android_kernel_samsung_hero.../drivers/soc/qcom/rpm-smd.c
2016-08-17 16:41:52 +08:00

1943 lines
45 KiB
C

/* Copyright (c) 2012-2015, The Linux Foundation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 and
* only version 2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
*/
#define pr_fmt(fmt) "%s: " fmt, __func__
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/types.h>
#include <linux/bug.h>
#include <linux/completion.h>
#include <linux/delay.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/irq.h>
#include <linux/list.h>
#include <linux/mutex.h>
#include <linux/spinlock.h>
#include <linux/string.h>
#include <linux/device.h>
#include <linux/notifier.h>
#include <linux/slab.h>
#include <linux/workqueue.h>
#include <linux/platform_device.h>
#include <linux/of.h>
#include <linux/of_platform.h>
#include <linux/rbtree.h>
#include <soc/qcom/rpm-notifier.h>
#include <soc/qcom/rpm-smd.h>
#include <soc/qcom/smd.h>
#include <soc/qcom/glink_rpm_xprt.h>
#include <soc/qcom/glink.h>
#define CREATE_TRACE_POINTS
#include <trace/events/trace_rpm_smd.h>
/* Debug Definitions */
enum {
MSM_RPM_LOG_REQUEST_PRETTY = BIT(0),
MSM_RPM_LOG_REQUEST_RAW = BIT(1),
MSM_RPM_LOG_REQUEST_SHOW_MSG_ID = BIT(2),
};
static int msm_rpm_debug_mask;
module_param_named(
debug_mask, msm_rpm_debug_mask, int, S_IRUGO | S_IWUSR
);
struct msm_rpm_driver_data {
const char *ch_name;
uint32_t ch_type;
smd_channel_t *ch_info;
struct work_struct work;
spinlock_t smd_lock_write;
spinlock_t smd_lock_read;
struct completion smd_open;
};
struct glink_apps_rpm_data {
const char *name;
const char *edge;
const char *xprt;
void *glink_handle;
struct glink_link_info *link_info;
struct glink_open_config *open_cfg;
struct work_struct work;
};
static bool glink_enabled;
static struct glink_apps_rpm_data *glink_data;
#define DEFAULT_BUFFER_SIZE 256
#define DEBUG_PRINT_BUFFER_SIZE 512
#define MAX_SLEEP_BUFFER 128
#define GFP_FLAG(noirq) (noirq ? GFP_ATOMIC : GFP_NOFS)
#define INV_RSC "resource does not exist"
#define ERR "err\0"
#define MAX_ERR_BUFFER_SIZE 128
#define MAX_WAIT_ON_ACK 24
#define INIT_ERROR 1
static ATOMIC_NOTIFIER_HEAD(msm_rpm_sleep_notifier);
static bool standalone;
static int probe_status = -EPROBE_DEFER;
static int msm_rpm_read_smd_data(char *buf);
static void msm_rpm_process_ack(uint32_t msg_id, int errno);
int msm_rpm_register_notifier(struct notifier_block *nb)
{
return atomic_notifier_chain_register(&msm_rpm_sleep_notifier, nb);
}
int msm_rpm_unregister_notifier(struct notifier_block *nb)
{
return atomic_notifier_chain_unregister(&msm_rpm_sleep_notifier, nb);
}
static struct workqueue_struct *msm_rpm_smd_wq;
enum {
MSM_RPM_MSG_REQUEST_TYPE = 0,
MSM_RPM_MSG_TYPE_NR,
};
static const uint32_t msm_rpm_request_service[MSM_RPM_MSG_TYPE_NR] = {
0x716572, /* 'req\0' */
};
/*the order of fields matter and reflect the order expected by the RPM*/
struct rpm_request_header {
uint32_t service_type;
uint32_t request_len;
};
struct rpm_message_header {
uint32_t msg_id;
enum msm_rpm_set set;
uint32_t resource_type;
uint32_t resource_id;
uint32_t data_len;
};
struct kvp {
unsigned int k;
unsigned int s;
};
struct msm_rpm_kvp_data {
uint32_t key;
uint32_t nbytes; /* number of bytes */
uint8_t *value;
bool valid;
};
struct slp_buf {
struct rb_node node;
char ubuf[MAX_SLEEP_BUFFER];
char *buf;
bool valid;
};
static struct rb_root tr_root = RB_ROOT;
static int (*msm_rpm_send_buffer)(char *buf, uint32_t size, bool noirq);
static int msm_rpm_send_smd_buffer(char *buf, uint32_t size, bool noirq);
static int msm_rpm_glink_send_buffer(char *buf, uint32_t size, bool noirq);
static uint32_t msm_rpm_get_next_msg_id(void);
static inline unsigned int get_rsc_type(char *buf)
{
struct rpm_message_header *h;
h = (struct rpm_message_header *)
(buf + sizeof(struct rpm_request_header));
return h->resource_type;
}
static inline unsigned int get_rsc_id(char *buf)
{
struct rpm_message_header *h;
h = (struct rpm_message_header *)
(buf + sizeof(struct rpm_request_header));
return h->resource_id;
}
#define get_data_len(buf) \
(((struct rpm_message_header *) \
(buf + sizeof(struct rpm_request_header)))->data_len)
#define get_req_len(buf) \
(((struct rpm_request_header *)(buf))->request_len)
#define get_msg_id(buf) \
(((struct rpm_message_header *) \
(buf + sizeof(struct rpm_request_header)))->msg_id)
static inline int get_buf_len(char *buf)
{
return get_req_len(buf) + sizeof(struct rpm_request_header);
}
static inline struct kvp *get_first_kvp(char *buf)
{
return (struct kvp *)(buf + sizeof(struct rpm_request_header)
+ sizeof(struct rpm_message_header));
}
static inline struct kvp *get_next_kvp(struct kvp *k)
{
return (struct kvp *)((void *)k + sizeof(*k) + k->s);
}
static inline void *get_data(struct kvp *k)
{
return (void *)k + sizeof(*k);
}
static void delete_kvp(char *msg, struct kvp *d)
{
struct kvp *n;
int dec;
uint32_t size;
n = get_next_kvp(d);
dec = (void *)n - (void *)d;
size = get_data_len(msg) - ((void *)n - (void *)get_first_kvp(msg));
memcpy((void *)d, (void *)n, size);
get_data_len(msg) -= dec;
get_req_len(msg) -= dec;
}
static inline void update_kvp_data(struct kvp *dest, struct kvp *src)
{
memcpy(get_data(dest), get_data(src), src->s);
}
static void add_kvp(char *buf, struct kvp *n)
{
uint32_t inc = sizeof(*n) + n->s;
BUG_ON((get_req_len(buf) + inc) > MAX_SLEEP_BUFFER);
memcpy(buf + get_buf_len(buf), n, inc);
get_data_len(buf) += inc;
get_req_len(buf) += inc;
}
static struct slp_buf *tr_search(struct rb_root *root, char *slp)
{
unsigned int type = get_rsc_type(slp);
unsigned int id = get_rsc_id(slp);
struct rb_node *node = root->rb_node;
while (node) {
struct slp_buf *cur = rb_entry(node, struct slp_buf, node);
unsigned int ctype = get_rsc_type(cur->buf);
unsigned int cid = get_rsc_id(cur->buf);
if (type < ctype)
node = node->rb_left;
else if (type > ctype)
node = node->rb_right;
else if (id < cid)
node = node->rb_left;
else if (id > cid)
node = node->rb_right;
else
return cur;
}
return NULL;
}
static int tr_insert(struct rb_root *root, struct slp_buf *slp)
{
unsigned int type = get_rsc_type(slp->buf);
unsigned int id = get_rsc_id(slp->buf);
struct rb_node **node = &(root->rb_node), *parent = NULL;
while (*node) {
struct slp_buf *curr = rb_entry(*node, struct slp_buf, node);
unsigned int ctype = get_rsc_type(curr->buf);
unsigned int cid = get_rsc_id(curr->buf);
parent = *node;
if (type < ctype)
node = &((*node)->rb_left);
else if (type > ctype)
node = &((*node)->rb_right);
else if (id < cid)
node = &((*node)->rb_left);
else if (id > cid)
node = &((*node)->rb_right);
else
return -EINVAL;
}
rb_link_node(&slp->node, parent, node);
rb_insert_color(&slp->node, root);
slp->valid = true;
return 0;
}
#define for_each_kvp(buf, k) \
for (k = (struct kvp *)get_first_kvp(buf); \
((void *)k - (void *)get_first_kvp(buf)) < get_data_len(buf);\
k = get_next_kvp(k))
static void tr_update(struct slp_buf *s, char *buf)
{
struct kvp *e, *n;
for_each_kvp(buf, n) {
bool found = false;
for_each_kvp(s->buf, e) {
if (n->k == e->k) {
found = true;
if (n->s == e->s) {
void *e_data = get_data(e);
void *n_data = get_data(n);
if (memcmp(e_data, n_data, n->s)) {
update_kvp_data(e, n);
s->valid = true;
}
} else {
delete_kvp(s->buf, e);
add_kvp(s->buf, n);
s->valid = true;
}
break;
}
}
if (!found) {
add_kvp(s->buf, n);
s->valid = true;
}
}
}
static atomic_t msm_rpm_msg_id = ATOMIC_INIT(0);
struct msm_rpm_request {
struct rpm_request_header req_hdr;
struct rpm_message_header msg_hdr;
struct msm_rpm_kvp_data *kvp;
uint32_t num_elements;
uint32_t write_idx;
uint8_t *buf;
uint32_t numbytes;
};
/*
* Data related to message acknowledgment
*/
LIST_HEAD(msm_rpm_wait_list);
struct msm_rpm_wait_data {
struct list_head list;
uint32_t msg_id;
bool ack_recd;
int errno;
struct completion ack;
bool delete_on_ack;
};
DEFINE_SPINLOCK(msm_rpm_list_lock);
struct msm_rpm_ack_msg {
uint32_t req;
uint32_t req_len;
uint32_t rsc_id;
uint32_t msg_len;
uint32_t id_ack;
};
LIST_HEAD(msm_rpm_ack_list);
static struct tasklet_struct data_tasklet;
static inline uint32_t msm_rpm_get_msg_id_from_ack(uint8_t *buf)
{
return ((struct msm_rpm_ack_msg *)buf)->id_ack;
}
static inline int msm_rpm_get_error_from_ack(uint8_t *buf)
{
uint8_t *tmp;
uint32_t req_len = ((struct msm_rpm_ack_msg *)buf)->req_len;
struct msm_rpm_ack_msg *tmp_buf = (struct msm_rpm_ack_msg *)buf;
int rc = -ENODEV;
req_len -= sizeof(struct msm_rpm_ack_msg);
req_len += 2 * sizeof(uint32_t);
if (!req_len)
return 0;
pr_err("%s:rpm returned error or nack req_len: %d id_ack: %d\n",
__func__, tmp_buf->req_len, tmp_buf->id_ack);
tmp = buf + sizeof(struct msm_rpm_ack_msg);
if (memcmp(tmp, ERR, sizeof(uint32_t))) {
pr_err("%s rpm returned error\n", __func__);
BUG_ON(1);
}
tmp += 2 * sizeof(uint32_t);
if (!(memcmp(tmp, INV_RSC, min_t(uint32_t, req_len,
sizeof(INV_RSC))-1))) {
pr_err("%s(): RPM NACK Unsupported resource\n", __func__);
rc = -EINVAL;
} else {
pr_err("%s(): RPM NACK Invalid header\n", __func__);
}
return rc;
}
int msm_rpm_smd_buffer_request(struct msm_rpm_request *cdata,
uint32_t size, gfp_t flag)
{
struct slp_buf *slp;
static DEFINE_SPINLOCK(slp_buffer_lock);
unsigned long flags;
char *buf;
buf = cdata->buf;
if (size > MAX_SLEEP_BUFFER)
return -ENOMEM;
spin_lock_irqsave(&slp_buffer_lock, flags);
slp = tr_search(&tr_root, buf);
if (!slp) {
slp = kzalloc(sizeof(struct slp_buf), GFP_ATOMIC);
if (!slp) {
spin_unlock_irqrestore(&slp_buffer_lock, flags);
return -ENOMEM;
}
slp->buf = PTR_ALIGN(&slp->ubuf[0], sizeof(u32));
memcpy(slp->buf, buf, size);
if (tr_insert(&tr_root, slp))
pr_err("Error updating sleep request\n");
} else {
/* handle unsent requests */
tr_update(slp, buf);
}
trace_rpm_smd_sleep_set(cdata->msg_hdr.msg_id,
cdata->msg_hdr.resource_type,
cdata->msg_hdr.resource_id);
spin_unlock_irqrestore(&slp_buffer_lock, flags);
return 0;
}
static void msm_rpm_print_sleep_buffer(struct slp_buf *s)
{
char buf[DEBUG_PRINT_BUFFER_SIZE] = {0};
int pos;
int buflen = DEBUG_PRINT_BUFFER_SIZE;
char ch[5] = {0};
u32 type;
struct kvp *e;
if (!s)
return;
if (!s->valid)
return;
type = get_rsc_type(s->buf);
memcpy(ch, &type, sizeof(u32));
pos = scnprintf(buf, buflen,
"Sleep request type = 0x%08x(%s)",
get_rsc_type(s->buf), ch);
pos += scnprintf(buf + pos, buflen - pos, " id = 0%x",
get_rsc_id(s->buf));
for_each_kvp(s->buf, e) {
uint32_t i;
char *data = get_data(e);
memcpy(ch, &e->k, sizeof(u32));
pos += scnprintf(buf + pos, buflen - pos,
"\n\t\tkey = 0x%08x(%s)",
e->k, ch);
pos += scnprintf(buf + pos, buflen - pos,
" sz= %d data =", e->s);
for (i = 0; i < e->s; i++)
pos += scnprintf(buf + pos, buflen - pos,
" 0x%02X", data[i]);
}
pos += scnprintf(buf + pos, buflen - pos, "\n");
printk(buf);
}
static struct msm_rpm_driver_data msm_rpm_data = {
.smd_open = COMPLETION_INITIALIZER(msm_rpm_data.smd_open),
};
static int msm_rpm_glink_rx_poll(void *glink_handle)
{
int ret;
ret = glink_rpm_rx_poll(glink_handle);
if (ret >= 0)
/*
* Sleep for 50us at a time before checking
* for packet availability. The 50us is based
* on the the time rpm could take to process
* and send an ack for the sleep set request.
*/
udelay(50);
else
pr_err("Not receieve an ACK from RPM. ret = %d\n", ret);
return ret;
}
/*
* Returns
* = 0 on successful reads
* > 0 on successful reads with no further data
* standard Linux error codes on failure.
*/
static int msm_rpm_read_sleep_ack(void)
{
int ret;
char buf[MAX_ERR_BUFFER_SIZE] = {0};
uint32_t msg_id;
if (glink_enabled)
ret = msm_rpm_glink_rx_poll(glink_data->glink_handle);
else {
ret = msm_rpm_read_smd_data(buf);
if (!ret)
ret = smd_is_pkt_avail(msm_rpm_data.ch_info);
/* Mimic Glink behavior to ensure that the data is read
* and the msg is removed from the wait list. We should
* have gotten here only when there are no drivers waiting
* on ACKs. msm_rpm_get_entry_from_msg_id() return non-NULL
* only then. So BUG_ON to ensure that we didn't accidentally
* get here.
*/
msg_id = msm_rpm_get_msg_id_from_ack(buf);
msm_rpm_process_ack(msg_id, 0);
}
return ret;
}
static void msm_rpm_flush_noack_messages(void)
{
while (!list_empty(&msm_rpm_wait_list))
msm_rpm_read_sleep_ack();
}
static int msm_rpm_flush_requests(bool print)
{
struct rb_node *t;
int ret;
int count = 0;
msm_rpm_flush_noack_messages();
for (t = rb_first(&tr_root); t; t = rb_next(t)) {
struct slp_buf *s = rb_entry(t, struct slp_buf, node);
if (!s->valid)
continue;
if (print)
msm_rpm_print_sleep_buffer(s);
get_msg_id(s->buf) = msm_rpm_get_next_msg_id();
if (!glink_enabled)
ret = msm_rpm_send_smd_buffer(s->buf,
get_buf_len(s->buf), true);
else
ret = msm_rpm_glink_send_buffer(s->buf,
get_buf_len(s->buf), true);
WARN_ON(ret != get_buf_len(s->buf));
trace_rpm_smd_send_sleep_set(get_msg_id(s->buf),
get_rsc_type(s->buf),
get_rsc_id(s->buf));
s->valid = false;
count++;
/*
* RPM acks need to be handled here if we have sent 24
* messages such that we do not overrun SMD buffer. Since
* we expect only sleep sets at this point (RPM PC would be
* disallowed if we had pending active requests), we need not
* process these sleep set acks.
*/
if (count >= MAX_WAIT_ON_ACK) {
int ret = msm_rpm_read_sleep_ack();
if (ret > 0)
count--;
else
return ret;
}
}
return 0;
}
static void msm_rpm_notify_sleep_chain(struct rpm_message_header *hdr,
struct msm_rpm_kvp_data *kvp)
{
struct msm_rpm_notifier_data notif;
notif.rsc_type = hdr->resource_type;
notif.rsc_id = hdr->resource_id;
notif.key = kvp->key;
notif.size = kvp->nbytes;
notif.value = kvp->value;
atomic_notifier_call_chain(&msm_rpm_sleep_notifier, 0, &notif);
}
static int msm_rpm_add_kvp_data_common(struct msm_rpm_request *handle,
uint32_t key, const uint8_t *data, int size, bool noirq)
{
uint32_t i;
uint32_t data_size, msg_size;
if (probe_status)
return probe_status;
if (!handle || !data) {
pr_err("%s(): Invalid handle/data\n", __func__);
return -EINVAL;
}
if (size < 0)
return -EINVAL;
data_size = ALIGN(size, SZ_4);
msg_size = data_size + sizeof(struct rpm_request_header);
for (i = 0; i < handle->write_idx; i++) {
if (handle->kvp[i].key != key)
continue;
if (handle->kvp[i].nbytes != data_size) {
kfree(handle->kvp[i].value);
handle->kvp[i].value = NULL;
} else {
if (!memcmp(handle->kvp[i].value, data, data_size))
return 0;
}
break;
}
if (i >= handle->num_elements) {
pr_err("Number of resources exceeds max allocated\n");
return -ENOMEM;
}
if (i == handle->write_idx)
handle->write_idx++;
if (!handle->kvp[i].value) {
handle->kvp[i].value = kzalloc(data_size, GFP_FLAG(noirq));
if (!handle->kvp[i].value) {
pr_err("Failed malloc\n");
return -ENOMEM;
}
} else {
/* We enter the else case, if a key already exists but the
* data doesn't match. In which case, we should zero the data
* out.
*/
memset(handle->kvp[i].value, 0, data_size);
}
if (!handle->kvp[i].valid)
handle->msg_hdr.data_len += msg_size;
else
handle->msg_hdr.data_len += (data_size - handle->kvp[i].nbytes);
handle->kvp[i].nbytes = data_size;
handle->kvp[i].key = key;
memcpy(handle->kvp[i].value, data, size);
handle->kvp[i].valid = true;
return 0;
}
static struct msm_rpm_request *msm_rpm_create_request_common(
enum msm_rpm_set set, uint32_t rsc_type, uint32_t rsc_id,
int num_elements, bool noirq)
{
struct msm_rpm_request *cdata;
if (probe_status)
return ERR_PTR(probe_status);
cdata = kzalloc(sizeof(struct msm_rpm_request),
GFP_FLAG(noirq));
if (!cdata) {
pr_err("Cannot allocate memory for client data\n");
goto cdata_alloc_fail;
}
cdata->msg_hdr.set = set;
cdata->msg_hdr.resource_type = rsc_type;
cdata->msg_hdr.resource_id = rsc_id;
cdata->msg_hdr.data_len = 0;
cdata->num_elements = num_elements;
cdata->write_idx = 0;
cdata->kvp = kzalloc(sizeof(struct msm_rpm_kvp_data) * num_elements,
GFP_FLAG(noirq));
if (!cdata->kvp) {
pr_warn("%s(): Cannot allocate memory for key value data\n",
__func__);
goto kvp_alloc_fail;
}
cdata->buf = kzalloc(DEFAULT_BUFFER_SIZE, GFP_FLAG(noirq));
if (!cdata->buf)
goto buf_alloc_fail;
cdata->numbytes = DEFAULT_BUFFER_SIZE;
return cdata;
buf_alloc_fail:
kfree(cdata->kvp);
kvp_alloc_fail:
kfree(cdata);
cdata_alloc_fail:
return NULL;
}
void msm_rpm_free_request(struct msm_rpm_request *handle)
{
int i;
if (!handle)
return;
for (i = 0; i < handle->num_elements; i++)
kfree(handle->kvp[i].value);
kfree(handle->kvp);
kfree(handle->buf);
kfree(handle);
}
EXPORT_SYMBOL(msm_rpm_free_request);
struct msm_rpm_request *msm_rpm_create_request(
enum msm_rpm_set set, uint32_t rsc_type,
uint32_t rsc_id, int num_elements)
{
return msm_rpm_create_request_common(set, rsc_type, rsc_id,
num_elements, false);
}
EXPORT_SYMBOL(msm_rpm_create_request);
struct msm_rpm_request *msm_rpm_create_request_noirq(
enum msm_rpm_set set, uint32_t rsc_type,
uint32_t rsc_id, int num_elements)
{
return msm_rpm_create_request_common(set, rsc_type, rsc_id,
num_elements, true);
}
EXPORT_SYMBOL(msm_rpm_create_request_noirq);
int msm_rpm_add_kvp_data(struct msm_rpm_request *handle,
uint32_t key, const uint8_t *data, int size)
{
return msm_rpm_add_kvp_data_common(handle, key, data, size, false);
}
EXPORT_SYMBOL(msm_rpm_add_kvp_data);
int msm_rpm_add_kvp_data_noirq(struct msm_rpm_request *handle,
uint32_t key, const uint8_t *data, int size)
{
return msm_rpm_add_kvp_data_common(handle, key, data, size, true);
}
EXPORT_SYMBOL(msm_rpm_add_kvp_data_noirq);
/* Runs in interrupt context */
static void msm_rpm_notify(void *data, unsigned event)
{
struct msm_rpm_driver_data *pdata = (struct msm_rpm_driver_data *)data;
BUG_ON(!pdata);
if (!(pdata->ch_info))
return;
switch (event) {
case SMD_EVENT_DATA:
tasklet_schedule(&data_tasklet);
trace_rpm_smd_interrupt_notify("interrupt notification");
break;
case SMD_EVENT_OPEN:
complete(&pdata->smd_open);
break;
case SMD_EVENT_CLOSE:
case SMD_EVENT_STATUS:
case SMD_EVENT_REOPEN_READY:
break;
default:
pr_info("Unknown SMD event\n");
}
}
bool msm_rpm_waiting_for_ack(void)
{
bool ret = false;
unsigned long flags;
struct msm_rpm_wait_data *elem = NULL;
spin_lock_irqsave(&msm_rpm_list_lock, flags);
elem = list_first_entry_or_null(&msm_rpm_wait_list,
struct msm_rpm_wait_data, list);
if (elem)
ret = !elem->delete_on_ack;
spin_unlock_irqrestore(&msm_rpm_list_lock, flags);
return ret;
}
static struct msm_rpm_wait_data *msm_rpm_get_entry_from_msg_id(uint32_t msg_id)
{
struct list_head *ptr;
struct msm_rpm_wait_data *elem = NULL;
unsigned long flags;
spin_lock_irqsave(&msm_rpm_list_lock, flags);
list_for_each(ptr, &msm_rpm_wait_list) {
elem = list_entry(ptr, struct msm_rpm_wait_data, list);
if (elem && (elem->msg_id == msg_id))
break;
elem = NULL;
}
spin_unlock_irqrestore(&msm_rpm_list_lock, flags);
return elem;
}
static uint32_t msm_rpm_get_next_msg_id(void)
{
uint32_t id;
/*
* A message id of 0 is used by the driver to indicate a error
* condition. The RPM driver uses a id of 1 to indicate unsent data
* when the data sent over hasn't been modified. This isn't a error
* scenario and wait for ack returns a success when the message id is 1.
*/
do {
id = atomic_inc_return(&msm_rpm_msg_id);
} while ((id == 0) || (id == 1) || msm_rpm_get_entry_from_msg_id(id));
return id;
}
static int msm_rpm_add_wait_list(uint32_t msg_id, bool delete_on_ack)
{
unsigned long flags;
struct msm_rpm_wait_data *data =
kzalloc(sizeof(struct msm_rpm_wait_data), GFP_ATOMIC);
if (!data)
return -ENOMEM;
init_completion(&data->ack);
data->ack_recd = false;
data->msg_id = msg_id;
data->errno = INIT_ERROR;
data->delete_on_ack = delete_on_ack;
spin_lock_irqsave(&msm_rpm_list_lock, flags);
if (delete_on_ack)
list_add_tail(&data->list, &msm_rpm_wait_list);
else
list_add(&data->list, &msm_rpm_wait_list);
spin_unlock_irqrestore(&msm_rpm_list_lock, flags);
return 0;
}
static void msm_rpm_free_list_entry(struct msm_rpm_wait_data *elem)
{
unsigned long flags;
spin_lock_irqsave(&msm_rpm_list_lock, flags);
list_del(&elem->list);
spin_unlock_irqrestore(&msm_rpm_list_lock, flags);
kfree(elem);
}
static void msm_rpm_process_ack(uint32_t msg_id, int errno)
{
struct list_head *ptr, *next;
struct msm_rpm_wait_data *elem = NULL;
unsigned long flags;
spin_lock_irqsave(&msm_rpm_list_lock, flags);
list_for_each_safe(ptr, next, &msm_rpm_wait_list) {
elem = list_entry(ptr, struct msm_rpm_wait_data, list);
if (elem && (elem->msg_id == msg_id)) {
elem->errno = errno;
elem->ack_recd = true;
complete(&elem->ack);
if (elem->delete_on_ack) {
list_del(&elem->list);
kfree(elem);
}
break;
}
elem = NULL;
}
/* Special case where the sleep driver doesn't
* wait for ACKs. This would decrease the latency involved with
* entering RPM assisted power collapse.
*/
if (!elem)
trace_rpm_smd_ack_recvd(0, msg_id, 0xDEADBEEF);
spin_unlock_irqrestore(&msm_rpm_list_lock, flags);
}
struct msm_rpm_kvp_packet {
uint32_t id;
uint32_t len;
uint32_t val;
};
static int msm_rpm_read_smd_data(char *buf)
{
int pkt_sz;
int bytes_read = 0;
pkt_sz = smd_cur_packet_size(msm_rpm_data.ch_info);
if (!pkt_sz)
return -EAGAIN;
if (pkt_sz > MAX_ERR_BUFFER_SIZE) {
pr_err("rpm_smd pkt_sz is greater than max size\n");
goto error;
}
if (pkt_sz != smd_read_avail(msm_rpm_data.ch_info))
return -EAGAIN;
do {
int len;
len = smd_read(msm_rpm_data.ch_info, buf + bytes_read, pkt_sz);
pkt_sz -= len;
bytes_read += len;
} while (pkt_sz > 0);
if (pkt_sz < 0) {
pr_err("rpm_smd pkt_sz is less than zero\n");
goto error;
}
return 0;
error:
BUG_ON(1);
return 0;
}
static void data_fn_tasklet(unsigned long data)
{
uint32_t msg_id;
int errno;
char buf[MAX_ERR_BUFFER_SIZE] = {0};
spin_lock(&msm_rpm_data.smd_lock_read);
while (smd_is_pkt_avail(msm_rpm_data.ch_info)) {
if (msm_rpm_read_smd_data(buf))
break;
msg_id = msm_rpm_get_msg_id_from_ack(buf);
errno = msm_rpm_get_error_from_ack(buf);
trace_rpm_smd_ack_recvd(0, msg_id, errno);
msm_rpm_process_ack(msg_id, errno);
}
spin_unlock(&msm_rpm_data.smd_lock_read);
}
static void msm_rpm_log_request(struct msm_rpm_request *cdata)
{
char buf[DEBUG_PRINT_BUFFER_SIZE];
size_t buflen = DEBUG_PRINT_BUFFER_SIZE;
char name[5];
u32 value;
uint32_t i;
int j, prev_valid;
int valid_count = 0;
int pos = 0;
name[4] = 0;
for (i = 0; i < cdata->write_idx; i++)
if (cdata->kvp[i].valid)
valid_count++;
pos += scnprintf(buf + pos, buflen - pos, "%sRPM req: ", KERN_INFO);
if (msm_rpm_debug_mask & MSM_RPM_LOG_REQUEST_SHOW_MSG_ID)
pos += scnprintf(buf + pos, buflen - pos, "msg_id=%u, ",
cdata->msg_hdr.msg_id);
pos += scnprintf(buf + pos, buflen - pos, "s=%s",
(cdata->msg_hdr.set == MSM_RPM_CTX_ACTIVE_SET ? "act" : "slp"));
if ((msm_rpm_debug_mask & MSM_RPM_LOG_REQUEST_PRETTY)
&& (msm_rpm_debug_mask & MSM_RPM_LOG_REQUEST_RAW)) {
/* Both pretty and raw formatting */
memcpy(name, &cdata->msg_hdr.resource_type, sizeof(uint32_t));
pos += scnprintf(buf + pos, buflen - pos,
", rsc_type=0x%08X (%s), rsc_id=%u; ",
cdata->msg_hdr.resource_type, name,
cdata->msg_hdr.resource_id);
for (i = 0, prev_valid = 0; i < cdata->write_idx; i++) {
if (!cdata->kvp[i].valid)
continue;
memcpy(name, &cdata->kvp[i].key, sizeof(uint32_t));
pos += scnprintf(buf + pos, buflen - pos,
"[key=0x%08X (%s), value=%s",
cdata->kvp[i].key, name,
(cdata->kvp[i].nbytes ? "0x" : "null"));
for (j = 0; j < cdata->kvp[i].nbytes; j++)
pos += scnprintf(buf + pos, buflen - pos,
"%02X ",
cdata->kvp[i].value[j]);
if (cdata->kvp[i].nbytes)
pos += scnprintf(buf + pos, buflen - pos, "(");
for (j = 0; j < cdata->kvp[i].nbytes; j += 4) {
value = 0;
memcpy(&value, &cdata->kvp[i].value[j],
min_t(uint32_t, sizeof(uint32_t),
cdata->kvp[i].nbytes - j));
pos += scnprintf(buf + pos, buflen - pos, "%u",
value);
if (j + 4 < cdata->kvp[i].nbytes)
pos += scnprintf(buf + pos,
buflen - pos, " ");
}
if (cdata->kvp[i].nbytes)
pos += scnprintf(buf + pos, buflen - pos, ")");
pos += scnprintf(buf + pos, buflen - pos, "]");
if (prev_valid + 1 < valid_count)
pos += scnprintf(buf + pos, buflen - pos, ", ");
prev_valid++;
}
} else if (msm_rpm_debug_mask & MSM_RPM_LOG_REQUEST_PRETTY) {
/* Pretty formatting only */
memcpy(name, &cdata->msg_hdr.resource_type, sizeof(uint32_t));
pos += scnprintf(buf + pos, buflen - pos, " %s %u; ", name,
cdata->msg_hdr.resource_id);
for (i = 0, prev_valid = 0; i < cdata->write_idx; i++) {
if (!cdata->kvp[i].valid)
continue;
memcpy(name, &cdata->kvp[i].key, sizeof(uint32_t));
pos += scnprintf(buf + pos, buflen - pos, "%s=%s",
name, (cdata->kvp[i].nbytes ? "" : "null"));
for (j = 0; j < cdata->kvp[i].nbytes; j += 4) {
value = 0;
memcpy(&value, &cdata->kvp[i].value[j],
min_t(uint32_t, sizeof(uint32_t),
cdata->kvp[i].nbytes - j));
pos += scnprintf(buf + pos, buflen - pos, "%u",
value);
if (j + 4 < cdata->kvp[i].nbytes)
pos += scnprintf(buf + pos,
buflen - pos, " ");
}
if (prev_valid + 1 < valid_count)
pos += scnprintf(buf + pos, buflen - pos, ", ");
prev_valid++;
}
} else {
/* Raw formatting only */
pos += scnprintf(buf + pos, buflen - pos,
", rsc_type=0x%08X, rsc_id=%u; ",
cdata->msg_hdr.resource_type,
cdata->msg_hdr.resource_id);
for (i = 0, prev_valid = 0; i < cdata->write_idx; i++) {
if (!cdata->kvp[i].valid)
continue;
pos += scnprintf(buf + pos, buflen - pos,
"[key=0x%08X, value=%s",
cdata->kvp[i].key,
(cdata->kvp[i].nbytes ? "0x" : "null"));
for (j = 0; j < cdata->kvp[i].nbytes; j++) {
pos += scnprintf(buf + pos, buflen - pos,
"%02X",
cdata->kvp[i].value[j]);
if (j + 1 < cdata->kvp[i].nbytes)
pos += scnprintf(buf + pos,
buflen - pos, " ");
}
pos += scnprintf(buf + pos, buflen - pos, "]");
if (prev_valid + 1 < valid_count)
pos += scnprintf(buf + pos, buflen - pos, ", ");
prev_valid++;
}
}
pos += scnprintf(buf + pos, buflen - pos, "\n");
printk(buf);
}
static int msm_rpm_send_smd_buffer(char *buf, uint32_t size, bool noirq)
{
unsigned long flags;
int ret;
spin_lock_irqsave(&msm_rpm_data.smd_lock_write, flags);
ret = smd_write_avail(msm_rpm_data.ch_info);
while ((ret = smd_write_avail(msm_rpm_data.ch_info)) < size) {
if (ret < 0)
break;
if (!noirq) {
spin_unlock_irqrestore(
&msm_rpm_data.smd_lock_write, flags);
cpu_relax();
spin_lock_irqsave(
&msm_rpm_data.smd_lock_write, flags);
} else
udelay(5);
}
if (ret < 0) {
pr_err("SMD not initialized\n");
spin_unlock_irqrestore(
&msm_rpm_data.smd_lock_write, flags);
return ret;
}
ret = smd_write(msm_rpm_data.ch_info, buf, size);
spin_unlock_irqrestore(&msm_rpm_data.smd_lock_write, flags);
return ret;
}
static int msm_rpm_glink_send_buffer(char *buf, uint32_t size, bool noirq)
{
int ret;
unsigned long flags;
int timeout = 50;
spin_lock_irqsave(&msm_rpm_data.smd_lock_write, flags);
do {
ret = glink_tx(glink_data->glink_handle, buf, buf,
size, GLINK_TX_SINGLE_THREADED);
if (ret == -EBUSY || ret == -ENOSPC || ret == -ENOMEM) {
if (!noirq) {
spin_unlock_irqrestore(
&msm_rpm_data.smd_lock_write, flags);
cpu_relax();
spin_lock_irqsave(
&msm_rpm_data.smd_lock_write, flags);
} else {
udelay(5);
}
timeout--;
} else {
ret = 0;
}
} while (ret && timeout);
spin_unlock_irqrestore(&msm_rpm_data.smd_lock_write, flags);
if (!timeout)
return 0;
else
return size;
}
static int msm_rpm_send_data(struct msm_rpm_request *cdata,
int msg_type, bool noirq, bool noack)
{
uint8_t *tmpbuff;
int ret;
uint32_t i;
uint32_t msg_size;
int req_hdr_sz, msg_hdr_sz;
if (probe_status)
return probe_status;
if (!cdata->msg_hdr.data_len)
return 1;
req_hdr_sz = sizeof(cdata->req_hdr);
msg_hdr_sz = sizeof(cdata->msg_hdr);
cdata->req_hdr.service_type = msm_rpm_request_service[msg_type];
cdata->req_hdr.request_len = cdata->msg_hdr.data_len + msg_hdr_sz;
msg_size = cdata->req_hdr.request_len + req_hdr_sz;
/* populate data_len */
if (msg_size > cdata->numbytes) {
kfree(cdata->buf);
cdata->numbytes = msg_size;
cdata->buf = kzalloc(msg_size, GFP_FLAG(noirq));
}
if (!cdata->buf) {
pr_err("Failed malloc\n");
return 0;
}
tmpbuff = cdata->buf;
tmpbuff += req_hdr_sz + msg_hdr_sz;
for (i = 0; (i < cdata->write_idx); i++) {
/* Sanity check */
BUG_ON((tmpbuff - cdata->buf) > cdata->numbytes);
if (!cdata->kvp[i].valid)
continue;
memcpy(tmpbuff, &cdata->kvp[i].key, sizeof(uint32_t));
tmpbuff += sizeof(uint32_t);
memcpy(tmpbuff, &cdata->kvp[i].nbytes, sizeof(uint32_t));
tmpbuff += sizeof(uint32_t);
memcpy(tmpbuff, cdata->kvp[i].value, cdata->kvp[i].nbytes);
tmpbuff += cdata->kvp[i].nbytes;
if (cdata->msg_hdr.set == MSM_RPM_CTX_SLEEP_SET)
msm_rpm_notify_sleep_chain(&cdata->msg_hdr,
&cdata->kvp[i]);
}
memcpy(cdata->buf, &cdata->req_hdr, req_hdr_sz + msg_hdr_sz);
if ((cdata->msg_hdr.set == MSM_RPM_CTX_SLEEP_SET) &&
!msm_rpm_smd_buffer_request(cdata, msg_size,
GFP_FLAG(noirq)))
return 1;
cdata->msg_hdr.msg_id = msm_rpm_get_next_msg_id();
memcpy(cdata->buf + req_hdr_sz, &cdata->msg_hdr, msg_hdr_sz);
if (msm_rpm_debug_mask
& (MSM_RPM_LOG_REQUEST_PRETTY | MSM_RPM_LOG_REQUEST_RAW))
msm_rpm_log_request(cdata);
if (standalone) {
for (i = 0; (i < cdata->write_idx); i++)
cdata->kvp[i].valid = false;
cdata->msg_hdr.data_len = 0;
ret = cdata->msg_hdr.msg_id;
return ret;
}
msm_rpm_add_wait_list(cdata->msg_hdr.msg_id, noack);
ret = msm_rpm_send_buffer(&cdata->buf[0], msg_size, noirq);
if (ret == msg_size) {
for (i = 0; (i < cdata->write_idx); i++)
cdata->kvp[i].valid = false;
cdata->msg_hdr.data_len = 0;
ret = cdata->msg_hdr.msg_id;
trace_rpm_smd_send_active_set(cdata->msg_hdr.msg_id,
cdata->msg_hdr.resource_type,
cdata->msg_hdr.resource_id);
} else if (ret < msg_size) {
struct msm_rpm_wait_data *rc;
ret = 0;
pr_err("Failed to write data msg_size:%d ret:%d msg_id:%d\n",
msg_size, ret, cdata->msg_hdr.msg_id);
rc = msm_rpm_get_entry_from_msg_id(cdata->msg_hdr.msg_id);
if (rc)
msm_rpm_free_list_entry(rc);
}
return ret;
}
static int _msm_rpm_send_request(struct msm_rpm_request *handle, bool noack)
{
int ret;
static DEFINE_MUTEX(send_mtx);
mutex_lock(&send_mtx);
ret = msm_rpm_send_data(handle, MSM_RPM_MSG_REQUEST_TYPE, false, noack);
mutex_unlock(&send_mtx);
return ret;
}
int msm_rpm_send_request(struct msm_rpm_request *handle)
{
return _msm_rpm_send_request(handle, false);
}
EXPORT_SYMBOL(msm_rpm_send_request);
int msm_rpm_send_request_noirq(struct msm_rpm_request *handle)
{
return msm_rpm_send_data(handle, MSM_RPM_MSG_REQUEST_TYPE, true, false);
}
EXPORT_SYMBOL(msm_rpm_send_request_noirq);
void *msm_rpm_send_request_noack(struct msm_rpm_request *handle)
{
int ret;
ret = _msm_rpm_send_request(handle, true);
return ret < 0 ? ERR_PTR(ret) : NULL;
}
EXPORT_SYMBOL(msm_rpm_send_request_noack);
int msm_rpm_wait_for_ack(uint32_t msg_id)
{
struct msm_rpm_wait_data *elem;
int rc = 0;
if (!msg_id) {
pr_err("Invalid msg id\n");
return -ENOMEM;
}
if (msg_id == 1)
return rc;
if (standalone)
return rc;
elem = msm_rpm_get_entry_from_msg_id(msg_id);
if (!elem)
return rc;
wait_for_completion(&elem->ack);
trace_rpm_smd_ack_recvd(0, msg_id, 0xDEADFEED);
rc = elem->errno;
msm_rpm_free_list_entry(elem);
return rc;
}
EXPORT_SYMBOL(msm_rpm_wait_for_ack);
static void msm_rpm_smd_read_data_noirq(uint32_t msg_id)
{
uint32_t id = 0;
while (id != msg_id) {
if (smd_is_pkt_avail(msm_rpm_data.ch_info)) {
int errno;
char buf[MAX_ERR_BUFFER_SIZE] = {};
msm_rpm_read_smd_data(buf);
id = msm_rpm_get_msg_id_from_ack(buf);
errno = msm_rpm_get_error_from_ack(buf);
trace_rpm_smd_ack_recvd(1, msg_id, errno);
msm_rpm_process_ack(id, errno);
}
}
}
static void msm_rpm_glink_read_data_noirq(struct msm_rpm_wait_data *elem)
{
int ret;
/* Use rx_poll method to read the message from RPM */
while (elem->errno) {
ret = glink_rpm_rx_poll(glink_data->glink_handle);
if (ret >= 0) {
/*
* We might have receieve the notification.
* Now we have to check whether the notification
* received is what we are interested?
* Wait for few usec to get the notification
* before re-trying the poll again.
*/
udelay(50);
} else {
pr_err("rx poll return error = %d\n", ret);
}
}
}
int msm_rpm_wait_for_ack_noirq(uint32_t msg_id)
{
struct msm_rpm_wait_data *elem;
unsigned long flags;
int rc = 0;
if (!msg_id) {
pr_err("Invalid msg id\n");
return -ENOMEM;
}
if (msg_id == 1)
return 0;
if (standalone)
return 0;
spin_lock_irqsave(&msm_rpm_data.smd_lock_read, flags);
elem = msm_rpm_get_entry_from_msg_id(msg_id);
if (!elem)
/* Should this be a bug
* Is it ok for another thread to read the msg?
*/
goto wait_ack_cleanup;
if (elem->errno != INIT_ERROR) {
rc = elem->errno;
msm_rpm_free_list_entry(elem);
goto wait_ack_cleanup;
}
if (!glink_enabled)
msm_rpm_smd_read_data_noirq(msg_id);
else
msm_rpm_glink_read_data_noirq(elem);
rc = elem->errno;
msm_rpm_free_list_entry(elem);
wait_ack_cleanup:
spin_unlock_irqrestore(&msm_rpm_data.smd_lock_read, flags);
if (!glink_enabled)
if (smd_is_pkt_avail(msm_rpm_data.ch_info))
tasklet_schedule(&data_tasklet);
return rc;
}
EXPORT_SYMBOL(msm_rpm_wait_for_ack_noirq);
void *msm_rpm_send_message_noack(enum msm_rpm_set set, uint32_t rsc_type,
uint32_t rsc_id, struct msm_rpm_kvp *kvp, int nelems)
{
int i, rc;
struct msm_rpm_request *req =
msm_rpm_create_request_common(set, rsc_type, rsc_id, nelems,
false);
if (IS_ERR(req))
return req;
if (!req)
return ERR_PTR(ENOMEM);
for (i = 0; i < nelems; i++) {
rc = msm_rpm_add_kvp_data(req, kvp[i].key,
kvp[i].data, kvp[i].length);
if (rc)
goto bail;
}
rc = PTR_ERR(msm_rpm_send_request_noack(req));
bail:
msm_rpm_free_request(req);
return rc < 0 ? ERR_PTR(rc) : NULL;
}
EXPORT_SYMBOL(msm_rpm_send_message_noack);
int msm_rpm_send_message(enum msm_rpm_set set, uint32_t rsc_type,
uint32_t rsc_id, struct msm_rpm_kvp *kvp, int nelems)
{
int i, rc;
struct msm_rpm_request *req =
msm_rpm_create_request(set, rsc_type, rsc_id, nelems);
if (IS_ERR(req))
return PTR_ERR(req);
if (!req)
return -ENOMEM;
for (i = 0; i < nelems; i++) {
rc = msm_rpm_add_kvp_data(req, kvp[i].key,
kvp[i].data, kvp[i].length);
if (rc)
goto bail;
}
rc = msm_rpm_wait_for_ack(msm_rpm_send_request(req));
bail:
msm_rpm_free_request(req);
return rc;
}
EXPORT_SYMBOL(msm_rpm_send_message);
int msm_rpm_send_message_noirq(enum msm_rpm_set set, uint32_t rsc_type,
uint32_t rsc_id, struct msm_rpm_kvp *kvp, int nelems)
{
int i, rc;
struct msm_rpm_request *req =
msm_rpm_create_request_noirq(set, rsc_type, rsc_id, nelems);
if (IS_ERR(req))
return PTR_ERR(req);
if (!req)
return -ENOMEM;
for (i = 0; i < nelems; i++) {
rc = msm_rpm_add_kvp_data_noirq(req, kvp[i].key,
kvp[i].data, kvp[i].length);
if (rc)
goto bail;
}
rc = msm_rpm_wait_for_ack_noirq(msm_rpm_send_request_noirq(req));
bail:
msm_rpm_free_request(req);
return rc;
}
EXPORT_SYMBOL(msm_rpm_send_message_noirq);
/**
* During power collapse, the rpm driver disables the SMD interrupts to make
* sure that the interrupt doesn't wakes us from sleep.
*/
int msm_rpm_enter_sleep(bool print, const struct cpumask *cpumask)
{
int ret = 0;
if (standalone)
return 0;
if (!glink_enabled)
ret = smd_mask_receive_interrupt(msm_rpm_data.ch_info,
true, cpumask);
else
ret = glink_rpm_mask_rx_interrupt(glink_data->glink_handle,
true, (void *)cpumask);
if (!ret) {
ret = msm_rpm_flush_requests(print);
if (ret) {
if (!glink_enabled)
smd_mask_receive_interrupt(
msm_rpm_data.ch_info, false, NULL);
else
glink_rpm_mask_rx_interrupt(
glink_data->glink_handle, false, NULL);
}
}
return ret;
}
EXPORT_SYMBOL(msm_rpm_enter_sleep);
/**
* When the system resumes from power collapse, the SMD interrupt disabled by
* enter function has to reenabled to continue processing SMD message.
*/
void msm_rpm_exit_sleep(void)
{
int ret;
if (standalone)
return;
do {
ret = msm_rpm_read_sleep_ack();
} while (ret > 0);
if (!glink_enabled)
smd_mask_receive_interrupt(msm_rpm_data.ch_info, false, NULL);
else
glink_rpm_mask_rx_interrupt(glink_data->glink_handle,
false, NULL);
}
EXPORT_SYMBOL(msm_rpm_exit_sleep);
/*
* Whenever there is a data from RPM, notify_rx will be called.
* This function is invoked either interrupt OR polling context.
*/
static void msm_rpm_trans_notify_rx(void *handle, const void *priv,
const void *pkt_priv, const void *ptr, size_t size)
{
uint32_t msg_id;
int errno;
char buf[MAX_ERR_BUFFER_SIZE] = {0};
struct msm_rpm_wait_data *elem;
static DEFINE_SPINLOCK(rx_notify_lock);
unsigned long flags;
if (!size)
return;
BUG_ON(size > MAX_ERR_BUFFER_SIZE);
spin_lock_irqsave(&rx_notify_lock, flags);
memcpy(buf, ptr, size);
msg_id = msm_rpm_get_msg_id_from_ack(buf);
errno = msm_rpm_get_error_from_ack(buf);
elem = msm_rpm_get_entry_from_msg_id(msg_id);
/*
* It is applicable for sleep set requests
* Sleep set requests are not added to the
* wait queue list. Without this check we
* run into NULL pointer deferrence issue.
*/
if (!elem) {
spin_unlock_irqrestore(&rx_notify_lock, flags);
glink_rx_done(handle, ptr, 0);
return;
}
msm_rpm_process_ack(msg_id, errno);
spin_unlock_irqrestore(&rx_notify_lock, flags);
glink_rx_done(handle, ptr, 0);
}
static void msm_rpm_trans_notify_state(void *handle, const void *priv,
unsigned event)
{
switch (event) {
case GLINK_CONNECTED:
glink_data->glink_handle = handle;
if (IS_ERR_OR_NULL(glink_data->glink_handle)) {
pr_err("glink_handle %d\n",
(int)PTR_ERR(glink_data->glink_handle));
BUG_ON(1);
}
/*
* Do not allow clients to send data to RPM until glink
* is fully open.
*/
probe_status = 0;
pr_info("glink config params: transport=%s, edge=%s, name=%s\n",
glink_data->xprt,
glink_data->edge,
glink_data->name);
break;
default:
pr_err("Unrecognized event %d\n", event);
break;
};
}
static void msm_rpm_trans_notify_tx_done(void *handle, const void *priv,
const void *pkt_priv, const void *ptr)
{
return;
}
static void msm_rpm_glink_open_work(struct work_struct *work)
{
pr_debug("Opening glink channel\n");
glink_data->glink_handle = glink_open(glink_data->open_cfg);
if (IS_ERR_OR_NULL(glink_data->glink_handle)) {
pr_err("Error: glink_open failed %d\n",
(int)PTR_ERR(glink_data->glink_handle));
BUG_ON(1);
}
}
static void msm_rpm_glink_notifier_cb(struct glink_link_state_cb_info *cb_info,
void *priv)
{
struct glink_open_config *open_config;
static bool first = true;
if (!cb_info) {
pr_err("Missing callback data\n");
return;
}
switch (cb_info->link_state) {
case GLINK_LINK_STATE_UP:
if (first)
first = false;
else
break;
open_config = kzalloc(sizeof(*open_config), GFP_KERNEL);
if (!open_config) {
pr_err("Could not allocate memory\n");
break;
}
glink_data->open_cfg = open_config;
pr_debug("glink link state up cb receieved\n");
INIT_WORK(&glink_data->work, msm_rpm_glink_open_work);
open_config->priv = glink_data;
open_config->name = glink_data->name;
open_config->edge = glink_data->edge;
open_config->notify_rx = msm_rpm_trans_notify_rx;
open_config->notify_tx_done = msm_rpm_trans_notify_tx_done;
open_config->notify_state = msm_rpm_trans_notify_state;
schedule_work(&glink_data->work);
break;
default:
pr_err("Unrecognised state = %d\n", cb_info->link_state);
break;
};
}
static int msm_rpm_glink_dt_parse(struct platform_device *pdev,
struct glink_apps_rpm_data *glink_data)
{
char *key = NULL;
int ret;
if (of_device_is_compatible(pdev->dev.of_node, "qcom,rpm-glink")) {
glink_enabled = true;
} else {
pr_warn("qcom,rpm-glink compatible not matches\n");
ret = -EINVAL;
return ret;
}
key = "qcom,glink-edge";
ret = of_property_read_string(pdev->dev.of_node, key,
&glink_data->edge);
if (ret) {
pr_err("Failed to read node: %s, key=%s\n",
pdev->dev.of_node->full_name, key);
return ret;
}
key = "rpm-channel-name";
ret = of_property_read_string(pdev->dev.of_node, key,
&glink_data->name);
if (ret)
pr_err("%s(): Failed to read node: %s, key=%s\n", __func__,
pdev->dev.of_node->full_name, key);
return ret;
}
static int msm_rpm_glink_link_setup(struct glink_apps_rpm_data *glink_data,
struct platform_device *pdev)
{
struct glink_link_info *link_info;
void *link_state_cb_handle;
struct device *dev = &pdev->dev;
int ret = 0;
link_info = devm_kzalloc(dev, sizeof(struct glink_link_info),
GFP_KERNEL);
if (!link_info) {
pr_err("Could not allocate memory\n");
ret = -ENOMEM;
return ret;
}
glink_data->link_info = link_info;
/*
* Setup link info parameters
*/
link_info->edge = glink_data->edge;
link_info->glink_link_state_notif_cb =
msm_rpm_glink_notifier_cb;
link_state_cb_handle = glink_register_link_state_cb(link_info, NULL);
if (IS_ERR_OR_NULL(link_state_cb_handle)) {
pr_err("Could not register cb\n");
ret = PTR_ERR(link_state_cb_handle);
return ret;
}
spin_lock_init(&msm_rpm_data.smd_lock_read);
spin_lock_init(&msm_rpm_data.smd_lock_write);
return ret;
}
static int msm_rpm_dev_glink_probe(struct platform_device *pdev)
{
int ret = -ENOMEM;
struct device *dev = &pdev->dev;
glink_data = devm_kzalloc(dev, sizeof(*glink_data), GFP_KERNEL);
if (!glink_data) {
pr_err("Could not allocate memory\n");
return ret;
}
ret = msm_rpm_glink_dt_parse(pdev, glink_data);
if (ret < 0) {
devm_kfree(dev, glink_data);
return ret;
}
ret = msm_rpm_glink_link_setup(glink_data, pdev);
if (ret < 0) {
/*
* If the glink setup fails there is no
* fall back mechanism to SMD.
*/
pr_err("GLINK setup fail ret = %d\n", ret);
BUG_ON(1);
}
return ret;
}
static int msm_rpm_dev_probe(struct platform_device *pdev)
{
char *key = NULL;
int ret = 0;
/*
* Check for standalone support
*/
key = "rpm-standalone";
standalone = of_property_read_bool(pdev->dev.of_node, key);
if (standalone) {
probe_status = ret;
goto skip_init;
}
ret = msm_rpm_dev_glink_probe(pdev);
if (!ret) {
pr_info("APSS-RPM communication over GLINK\n");
msm_rpm_send_buffer = msm_rpm_glink_send_buffer;
of_platform_populate(pdev->dev.of_node, NULL, NULL,
&pdev->dev);
return ret;
} else {
msm_rpm_send_buffer = msm_rpm_send_smd_buffer;
pr_info("APSS-RPM communication over SMD\n");
}
key = "rpm-channel-name";
ret = of_property_read_string(pdev->dev.of_node, key,
&msm_rpm_data.ch_name);
if (ret) {
pr_err("%s(): Failed to read node: %s, key=%s\n", __func__,
pdev->dev.of_node->full_name, key);
goto fail;
}
key = "rpm-channel-type";
ret = of_property_read_u32(pdev->dev.of_node, key,
&msm_rpm_data.ch_type);
if (ret) {
pr_err("%s(): Failed to read node: %s, key=%s\n", __func__,
pdev->dev.of_node->full_name, key);
goto fail;
}
ret = smd_named_open_on_edge(msm_rpm_data.ch_name,
msm_rpm_data.ch_type,
&msm_rpm_data.ch_info,
&msm_rpm_data,
msm_rpm_notify);
if (ret) {
if (ret != -EPROBE_DEFER) {
pr_err("%s: Cannot open RPM channel %s %d\n",
__func__, msm_rpm_data.ch_name,
msm_rpm_data.ch_type);
}
goto fail;
}
spin_lock_init(&msm_rpm_data.smd_lock_write);
spin_lock_init(&msm_rpm_data.smd_lock_read);
tasklet_init(&data_tasklet, data_fn_tasklet, 0);
wait_for_completion(&msm_rpm_data.smd_open);
smd_disable_read_intr(msm_rpm_data.ch_info);
msm_rpm_smd_wq = alloc_workqueue("rpm-smd",
WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_HIGHPRI, 1);
if (!msm_rpm_smd_wq) {
pr_err("%s: Unable to alloc rpm-smd workqueue\n", __func__);
ret = -EINVAL;
goto fail;
}
queue_work(msm_rpm_smd_wq, &msm_rpm_data.work);
probe_status = ret;
skip_init:
of_platform_populate(pdev->dev.of_node, NULL, NULL, &pdev->dev);
if (standalone)
pr_info("RPM running in standalone mode\n");
fail:
return probe_status;
}
static struct of_device_id msm_rpm_match_table[] = {
{.compatible = "qcom,rpm-smd"},
{.compatible = "qcom,rpm-glink"},
{},
};
static struct platform_driver msm_rpm_device_driver = {
.probe = msm_rpm_dev_probe,
.driver = {
.name = "rpm-smd",
.owner = THIS_MODULE,
.of_match_table = msm_rpm_match_table,
},
};
int __init msm_rpm_driver_init(void)
{
static bool registered;
if (registered)
return 0;
registered = true;
return platform_driver_register(&msm_rpm_device_driver);
}
EXPORT_SYMBOL(msm_rpm_driver_init);
arch_initcall(msm_rpm_driver_init);