android_kernel_samsung_hero.../drivers/soc/qcom/smd.c
2016-08-17 16:41:52 +08:00

3250 lines
82 KiB
C

/* drivers/soc/qcom/smd.c
*
* Copyright (C) 2007 Google, Inc.
* Copyright (c) 2008-2015, The Linux Foundation. All rights reserved.
* Author: Brian Swetland <swetland@google.com>
*
* This software is licensed under the terms of the GNU General Public
* License version 2, as published by the Free Software Foundation, and
* may be copied, distributed, and modified under those terms.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
*/
#include <linux/platform_device.h>
#include <linux/module.h>
#include <linux/fs.h>
#include <linux/cdev.h>
#include <linux/device.h>
#include <linux/wait.h>
#include <linux/interrupt.h>
#include <linux/irq.h>
#include <linux/list.h>
#include <linux/slab.h>
#include <linux/delay.h>
#include <linux/io.h>
#include <linux/termios.h>
#include <linux/ctype.h>
#include <linux/remote_spinlock.h>
#include <linux/uaccess.h>
#include <linux/kfifo.h>
#include <linux/pm.h>
#include <linux/notifier.h>
#include <linux/suspend.h>
#include <linux/of.h>
#include <linux/of_irq.h>
#include <linux/ipc_logging.h>
#include <soc/qcom/ramdump.h>
#include <soc/qcom/smd.h>
#include <soc/qcom/smem.h>
#include <soc/qcom/subsystem_notif.h>
#include <soc/qcom/subsystem_restart.h>
#include "smd_private.h"
#include "smem_private.h"
#define SMSM_SNAPSHOT_CNT 64
#define SMSM_SNAPSHOT_SIZE ((SMSM_NUM_ENTRIES + 1) * 4 + sizeof(uint64_t))
#define RSPIN_INIT_WAIT_MS 1000
#define SMD_FIFO_FULL_RESERVE 4
#define SMD_FIFO_ADDR_ALIGN_BYTES 3
uint32_t SMSM_NUM_ENTRIES = 8;
uint32_t SMSM_NUM_HOSTS = 3;
/* Legacy SMSM interrupt notifications */
#define LEGACY_MODEM_SMSM_MASK (SMSM_RESET | SMSM_INIT | SMSM_SMDINIT)
struct smsm_shared_info {
uint32_t *state;
uint32_t *intr_mask;
uint32_t *intr_mux;
};
static struct smsm_shared_info smsm_info;
static struct kfifo smsm_snapshot_fifo;
static struct wakeup_source smsm_snapshot_ws;
static int smsm_snapshot_count;
static DEFINE_SPINLOCK(smsm_snapshot_count_lock);
struct smsm_size_info_type {
uint32_t num_hosts;
uint32_t num_entries;
uint32_t reserved0;
uint32_t reserved1;
};
struct smsm_state_cb_info {
struct list_head cb_list;
uint32_t mask;
void *data;
void (*notify)(void *data, uint32_t old_state, uint32_t new_state);
};
struct smsm_state_info {
struct list_head callbacks;
uint32_t last_value;
uint32_t intr_mask_set;
uint32_t intr_mask_clear;
};
static irqreturn_t smsm_irq_handler(int irq, void *data);
/*
* Interrupt configuration consists of static configuration for the supported
* processors that is done here along with interrupt configuration that is
* added by the separate initialization modules (device tree, platform data, or
* hard coded).
*/
static struct interrupt_config private_intr_config[NUM_SMD_SUBSYSTEMS] = {
[SMD_MODEM] = {
.smd.irq_handler = smd_modem_irq_handler,
.smsm.irq_handler = smsm_modem_irq_handler,
},
[SMD_Q6] = {
.smd.irq_handler = smd_dsp_irq_handler,
.smsm.irq_handler = smsm_dsp_irq_handler,
},
[SMD_DSPS] = {
.smd.irq_handler = smd_dsps_irq_handler,
.smsm.irq_handler = smsm_dsps_irq_handler,
},
[SMD_WCNSS] = {
.smd.irq_handler = smd_wcnss_irq_handler,
.smsm.irq_handler = smsm_wcnss_irq_handler,
},
[SMD_MODEM_Q6_FW] = {
.smd.irq_handler = smd_modemfw_irq_handler,
.smsm.irq_handler = NULL, /* does not support smsm */
},
[SMD_RPM] = {
.smd.irq_handler = smd_rpm_irq_handler,
.smsm.irq_handler = NULL, /* does not support smsm */
},
};
struct interrupt_stat interrupt_stats[NUM_SMD_SUBSYSTEMS];
#define SMSM_STATE_ADDR(entry) (smsm_info.state + entry)
#define SMSM_INTR_MASK_ADDR(entry, host) (smsm_info.intr_mask + \
entry * SMSM_NUM_HOSTS + host)
#define SMSM_INTR_MUX_ADDR(entry) (smsm_info.intr_mux + entry)
int msm_smd_debug_mask = MSM_SMD_POWER_INFO | MSM_SMD_INFO |
MSM_SMSM_POWER_INFO;
module_param_named(debug_mask, msm_smd_debug_mask,
int, S_IRUGO | S_IWUSR | S_IWGRP);
void *smd_log_ctx;
void *smsm_log_ctx;
#define NUM_LOG_PAGES 4
#define IPC_LOG_SMD(level, x...) do { \
if (smd_log_ctx) \
ipc_log_string(smd_log_ctx, x); \
else \
printk(level x); \
} while (0)
#define IPC_LOG_SMSM(level, x...) do { \
if (smsm_log_ctx) \
ipc_log_string(smsm_log_ctx, x); \
else \
printk(level x); \
} while (0)
#if defined(CONFIG_MSM_SMD_DEBUG)
#define SMD_DBG(x...) do { \
if (msm_smd_debug_mask & MSM_SMD_DEBUG) \
IPC_LOG_SMD(KERN_DEBUG, x); \
} while (0)
#define SMSM_DBG(x...) do { \
if (msm_smd_debug_mask & MSM_SMSM_DEBUG) \
IPC_LOG_SMSM(KERN_DEBUG, x); \
} while (0)
#define SMD_INFO(x...) do { \
if (msm_smd_debug_mask & MSM_SMD_INFO) \
IPC_LOG_SMD(KERN_INFO, x); \
} while (0)
#define SMSM_INFO(x...) do { \
if (msm_smd_debug_mask & MSM_SMSM_INFO) \
IPC_LOG_SMSM(KERN_INFO, x); \
} while (0)
#define SMD_POWER_INFO(x...) do { \
if (msm_smd_debug_mask & MSM_SMD_POWER_INFO) \
IPC_LOG_SMD(KERN_INFO, x); \
} while (0)
#define SMSM_POWER_INFO(x...) do { \
if (msm_smd_debug_mask & MSM_SMSM_POWER_INFO) \
IPC_LOG_SMSM(KERN_INFO, x); \
} while (0)
#else
#define SMD_DBG(x...) do { } while (0)
#define SMSM_DBG(x...) do { } while (0)
#define SMD_INFO(x...) do { } while (0)
#define SMSM_INFO(x...) do { } while (0)
#define SMD_POWER_INFO(x...) do { } while (0)
#define SMSM_POWER_INFO(x...) do { } while (0)
#endif
static void smd_fake_irq_handler(unsigned long arg);
static void smsm_cb_snapshot(uint32_t use_wakeup_source);
static struct workqueue_struct *smsm_cb_wq;
static void notify_smsm_cb_clients_worker(struct work_struct *work);
static DECLARE_WORK(smsm_cb_work, notify_smsm_cb_clients_worker);
static DEFINE_MUTEX(smsm_lock);
static struct smsm_state_info *smsm_states;
static int smd_stream_write_avail(struct smd_channel *ch);
static int smd_stream_read_avail(struct smd_channel *ch);
static bool pid_is_on_edge(uint32_t edge_num, unsigned pid);
static inline void smd_write_intr(unsigned int val, void __iomem *addr)
{
wmb();
__raw_writel(val, addr);
}
/**
* smd_memcpy_to_fifo() - copy to SMD channel FIFO
* @dest: Destination address
* @src: Source address
* @num_bytes: Number of bytes to copy
*
* @return: Address of destination
*
* This function copies num_bytes from src to dest. This is used as the memcpy
* function to copy data to SMD FIFO in case the SMD FIFO is naturally aligned.
*/
static void *smd_memcpy_to_fifo(void *dest, const void *src, size_t num_bytes)
{
memcpy_toio(dest, src, num_bytes);
return dest;
}
/**
* smd_memcpy_from_fifo() - copy from SMD channel FIFO
* @dest: Destination address
* @src: Source address
* @num_bytes: Number of bytes to copy
*
* @return: Address of destination
*
* This function copies num_bytes from src to dest. This is used as the memcpy
* function to copy data from SMD FIFO in case the SMD FIFO is naturally
* aligned.
*/
static void *smd_memcpy_from_fifo(void *dest, const void *src, size_t num_bytes)
{
memcpy_fromio(dest, src, num_bytes);
return dest;
}
/**
* smd_memcpy32_to_fifo() - Copy to SMD channel FIFO
*
* @dest: Destination address
* @src: Source address
* @num_bytes: Number of bytes to copy
*
* @return: On Success, address of destination
*
* This function copies num_bytes data from src to dest. This is used as the
* memcpy function to copy data to SMD FIFO in case the SMD FIFO is 4 byte
* aligned.
*/
static void *smd_memcpy32_to_fifo(void *dest, const void *src, size_t num_bytes)
{
uint32_t *dest_local = (uint32_t *)dest;
uint32_t *src_local = (uint32_t *)src;
BUG_ON(num_bytes & SMD_FIFO_ADDR_ALIGN_BYTES);
BUG_ON(!dest_local ||
((uintptr_t)dest_local & SMD_FIFO_ADDR_ALIGN_BYTES));
BUG_ON(!src_local ||
((uintptr_t)src_local & SMD_FIFO_ADDR_ALIGN_BYTES));
num_bytes /= sizeof(uint32_t);
while (num_bytes--)
__raw_writel_no_log(*src_local++, dest_local++);
return dest;
}
/**
* smd_memcpy32_from_fifo() - Copy from SMD channel FIFO
* @dest: Destination address
* @src: Source address
* @num_bytes: Number of bytes to copy
*
* @return: On Success, destination address
*
* This function copies num_bytes data from SMD FIFO to dest. This is used as
* the memcpy function to copy data from SMD FIFO in case the SMD FIFO is 4 byte
* aligned.
*/
static void *smd_memcpy32_from_fifo(void *dest, const void *src,
size_t num_bytes)
{
uint32_t *dest_local = (uint32_t *)dest;
uint32_t *src_local = (uint32_t *)src;
BUG_ON(num_bytes & SMD_FIFO_ADDR_ALIGN_BYTES);
BUG_ON(!dest_local ||
((uintptr_t)dest_local & SMD_FIFO_ADDR_ALIGN_BYTES));
BUG_ON(!src_local ||
((uintptr_t)src_local & SMD_FIFO_ADDR_ALIGN_BYTES));
num_bytes /= sizeof(uint32_t);
while (num_bytes--)
*dest_local++ = __raw_readl_no_log(src_local++);
return dest;
}
static inline void log_notify(uint32_t subsystem, smd_channel_t *ch)
{
const char *subsys = smd_edge_to_subsystem(subsystem);
(void) subsys;
if (!ch)
SMD_POWER_INFO("Apps->%s\n", subsys);
else
SMD_POWER_INFO(
"Apps->%s ch%d '%s': tx%d/rx%d %dr/%dw : %dr/%dw\n",
subsys, ch->n, ch->name,
ch->fifo_size -
(smd_stream_write_avail(ch) + 1),
smd_stream_read_avail(ch),
ch->half_ch->get_tail(ch->send),
ch->half_ch->get_head(ch->send),
ch->half_ch->get_tail(ch->recv),
ch->half_ch->get_head(ch->recv)
);
}
static inline void notify_modem_smd(smd_channel_t *ch)
{
static const struct interrupt_config_item *intr
= &private_intr_config[SMD_MODEM].smd;
log_notify(SMD_APPS_MODEM, ch);
if (intr->out_base) {
++interrupt_stats[SMD_MODEM].smd_out_count;
smd_write_intr(intr->out_bit_pos,
intr->out_base + intr->out_offset);
}
}
static inline void notify_dsp_smd(smd_channel_t *ch)
{
static const struct interrupt_config_item *intr
= &private_intr_config[SMD_Q6].smd;
log_notify(SMD_APPS_QDSP, ch);
if (intr->out_base) {
++interrupt_stats[SMD_Q6].smd_out_count;
smd_write_intr(intr->out_bit_pos,
intr->out_base + intr->out_offset);
}
}
static inline void notify_dsps_smd(smd_channel_t *ch)
{
static const struct interrupt_config_item *intr
= &private_intr_config[SMD_DSPS].smd;
log_notify(SMD_APPS_DSPS, ch);
if (intr->out_base) {
++interrupt_stats[SMD_DSPS].smd_out_count;
smd_write_intr(intr->out_bit_pos,
intr->out_base + intr->out_offset);
}
}
static inline void notify_wcnss_smd(struct smd_channel *ch)
{
static const struct interrupt_config_item *intr
= &private_intr_config[SMD_WCNSS].smd;
log_notify(SMD_APPS_WCNSS, ch);
if (intr->out_base) {
++interrupt_stats[SMD_WCNSS].smd_out_count;
smd_write_intr(intr->out_bit_pos,
intr->out_base + intr->out_offset);
}
}
static inline void notify_modemfw_smd(smd_channel_t *ch)
{
static const struct interrupt_config_item *intr
= &private_intr_config[SMD_MODEM_Q6_FW].smd;
log_notify(SMD_APPS_Q6FW, ch);
if (intr->out_base) {
++interrupt_stats[SMD_MODEM_Q6_FW].smd_out_count;
smd_write_intr(intr->out_bit_pos,
intr->out_base + intr->out_offset);
}
}
static inline void notify_rpm_smd(smd_channel_t *ch)
{
static const struct interrupt_config_item *intr
= &private_intr_config[SMD_RPM].smd;
if (intr->out_base) {
log_notify(SMD_APPS_RPM, ch);
++interrupt_stats[SMD_RPM].smd_out_count;
smd_write_intr(intr->out_bit_pos,
intr->out_base + intr->out_offset);
}
}
static inline void notify_modem_smsm(void)
{
static const struct interrupt_config_item *intr
= &private_intr_config[SMD_MODEM].smsm;
SMSM_POWER_INFO("SMSM Apps->%s", "MODEM");
if (intr->out_base) {
++interrupt_stats[SMD_MODEM].smsm_out_count;
smd_write_intr(intr->out_bit_pos,
intr->out_base + intr->out_offset);
}
}
static inline void notify_dsp_smsm(void)
{
static const struct interrupt_config_item *intr
= &private_intr_config[SMD_Q6].smsm;
SMSM_POWER_INFO("SMSM Apps->%s", "ADSP");
if (intr->out_base) {
++interrupt_stats[SMD_Q6].smsm_out_count;
smd_write_intr(intr->out_bit_pos,
intr->out_base + intr->out_offset);
}
}
static inline void notify_dsps_smsm(void)
{
static const struct interrupt_config_item *intr
= &private_intr_config[SMD_DSPS].smsm;
SMSM_POWER_INFO("SMSM Apps->%s", "DSPS");
if (intr->out_base) {
++interrupt_stats[SMD_DSPS].smsm_out_count;
smd_write_intr(intr->out_bit_pos,
intr->out_base + intr->out_offset);
}
}
static inline void notify_wcnss_smsm(void)
{
static const struct interrupt_config_item *intr
= &private_intr_config[SMD_WCNSS].smsm;
SMSM_POWER_INFO("SMSM Apps->%s", "WCNSS");
if (intr->out_base) {
++interrupt_stats[SMD_WCNSS].smsm_out_count;
smd_write_intr(intr->out_bit_pos,
intr->out_base + intr->out_offset);
}
}
static void notify_other_smsm(uint32_t smsm_entry, uint32_t notify_mask)
{
if (smsm_info.intr_mask &&
(__raw_readl(SMSM_INTR_MASK_ADDR(smsm_entry, SMSM_MODEM))
& notify_mask))
notify_modem_smsm();
if (smsm_info.intr_mask &&
(__raw_readl(SMSM_INTR_MASK_ADDR(smsm_entry, SMSM_Q6))
& notify_mask))
notify_dsp_smsm();
if (smsm_info.intr_mask &&
(__raw_readl(SMSM_INTR_MASK_ADDR(smsm_entry, SMSM_WCNSS))
& notify_mask)) {
notify_wcnss_smsm();
}
if (smsm_info.intr_mask &&
(__raw_readl(SMSM_INTR_MASK_ADDR(smsm_entry, SMSM_DSPS))
& notify_mask)) {
notify_dsps_smsm();
}
if (smsm_info.intr_mask &&
(__raw_readl(SMSM_INTR_MASK_ADDR(smsm_entry, SMSM_APPS))
& notify_mask)) {
smsm_cb_snapshot(1);
}
}
static int smsm_pm_notifier(struct notifier_block *nb,
unsigned long event, void *unused)
{
switch (event) {
case PM_SUSPEND_PREPARE:
smsm_change_state(SMSM_APPS_STATE, SMSM_PROC_AWAKE, 0);
break;
case PM_POST_SUSPEND:
smsm_change_state(SMSM_APPS_STATE, 0, SMSM_PROC_AWAKE);
break;
}
return NOTIFY_DONE;
}
static struct notifier_block smsm_pm_nb = {
.notifier_call = smsm_pm_notifier,
.priority = 0,
};
/* the spinlock is used to synchronize between the
* irq handler and code that mutates the channel
* list or fiddles with channel state
*/
static DEFINE_SPINLOCK(smd_lock);
DEFINE_SPINLOCK(smem_lock);
/* the mutex is used during open() and close()
* operations to avoid races while creating or
* destroying smd_channel structures
*/
static DEFINE_MUTEX(smd_creation_mutex);
struct smd_shared {
struct smd_half_channel ch0;
struct smd_half_channel ch1;
};
struct smd_shared_word_access {
struct smd_half_channel_word_access ch0;
struct smd_half_channel_word_access ch1;
};
/**
* Maps edge type to local and remote processor ID's.
*/
static struct edge_to_pid edge_to_pids[] = {
[SMD_APPS_MODEM] = {SMD_APPS, SMD_MODEM, "modem"},
[SMD_APPS_QDSP] = {SMD_APPS, SMD_Q6, "adsp"},
[SMD_MODEM_QDSP] = {SMD_MODEM, SMD_Q6},
[SMD_APPS_DSPS] = {SMD_APPS, SMD_DSPS, "dsps"},
[SMD_MODEM_DSPS] = {SMD_MODEM, SMD_DSPS},
[SMD_QDSP_DSPS] = {SMD_Q6, SMD_DSPS},
[SMD_APPS_WCNSS] = {SMD_APPS, SMD_WCNSS, "wcnss"},
[SMD_MODEM_WCNSS] = {SMD_MODEM, SMD_WCNSS},
[SMD_QDSP_WCNSS] = {SMD_Q6, SMD_WCNSS},
[SMD_DSPS_WCNSS] = {SMD_DSPS, SMD_WCNSS},
[SMD_APPS_Q6FW] = {SMD_APPS, SMD_MODEM_Q6_FW},
[SMD_MODEM_Q6FW] = {SMD_MODEM, SMD_MODEM_Q6_FW},
[SMD_QDSP_Q6FW] = {SMD_Q6, SMD_MODEM_Q6_FW},
[SMD_DSPS_Q6FW] = {SMD_DSPS, SMD_MODEM_Q6_FW},
[SMD_WCNSS_Q6FW] = {SMD_WCNSS, SMD_MODEM_Q6_FW},
[SMD_APPS_RPM] = {SMD_APPS, SMD_RPM},
[SMD_MODEM_RPM] = {SMD_MODEM, SMD_RPM},
[SMD_QDSP_RPM] = {SMD_Q6, SMD_RPM},
[SMD_WCNSS_RPM] = {SMD_WCNSS, SMD_RPM},
[SMD_TZ_RPM] = {SMD_TZ, SMD_RPM},
};
struct restart_notifier_block {
unsigned processor;
char *name;
struct notifier_block nb;
};
static struct platform_device loopback_tty_pdev = {.name = "LOOPBACK_TTY"};
static LIST_HEAD(smd_ch_closed_list);
static LIST_HEAD(smd_ch_closing_list);
static LIST_HEAD(smd_ch_to_close_list);
struct remote_proc_info {
unsigned remote_pid;
unsigned free_space;
struct work_struct probe_work;
struct list_head ch_list;
/* 2 total supported tables of channels */
unsigned char ch_allocated[SMEM_NUM_SMD_STREAM_CHANNELS * 2];
bool skip_pil;
};
static struct remote_proc_info remote_info[NUM_SMD_SUBSYSTEMS];
static void finalize_channel_close_fn(struct work_struct *work);
static DECLARE_WORK(finalize_channel_close_work, finalize_channel_close_fn);
static struct workqueue_struct *channel_close_wq;
#define PRI_ALLOC_TBL 1
#define SEC_ALLOC_TBL 2
static int smd_alloc_channel(struct smd_alloc_elm *alloc_elm, int table_id,
struct remote_proc_info *r_info);
static bool smd_edge_inited(int edge)
{
return edge_to_pids[edge].initialized;
}
/* on smp systems, the probe might get called from multiple cores,
hence use a lock */
static DEFINE_MUTEX(smd_probe_lock);
/**
* scan_alloc_table - Scans a specified SMD channel allocation table in SMEM for
* newly created channels that need to be made locally
* visable
*
* @shared: pointer to the table array in SMEM
* @smd_ch_allocated: pointer to an array indicating already allocated channels
* @table_id: identifier for this channel allocation table
* @num_entries: number of entries in this allocation table
* @r_info: pointer to the info structure of the remote proc we care about
*
* The smd_probe_lock must be locked by the calling function. Shared and
* smd_ch_allocated are assumed to be valid pointers.
*/
static void scan_alloc_table(struct smd_alloc_elm *shared,
char *smd_ch_allocated,
int table_id,
unsigned num_entries,
struct remote_proc_info *r_info)
{
unsigned n;
uint32_t type;
for (n = 0; n < num_entries; n++) {
if (smd_ch_allocated[n])
continue;
/*
* channel should be allocated only if APPS processor is
* involved
*/
type = SMD_CHANNEL_TYPE(shared[n].type);
if (!pid_is_on_edge(type, SMD_APPS) ||
!pid_is_on_edge(type, r_info->remote_pid))
continue;
if (!shared[n].ref_count)
continue;
if (!shared[n].name[0])
continue;
if (!smd_edge_inited(type)) {
SMD_INFO(
"Probe skipping proc %d, tbl %d, ch %d, edge not inited\n",
r_info->remote_pid, table_id, n);
continue;
}
if (!smd_alloc_channel(&shared[n], table_id, r_info))
smd_ch_allocated[n] = 1;
else
SMD_INFO(
"Probe skipping proc %d, tbl %d, ch %d, not allocated\n",
r_info->remote_pid, table_id, n);
}
}
static void smd_channel_probe_now(struct remote_proc_info *r_info)
{
struct smd_alloc_elm *shared;
unsigned tbl_size;
shared = smem_get_entry(ID_CH_ALLOC_TBL, &tbl_size,
r_info->remote_pid, 0);
if (!shared) {
pr_err("%s: allocation table not initialized\n", __func__);
return;
}
mutex_lock(&smd_probe_lock);
scan_alloc_table(shared, r_info->ch_allocated, PRI_ALLOC_TBL,
tbl_size / sizeof(*shared),
r_info);
shared = smem_get_entry(SMEM_CHANNEL_ALLOC_TBL_2, &tbl_size,
r_info->remote_pid, 0);
if (shared)
scan_alloc_table(shared,
&(r_info->ch_allocated[SMEM_NUM_SMD_STREAM_CHANNELS]),
SEC_ALLOC_TBL,
tbl_size / sizeof(*shared),
r_info);
mutex_unlock(&smd_probe_lock);
}
/**
* smd_channel_probe_worker() - Scan for newly created SMD channels and init
* local structures so the channels are visable to
* local clients
*
* @work: work_struct corresponding to an instance of this function running on
* a workqueue.
*/
static void smd_channel_probe_worker(struct work_struct *work)
{
struct remote_proc_info *r_info;
r_info = container_of(work, struct remote_proc_info, probe_work);
smd_channel_probe_now(r_info);
}
/**
* get_remote_ch() - gathers remote channel info
*
* @shared2: Pointer to v2 shared channel structure
* @type: Edge type
* @pid: Processor ID of processor on edge
* @remote_ch: Channel that belongs to processor @pid
* @is_word_access_ch: Bool, is this a word aligned access channel
*
* @returns: 0 on success, error code on failure
*/
static int get_remote_ch(void *shared2,
uint32_t type, uint32_t pid,
void **remote_ch,
int is_word_access_ch
)
{
if (!remote_ch || !shared2 || !pid_is_on_edge(type, pid) ||
!pid_is_on_edge(type, SMD_APPS))
return -EINVAL;
if (is_word_access_ch)
*remote_ch =
&((struct smd_shared_word_access *)(shared2))->ch1;
else
*remote_ch = &((struct smd_shared *)(shared2))->ch1;
return 0;
}
/**
* smd_remote_ss_to_edge() - return edge type from remote ss type
* @name: remote subsystem name
*
* Returns the edge type connected between the local subsystem(APPS)
* and remote subsystem @name.
*/
int smd_remote_ss_to_edge(const char *name)
{
int i;
for (i = 0; i < ARRAY_SIZE(edge_to_pids); ++i) {
if (edge_to_pids[i].subsys_name[0] != 0x0) {
if (!strncmp(edge_to_pids[i].subsys_name, name,
strlen(name)))
return i;
}
}
return -EINVAL;
}
EXPORT_SYMBOL(smd_remote_ss_to_edge);
/**
* smd_edge_to_pil_str - Returns the PIL string used to load the remote side of
* the indicated edge.
*
* @type - Edge definition
* @returns - The PIL string to load the remove side of @type or NULL if the
* PIL string does not exist.
*/
const char *smd_edge_to_pil_str(uint32_t type)
{
const char *pil_str = NULL;
if (type < ARRAY_SIZE(edge_to_pids)) {
if (!edge_to_pids[type].initialized)
return ERR_PTR(-EPROBE_DEFER);
if (!remote_info[smd_edge_to_remote_pid(type)].skip_pil) {
pil_str = edge_to_pids[type].subsys_name;
if (pil_str[0] == 0x0)
pil_str = NULL;
}
}
return pil_str;
}
EXPORT_SYMBOL(smd_edge_to_pil_str);
/*
* Returns a pointer to the subsystem name or NULL if no
* subsystem name is available.
*
* @type - Edge definition
*/
const char *smd_edge_to_subsystem(uint32_t type)
{
const char *subsys = NULL;
if (type < ARRAY_SIZE(edge_to_pids)) {
subsys = edge_to_pids[type].subsys_name;
if (subsys[0] == 0x0)
subsys = NULL;
if (!edge_to_pids[type].initialized)
subsys = ERR_PTR(-EPROBE_DEFER);
}
return subsys;
}
EXPORT_SYMBOL(smd_edge_to_subsystem);
/*
* Returns a pointer to the subsystem name given the
* remote processor ID.
* subsystem is not necessarily PIL-loadable
*
* @pid Remote processor ID
* @returns Pointer to subsystem name or NULL if not found
*/
const char *smd_pid_to_subsystem(uint32_t pid)
{
const char *subsys = NULL;
int i;
for (i = 0; i < ARRAY_SIZE(edge_to_pids); ++i) {
if (pid == edge_to_pids[i].remote_pid) {
if (!edge_to_pids[i].initialized) {
subsys = ERR_PTR(-EPROBE_DEFER);
break;
}
if (edge_to_pids[i].subsys_name[0] != 0x0) {
subsys = edge_to_pids[i].subsys_name;
break;
} else if (pid == SMD_RPM) {
subsys = "rpm";
break;
}
}
}
return subsys;
}
EXPORT_SYMBOL(smd_pid_to_subsystem);
static void smd_reset_edge(void *void_ch, unsigned new_state,
int is_word_access_ch)
{
if (is_word_access_ch) {
struct smd_half_channel_word_access *ch =
(struct smd_half_channel_word_access *)(void_ch);
if (ch->state != SMD_SS_CLOSED) {
ch->state = new_state;
ch->fDSR = 0;
ch->fCTS = 0;
ch->fCD = 0;
ch->fSTATE = 1;
}
} else {
struct smd_half_channel *ch =
(struct smd_half_channel *)(void_ch);
if (ch->state != SMD_SS_CLOSED) {
ch->state = new_state;
ch->fDSR = 0;
ch->fCTS = 0;
ch->fCD = 0;
ch->fSTATE = 1;
}
}
}
/**
* smd_channel_reset_state() - find channels in an allocation table and set them
* to the specified state
*
* @shared: Pointer to the allocation table to scan
* @table_id: ID of the table
* @new_state: New state that channels should be set to
* @pid: Processor ID of the remote processor for the channels
* @num_entries: Number of entries in the table
*
* Scan the indicated table for channels between Apps and @pid. If a valid
* channel is found, set the remote side of the channel to @new_state.
*/
static void smd_channel_reset_state(struct smd_alloc_elm *shared, int table_id,
unsigned new_state, unsigned pid, unsigned num_entries)
{
unsigned n;
void *shared2;
uint32_t type;
void *remote_ch;
int is_word_access;
unsigned base_id;
switch (table_id) {
case PRI_ALLOC_TBL:
base_id = SMEM_SMD_BASE_ID;
break;
case SEC_ALLOC_TBL:
base_id = SMEM_SMD_BASE_ID_2;
break;
default:
SMD_INFO("%s: invalid table_id:%d\n", __func__, table_id);
return;
}
for (n = 0; n < num_entries; n++) {
if (!shared[n].ref_count)
continue;
if (!shared[n].name[0])
continue;
type = SMD_CHANNEL_TYPE(shared[n].type);
is_word_access = is_word_access_ch(type);
if (is_word_access)
shared2 = smem_find(base_id + n,
sizeof(struct smd_shared_word_access), pid,
0);
else
shared2 = smem_find(base_id + n,
sizeof(struct smd_shared), pid, 0);
if (!shared2)
continue;
if (!get_remote_ch(shared2, type, pid,
&remote_ch, is_word_access))
smd_reset_edge(remote_ch, new_state, is_word_access);
}
}
/**
* pid_is_on_edge() - checks to see if the processor with id pid is on the
* edge specified by edge_num
*
* @edge_num: the number of the edge which is being tested
* @pid: the id of the processor being tested
*
* @returns: true if on edge, false otherwise
*/
static bool pid_is_on_edge(uint32_t edge_num, unsigned pid)
{
struct edge_to_pid edge;
if (edge_num >= ARRAY_SIZE(edge_to_pids))
return 0;
edge = edge_to_pids[edge_num];
return (edge.local_pid == pid || edge.remote_pid == pid);
}
void smd_channel_reset(uint32_t restart_pid)
{
struct smd_alloc_elm *shared_pri;
struct smd_alloc_elm *shared_sec;
unsigned long flags;
unsigned pri_size;
unsigned sec_size;
SMD_POWER_INFO("%s: starting reset\n", __func__);
shared_pri = smem_get_entry(ID_CH_ALLOC_TBL, &pri_size, restart_pid, 0);
if (!shared_pri) {
pr_err("%s: allocation table not initialized\n", __func__);
return;
}
shared_sec = smem_get_entry(SMEM_CHANNEL_ALLOC_TBL_2, &sec_size,
restart_pid, 0);
/* reset SMSM entry */
if (smsm_info.state) {
writel_relaxed(0, SMSM_STATE_ADDR(restart_pid));
/* restart SMSM init handshake */
if (restart_pid == SMSM_MODEM) {
smsm_change_state(SMSM_APPS_STATE,
SMSM_INIT | SMSM_SMD_LOOPBACK | SMSM_RESET,
0);
}
/* notify SMSM processors */
smsm_irq_handler(0, 0);
notify_modem_smsm();
notify_dsp_smsm();
notify_dsps_smsm();
notify_wcnss_smsm();
}
/* change all remote states to CLOSING */
mutex_lock(&smd_probe_lock);
spin_lock_irqsave(&smd_lock, flags);
smd_channel_reset_state(shared_pri, PRI_ALLOC_TBL, SMD_SS_CLOSING,
restart_pid, pri_size / sizeof(*shared_pri));
if (shared_sec)
smd_channel_reset_state(shared_sec, SEC_ALLOC_TBL,
SMD_SS_CLOSING, restart_pid,
sec_size / sizeof(*shared_sec));
spin_unlock_irqrestore(&smd_lock, flags);
mutex_unlock(&smd_probe_lock);
mb();
smd_fake_irq_handler(0);
/* change all remote states to CLOSED */
mutex_lock(&smd_probe_lock);
spin_lock_irqsave(&smd_lock, flags);
smd_channel_reset_state(shared_pri, PRI_ALLOC_TBL, SMD_SS_CLOSED,
restart_pid, pri_size / sizeof(*shared_pri));
if (shared_sec)
smd_channel_reset_state(shared_sec, SEC_ALLOC_TBL,
SMD_SS_CLOSED, restart_pid,
sec_size / sizeof(*shared_sec));
spin_unlock_irqrestore(&smd_lock, flags);
mutex_unlock(&smd_probe_lock);
mb();
smd_fake_irq_handler(0);
SMD_POWER_INFO("%s: finished reset\n", __func__);
}
/* how many bytes are available for reading */
static int smd_stream_read_avail(struct smd_channel *ch)
{
unsigned head = ch->half_ch->get_head(ch->recv);
unsigned tail = ch->half_ch->get_tail(ch->recv);
unsigned fifo_size = ch->fifo_size;
unsigned bytes_avail = head - tail;
if (head < tail)
bytes_avail += fifo_size;
BUG_ON(bytes_avail >= fifo_size);
return bytes_avail;
}
/* how many bytes we are free to write */
static int smd_stream_write_avail(struct smd_channel *ch)
{
unsigned head = ch->half_ch->get_head(ch->send);
unsigned tail = ch->half_ch->get_tail(ch->send);
unsigned fifo_size = ch->fifo_size;
unsigned bytes_avail = tail - head;
if (tail <= head)
bytes_avail += fifo_size;
if (bytes_avail < SMD_FIFO_FULL_RESERVE)
bytes_avail = 0;
else
bytes_avail -= SMD_FIFO_FULL_RESERVE;
BUG_ON(bytes_avail >= fifo_size);
return bytes_avail;
}
static int smd_packet_read_avail(struct smd_channel *ch)
{
if (ch->current_packet) {
int n = smd_stream_read_avail(ch);
if (n > ch->current_packet)
n = ch->current_packet;
return n;
} else {
return 0;
}
}
static int smd_packet_write_avail(struct smd_channel *ch)
{
int n = smd_stream_write_avail(ch);
return n > SMD_HEADER_SIZE ? n - SMD_HEADER_SIZE : 0;
}
static int ch_is_open(struct smd_channel *ch)
{
return (ch->half_ch->get_state(ch->recv) == SMD_SS_OPENED ||
ch->half_ch->get_state(ch->recv) == SMD_SS_FLUSHING)
&& (ch->half_ch->get_state(ch->send) == SMD_SS_OPENED);
}
/* provide a pointer and length to readable data in the fifo */
static unsigned ch_read_buffer(struct smd_channel *ch, void **ptr)
{
unsigned head = ch->half_ch->get_head(ch->recv);
unsigned tail = ch->half_ch->get_tail(ch->recv);
unsigned fifo_size = ch->fifo_size;
BUG_ON(fifo_size >= SZ_1M);
BUG_ON(head >= fifo_size);
BUG_ON(tail >= fifo_size);
BUG_ON(OVERFLOW_ADD_UNSIGNED(uintptr_t, (uintptr_t)ch->recv_data,
tail));
*ptr = (void *) (ch->recv_data + tail);
if (tail <= head)
return head - tail;
else
return fifo_size - tail;
}
static int read_intr_blocked(struct smd_channel *ch)
{
return ch->half_ch->get_fBLOCKREADINTR(ch->recv);
}
/* advance the fifo read pointer after data from ch_read_buffer is consumed */
static void ch_read_done(struct smd_channel *ch, unsigned count)
{
unsigned tail = ch->half_ch->get_tail(ch->recv);
unsigned fifo_size = ch->fifo_size;
BUG_ON(count > smd_stream_read_avail(ch));
tail += count;
if (tail >= fifo_size)
tail -= fifo_size;
ch->half_ch->set_tail(ch->recv, tail);
wmb();
ch->half_ch->set_fTAIL(ch->send, 1);
}
/* basic read interface to ch_read_{buffer,done} used
* by smd_*_read() and update_packet_state()
* will read-and-discard if the _data pointer is null
*/
static int ch_read(struct smd_channel *ch, void *_data, int len)
{
void *ptr;
unsigned n;
unsigned char *data = _data;
int orig_len = len;
while (len > 0) {
n = ch_read_buffer(ch, &ptr);
if (n == 0)
break;
if (n > len)
n = len;
if (_data)
ch->read_from_fifo(data, ptr, n);
data += n;
len -= n;
ch_read_done(ch, n);
}
return orig_len - len;
}
static void update_stream_state(struct smd_channel *ch)
{
/* streams have no special state requiring updating */
}
static void update_packet_state(struct smd_channel *ch)
{
unsigned hdr[5];
int r;
const char *peripheral = NULL;
/* can't do anything if we're in the middle of a packet */
while (ch->current_packet == 0) {
/* discard 0 length packets if any */
/* don't bother unless we can get the full header */
if (smd_stream_read_avail(ch) < SMD_HEADER_SIZE)
return;
r = ch_read(ch, hdr, SMD_HEADER_SIZE);
BUG_ON(r != SMD_HEADER_SIZE);
ch->current_packet = hdr[0];
if (ch->current_packet > (uint32_t)INT_MAX) {
pr_err("%s: Invalid packet size of %d bytes detected. Edge: %d, Channel : %s, RPTR: %d, WPTR: %d",
__func__, ch->current_packet, ch->type,
ch->name, ch->half_ch->get_tail(ch->recv),
ch->half_ch->get_head(ch->recv));
peripheral = smd_edge_to_pil_str(ch->type);
if (peripheral) {
if (subsystem_restart(peripheral) < 0)
BUG();
} else {
BUG();
}
}
}
}
/**
* ch_write_buffer() - Provide a pointer and length for the next segment of
* free space in the FIFO.
* @ch: channel
* @ptr: Address to pointer for the next segment write
* @returns: Maximum size that can be written until the FIFO is either full
* or the end of the FIFO has been reached.
*
* The returned pointer and length are passed to memcpy, so the next segment is
* defined as either the space available between the read index (tail) and the
* write index (head) or the space available to the end of the FIFO.
*/
static unsigned ch_write_buffer(struct smd_channel *ch, void **ptr)
{
unsigned head = ch->half_ch->get_head(ch->send);
unsigned tail = ch->half_ch->get_tail(ch->send);
unsigned fifo_size = ch->fifo_size;
BUG_ON(fifo_size >= SZ_1M);
BUG_ON(head >= fifo_size);
BUG_ON(tail >= fifo_size);
BUG_ON(OVERFLOW_ADD_UNSIGNED(uintptr_t, (uintptr_t)ch->send_data,
head));
*ptr = (void *) (ch->send_data + head);
if (head < tail) {
return tail - head - SMD_FIFO_FULL_RESERVE;
} else {
if (tail < SMD_FIFO_FULL_RESERVE)
return fifo_size + tail - head
- SMD_FIFO_FULL_RESERVE;
else
return fifo_size - head;
}
}
/* advace the fifo write pointer after freespace
* from ch_write_buffer is filled
*/
static void ch_write_done(struct smd_channel *ch, unsigned count)
{
unsigned head = ch->half_ch->get_head(ch->send);
unsigned fifo_size = ch->fifo_size;
BUG_ON(count > smd_stream_write_avail(ch));
head += count;
if (head >= fifo_size)
head -= fifo_size;
ch->half_ch->set_head(ch->send, head);
wmb();
ch->half_ch->set_fHEAD(ch->send, 1);
}
static void ch_set_state(struct smd_channel *ch, unsigned n)
{
if (n == SMD_SS_OPENED) {
ch->half_ch->set_fDSR(ch->send, 1);
ch->half_ch->set_fCTS(ch->send, 1);
ch->half_ch->set_fCD(ch->send, 1);
} else {
ch->half_ch->set_fDSR(ch->send, 0);
ch->half_ch->set_fCTS(ch->send, 0);
ch->half_ch->set_fCD(ch->send, 0);
}
ch->half_ch->set_state(ch->send, n);
ch->half_ch->set_fSTATE(ch->send, 1);
ch->notify_other_cpu(ch);
}
/**
* do_smd_probe() - Look for newly created SMD channels a specific processor
*
* @remote_pid: remote processor id of the proc that may have created channels
*/
static void do_smd_probe(unsigned remote_pid)
{
unsigned free_space;
free_space = smem_get_free_space(remote_pid);
if (free_space != remote_info[remote_pid].free_space) {
remote_info[remote_pid].free_space = free_space;
schedule_work(&remote_info[remote_pid].probe_work);
}
}
static void remote_processed_close(struct smd_channel *ch)
{
/* The remote side has observed our close, we can allow a reopen */
list_move(&ch->ch_list, &smd_ch_to_close_list);
queue_work(channel_close_wq, &finalize_channel_close_work);
}
static void smd_state_change(struct smd_channel *ch,
unsigned last, unsigned next)
{
ch->last_state = next;
SMD_INFO("SMD: ch %d %d -> %d\n", ch->n, last, next);
switch (next) {
case SMD_SS_OPENING:
if (last == SMD_SS_OPENED &&
ch->half_ch->get_state(ch->send) == SMD_SS_CLOSED) {
/* We missed the CLOSING and CLOSED states */
remote_processed_close(ch);
} else if (ch->half_ch->get_state(ch->send) == SMD_SS_CLOSING ||
ch->half_ch->get_state(ch->send) == SMD_SS_CLOSED) {
ch->half_ch->set_tail(ch->recv, 0);
ch->half_ch->set_head(ch->send, 0);
ch->half_ch->set_fBLOCKREADINTR(ch->send, 0);
ch->current_packet = 0;
ch_set_state(ch, SMD_SS_OPENING);
}
break;
case SMD_SS_OPENED:
if (ch->half_ch->get_state(ch->send) == SMD_SS_OPENING) {
ch_set_state(ch, SMD_SS_OPENED);
ch->notify(ch->priv, SMD_EVENT_OPEN);
}
break;
case SMD_SS_FLUSHING:
case SMD_SS_RESET:
/* we should force them to close? */
break;
case SMD_SS_CLOSED:
if (ch->half_ch->get_state(ch->send) == SMD_SS_OPENED) {
ch_set_state(ch, SMD_SS_CLOSING);
ch->pending_pkt_sz = 0;
ch->notify(ch->priv, SMD_EVENT_CLOSE);
}
/* We missed the CLOSING state */
if (ch->half_ch->get_state(ch->send) == SMD_SS_CLOSED)
remote_processed_close(ch);
break;
case SMD_SS_CLOSING:
if (ch->half_ch->get_state(ch->send) == SMD_SS_CLOSED)
remote_processed_close(ch);
break;
}
}
static void handle_smd_irq_closing_list(void)
{
unsigned long flags;
struct smd_channel *ch;
struct smd_channel *index;
unsigned tmp;
spin_lock_irqsave(&smd_lock, flags);
list_for_each_entry_safe(ch, index, &smd_ch_closing_list, ch_list) {
if (ch->half_ch->get_fSTATE(ch->recv))
ch->half_ch->set_fSTATE(ch->recv, 0);
tmp = ch->half_ch->get_state(ch->recv);
if (tmp != ch->last_state)
smd_state_change(ch, ch->last_state, tmp);
}
spin_unlock_irqrestore(&smd_lock, flags);
}
static void handle_smd_irq(struct remote_proc_info *r_info,
void (*notify)(smd_channel_t *ch))
{
unsigned long flags;
struct smd_channel *ch;
unsigned ch_flags;
unsigned tmp;
unsigned char state_change;
struct list_head *list;
list = &r_info->ch_list;
spin_lock_irqsave(&smd_lock, flags);
list_for_each_entry(ch, list, ch_list) {
state_change = 0;
ch_flags = 0;
if (ch_is_open(ch)) {
if (ch->half_ch->get_fHEAD(ch->recv)) {
ch->half_ch->set_fHEAD(ch->recv, 0);
ch_flags |= 1;
}
if (ch->half_ch->get_fTAIL(ch->recv)) {
ch->half_ch->set_fTAIL(ch->recv, 0);
ch_flags |= 2;
}
if (ch->half_ch->get_fSTATE(ch->recv)) {
ch->half_ch->set_fSTATE(ch->recv, 0);
ch_flags |= 4;
}
}
tmp = ch->half_ch->get_state(ch->recv);
if (tmp != ch->last_state) {
SMD_POWER_INFO("SMD ch%d '%s' State change %d->%d\n",
ch->n, ch->name, ch->last_state, tmp);
smd_state_change(ch, ch->last_state, tmp);
state_change = 1;
}
if (ch_flags & 0x3) {
ch->update_state(ch);
SMD_POWER_INFO(
"SMD ch%d '%s' Data event 0x%x tx%d/rx%d %dr/%dw : %dr/%dw\n",
ch->n, ch->name,
ch_flags,
ch->fifo_size -
(smd_stream_write_avail(ch) + 1),
smd_stream_read_avail(ch),
ch->half_ch->get_tail(ch->send),
ch->half_ch->get_head(ch->send),
ch->half_ch->get_tail(ch->recv),
ch->half_ch->get_head(ch->recv)
);
ch->notify(ch->priv, SMD_EVENT_DATA);
}
if (ch_flags & 0x4 && !state_change) {
SMD_POWER_INFO("SMD ch%d '%s' State update\n",
ch->n, ch->name);
ch->notify(ch->priv, SMD_EVENT_STATUS);
}
}
spin_unlock_irqrestore(&smd_lock, flags);
do_smd_probe(r_info->remote_pid);
}
static inline void log_irq(uint32_t subsystem)
{
const char *subsys = smd_edge_to_subsystem(subsystem);
(void) subsys;
SMD_POWER_INFO("SMD Int %s->Apps\n", subsys);
}
irqreturn_t smd_modem_irq_handler(int irq, void *data)
{
if (unlikely(!edge_to_pids[SMD_APPS_MODEM].initialized))
return IRQ_HANDLED;
log_irq(SMD_APPS_MODEM);
++interrupt_stats[SMD_MODEM].smd_in_count;
handle_smd_irq(&remote_info[SMD_MODEM], notify_modem_smd);
handle_smd_irq_closing_list();
return IRQ_HANDLED;
}
irqreturn_t smd_dsp_irq_handler(int irq, void *data)
{
if (unlikely(!edge_to_pids[SMD_APPS_QDSP].initialized))
return IRQ_HANDLED;
log_irq(SMD_APPS_QDSP);
++interrupt_stats[SMD_Q6].smd_in_count;
handle_smd_irq(&remote_info[SMD_Q6], notify_dsp_smd);
handle_smd_irq_closing_list();
return IRQ_HANDLED;
}
irqreturn_t smd_dsps_irq_handler(int irq, void *data)
{
if (unlikely(!edge_to_pids[SMD_APPS_DSPS].initialized))
return IRQ_HANDLED;
log_irq(SMD_APPS_DSPS);
++interrupt_stats[SMD_DSPS].smd_in_count;
handle_smd_irq(&remote_info[SMD_DSPS], notify_dsps_smd);
handle_smd_irq_closing_list();
return IRQ_HANDLED;
}
irqreturn_t smd_wcnss_irq_handler(int irq, void *data)
{
if (unlikely(!edge_to_pids[SMD_APPS_WCNSS].initialized))
return IRQ_HANDLED;
log_irq(SMD_APPS_WCNSS);
++interrupt_stats[SMD_WCNSS].smd_in_count;
handle_smd_irq(&remote_info[SMD_WCNSS], notify_wcnss_smd);
handle_smd_irq_closing_list();
return IRQ_HANDLED;
}
irqreturn_t smd_modemfw_irq_handler(int irq, void *data)
{
if (unlikely(!edge_to_pids[SMD_APPS_Q6FW].initialized))
return IRQ_HANDLED;
log_irq(SMD_APPS_Q6FW);
++interrupt_stats[SMD_MODEM_Q6_FW].smd_in_count;
handle_smd_irq(&remote_info[SMD_MODEM_Q6_FW], notify_modemfw_smd);
handle_smd_irq_closing_list();
return IRQ_HANDLED;
}
irqreturn_t smd_rpm_irq_handler(int irq, void *data)
{
if (unlikely(!edge_to_pids[SMD_APPS_RPM].initialized))
return IRQ_HANDLED;
log_irq(SMD_APPS_RPM);
++interrupt_stats[SMD_RPM].smd_in_count;
handle_smd_irq(&remote_info[SMD_RPM], notify_rpm_smd);
handle_smd_irq_closing_list();
return IRQ_HANDLED;
}
static void smd_fake_irq_handler(unsigned long arg)
{
handle_smd_irq(&remote_info[SMD_MODEM], notify_modem_smd);
handle_smd_irq(&remote_info[SMD_Q6], notify_dsp_smd);
handle_smd_irq(&remote_info[SMD_DSPS], notify_dsps_smd);
handle_smd_irq(&remote_info[SMD_WCNSS], notify_wcnss_smd);
handle_smd_irq(&remote_info[SMD_MODEM_Q6_FW], notify_modemfw_smd);
handle_smd_irq(&remote_info[SMD_RPM], notify_rpm_smd);
handle_smd_irq_closing_list();
}
static int smd_is_packet(struct smd_alloc_elm *alloc_elm)
{
if (SMD_XFER_TYPE(alloc_elm->type) == 1)
return 0;
else if (SMD_XFER_TYPE(alloc_elm->type) == 2)
return 1;
panic("Unsupported SMD xfer type: %d name:%s edge:%d\n",
SMD_XFER_TYPE(alloc_elm->type),
alloc_elm->name,
SMD_CHANNEL_TYPE(alloc_elm->type));
}
static int smd_stream_write(smd_channel_t *ch, const void *_data, int len,
bool intr_ntfy)
{
void *ptr;
const unsigned char *buf = _data;
unsigned xfer;
int orig_len = len;
SMD_DBG("smd_stream_write() %d -> ch%d\n", len, ch->n);
if (len < 0)
return -EINVAL;
else if (len == 0)
return 0;
while ((xfer = ch_write_buffer(ch, &ptr)) != 0) {
if (!ch_is_open(ch)) {
len = orig_len;
break;
}
if (xfer > len)
xfer = len;
ch->write_to_fifo(ptr, buf, xfer);
ch_write_done(ch, xfer);
len -= xfer;
buf += xfer;
if (len == 0)
break;
}
if (orig_len - len && intr_ntfy)
ch->notify_other_cpu(ch);
return orig_len - len;
}
static int smd_packet_write(smd_channel_t *ch, const void *_data, int len,
bool intr_ntfy)
{
int ret;
unsigned hdr[5];
SMD_DBG("smd_packet_write() %d -> ch%d\n", len, ch->n);
if (len < 0)
return -EINVAL;
else if (len == 0)
return 0;
if (smd_stream_write_avail(ch) < (len + SMD_HEADER_SIZE))
return -ENOMEM;
hdr[0] = len;
hdr[1] = hdr[2] = hdr[3] = hdr[4] = 0;
ret = smd_stream_write(ch, hdr, sizeof(hdr), false);
if (ret < 0 || ret != sizeof(hdr)) {
SMD_DBG("%s failed to write pkt header: %d returned\n",
__func__, ret);
return -EFAULT;
}
ret = smd_stream_write(ch, _data, len, true);
if (ret < 0 || ret != len) {
SMD_DBG("%s failed to write pkt data: %d returned\n",
__func__, ret);
return ret;
}
return len;
}
static int smd_stream_read(smd_channel_t *ch, void *data, int len)
{
int r;
if (len < 0)
return -EINVAL;
r = ch_read(ch, data, len);
if (r > 0)
if (!read_intr_blocked(ch))
ch->notify_other_cpu(ch);
return r;
}
static int smd_packet_read(smd_channel_t *ch, void *data, int len)
{
unsigned long flags;
int r;
if (len < 0)
return -EINVAL;
if (ch->current_packet > (uint32_t)INT_MAX) {
pr_err("%s: Invalid packet size for Edge %d and Channel %s",
__func__, ch->type, ch->name);
return -EFAULT;
}
if (len > ch->current_packet)
len = ch->current_packet;
r = ch_read(ch, data, len);
if (r > 0)
if (!read_intr_blocked(ch))
ch->notify_other_cpu(ch);
spin_lock_irqsave(&smd_lock, flags);
ch->current_packet -= r;
update_packet_state(ch);
spin_unlock_irqrestore(&smd_lock, flags);
return r;
}
static int smd_packet_read_from_cb(smd_channel_t *ch, void *data, int len)
{
int r;
if (len < 0)
return -EINVAL;
if (ch->current_packet > (uint32_t)INT_MAX) {
pr_err("%s: Invalid packet size for Edge %d and Channel %s",
__func__, ch->type, ch->name);
return -EFAULT;
}
if (len > ch->current_packet)
len = ch->current_packet;
r = ch_read(ch, data, len);
if (r > 0)
if (!read_intr_blocked(ch))
ch->notify_other_cpu(ch);
ch->current_packet -= r;
update_packet_state(ch);
return r;
}
/**
* smd_alloc_v2() - Init local channel structure with information stored in SMEM
*
* @ch: pointer to the local structure for this channel
* @table_id: the id of the table this channel resides in. 1 = first table, 2 =
* second table, etc
* @r_info: pointer to the info structure of the remote proc for this channel
* @returns: -EINVAL for failure; 0 for success
*
* ch must point to an allocated instance of struct smd_channel that is zeroed
* out, and has the n and type members already initialized to the correct values
*/
static int smd_alloc(struct smd_channel *ch, int table_id,
struct remote_proc_info *r_info)
{
void *buffer;
unsigned buffer_sz;
unsigned base_id;
unsigned fifo_id;
switch (table_id) {
case PRI_ALLOC_TBL:
base_id = SMEM_SMD_BASE_ID;
fifo_id = SMEM_SMD_FIFO_BASE_ID;
break;
case SEC_ALLOC_TBL:
base_id = SMEM_SMD_BASE_ID_2;
fifo_id = SMEM_SMD_FIFO_BASE_ID_2;
break;
default:
SMD_INFO("Invalid table_id:%d passed to smd_alloc\n", table_id);
return -EINVAL;
}
if (is_word_access_ch(ch->type)) {
struct smd_shared_word_access *shared2;
shared2 = smem_find(base_id + ch->n, sizeof(*shared2),
r_info->remote_pid, 0);
if (!shared2) {
SMD_INFO("smem_find failed ch=%d\n", ch->n);
return -EINVAL;
}
ch->send = &shared2->ch0;
ch->recv = &shared2->ch1;
} else {
struct smd_shared *shared2;
shared2 = smem_find(base_id + ch->n, sizeof(*shared2),
r_info->remote_pid, 0);
if (!shared2) {
SMD_INFO("smem_find failed ch=%d\n", ch->n);
return -EINVAL;
}
ch->send = &shared2->ch0;
ch->recv = &shared2->ch1;
}
ch->half_ch = get_half_ch_funcs(ch->type);
buffer = smem_get_entry(fifo_id + ch->n, &buffer_sz,
r_info->remote_pid, 0);
if (!buffer) {
SMD_INFO("smem_get_entry failed\n");
return -EINVAL;
}
/* buffer must be a multiple of 32 size */
if ((buffer_sz & (SZ_32 - 1)) != 0) {
SMD_INFO("Buffer size: %u not multiple of 32\n", buffer_sz);
return -EINVAL;
}
buffer_sz /= 2;
ch->send_data = buffer;
ch->recv_data = buffer + buffer_sz;
ch->fifo_size = buffer_sz;
return 0;
}
/**
* smd_alloc_channel() - Create and init local structures for a newly allocated
* SMD channel
*
* @alloc_elm: the allocation element stored in SMEM for this channel
* @table_id: the id of the table this channel resides in. 1 = first table, 2 =
* seconds table, etc
* @r_info: pointer to the info structure of the remote proc for this channel
* @returns: error code for failure; 0 for success
*/
static int smd_alloc_channel(struct smd_alloc_elm *alloc_elm, int table_id,
struct remote_proc_info *r_info)
{
struct smd_channel *ch;
ch = kzalloc(sizeof(struct smd_channel), GFP_KERNEL);
if (ch == 0) {
pr_err("smd_alloc_channel() out of memory\n");
return -ENOMEM;
}
ch->n = alloc_elm->cid;
ch->type = SMD_CHANNEL_TYPE(alloc_elm->type);
if (smd_alloc(ch, table_id, r_info)) {
kfree(ch);
return -ENODEV;
}
/* probe_worker guarentees ch->type will be a valid type */
if (ch->type == SMD_APPS_MODEM)
ch->notify_other_cpu = notify_modem_smd;
else if (ch->type == SMD_APPS_QDSP)
ch->notify_other_cpu = notify_dsp_smd;
else if (ch->type == SMD_APPS_DSPS)
ch->notify_other_cpu = notify_dsps_smd;
else if (ch->type == SMD_APPS_WCNSS)
ch->notify_other_cpu = notify_wcnss_smd;
else if (ch->type == SMD_APPS_Q6FW)
ch->notify_other_cpu = notify_modemfw_smd;
else if (ch->type == SMD_APPS_RPM)
ch->notify_other_cpu = notify_rpm_smd;
if (smd_is_packet(alloc_elm)) {
ch->read = smd_packet_read;
ch->write = smd_packet_write;
ch->read_avail = smd_packet_read_avail;
ch->write_avail = smd_packet_write_avail;
ch->update_state = update_packet_state;
ch->read_from_cb = smd_packet_read_from_cb;
ch->is_pkt_ch = 1;
} else {
ch->read = smd_stream_read;
ch->write = smd_stream_write;
ch->read_avail = smd_stream_read_avail;
ch->write_avail = smd_stream_write_avail;
ch->update_state = update_stream_state;
ch->read_from_cb = smd_stream_read;
}
if (is_word_access_ch(ch->type)) {
ch->read_from_fifo = smd_memcpy32_from_fifo;
ch->write_to_fifo = smd_memcpy32_to_fifo;
} else {
ch->read_from_fifo = smd_memcpy_from_fifo;
ch->write_to_fifo = smd_memcpy_to_fifo;
}
smd_memcpy_from_fifo(ch->name, alloc_elm->name, SMD_MAX_CH_NAME_LEN);
ch->name[SMD_MAX_CH_NAME_LEN-1] = 0;
ch->pdev.name = ch->name;
ch->pdev.id = ch->type;
SMD_INFO("smd_alloc_channel() '%s' cid=%d\n",
ch->name, ch->n);
mutex_lock(&smd_creation_mutex);
list_add(&ch->ch_list, &smd_ch_closed_list);
mutex_unlock(&smd_creation_mutex);
platform_device_register(&ch->pdev);
if (!strncmp(ch->name, "LOOPBACK", 8) && ch->type == SMD_APPS_MODEM) {
/* create a platform driver to be used by smd_tty driver
* so that it can access the loopback port
*/
loopback_tty_pdev.id = ch->type;
platform_device_register(&loopback_tty_pdev);
}
return 0;
}
static void do_nothing_notify(void *priv, unsigned flags)
{
}
static void finalize_channel_close_fn(struct work_struct *work)
{
unsigned long flags;
struct smd_channel *ch;
struct smd_channel *index;
mutex_lock(&smd_creation_mutex);
spin_lock_irqsave(&smd_lock, flags);
list_for_each_entry_safe(ch, index, &smd_ch_to_close_list, ch_list) {
list_del(&ch->ch_list);
list_add(&ch->ch_list, &smd_ch_closed_list);
ch->notify(ch->priv, SMD_EVENT_REOPEN_READY);
ch->notify = do_nothing_notify;
}
spin_unlock_irqrestore(&smd_lock, flags);
mutex_unlock(&smd_creation_mutex);
}
struct smd_channel *smd_get_channel(const char *name, uint32_t type)
{
struct smd_channel *ch;
mutex_lock(&smd_creation_mutex);
list_for_each_entry(ch, &smd_ch_closed_list, ch_list) {
if (!strcmp(name, ch->name) &&
(type == ch->type)) {
list_del(&ch->ch_list);
mutex_unlock(&smd_creation_mutex);
return ch;
}
}
mutex_unlock(&smd_creation_mutex);
return NULL;
}
int smd_named_open_on_edge(const char *name, uint32_t edge,
smd_channel_t **_ch,
void *priv, void (*notify)(void *, unsigned))
{
struct smd_channel *ch;
unsigned long flags;
if (edge >= SMD_NUM_TYPE) {
pr_err("%s: edge:%d is invalid\n", __func__, edge);
return -EINVAL;
}
if (!smd_edge_inited(edge)) {
SMD_INFO("smd_open() before smd_init()\n");
return -EPROBE_DEFER;
}
SMD_DBG("smd_open('%s', %p, %p)\n", name, priv, notify);
ch = smd_get_channel(name, edge);
if (!ch) {
spin_lock_irqsave(&smd_lock, flags);
/* check opened list for port */
list_for_each_entry(ch,
&remote_info[edge_to_pids[edge].remote_pid].ch_list,
ch_list) {
if (!strcmp(name, ch->name)) {
/* channel is already open */
spin_unlock_irqrestore(&smd_lock, flags);
SMD_DBG("smd_open: channel '%s' already open\n",
ch->name);
return -EBUSY;
}
}
/* check closing list for port */
list_for_each_entry(ch, &smd_ch_closing_list, ch_list) {
if (!strncmp(name, ch->name, 20) &&
(edge == ch->type)) {
/* channel exists, but is being closed */
spin_unlock_irqrestore(&smd_lock, flags);
return -EAGAIN;
}
}
/* check closing workqueue list for port */
list_for_each_entry(ch, &smd_ch_to_close_list, ch_list) {
if (!strncmp(name, ch->name, 20) &&
(edge == ch->type)) {
/* channel exists, but is being closed */
spin_unlock_irqrestore(&smd_lock, flags);
return -EAGAIN;
}
}
spin_unlock_irqrestore(&smd_lock, flags);
/* one final check to handle closing->closed race condition */
ch = smd_get_channel(name, edge);
if (!ch)
return -ENODEV;
}
if (ch->half_ch->get_fSTATE(ch->send)) {
/* remote side hasn't acknowledged our last state transition */
SMD_INFO("%s: ch %d valid, waiting for remote to ack state\n",
__func__, ch->n);
msleep(250);
if (ch->half_ch->get_fSTATE(ch->send))
SMD_INFO("%s: ch %d - no remote ack, continuing\n",
__func__, ch->n);
}
if (notify == 0)
notify = do_nothing_notify;
ch->notify = notify;
ch->current_packet = 0;
ch->last_state = SMD_SS_CLOSED;
ch->priv = priv;
*_ch = ch;
SMD_DBG("smd_open: opening '%s'\n", ch->name);
spin_lock_irqsave(&smd_lock, flags);
list_add(&ch->ch_list,
&remote_info[edge_to_pids[ch->type].remote_pid].ch_list);
SMD_DBG("%s: opening ch %d\n", __func__, ch->n);
smd_state_change(ch, ch->last_state, SMD_SS_OPENING);
spin_unlock_irqrestore(&smd_lock, flags);
return 0;
}
EXPORT_SYMBOL(smd_named_open_on_edge);
int smd_close(smd_channel_t *ch)
{
unsigned long flags;
bool was_opened;
if (ch == 0)
return -EINVAL;
SMD_INFO("smd_close(%s)\n", ch->name);
spin_lock_irqsave(&smd_lock, flags);
list_del(&ch->ch_list);
was_opened = ch->half_ch->get_state(ch->recv) == SMD_SS_OPENED;
ch_set_state(ch, SMD_SS_CLOSED);
if (was_opened) {
list_add(&ch->ch_list, &smd_ch_closing_list);
spin_unlock_irqrestore(&smd_lock, flags);
} else {
spin_unlock_irqrestore(&smd_lock, flags);
ch->notify = do_nothing_notify;
mutex_lock(&smd_creation_mutex);
list_add(&ch->ch_list, &smd_ch_closed_list);
mutex_unlock(&smd_creation_mutex);
}
return 0;
}
EXPORT_SYMBOL(smd_close);
int smd_write_start(smd_channel_t *ch, int len)
{
int ret;
unsigned hdr[5];
if (!ch) {
pr_err("%s: Invalid channel specified\n", __func__);
return -ENODEV;
}
if (!ch->is_pkt_ch) {
pr_err("%s: non-packet channel specified\n", __func__);
return -EACCES;
}
if (len < 1) {
pr_err("%s: invalid length: %d\n", __func__, len);
return -EINVAL;
}
if (ch->pending_pkt_sz) {
pr_err("%s: packet of size: %d in progress\n", __func__,
ch->pending_pkt_sz);
return -EBUSY;
}
ch->pending_pkt_sz = len;
if (smd_stream_write_avail(ch) < (SMD_HEADER_SIZE)) {
ch->pending_pkt_sz = 0;
SMD_DBG("%s: no space to write packet header\n", __func__);
return -EAGAIN;
}
hdr[0] = len;
hdr[1] = hdr[2] = hdr[3] = hdr[4] = 0;
ret = smd_stream_write(ch, hdr, sizeof(hdr), true);
if (ret < 0 || ret != sizeof(hdr)) {
ch->pending_pkt_sz = 0;
pr_err("%s: packet header failed to write\n", __func__);
return -EPERM;
}
return 0;
}
EXPORT_SYMBOL(smd_write_start);
int smd_write_segment(smd_channel_t *ch, const void *data, int len)
{
int bytes_written;
if (!ch) {
pr_err("%s: Invalid channel specified\n", __func__);
return -ENODEV;
}
if (len < 1) {
pr_err("%s: invalid length: %d\n", __func__, len);
return -EINVAL;
}
if (!ch->pending_pkt_sz) {
pr_err("%s: no transaction in progress\n", __func__);
return -ENOEXEC;
}
if (ch->pending_pkt_sz - len < 0) {
pr_err("%s: segment of size: %d will make packet go over length\n",
__func__, len);
return -EINVAL;
}
bytes_written = smd_stream_write(ch, data, len, true);
ch->pending_pkt_sz -= bytes_written;
return bytes_written;
}
EXPORT_SYMBOL(smd_write_segment);
int smd_write_end(smd_channel_t *ch)
{
if (!ch) {
pr_err("%s: Invalid channel specified\n", __func__);
return -ENODEV;
}
if (ch->pending_pkt_sz) {
pr_err("%s: current packet not completely written\n", __func__);
return -E2BIG;
}
return 0;
}
EXPORT_SYMBOL(smd_write_end);
int smd_write_segment_avail(smd_channel_t *ch)
{
int n;
if (!ch) {
pr_err("%s: Invalid channel specified\n", __func__);
return -ENODEV;
}
if (!ch->is_pkt_ch) {
pr_err("%s: non-packet channel specified\n", __func__);
return -ENODEV;
}
n = smd_stream_write_avail(ch);
/* pkt hdr already written, no need to reserve space for it */
if (ch->pending_pkt_sz)
return n;
return n > SMD_HEADER_SIZE ? n - SMD_HEADER_SIZE : 0;
}
EXPORT_SYMBOL(smd_write_segment_avail);
int smd_read(smd_channel_t *ch, void *data, int len)
{
if (!ch) {
pr_err("%s: Invalid channel specified\n", __func__);
return -ENODEV;
}
return ch->read(ch, data, len);
}
EXPORT_SYMBOL(smd_read);
int smd_read_from_cb(smd_channel_t *ch, void *data, int len)
{
if (!ch) {
pr_err("%s: Invalid channel specified\n", __func__);
return -ENODEV;
}
return ch->read_from_cb(ch, data, len);
}
EXPORT_SYMBOL(smd_read_from_cb);
int smd_write(smd_channel_t *ch, const void *data, int len)
{
if (!ch) {
pr_err("%s: Invalid channel specified\n", __func__);
return -ENODEV;
}
return ch->pending_pkt_sz ? -EBUSY : ch->write(ch, data, len, true);
}
EXPORT_SYMBOL(smd_write);
int smd_read_avail(smd_channel_t *ch)
{
if (!ch) {
pr_err("%s: Invalid channel specified\n", __func__);
return -ENODEV;
}
if (ch->current_packet > (uint32_t)INT_MAX) {
pr_err("%s: Invalid packet size for Edge %d and Channel %s",
__func__, ch->type, ch->name);
return -EFAULT;
}
return ch->read_avail(ch);
}
EXPORT_SYMBOL(smd_read_avail);
int smd_write_avail(smd_channel_t *ch)
{
if (!ch) {
pr_err("%s: Invalid channel specified\n", __func__);
return -ENODEV;
}
return ch->write_avail(ch);
}
EXPORT_SYMBOL(smd_write_avail);
void smd_enable_read_intr(smd_channel_t *ch)
{
if (ch)
ch->half_ch->set_fBLOCKREADINTR(ch->send, 0);
}
EXPORT_SYMBOL(smd_enable_read_intr);
void smd_disable_read_intr(smd_channel_t *ch)
{
if (ch)
ch->half_ch->set_fBLOCKREADINTR(ch->send, 1);
}
EXPORT_SYMBOL(smd_disable_read_intr);
/**
* Enable/disable receive interrupts for the remote processor used by a
* particular channel.
* @ch: open channel handle to use for the edge
* @mask: 1 = mask interrupts; 0 = unmask interrupts
* @cpumask cpumask for the next cpu scheduled to be woken up
* @returns: 0 for success; < 0 for failure
*
* Note that this enables/disables all interrupts from the remote subsystem for
* all channels. As such, it should be used with care and only for specific
* use cases such as power-collapse sequencing.
*/
int smd_mask_receive_interrupt(smd_channel_t *ch, bool mask,
const struct cpumask *cpumask)
{
struct irq_chip *irq_chip;
struct irq_data *irq_data;
struct interrupt_config_item *int_cfg;
if (!ch)
return -EINVAL;
if (ch->type >= ARRAY_SIZE(edge_to_pids))
return -ENODEV;
int_cfg = &private_intr_config[edge_to_pids[ch->type].remote_pid].smd;
if (int_cfg->irq_id < 0)
return -ENODEV;
irq_chip = irq_get_chip(int_cfg->irq_id);
if (!irq_chip)
return -ENODEV;
irq_data = irq_get_irq_data(int_cfg->irq_id);
if (!irq_data)
return -ENODEV;
if (mask) {
SMD_POWER_INFO("SMD Masking interrupts from %s\n",
edge_to_pids[ch->type].subsys_name);
irq_chip->irq_mask(irq_data);
if (cpumask)
irq_set_affinity(int_cfg->irq_id, cpumask);
} else {
SMD_POWER_INFO("SMD Unmasking interrupts from %s\n",
edge_to_pids[ch->type].subsys_name);
irq_chip->irq_unmask(irq_data);
}
return 0;
}
EXPORT_SYMBOL(smd_mask_receive_interrupt);
int smd_cur_packet_size(smd_channel_t *ch)
{
if (!ch) {
pr_err("%s: Invalid channel specified\n", __func__);
return -ENODEV;
}
if (ch->current_packet > (uint32_t)INT_MAX) {
pr_err("%s: Invalid packet size for Edge %d and Channel %s",
__func__, ch->type, ch->name);
return -EFAULT;
}
return ch->current_packet;
}
EXPORT_SYMBOL(smd_cur_packet_size);
int smd_tiocmget(smd_channel_t *ch)
{
if (!ch) {
pr_err("%s: Invalid channel specified\n", __func__);
return -ENODEV;
}
return (ch->half_ch->get_fDSR(ch->recv) ? TIOCM_DSR : 0) |
(ch->half_ch->get_fCTS(ch->recv) ? TIOCM_CTS : 0) |
(ch->half_ch->get_fCD(ch->recv) ? TIOCM_CD : 0) |
(ch->half_ch->get_fRI(ch->recv) ? TIOCM_RI : 0) |
(ch->half_ch->get_fCTS(ch->send) ? TIOCM_RTS : 0) |
(ch->half_ch->get_fDSR(ch->send) ? TIOCM_DTR : 0);
}
EXPORT_SYMBOL(smd_tiocmget);
/* this api will be called while holding smd_lock */
int
smd_tiocmset_from_cb(smd_channel_t *ch, unsigned int set, unsigned int clear)
{
if (!ch) {
pr_err("%s: Invalid channel specified\n", __func__);
return -ENODEV;
}
if (set & TIOCM_DTR)
ch->half_ch->set_fDSR(ch->send, 1);
if (set & TIOCM_RTS)
ch->half_ch->set_fCTS(ch->send, 1);
if (clear & TIOCM_DTR)
ch->half_ch->set_fDSR(ch->send, 0);
if (clear & TIOCM_RTS)
ch->half_ch->set_fCTS(ch->send, 0);
ch->half_ch->set_fSTATE(ch->send, 1);
barrier();
ch->notify_other_cpu(ch);
return 0;
}
EXPORT_SYMBOL(smd_tiocmset_from_cb);
int smd_tiocmset(smd_channel_t *ch, unsigned int set, unsigned int clear)
{
unsigned long flags;
if (!ch) {
pr_err("%s: Invalid channel specified\n", __func__);
return -ENODEV;
}
spin_lock_irqsave(&smd_lock, flags);
smd_tiocmset_from_cb(ch, set, clear);
spin_unlock_irqrestore(&smd_lock, flags);
return 0;
}
EXPORT_SYMBOL(smd_tiocmset);
int smd_is_pkt_avail(smd_channel_t *ch)
{
unsigned long flags;
if (!ch || !ch->is_pkt_ch)
return -EINVAL;
if (ch->current_packet)
return 1;
spin_lock_irqsave(&smd_lock, flags);
update_packet_state(ch);
spin_unlock_irqrestore(&smd_lock, flags);
return ch->current_packet ? 1 : 0;
}
EXPORT_SYMBOL(smd_is_pkt_avail);
static int smsm_cb_init(void)
{
struct smsm_state_info *state_info;
int n;
int ret = 0;
smsm_states = kmalloc(sizeof(struct smsm_state_info)*SMSM_NUM_ENTRIES,
GFP_KERNEL);
if (!smsm_states) {
pr_err("%s: SMSM init failed\n", __func__);
return -ENOMEM;
}
smsm_cb_wq = create_singlethread_workqueue("smsm_cb_wq");
if (!smsm_cb_wq) {
pr_err("%s: smsm_cb_wq creation failed\n", __func__);
kfree(smsm_states);
return -EFAULT;
}
mutex_lock(&smsm_lock);
for (n = 0; n < SMSM_NUM_ENTRIES; n++) {
state_info = &smsm_states[n];
state_info->last_value = __raw_readl(SMSM_STATE_ADDR(n));
state_info->intr_mask_set = 0x0;
state_info->intr_mask_clear = 0x0;
INIT_LIST_HEAD(&state_info->callbacks);
}
mutex_unlock(&smsm_lock);
return ret;
}
static int smsm_init(void)
{
int i;
struct smsm_size_info_type *smsm_size_info;
unsigned long flags;
unsigned long j_start;
static int first = 1;
remote_spinlock_t *remote_spinlock;
if (!first)
return 0;
first = 0;
/* Verify that remote spinlock is not deadlocked */
remote_spinlock = smem_get_remote_spinlock();
j_start = jiffies;
while (!remote_spin_trylock_irqsave(remote_spinlock, flags)) {
if (jiffies_to_msecs(jiffies - j_start) > RSPIN_INIT_WAIT_MS) {
panic("%s: Remote processor %d will not release spinlock\n",
__func__, remote_spin_owner(remote_spinlock));
}
}
remote_spin_unlock_irqrestore(remote_spinlock, flags);
smsm_size_info = smem_find(SMEM_SMSM_SIZE_INFO,
sizeof(struct smsm_size_info_type), 0,
SMEM_ANY_HOST_FLAG);
if (smsm_size_info) {
SMSM_NUM_ENTRIES = smsm_size_info->num_entries;
SMSM_NUM_HOSTS = smsm_size_info->num_hosts;
}
i = kfifo_alloc(&smsm_snapshot_fifo,
sizeof(uint32_t) * SMSM_NUM_ENTRIES * SMSM_SNAPSHOT_CNT,
GFP_KERNEL);
if (i) {
pr_err("%s: SMSM state fifo alloc failed %d\n", __func__, i);
return i;
}
wakeup_source_init(&smsm_snapshot_ws, "smsm_snapshot");
if (!smsm_info.state) {
smsm_info.state = smem_alloc(ID_SHARED_STATE,
SMSM_NUM_ENTRIES *
sizeof(uint32_t), 0,
SMEM_ANY_HOST_FLAG);
if (smsm_info.state)
__raw_writel(0, SMSM_STATE_ADDR(SMSM_APPS_STATE));
}
if (!smsm_info.intr_mask) {
smsm_info.intr_mask = smem_alloc(SMEM_SMSM_CPU_INTR_MASK,
SMSM_NUM_ENTRIES *
SMSM_NUM_HOSTS *
sizeof(uint32_t), 0,
SMEM_ANY_HOST_FLAG);
if (smsm_info.intr_mask) {
for (i = 0; i < SMSM_NUM_ENTRIES; i++)
__raw_writel(0x0,
SMSM_INTR_MASK_ADDR(i, SMSM_APPS));
/* Configure legacy modem bits */
__raw_writel(LEGACY_MODEM_SMSM_MASK,
SMSM_INTR_MASK_ADDR(SMSM_MODEM_STATE,
SMSM_APPS));
}
}
i = smsm_cb_init();
if (i)
return i;
wmb();
smsm_pm_notifier(&smsm_pm_nb, PM_POST_SUSPEND, NULL);
i = register_pm_notifier(&smsm_pm_nb);
if (i)
pr_err("%s: power state notif error %d\n", __func__, i);
return 0;
}
static void smsm_cb_snapshot(uint32_t use_wakeup_source)
{
int n;
uint32_t new_state;
unsigned long flags;
int ret;
uint64_t timestamp;
timestamp = sched_clock();
ret = kfifo_avail(&smsm_snapshot_fifo);
if (ret < SMSM_SNAPSHOT_SIZE) {
pr_err("%s: SMSM snapshot full %d\n", __func__, ret);
return;
}
/*
* To avoid a race condition with notify_smsm_cb_clients_worker, the
* following sequence must be followed:
* 1) increment snapshot count
* 2) insert data into FIFO
*
* Potentially in parallel, the worker:
* a) verifies >= 1 snapshots are in FIFO
* b) processes snapshot
* c) decrements reference count
*
* This order ensures that 1 will always occur before abc.
*/
if (use_wakeup_source) {
spin_lock_irqsave(&smsm_snapshot_count_lock, flags);
if (smsm_snapshot_count == 0) {
SMSM_POWER_INFO("SMSM snapshot wake lock\n");
__pm_stay_awake(&smsm_snapshot_ws);
}
++smsm_snapshot_count;
spin_unlock_irqrestore(&smsm_snapshot_count_lock, flags);
}
/* queue state entries */
for (n = 0; n < SMSM_NUM_ENTRIES; n++) {
new_state = __raw_readl(SMSM_STATE_ADDR(n));
ret = kfifo_in(&smsm_snapshot_fifo,
&new_state, sizeof(new_state));
if (ret != sizeof(new_state)) {
pr_err("%s: SMSM snapshot failure %d\n", __func__, ret);
goto restore_snapshot_count;
}
}
ret = kfifo_in(&smsm_snapshot_fifo, &timestamp, sizeof(timestamp));
if (ret != sizeof(timestamp)) {
pr_err("%s: SMSM snapshot failure %d\n", __func__, ret);
goto restore_snapshot_count;
}
/* queue wakelock usage flag */
ret = kfifo_in(&smsm_snapshot_fifo,
&use_wakeup_source, sizeof(use_wakeup_source));
if (ret != sizeof(use_wakeup_source)) {
pr_err("%s: SMSM snapshot failure %d\n", __func__, ret);
goto restore_snapshot_count;
}
queue_work(smsm_cb_wq, &smsm_cb_work);
return;
restore_snapshot_count:
if (use_wakeup_source) {
spin_lock_irqsave(&smsm_snapshot_count_lock, flags);
if (smsm_snapshot_count) {
--smsm_snapshot_count;
if (smsm_snapshot_count == 0) {
SMSM_POWER_INFO("SMSM snapshot wake unlock\n");
__pm_relax(&smsm_snapshot_ws);
}
} else {
pr_err("%s: invalid snapshot count\n", __func__);
}
spin_unlock_irqrestore(&smsm_snapshot_count_lock, flags);
}
}
static irqreturn_t smsm_irq_handler(int irq, void *data)
{
unsigned long flags;
spin_lock_irqsave(&smem_lock, flags);
if (!smsm_info.state) {
SMSM_INFO("<SM NO STATE>\n");
} else {
unsigned old_apps, apps;
unsigned modm = __raw_readl(SMSM_STATE_ADDR(SMSM_MODEM_STATE));
old_apps = apps = __raw_readl(SMSM_STATE_ADDR(SMSM_APPS_STATE));
SMSM_DBG("<SM %08x %08x>\n", apps, modm);
if (modm & SMSM_RESET) {
pr_err("SMSM: Modem SMSM state changed to SMSM_RESET.\n");
} else if (modm & SMSM_INIT) {
if (!(apps & SMSM_INIT))
apps |= SMSM_INIT;
if (modm & SMSM_SMDINIT)
apps |= SMSM_SMDINIT;
}
if (old_apps != apps) {
SMSM_DBG("<SM %08x NOTIFY>\n", apps);
__raw_writel(apps, SMSM_STATE_ADDR(SMSM_APPS_STATE));
notify_other_smsm(SMSM_APPS_STATE, (old_apps ^ apps));
}
smsm_cb_snapshot(1);
}
spin_unlock_irqrestore(&smem_lock, flags);
return IRQ_HANDLED;
}
irqreturn_t smsm_modem_irq_handler(int irq, void *data)
{
SMSM_POWER_INFO("SMSM Int Modem->Apps\n");
++interrupt_stats[SMD_MODEM].smsm_in_count;
return smsm_irq_handler(irq, data);
}
irqreturn_t smsm_dsp_irq_handler(int irq, void *data)
{
SMSM_POWER_INFO("SMSM Int LPASS->Apps\n");
++interrupt_stats[SMD_Q6].smsm_in_count;
return smsm_irq_handler(irq, data);
}
irqreturn_t smsm_dsps_irq_handler(int irq, void *data)
{
SMSM_POWER_INFO("SMSM Int DSPS->Apps\n");
++interrupt_stats[SMD_DSPS].smsm_in_count;
return smsm_irq_handler(irq, data);
}
irqreturn_t smsm_wcnss_irq_handler(int irq, void *data)
{
SMSM_POWER_INFO("SMSM Int WCNSS->Apps\n");
++interrupt_stats[SMD_WCNSS].smsm_in_count;
return smsm_irq_handler(irq, data);
}
/*
* Changes the global interrupt mask. The set and clear masks are re-applied
* every time the global interrupt mask is updated for callback registration
* and de-registration.
*
* The clear mask is applied first, so if a bit is set to 1 in both the clear
* mask and the set mask, the result will be that the interrupt is set.
*
* @smsm_entry SMSM entry to change
* @clear_mask 1 = clear bit, 0 = no-op
* @set_mask 1 = set bit, 0 = no-op
*
* @returns 0 for success, < 0 for error
*/
int smsm_change_intr_mask(uint32_t smsm_entry,
uint32_t clear_mask, uint32_t set_mask)
{
uint32_t old_mask, new_mask;
unsigned long flags;
if (smsm_entry >= SMSM_NUM_ENTRIES) {
pr_err("smsm_change_state: Invalid entry %d\n",
smsm_entry);
return -EINVAL;
}
if (!smsm_info.intr_mask) {
pr_err("smsm_change_intr_mask <SM NO STATE>\n");
return -EIO;
}
spin_lock_irqsave(&smem_lock, flags);
smsm_states[smsm_entry].intr_mask_clear = clear_mask;
smsm_states[smsm_entry].intr_mask_set = set_mask;
old_mask = __raw_readl(SMSM_INTR_MASK_ADDR(smsm_entry, SMSM_APPS));
new_mask = (old_mask & ~clear_mask) | set_mask;
__raw_writel(new_mask, SMSM_INTR_MASK_ADDR(smsm_entry, SMSM_APPS));
wmb();
spin_unlock_irqrestore(&smem_lock, flags);
return 0;
}
EXPORT_SYMBOL(smsm_change_intr_mask);
int smsm_get_intr_mask(uint32_t smsm_entry, uint32_t *intr_mask)
{
if (smsm_entry >= SMSM_NUM_ENTRIES) {
pr_err("smsm_change_state: Invalid entry %d\n",
smsm_entry);
return -EINVAL;
}
if (!smsm_info.intr_mask) {
pr_err("smsm_change_intr_mask <SM NO STATE>\n");
return -EIO;
}
*intr_mask = __raw_readl(SMSM_INTR_MASK_ADDR(smsm_entry, SMSM_APPS));
return 0;
}
EXPORT_SYMBOL(smsm_get_intr_mask);
int smsm_change_state(uint32_t smsm_entry,
uint32_t clear_mask, uint32_t set_mask)
{
unsigned long flags;
uint32_t old_state, new_state;
if (smsm_entry >= SMSM_NUM_ENTRIES) {
pr_err("smsm_change_state: Invalid entry %d",
smsm_entry);
return -EINVAL;
}
if (!smsm_info.state) {
pr_err("smsm_change_state <SM NO STATE>\n");
return -EIO;
}
spin_lock_irqsave(&smem_lock, flags);
old_state = __raw_readl(SMSM_STATE_ADDR(smsm_entry));
new_state = (old_state & ~clear_mask) | set_mask;
__raw_writel(new_state, SMSM_STATE_ADDR(smsm_entry));
SMSM_POWER_INFO("%s %d:%08x->%08x", __func__, smsm_entry,
old_state, new_state);
notify_other_smsm(SMSM_APPS_STATE, (old_state ^ new_state));
spin_unlock_irqrestore(&smem_lock, flags);
return 0;
}
EXPORT_SYMBOL(smsm_change_state);
uint32_t smsm_get_state(uint32_t smsm_entry)
{
uint32_t rv = 0;
/* needs interface change to return error code */
if (smsm_entry >= SMSM_NUM_ENTRIES) {
pr_err("smsm_change_state: Invalid entry %d",
smsm_entry);
return 0;
}
if (!smsm_info.state)
pr_err("smsm_get_state <SM NO STATE>\n");
else
rv = __raw_readl(SMSM_STATE_ADDR(smsm_entry));
return rv;
}
EXPORT_SYMBOL(smsm_get_state);
/**
* Performs SMSM callback client notifiction.
*/
void notify_smsm_cb_clients_worker(struct work_struct *work)
{
struct smsm_state_cb_info *cb_info;
struct smsm_state_info *state_info;
int n;
uint32_t new_state;
uint32_t state_changes;
uint32_t use_wakeup_source;
int ret;
unsigned long flags;
uint64_t t_snapshot;
uint64_t t_start;
unsigned long nanosec_rem;
while (kfifo_len(&smsm_snapshot_fifo) >= SMSM_SNAPSHOT_SIZE) {
t_start = sched_clock();
mutex_lock(&smsm_lock);
for (n = 0; n < SMSM_NUM_ENTRIES; n++) {
state_info = &smsm_states[n];
ret = kfifo_out(&smsm_snapshot_fifo, &new_state,
sizeof(new_state));
if (ret != sizeof(new_state)) {
pr_err("%s: snapshot underflow %d\n",
__func__, ret);
mutex_unlock(&smsm_lock);
return;
}
state_changes = state_info->last_value ^ new_state;
if (state_changes) {
SMSM_POWER_INFO("SMSM Change %d: %08x->%08x\n",
n, state_info->last_value,
new_state);
list_for_each_entry(cb_info,
&state_info->callbacks, cb_list) {
if (cb_info->mask & state_changes)
cb_info->notify(cb_info->data,
state_info->last_value,
new_state);
}
state_info->last_value = new_state;
}
}
ret = kfifo_out(&smsm_snapshot_fifo, &t_snapshot,
sizeof(t_snapshot));
if (ret != sizeof(t_snapshot)) {
pr_err("%s: snapshot underflow %d\n",
__func__, ret);
mutex_unlock(&smsm_lock);
return;
}
/* read wakelock flag */
ret = kfifo_out(&smsm_snapshot_fifo, &use_wakeup_source,
sizeof(use_wakeup_source));
if (ret != sizeof(use_wakeup_source)) {
pr_err("%s: snapshot underflow %d\n",
__func__, ret);
mutex_unlock(&smsm_lock);
return;
}
mutex_unlock(&smsm_lock);
if (use_wakeup_source) {
spin_lock_irqsave(&smsm_snapshot_count_lock, flags);
if (smsm_snapshot_count) {
--smsm_snapshot_count;
if (smsm_snapshot_count == 0) {
SMSM_POWER_INFO(
"SMSM snapshot wake unlock\n");
__pm_relax(&smsm_snapshot_ws);
}
} else {
pr_err("%s: invalid snapshot count\n",
__func__);
}
spin_unlock_irqrestore(&smsm_snapshot_count_lock,
flags);
}
t_start = t_start - t_snapshot;
nanosec_rem = do_div(t_start, 1000000000U);
SMSM_POWER_INFO(
"SMSM snapshot queue response time %6u.%09lu s\n",
(unsigned)t_start, nanosec_rem);
}
}
/**
* Registers callback for SMSM state notifications when the specified
* bits change.
*
* @smsm_entry Processor entry to deregister
* @mask Bits to deregister (if result is 0, callback is removed)
* @notify Notification function to deregister
* @data Opaque data passed in to callback
*
* @returns Status code
* <0 error code
* 0 inserted new entry
* 1 updated mask of existing entry
*/
int smsm_state_cb_register(uint32_t smsm_entry, uint32_t mask,
void (*notify)(void *, uint32_t, uint32_t), void *data)
{
struct smsm_state_info *state;
struct smsm_state_cb_info *cb_info;
struct smsm_state_cb_info *cb_found = 0;
uint32_t new_mask = 0;
int ret = 0;
if (smsm_entry >= SMSM_NUM_ENTRIES)
return -EINVAL;
mutex_lock(&smsm_lock);
if (!smsm_states) {
/* smsm not yet initialized */
ret = -ENODEV;
goto cleanup;
}
state = &smsm_states[smsm_entry];
list_for_each_entry(cb_info,
&state->callbacks, cb_list) {
if (!ret && (cb_info->notify == notify) &&
(cb_info->data == data)) {
cb_info->mask |= mask;
cb_found = cb_info;
ret = 1;
}
new_mask |= cb_info->mask;
}
if (!cb_found) {
cb_info = kmalloc(sizeof(struct smsm_state_cb_info),
GFP_ATOMIC);
if (!cb_info) {
ret = -ENOMEM;
goto cleanup;
}
cb_info->mask = mask;
cb_info->notify = notify;
cb_info->data = data;
INIT_LIST_HEAD(&cb_info->cb_list);
list_add_tail(&cb_info->cb_list,
&state->callbacks);
new_mask |= mask;
}
/* update interrupt notification mask */
if (smsm_entry == SMSM_MODEM_STATE)
new_mask |= LEGACY_MODEM_SMSM_MASK;
if (smsm_info.intr_mask) {
unsigned long flags;
spin_lock_irqsave(&smem_lock, flags);
new_mask = (new_mask & ~state->intr_mask_clear)
| state->intr_mask_set;
__raw_writel(new_mask,
SMSM_INTR_MASK_ADDR(smsm_entry, SMSM_APPS));
wmb();
spin_unlock_irqrestore(&smem_lock, flags);
}
cleanup:
mutex_unlock(&smsm_lock);
return ret;
}
EXPORT_SYMBOL(smsm_state_cb_register);
/**
* Deregisters for SMSM state notifications for the specified bits.
*
* @smsm_entry Processor entry to deregister
* @mask Bits to deregister (if result is 0, callback is removed)
* @notify Notification function to deregister
* @data Opaque data passed in to callback
*
* @returns Status code
* <0 error code
* 0 not found
* 1 updated mask
* 2 removed callback
*/
int smsm_state_cb_deregister(uint32_t smsm_entry, uint32_t mask,
void (*notify)(void *, uint32_t, uint32_t), void *data)
{
struct smsm_state_cb_info *cb_info;
struct smsm_state_cb_info *cb_tmp;
struct smsm_state_info *state;
uint32_t new_mask = 0;
int ret = 0;
if (smsm_entry >= SMSM_NUM_ENTRIES)
return -EINVAL;
mutex_lock(&smsm_lock);
if (!smsm_states) {
/* smsm not yet initialized */
mutex_unlock(&smsm_lock);
return -ENODEV;
}
state = &smsm_states[smsm_entry];
list_for_each_entry_safe(cb_info, cb_tmp,
&state->callbacks, cb_list) {
if (!ret && (cb_info->notify == notify) &&
(cb_info->data == data)) {
cb_info->mask &= ~mask;
ret = 1;
if (!cb_info->mask) {
/* no mask bits set, remove callback */
list_del(&cb_info->cb_list);
kfree(cb_info);
ret = 2;
continue;
}
}
new_mask |= cb_info->mask;
}
/* update interrupt notification mask */
if (smsm_entry == SMSM_MODEM_STATE)
new_mask |= LEGACY_MODEM_SMSM_MASK;
if (smsm_info.intr_mask) {
unsigned long flags;
spin_lock_irqsave(&smem_lock, flags);
new_mask = (new_mask & ~state->intr_mask_clear)
| state->intr_mask_set;
__raw_writel(new_mask,
SMSM_INTR_MASK_ADDR(smsm_entry, SMSM_APPS));
wmb();
spin_unlock_irqrestore(&smem_lock, flags);
}
mutex_unlock(&smsm_lock);
return ret;
}
EXPORT_SYMBOL(smsm_state_cb_deregister);
static int restart_notifier_cb(struct notifier_block *this,
unsigned long code,
void *data);
static struct restart_notifier_block restart_notifiers[] = {
{SMD_MODEM, "modem", .nb.notifier_call = restart_notifier_cb},
{SMD_Q6, "lpass", .nb.notifier_call = restart_notifier_cb},
{SMD_WCNSS, "wcnss", .nb.notifier_call = restart_notifier_cb},
{SMD_DSPS, "dsps", .nb.notifier_call = restart_notifier_cb},
{SMD_MODEM, "gss", .nb.notifier_call = restart_notifier_cb},
{SMD_Q6, "adsp", .nb.notifier_call = restart_notifier_cb},
{SMD_DSPS, "slpi", .nb.notifier_call = restart_notifier_cb},
};
static int restart_notifier_cb(struct notifier_block *this,
unsigned long code,
void *data)
{
remote_spinlock_t *remote_spinlock;
/*
* Some SMD or SMSM clients assume SMD/SMSM SSR handling will be
* done in the AFTER_SHUTDOWN level. If this ever changes, extra
* care should be taken to verify no clients are broken.
*/
if (code == SUBSYS_AFTER_SHUTDOWN) {
struct restart_notifier_block *notifier;
notifier = container_of(this,
struct restart_notifier_block, nb);
SMD_INFO("%s: ssrestart for processor %d ('%s')\n",
__func__, notifier->processor,
notifier->name);
remote_spinlock = smem_get_remote_spinlock();
remote_spin_release(remote_spinlock, notifier->processor);
remote_spin_release_all(notifier->processor);
smd_channel_reset(notifier->processor);
}
return NOTIFY_DONE;
}
/**
* smd_post_init() - SMD post initialization
* @remote_pid: remote pid that has been initialized. Ignored when is_legacy=1
*
* This function is used by the device tree initialization to complete the SMD
* init sequence.
*/
void smd_post_init(unsigned remote_pid)
{
smd_channel_probe_now(&remote_info[remote_pid]);
}
/**
* smsm_post_init() - SMSM post initialization
* @returns: 0 for success, standard Linux error code otherwise
*
* This function is used by the legacy and device tree initialization
* to complete the SMSM init sequence.
*/
int smsm_post_init(void)
{
int ret;
ret = smsm_init();
if (ret) {
pr_err("smsm_init() failed ret = %d\n", ret);
return ret;
}
smsm_irq_handler(0, 0);
return ret;
}
/**
* smd_get_intr_config() - Get interrupt configuration structure
* @edge: edge type identifes local and remote processor
* @returns: pointer to interrupt configuration
*
* This function returns the interrupt configuration of remote processor
* based on the edge type.
*/
struct interrupt_config *smd_get_intr_config(uint32_t edge)
{
if (edge >= ARRAY_SIZE(edge_to_pids))
return NULL;
return &private_intr_config[edge_to_pids[edge].remote_pid];
}
/**
* smd_get_edge_remote_pid() - Get the remote processor ID
* @edge: edge type identifes local and remote processor
* @returns: remote processor ID
*
* This function returns remote processor ID based on edge type.
*/
int smd_edge_to_remote_pid(uint32_t edge)
{
if (edge >= ARRAY_SIZE(edge_to_pids))
return -EINVAL;
return edge_to_pids[edge].remote_pid;
}
/**
* smd_get_edge_local_pid() - Get the local processor ID
* @edge: edge type identifies local and remote processor
* @returns: local processor ID
*
* This function returns local processor ID based on edge type.
*/
int smd_edge_to_local_pid(uint32_t edge)
{
if (edge >= ARRAY_SIZE(edge_to_pids))
return -EINVAL;
return edge_to_pids[edge].local_pid;
}
/**
* smd_proc_set_skip_pil() - Mark if the indicated processor is be loaded by PIL
* @pid: the processor id to mark
* @skip_pil: true if @pid cannot by loaded by PIL
*/
void smd_proc_set_skip_pil(unsigned pid, bool skip_pil)
{
if (pid >= NUM_SMD_SUBSYSTEMS) {
pr_err("%s: invalid pid:%d\n", __func__, pid);
return;
}
remote_info[pid].skip_pil = skip_pil;
}
/**
* smd_set_edge_subsys_name() - Set the subsystem name
* @edge: edge type identifies local and remote processor
* @subsys_name: pointer to subsystem name
*
* This function is used to set the subsystem name for given edge type.
*/
void smd_set_edge_subsys_name(uint32_t edge, const char *subsys_name)
{
if (edge < ARRAY_SIZE(edge_to_pids))
if (subsys_name)
strlcpy(edge_to_pids[edge].subsys_name,
subsys_name, SMD_MAX_CH_NAME_LEN);
else
strlcpy(edge_to_pids[edge].subsys_name,
"", SMD_MAX_CH_NAME_LEN);
else
pr_err("%s: Invalid edge type[%d]\n", __func__, edge);
}
/**
* smd_reset_all_edge_subsys_name() - Reset the subsystem name
*
* This function is used to reset the subsystem name of all edges in
* targets where configuration information is available through
* device tree.
*/
void smd_reset_all_edge_subsys_name(void)
{
int i;
for (i = 0; i < ARRAY_SIZE(edge_to_pids); i++)
strlcpy(edge_to_pids[i].subsys_name,
"", sizeof(""));
}
/**
* smd_set_edge_initialized() - Set the edge initialized status
* @edge: edge type identifies local and remote processor
*
* This function set the initialized varibale based on edge type.
*/
void smd_set_edge_initialized(uint32_t edge)
{
if (edge < ARRAY_SIZE(edge_to_pids))
edge_to_pids[edge].initialized = true;
else
pr_err("%s: Invalid edge type[%d]\n", __func__, edge);
}
/**
* smd_cfg_smd_intr() - Set the SMD interrupt configuration
* @proc: remote processor ID
* @mask: bit position in IRQ register
* @ptr: IRQ register
*
* This function is called in Legacy init sequence and used to set
* the SMD interrupt configurations for particular processor.
*/
void smd_cfg_smd_intr(uint32_t proc, uint32_t mask, void *ptr)
{
private_intr_config[proc].smd.out_bit_pos = mask;
private_intr_config[proc].smd.out_base = ptr;
private_intr_config[proc].smd.out_offset = 0;
}
/*
* smd_cfg_smsm_intr() - Set the SMSM interrupt configuration
* @proc: remote processor ID
* @mask: bit position in IRQ register
* @ptr: IRQ register
*
* This function is called in Legacy init sequence and used to set
* the SMSM interrupt configurations for particular processor.
*/
void smd_cfg_smsm_intr(uint32_t proc, uint32_t mask, void *ptr)
{
private_intr_config[proc].smsm.out_bit_pos = mask;
private_intr_config[proc].smsm.out_base = ptr;
private_intr_config[proc].smsm.out_offset = 0;
}
static __init int modem_restart_late_init(void)
{
int i;
void *handle;
struct restart_notifier_block *nb;
for (i = 0; i < ARRAY_SIZE(restart_notifiers); i++) {
nb = &restart_notifiers[i];
handle = subsys_notif_register_notifier(nb->name, &nb->nb);
SMD_DBG("%s: registering notif for '%s', handle=%p\n",
__func__, nb->name, handle);
}
return 0;
}
late_initcall(modem_restart_late_init);
int __init msm_smd_init(void)
{
static bool registered;
int rc;
int i;
if (registered)
return 0;
smd_log_ctx = ipc_log_context_create(NUM_LOG_PAGES, "smd", 0);
if (!smd_log_ctx) {
pr_err("%s: unable to create SMD logging context\n", __func__);
msm_smd_debug_mask = 0;
}
smsm_log_ctx = ipc_log_context_create(NUM_LOG_PAGES, "smsm", 0);
if (!smsm_log_ctx) {
pr_err("%s: unable to create SMSM logging context\n", __func__);
msm_smd_debug_mask = 0;
}
registered = true;
for (i = 0; i < NUM_SMD_SUBSYSTEMS; ++i) {
remote_info[i].remote_pid = i;
remote_info[i].free_space = UINT_MAX;
INIT_WORK(&remote_info[i].probe_work, smd_channel_probe_worker);
INIT_LIST_HEAD(&remote_info[i].ch_list);
}
channel_close_wq = create_singlethread_workqueue("smd_channel_close");
if (IS_ERR(channel_close_wq)) {
pr_err("%s: create_singlethread_workqueue ENOMEM\n", __func__);
return -ENOMEM;
}
rc = msm_smd_driver_register();
if (rc) {
pr_err("%s: msm_smd_driver register failed %d\n",
__func__, rc);
return rc;
}
return 0;
}
arch_initcall(msm_smd_init);
MODULE_DESCRIPTION("MSM Shared Memory Core");
MODULE_AUTHOR("Brian Swetland <swetland@google.com>");
MODULE_LICENSE("GPL");