; /* HS1 Start Control */
table[KS_HS1E] = 0x00; /* HS1 End Control */
table[KS_HS2B] = 0x00; /* HS2 Start Control */
table[KS_HS2E] = 0x00; /* HS2 End Control */
table[KS_AGC] = 0x53; /* Manual setting for AGC */
table[KS_HXTRA] = 0x00; /* Extra Bits for HAV and HS1/2 */
table[KS_CDEM] = 0x00; /* Chroma Demodulation Control */
table[KS_PORTAB] = 0x0f; /* port B is input, port A output GPPORT */
table[KS_LUMA] = 0x01; /* Luma control */
table[KS_CON] = 0x00; /* Contrast Control */
table[KS_BRT] = 0x00; /* Brightness Control */
table[KS_CHROMA] = 0x2a; /* Chroma control A */
table[KS_CHROMB] = 0x90; /* Chroma control B */
table[KS_DEMOD] = 0x00; /* Chroma Demodulation Control & Status */
table[KS_SAT] = 0x00; /* Color Saturation Control*/
table[KS_HUE] = 0x00; /* Hue Control */
table[KS_VERTIA] = 0x00; /* Vertical Processing Control A */
/* Vertical Processing Control B, luma 1 line delayed */
table[KS_VERTIB] = 0x12;
table[KS_VERTIC] = 0x0b; /* Vertical Processing Control C */
table[KS_HSCLL] = 0x00; /* Horizontal Scaling Ratio Low */
table[KS_HSCLH] = 0x00; /* Horizontal Scaling Ratio High */
table[KS_VSCLL] = 0x00; /* Vertical Scaling Ratio Low */
table[KS_VSCLH] = 0x00; /* Vertical Scaling Ratio High */
/* 16 bit YCbCr 4:2:2 output; I can't make the bt866 like 8 bit /Sam */
table[KS_OFMTA] = 0x30;
table[KS_OFMTB] = 0x00; /* Output Control B */
/* VBI Decoder Control; 4bit fmt: avoid Y overflow */
table[KS_VBICTL] = 0x5d;
table[KS_CCDAT2] = 0x00; /* Read Only register */
table[KS_CCDAT1] = 0x00; /* Read Only register */
table[KS_VBIL30] = 0xa8; /* VBI data decoding options */
table[KS_VBIL74] = 0xaa; /* VBI data decoding options */
table[KS_VBIL118] = 0x2a; /* VBI data decoding options */
table[KS_VBIL1512] = 0x00; /* VBI data decoding options */
table[KS_TTFRAM] = 0x00; /* Teletext frame alignment pattern */
table[KS_TESTA] = 0x00; /* test register, shouldn't be written */
table[KS_UVOFFH] = 0x00; /* UV Offset Adjustment High */
table[KS_UVOFFL] = 0x00; /* UV Offset Adjustment Low */
table[KS_UGAIN] = 0x00; /* U Component Gain Adjustment */
table[KS_VGAIN] = 0x00; /* V Component Gain Adjustment */
table[KS_VAVB] = 0x07; /* VAV Begin */
table[KS_VAVE] = 0x00; /* VAV End */
table[KS_CTRACK] = 0x00; /* Chroma Tracking Control */
table[KS_POLCTL] = 0x41; /* Timing Signal Polarity Control */
table[KS_REFCOD] = 0x80; /* Reference Code Insertion Control */
table[KS_INVALY] = 0x10; /* Invalid Y Code */
table[KS_INVALU] = 0x80; /* Invalid U Code */
table[KS_INVALV] = 0x80; /* Invalid V Code */
table[KS_UNUSEY] = 0x10; /* Unused Y Code */
table[KS_UNUSEU] = 0x80; /* Unused U Code */
table[KS_UNUSEV] = 0x80; /* Unused V Code */
table[KS_USRSAV] = 0x00; /* reserved */
table[KS_USREAV] = 0x00; /* reserved */
table[KS_SHS1A] = 0x00; /* User Defined SHS1 A */
/* User Defined SHS1 B, ALT656=1 on 0127B */
table[KS_SHS1B] = 0x80;
table[KS_SHS1C] = 0x00; /* User Defined SHS1 C */
table[KS_CMDE] = 0x00; /* Command Register E */
table[KS_VSDEL] = 0x00; /* VS Delay Control */
/* Command Register F, update -immediately- */
/* (there might come no vsync)*/
table[KS_CMDF] = 0x02;
}
/* We need to manually read because of a bug in the KS0127 chip.
*
* An explanation from kayork@mail.utexas.edu:
*
* During I2C reads, the KS0127 only samples for a stop condition
* during the place where the acknowledge bit should be. Any standard
* I2C implementation (correctly) throws in another clock transition
* at the 9th bit, and the KS0127 will not recognize the stop condition
* and will continue to clock out data.
*
* So we have to do the read ourself. Big deal.
* workaround in i2c-algo-bit
*/
static u8 ks0127_read(struct v4l2_subdev *sd, u8 reg)
{
struct i2c_client *client = v4l2_get_subdevdata(sd);
char val = 0;
struct i2c_msg msgs[] = {
{
.addr = client->addr,
.len = sizeof(reg),
.buf = &reg
},
{
.addr = client->addr,
.flags = I2C_M_RD | I2C_M_NO_RD_ACK,
.len = sizeof(val),
.buf = &val
}
};
int ret;
ret = i2c_transfer(client->adapter, msgs, ARRAY_SIZE(msgs));
if (ret != ARRAY_SIZE(msgs))
v4l2_dbg(1, debug, sd, "read error\n");
return val;
}
static void ks0127_write(struct v4l2_subdev *sd, u8 reg, u8 val)
{
struct i2c_client *client = v4l2_get_subdevdata(sd);
struct ks0127 *ks = to_ks0127(sd);
char msg[] = { reg, val };
if (i2c_master_send(client, msg, sizeof(msg)) != sizeof(msg))
v4l2_dbg(1, debug, sd, "write error\n");
ks->regs[reg] = val;
}
/* generic bit-twiddling */
static void ks0127_and_or(struct v4l2_subdev *sd, u8 reg, u8 and_v, u8 or_v)
{
struct ks0127 *ks = to_ks0127(sd);
u8 val = ks->regs[reg];
val = (val & and_v) | or_v;
ks0127_write(sd, reg, val);
}
/****************************************************************************
* ks0127 private api
****************************************************************************/
static void ks0127_init(struct v4l2_subdev *sd)
{
u8 *table = reg_defaults;
int i;
v4l2_dbg(1, debug, sd, "reset\n");
msleep(1);
/* initialize all registers to known values */
/* (except STAT, 0x21, 0x22, TEST and 0x38,0x39) */
for (i = 1; i < 33; i++)
ks0127_write(sd, i, table[i]);
for (i = 35; i < 40; i++)
ks0127_write(sd, i, table[i]);
for (i = 41; i < 56; i++)
ks0127_write(sd, i, table[i]);
for (i = 58; i < 64; i++)
ks0127_write(sd, i, table[i]);
if ((ks0127_read(sd, KS_STAT) & 0x80) == 0) {
v4l2_dbg(1, debug, sd, "ks0122s found\n");
return;
}
switch (ks0127_read(sd, KS_CMDE) & 0x0f) {
case 0:
v4l2_dbg(1, debug, sd, "ks0127 found\n");
break;
case 9:
v4l2_dbg(1, debug, sd, "ks0127B Revision A found\n");
break;
default:
v4l2_dbg(1, debug, sd, "unknown revision\n");
break;
}
}
static int ks0127_s_routing(struct v4l2_subdev *sd,
u32 input, u32 output, u32 config)
{
struct ks0127 *ks = to_ks0127(sd);
switch (input) {
case KS_INPUT_COMPOSITE_1:
case KS_INPUT_COMPOSITE_2:
case KS_INPUT_COMPOSITE_3:
case KS_INPUT_COMPOSITE_4:
case KS_INPUT_COMPOSITE_5:
case KS_INPUT_COMPOSITE_6:
v4l2_dbg(1, debug, sd,
"s_routing %d: Composite\n", input);
/* autodetect 50/60 Hz */
ks0127_and_or(sd, KS_CMDA, 0xfc, 0x00);
/* VSE=0 */
ks0127_and_or(sd, KS_CMDA, ~0x40, 0x00);
/* set input line */
ks0127_and_or(sd, KS_CMDB, 0xb0, input);
/* non-freerunning mode */
ks0127_and_or(sd, KS_CMDC, 0x70, 0x0a);
/* analog input */
ks0127_and_or(sd, KS_CMDD, 0x03, 0x00);
/* enable chroma demodulation */
ks0127_and_or(sd, KS_CTRACK, 0xcf, 0x00);
/* chroma trap, HYBWR=1 */
ks0127_and_or(sd, KS_LUMA, 0x00,
(reg_defaults[KS_LUMA])|0x0c);
/* scaler fullbw, luma comb off */
ks0127_and_or(sd, KS_VERTIA, 0x08, 0x81);
/* manual chroma comb .25 .5 .25 */
ks0127_and_or(sd, KS_VERTIC, 0x0f, 0x90);
/* chroma path delay */
ks0127_and_or(sd, KS_CHROMB, 0x0f, 0x90);
ks0127_write(sd, KS_UGAIN, reg_defaults[KS_UGAIN]);
ks0127_write(sd, KS_VGAIN, reg_defaults[KS_VGAIN]);
ks0127_write(sd, KS_UVOFFH, reg_defaults[KS_UVOFFH]);
ks0127_write(sd, KS_UVOFFL, reg_defaults[KS_UVOFFL]);
break;
case KS_INPUT_SVIDEO_1:
case KS_INPUT_SVIDEO_2:
case KS_INPUT_SVIDEO_3:
v4l2_dbg(1, debug, sd,
"s_routing %d: S-Video\n", input);
/* autodetect 50/60 Hz */
ks0127_and_or(sd, KS_CMDA, 0xfc, 0x00);
/* VSE=0 */
ks0127_and_or(sd, KS_CMDA, ~0x40, 0x00);
/* set input line */
ks0127_and_or(sd, KS_CMDB, 0xb0, input);
/* non-freerunning mode */
ks0127_and_or(sd, KS_CMDC, 0x70, 0x0a);
/* analog input */
ks0127_and_or(sd, KS_CMDD, 0x03, 0x00);
/* enable chroma demodulation */
ks0127_and_or(sd, KS_CTRACK, 0xcf, 0x00);
ks0127_and_or(sd, KS_LUMA, 0x00,
reg_defaults[KS_LUMA]);
/* disable luma comb */
ks0127_and_or(sd, KS_VERTIA, 0x08,
(reg_defaults[KS_VERTIA]&0xf0)|0x01);
ks0127_and_or(sd, KS_VERTIC, 0x0f,
reg_defaults[KS_VERTIC]&0xf0);
ks0127_and_or(sd, KS_CHROMB, 0x0f,
reg_defaults[KS_CHROMB]&0xf0);
ks0127_write(sd, KS_UGAIN, reg_defaults[KS_UGAIN]);
ks0127_write(sd, KS_VGAIN, reg_defaults[KS_VGAIN]);
ks0127_write(sd, KS_UVOFFH, reg_defaults[KS_UVOFFH]);
ks0127_write(sd, KS_UVOFFL, reg_defaults[KS_UVOFFL]);
break;
case KS_INPUT_YUV656:
v4l2_dbg(1, debug, sd, "s_routing 15: YUV656\n");
if (ks->norm & V4L2_STD_525_60)
/* force 60 Hz */
ks0127_and_or(sd, KS_CMDA, 0xfc, 0x03);
else
/* force 50 Hz */
ks0127_and_or(sd, KS_CMDA, 0xfc, 0x02);
ks0127_and_or(sd, KS_CMDA, 0xff, 0x40); /* VSE=1 */
/* set input line and VALIGN */
ks0127_and_or(sd, KS_CMDB, 0xb0, (input | 0x40));
/* freerunning mode, */
/* TSTGEN = 1 TSTGFR=11 TSTGPH=0 TSTGPK=0 VMEM=1*/
ks0127_and_or(sd, KS_CMDC, 0x70, 0x87);
/* digital input, SYNDIR = 0 INPSL=01 CLKDIR=0 EAV=0 */
ks0127_and_or(sd, KS_CMDD, 0x03, 0x08);
/* disable chroma demodulation */
ks0127_and_or(sd, KS_CTRACK, 0xcf, 0x30);
/* HYPK =01 CTRAP = 0 HYBWR=0 PED=1 RGBH=1 UNIT=1 */
ks0127_and_or(sd, KS_LUMA, 0x00, 0x71);
ks0127_and_or(sd, KS_VERTIC, 0x0f,
reg_defaults[KS_VERTIC]&0xf0);
/* scaler fullbw, luma comb off */
ks0127_and_or(sd, KS_VERTIA, 0x08, 0x81);
ks0127_and_or(sd, KS_CHROMB, 0x0f,
reg_defaults[KS_CHROMB]&0xf0);
ks0127_and_or(sd, KS_CON, 0x00, 0x00);
ks0127_and_or(sd, KS_BRT, 0x00, 32); /* spec: 34 */
/* spec: 229 (e5) */
ks0127_and_or(sd, KS_SAT, 0x00, 0xe8);
ks0127_and_or(sd, KS_HUE, 0x00, 0);
ks0127_and_or(sd, KS_UGAIN, 0x00, 238);
ks0127_and_or(sd, KS_VGAIN, 0x00, 0x00);
/*UOFF:0x30, VOFF:0x30, TSTCGN=1 */
ks0127_and_or(sd, KS_UVOFFH, 0x00, 0x4f);
ks0127_and_or(sd, KS_UVOFFL, 0x00, 0x00);
break;
default:
v4l2_dbg(1, debug, sd,
"s_routing: Unknown input %d\n", input);
break;
}
/* hack: CDMLPF sometimes spontaneously switches on; */
/* force back off */
ks0127_write(sd, KS_DEMOD, reg_defaults[KS_DEMOD]);
return 0;
}
static int ks0127_s_std(struct v4l2_subdev *sd, v4l2_std_id std)
{
struct ks0127 *ks = to_ks0127(sd);
/* Set to automatic SECAM/Fsc mode */
ks0127_and_or(sd, KS_DEMOD, 0xf0, 0x00);
ks->norm = std;
if (std & V4L2_STD_NTSC) {
v4l2_dbg(1, debug, sd,
"s_std: NTSC_M\n");
ks0127_and_or(sd, KS_CHROMA, 0x9f, 0x20);
} else if (std & V4L2_STD_PAL_N) {
v4l2_dbg(1, debug, sd,
"s_std: NTSC_N (fixme)\n");
ks0127_and_or(sd, KS_CHROMA, 0x9f, 0x40);
} else if (std & V4L2_STD_PAL) {
v4l2_dbg(1, debug, sd,
"s_std: PAL_N\n");
ks0127_and_or(sd, KS_CHROMA, 0x9f, 0x20);
} else if (std & V4L2_STD_PAL_M) {
v4l2_dbg(1, debug, sd,
"s_std: PAL_M (fixme)\n");
ks0127_and_or(sd, KS_CHROMA, 0x9f, 0x40);
} else if (std & V4L2_STD_SECAM) {
v4l2_dbg(1, debug, sd,
"s_std: SECAM\n");
/* set to secam autodetection */
ks0127_and_or(sd, KS_CHROMA, 0xdf, 0x20);
ks0127_and_or(sd, KS_DEMOD, 0xf0, 0x00);
schedule_timeout_interruptible(HZ/10+1);
/* did it autodetect? */
if (!(ks0127_read(sd, KS_DEMOD) & 0x40))
/* force to secam mode */
ks0127_and_or(sd, KS_DEMOD, 0xf0, 0x0f);
} else {
v4l2_dbg(1, debug, sd, "s_std: Unknown norm %llx\n",
(unsigned long long)std);
}
return 0;
}
static int ks0127_s_stream(struct v4l2_subdev *sd, int enable)
{
v4l2_dbg(1, debug, sd, "s_stream(%d)\n", enable);
if (enable) {
/* All output pins on */
ks0127_and_or(sd, KS_OFMTA, 0xcf, 0x30);
/* Obey the OEN pin */
ks0127_and_or(sd, KS_CDEM, 0x7f, 0x00);
} else {
/* Video output pins off */
ks0127_and_or(sd, KS_OFMTA, 0xcf, 0x00);
/* Ignore the OEN pin */
ks0127_and_or(sd, KS_CDEM, 0x7f, 0x80);
}
return 0;
}
static int ks0127_status(struct v4l2_subdev *sd, u32 *pstatus, v4l2_std_id *pstd)
{
int stat = V4L2_IN_ST_NO_SIGNAL;
u8 status;
v4l2_std_id std = pstd ? *pstd : V4L2_STD_ALL;
status = ks0127_read(sd, KS_STAT);
if (!(status & 0x20)) /* NOVID not set */
stat = 0;
if (!(status & 0x01)) { /* CLOCK set */
stat |= V4L2_IN_ST_NO_COLOR;
std = V4L2_STD_UNKNOWN;
} else {
if ((status & 0x08)) /* PALDET set */
std &= V4L2_STD_PAL;
else
std &= V4L2_STD_NTSC;
}
if ((status & 0x10)) /* PALDET set */
std &= V4L2_STD_525_60;
else
std &= V4L2_STD_625_50;
if (pstd)
*pstd = std;
if (pstatus)
*pstatus = stat;
return 0;
}
static int ks0127_querystd(struct v4l2_subdev *sd, v4l2_std_id *std)
{
v4l2_dbg(1, debug, sd, "querystd\n");
return ks0127_status(sd, NULL, std);
}
static int ks0127_g_input_status(struct v4l2_subdev *sd, u32 *status)
{
v4l2_dbg(1, debug, sd, "g_input_status\n");
return ks0127_status(sd, status, NULL);
}
/* ----------------------------------------------------------------------- */
static const struct v4l2_subdev_video_ops ks0127_video_ops = {
.s_std = ks0127_s_std,
.s_routing = ks0127_s_routing,
.s_stream = ks0127_s_stream,
.querystd = ks0127_querystd,
.g_input_status = ks0127_g_input_status,
};
static const struct v4l2_subdev_ops ks0127_ops = {
.video = &ks0127_video_ops,
};
/* ----------------------------------------------------------------------- */
static int ks0127_probe(struct i2c_client *client, const struct i2c_device_id *id)
{
struct ks0127 *ks;
struct v4l2_subdev *sd;
v4l_info(client, "%s chip found @ 0x%x (%s)\n",
client->addr == (I2C_KS0127_ADDON >> 1) ? "addon" : "on-board",
client->addr << 1, client->adapter->name);
ks = devm_kzalloc(&client->dev, sizeof(*ks), GFP_KERNEL);
if (ks == NULL)
return -ENOMEM;
sd = &ks->sd;
v4l2_i2c_subdev_init(sd, client, &ks0127_ops);
/* power up */
init_reg_defaults();
ks0127_write(sd, KS_CMDA, 0x2c);
mdelay(10);
/* reset the device */
ks0127_init(sd);
return 0;
}
static int ks0127_remove(struct i2c_client *client)
{
struct v4l2_subdev *sd = i2c_get_clientdata(client);
v4l2_device_unregister_subdev(sd);
ks0127_write(sd, KS_OFMTA, 0x20); /* tristate */
ks0127_write(sd, KS_CMDA, 0x2c | 0x80); /* power down */
return 0;
}
static const struct i2c_device_id ks0127_id[] = {
{ "ks0127", 0 },
{ "ks0127b", 0 },
{ "ks0122s", 0 },
{ }
};
MODULE_DEVICE_TABLE(i2c, ks0127_id);
static struct i2c_driver ks0127_driver = {
.driver = {
.owner = THIS_MODULE,
.name = "ks0127",
},
.probe = ks0127_probe,
.remove = ks0127_remove,
.id_table = ks0127_id,
};
module_i2c_driver(ks0127_driver);