android_kernel_samsung_hero.../drivers/usb/gadget/ci13xxx_msm_hsic.c
2016-08-17 16:41:52 +08:00

1032 lines
25 KiB
C

/* Copyright (c) 2012-2015, The Linux Foundation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 and
* only version 2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#include <linux/platform_device.h>
#include <linux/clk.h>
#include <linux/err.h>
#include <linux/wakelock.h>
#include <linux/pm_runtime.h>
#include <linux/regulator/consumer.h>
#include <linux/dma-mapping.h>
#include <linux/slab.h>
#include <linux/gpio.h>
#include <linux/delay.h>
#include <linux/device.h>
#include <linux/usb.h>
#include <linux/clk/msm-clk.h>
#include <linux/usb/gadget.h>
#include <linux/usb/msm_hsusb_hw.h>
#include <linux/usb/msm_hsusb.h>
#include <linux/msm-bus.h>
#include "ci13xxx_udc.c"
#define MSM_USB_BASE (mhsic->regs)
#define ULPI_IO_TIMEOUT_USEC (10 * 1000)
#define LINK_RESET_TIMEOUT_USEC (250 * 1000)
#define PHY_SUSPEND_TIMEOUT_USEC (500 * 1000)
#define PHY_RESUME_TIMEOUT_USEC (100 * 1000)
#define HSIC_CFG_REG 0x30
#define HSIC_IO_CAL_PER_REG 0x33
#define HSIC_DBG1_REG 0x38
struct msm_hsic_per *the_mhsic;
static u64 msm_hsic_peripheral_dma_mask = DMA_BIT_MASK(32);
struct msm_hsic_per {
struct device *dev;
struct clk *iface_clk;
struct clk *core_clk;
struct clk *alt_core_clk;
struct clk *phy_clk;
struct clk *cal_clk;
struct regulator *hsic_vdd;
int async_int;
int vdd_val[3];
struct regulator *hsic_gdsc;
void __iomem *regs;
int irq;
int async_irq_no;
atomic_t in_lpm;
struct workqueue_struct *wq;
struct work_struct suspend_w;
struct msm_hsic_peripheral_platform_data *pdata;
u32 bus_perf_client;
struct msm_bus_scale_pdata *bus_scale_table;
enum usb_vdd_type vdd_type;
bool connected;
};
#define NONE 0
#define MIN 1
#define MAX 2
static int msm_hsic_init_vdd(struct msm_hsic_per *mhsic, int init)
{
int ret = 0;
if (!mhsic->hsic_vdd) {
mhsic->hsic_vdd = devm_regulator_get(mhsic->dev, "vdd");
if (IS_ERR(mhsic->hsic_vdd)) {
dev_err(mhsic->dev, "unable to get hsic vdd\n");
return PTR_ERR(mhsic->hsic_vdd);
}
}
if (mhsic->dev->of_node) {
ret = of_property_read_u32_array(mhsic->dev->of_node,
"qcom,vdd-voltage-level",
mhsic->vdd_val, ARRAY_SIZE(mhsic->vdd_val));
if (ret == -EINVAL)
dev_err(mhsic->dev, "invalid vdd-level.\n");
else if (ret == -ENODATA)
dev_err(mhsic->dev, "no data for vdd-level.\n");
else if (ret == -EOVERFLOW)
dev_err(mhsic->dev, "overflow with vdd-level.\n");
if (ret)
return ret;
} else {
dev_err(mhsic->dev, "vdd config is not provided.\n");
return -EINVAL;
}
if (!init)
goto disable_reg;
dev_dbg(mhsic->dev, "vdd[NONE]:%d vdd[MIN]:%d vdd[MAX]:%d\n",
mhsic->vdd_val[NONE], mhsic->vdd_val[MIN], mhsic->vdd_val[MAX]);
ret = regulator_set_voltage(mhsic->hsic_vdd, mhsic->vdd_val[MIN],
mhsic->vdd_val[MAX]);
if (ret) {
dev_err(mhsic->dev, "unable to set the voltage for hsic vdd\n");
goto reg_set_voltage_err;
}
ret = regulator_enable(mhsic->hsic_vdd);
if (ret) {
dev_err(mhsic->dev, "unable to enable hsic vddx\n");
goto reg_enable_err;
}
return 0;
disable_reg:
regulator_disable(mhsic->hsic_vdd);
reg_enable_err:
regulator_set_voltage(mhsic->hsic_vdd, mhsic->vdd_val[NONE],
mhsic->vdd_val[MAX]);
reg_set_voltage_err:
return ret;
}
static int ulpi_write(struct msm_hsic_per *mhsic, u32 val, u32 reg)
{
int cnt = 0;
/* initiate write operation */
writel_relaxed(ULPI_RUN | ULPI_WRITE |
ULPI_ADDR(reg) | ULPI_DATA(val),
USB_ULPI_VIEWPORT);
/* wait for completion */
while (cnt < ULPI_IO_TIMEOUT_USEC) {
if (!(readl_relaxed(USB_ULPI_VIEWPORT) & ULPI_RUN))
break;
udelay(1);
cnt++;
}
if (cnt >= ULPI_IO_TIMEOUT_USEC) {
dev_err(mhsic->dev, "ulpi_write: timeout\n");
return -ETIMEDOUT;
}
return 0;
}
static int msm_hsic_phy_clk_reset(struct msm_hsic_per *mhsic)
{
int ret;
clk_enable(mhsic->alt_core_clk);
ret = clk_reset(mhsic->core_clk, CLK_RESET_ASSERT);
if (ret) {
clk_disable(mhsic->alt_core_clk);
dev_err(mhsic->dev, "usb phy clk assert failed\n");
return ret;
}
usleep_range(10000, 12000);
clk_disable(mhsic->alt_core_clk);
ret = clk_reset(mhsic->core_clk, CLK_RESET_DEASSERT);
if (ret)
dev_err(mhsic->dev, "usb phy clk deassert failed\n");
usleep_range(10000, 12000);
clk_enable(mhsic->alt_core_clk);
return ret;
}
static int msm_hsic_phy_reset(struct msm_hsic_per *mhsic)
{
u32 val;
int ret;
ret = msm_hsic_phy_clk_reset(mhsic);
if (ret)
return ret;
val = readl_relaxed(USB_PORTSC) & ~PORTSC_PTS_MASK;
writel_relaxed(val | PORTSC_PTS_ULPI, USB_PORTSC);
/*
* Ensure that RESET operation is completed before
* turning off clock.
*/
mb();
dev_dbg(mhsic->dev, "phy_reset: success\n");
return 0;
}
static int msm_hsic_config_gdsc(struct platform_device *pdev,
struct msm_hsic_per *mhsic, bool enable)
{
int ret = 0;
if (!mhsic->hsic_gdsc) {
mhsic->hsic_gdsc = devm_regulator_get(&pdev->dev, "GDSC");
if (IS_ERR(mhsic->hsic_gdsc))
return 0;
}
if (enable) {
ret = regulator_enable(mhsic->hsic_gdsc);
if (ret) {
dev_err(mhsic->dev, "unable to enable hsic gdsc\n");
return ret;
}
} else {
regulator_disable(mhsic->hsic_gdsc);
}
return 0;
}
static int msm_hsic_enable_clocks(struct platform_device *pdev,
struct msm_hsic_per *mhsic, bool enable)
{
int ret = 0;
if (!enable)
goto put_clocks;
mhsic->iface_clk = clk_get(&pdev->dev, "iface_clk");
if (IS_ERR(mhsic->iface_clk)) {
dev_err(mhsic->dev, "failed to get iface_clk\n");
ret = PTR_ERR(mhsic->iface_clk);
goto error_enable_clocks;
}
mhsic->core_clk = clk_get(&pdev->dev, "core_clk");
if (IS_ERR(mhsic->core_clk)) {
dev_err(mhsic->dev, "failed to get core_clk\n");
ret = PTR_ERR(mhsic->core_clk);
goto put_iface_clk;
}
ret = clk_set_rate(mhsic->core_clk,
clk_round_rate(mhsic->core_clk, LONG_MAX));
if (ret)
dev_err(mhsic->dev, "failed to set core_clk rate\n");
mhsic->phy_clk = clk_get(&pdev->dev, "phy_clk");
if (IS_ERR(mhsic->phy_clk)) {
dev_err(mhsic->dev, "failed to get phy_clk\n");
ret = PTR_ERR(mhsic->phy_clk);
goto put_core_clk;
}
ret = clk_set_rate(mhsic->phy_clk,
clk_round_rate(mhsic->phy_clk, LONG_MAX));
if (ret)
dev_err(mhsic->dev, "failed to set phy_clk rate\n");
mhsic->alt_core_clk = clk_get(&pdev->dev, "alt_core_clk");
if (IS_ERR(mhsic->alt_core_clk)) {
dev_err(mhsic->dev, "failed to get alt_core_clk\n");
ret = PTR_ERR(mhsic->alt_core_clk);
goto put_phy_clk;
}
ret = clk_set_rate(mhsic->alt_core_clk,
clk_round_rate(mhsic->alt_core_clk, LONG_MAX));
if (ret)
dev_err(mhsic->dev, "failed to set alt_core_clk rate\n");
mhsic->cal_clk = clk_get(&pdev->dev, "cal_clk");
if (IS_ERR(mhsic->cal_clk)) {
dev_err(mhsic->dev, "failed to get cal_clk\n");
ret = PTR_ERR(mhsic->cal_clk);
goto put_alt_core_clk;
}
ret = clk_set_rate(mhsic->cal_clk,
clk_round_rate(mhsic->cal_clk, LONG_MAX));
if (ret)
dev_err(mhsic->dev, "failed to set cal_clk rate\n");
clk_prepare_enable(mhsic->iface_clk);
clk_prepare_enable(mhsic->core_clk);
clk_prepare_enable(mhsic->phy_clk);
clk_prepare_enable(mhsic->alt_core_clk);
clk_prepare_enable(mhsic->cal_clk);
return 0;
put_clocks:
clk_disable_unprepare(mhsic->iface_clk);
clk_disable_unprepare(mhsic->core_clk);
clk_disable_unprepare(mhsic->phy_clk);
clk_disable_unprepare(mhsic->alt_core_clk);
clk_disable_unprepare(mhsic->cal_clk);
clk_put(mhsic->cal_clk);
put_alt_core_clk:
clk_put(mhsic->alt_core_clk);
put_phy_clk:
clk_put(mhsic->phy_clk);
put_core_clk:
clk_put(mhsic->core_clk);
put_iface_clk:
clk_put(mhsic->iface_clk);
error_enable_clocks:
return ret;
}
static int msm_hsic_reset(struct msm_hsic_per *mhsic)
{
int cnt = 0;
int ret;
ret = msm_hsic_phy_reset(mhsic);
if (ret) {
dev_err(mhsic->dev, "phy_reset failed\n");
return ret;
}
writel_relaxed(USBCMD_RESET, USB_USBCMD);
while (cnt < LINK_RESET_TIMEOUT_USEC) {
if (!(readl_relaxed(USB_USBCMD) & USBCMD_RESET))
break;
udelay(1);
cnt++;
}
if (cnt >= LINK_RESET_TIMEOUT_USEC)
return -ETIMEDOUT;
/* Reset PORTSC and select ULPI phy */
writel_relaxed(0x80000000, USB_PORTSC);
return 0;
}
static void msm_hsic_wakeup(void)
{
if (atomic_read(&the_mhsic->in_lpm))
pm_runtime_resume(the_mhsic->dev);
}
static void msm_hsic_start(void)
{
int ret;
/* programmable length of connect signaling (33.2ns) */
ret = ulpi_write(the_mhsic, 3, HSIC_DBG1_REG);
if (ret) {
pr_err("%s: Unable to program length of connect signaling\n",
__func__);
}
/*set periodic calibration interval to ~2.048sec in HSIC_IO_CAL_REG */
ret = ulpi_write(the_mhsic, 0xFF, HSIC_IO_CAL_PER_REG);
if (ret) {
pr_err("%s: Unable to set periodic calibration interval\n",
__func__);
}
/* Enable periodic IO calibration in HSIC_CFG register */
ret = ulpi_write(the_mhsic, 0xE9, HSIC_CFG_REG);
if (ret) {
pr_err("%s: Unable to enable periodic IO calibration\n",
__func__);
}
}
#ifdef CONFIG_PM_SLEEP
static int msm_hsic_suspend(struct msm_hsic_per *mhsic)
{
int cnt = 0, ret;
u32 val;
if (atomic_read(&mhsic->in_lpm)) {
dev_dbg(mhsic->dev, "%s called while in lpm\n", __func__);
return 0;
}
disable_irq(mhsic->irq);
/* Don't try to put PHY into suspend if it is not in CONNECT state. */
if (the_mhsic->connected) {
/*
* PHY may take some time or even fail to enter into low power
* mode (LPM). Hence poll for 500 msec and reset the PHY and
* link in failure case.
*/
val = readl_relaxed(USB_PORTSC) | PORTSC_PHCD;
writel_relaxed(val, USB_PORTSC);
while (cnt < PHY_SUSPEND_TIMEOUT_USEC) {
if (readl_relaxed(USB_PORTSC) & PORTSC_PHCD)
break;
udelay(1);
cnt++;
}
if (cnt >= PHY_SUSPEND_TIMEOUT_USEC) {
dev_err(mhsic->dev, "Unable to suspend PHY\n");
msm_hsic_reset(mhsic);
}
/*
* PHY has capability to generate interrupt asynchronously in
* low power mode (LPM). This interrupt is level triggered. So
* USB IRQ line must be disabled till async interrupt enable bit
* is cleared in USBCMD register. Assert STP (ULPI interface
* STOP signal) to block data communication from PHY.
*/
writel_relaxed(readl_relaxed(USB_USBCMD) | ASYNC_INTR_CTRL |
ULPI_STP_CTRL, USB_USBCMD);
/*
* Ensure that hardware is put in low power mode before
* clocks are turned OFF and VDD is allowed to minimize.
*/
mb();
} else {
dev_dbg(mhsic->dev, "%s SKIP PHY suspend\n", __func__);
}
if (!mhsic->connected) {
clk_disable_unprepare(mhsic->iface_clk);
clk_disable_unprepare(mhsic->core_clk);
}
clk_disable_unprepare(mhsic->phy_clk);
clk_disable_unprepare(mhsic->cal_clk);
clk_disable_unprepare(mhsic->alt_core_clk);
ret = regulator_set_voltage(mhsic->hsic_vdd, mhsic->vdd_val[NONE],
mhsic->vdd_val[MAX]);
if (ret < 0)
dev_err(mhsic->dev, "unable to set vdd voltage for VDD MIN\n");
if (mhsic->bus_perf_client) {
ret = msm_bus_scale_client_update_request(
mhsic->bus_perf_client, 0);
if (ret)
dev_err(mhsic->dev, "Failed to vote for bus scaling\n");
}
if (device_may_wakeup(mhsic->dev)) {
enable_irq_wake(mhsic->irq);
if (mhsic->async_irq_no)
enable_irq_wake(mhsic->async_irq_no);
}
atomic_set(&mhsic->in_lpm, 1);
/* If async irq present, enable while going into LPM */
if (mhsic->async_irq_no)
enable_irq(mhsic->async_irq_no);
enable_irq(mhsic->irq);
pm_relax(mhsic->dev);
dev_info(mhsic->dev, "HSIC-USB in low power mode\n");
return 0;
}
static int msm_hsic_resume(struct msm_hsic_per *mhsic)
{
int cnt = 0, ret;
unsigned temp;
if (!atomic_read(&mhsic->in_lpm)) {
dev_dbg(mhsic->dev, "%s called while not in lpm\n", __func__);
return 0;
}
pm_stay_awake(mhsic->dev);
if (mhsic->bus_perf_client) {
ret = msm_bus_scale_client_update_request(
mhsic->bus_perf_client, 1);
if (ret)
dev_err(mhsic->dev, "Failed to vote for bus scaling\n");
}
ret = regulator_set_voltage(mhsic->hsic_vdd, mhsic->vdd_val[MIN],
mhsic->vdd_val[MAX]);
if (ret < 0)
dev_err(mhsic->dev,
"unable to set nominal vddcx voltage (no VDD MIN)\n");
if (!mhsic->connected) {
clk_prepare_enable(mhsic->iface_clk);
clk_prepare_enable(mhsic->core_clk);
}
clk_prepare_enable(mhsic->phy_clk);
clk_prepare_enable(mhsic->cal_clk);
clk_prepare_enable(mhsic->alt_core_clk);
temp = readl_relaxed(USB_USBCMD);
temp &= ~ASYNC_INTR_CTRL;
temp &= ~ULPI_STP_CTRL;
writel_relaxed(temp, USB_USBCMD);
if (!(readl_relaxed(USB_PORTSC) & PORTSC_PHCD))
goto skip_phy_resume;
temp = readl_relaxed(USB_PORTSC) & ~PORTSC_PHCD;
writel_relaxed(temp, USB_PORTSC);
while (cnt < PHY_RESUME_TIMEOUT_USEC) {
if (!(readl_relaxed(USB_PORTSC) & PORTSC_PHCD) &&
(readl_relaxed(USB_ULPI_VIEWPORT) & ULPI_SYNC_STATE))
break;
udelay(1);
cnt++;
}
if (cnt >= PHY_RESUME_TIMEOUT_USEC) {
/*
* This is a fatal error. Reset the link and
* PHY to make hsic working.
*/
dev_err(mhsic->dev, "Unable to resume USB. Reset the hsic\n");
msm_hsic_reset(mhsic);
}
skip_phy_resume:
if (device_may_wakeup(mhsic->dev)) {
disable_irq_wake(mhsic->irq);
if (mhsic->async_irq_no)
disable_irq_wake(mhsic->async_irq_no);
}
atomic_set(&mhsic->in_lpm, 0);
if (mhsic->async_int) {
enable_irq(mhsic->async_int);
mhsic->async_int = 0;
}
/* If Async irq present, keep it disable once out of LPM */
if (mhsic->async_irq_no)
disable_irq(mhsic->async_irq_no);
dev_info(mhsic->dev, "HSIC-USB exited from low power mode\n");
return 0;
}
static int msm_hsic_pm_suspend(struct device *dev)
{
struct msm_hsic_per *mhsic = dev_get_drvdata(dev);
dev_dbg(dev, "MSM HSIC Peripheral PM suspend\n");
return msm_hsic_suspend(mhsic);
}
#ifdef CONFIG_PM_RUNTIME
static int msm_hsic_pm_resume(struct device *dev)
{
dev_dbg(dev, "MSM HSIC Peripheral PM resume\n");
/*
* Do not resume hardware as part of system resume,
* rather, wait for the ASYNC INT from the h/w
*/
return 0;
}
#else
static int msm_hsic_pm_resume(struct device *dev)
{
struct msm_hsic_per *mhsic = dev_get_drvdata(dev);
dev_dbg(dev, "MSM HSIC Peripheral PM resume\n");
return msm_hsic_resume(mhsic);
}
#endif
static void msm_hsic_pm_suspend_work(struct work_struct *w)
{
pm_runtime_put_noidle(the_mhsic->dev);
pm_runtime_suspend(the_mhsic->dev);
}
#endif /* CONFIG_PM_SLEEP */
#ifdef CONFIG_PM_RUNTIME
static int msm_hsic_runtime_idle(struct device *dev)
{
dev_dbg(dev, "MSM HSIC Peripheral runtime idle\n");
return 0;
}
static int msm_hsic_runtime_suspend(struct device *dev)
{
struct msm_hsic_per *mhsic = dev_get_drvdata(dev);
dev_dbg(dev, "MSM HSIC Peripheral runtime suspend\n");
return msm_hsic_suspend(mhsic);
}
static int msm_hsic_runtime_resume(struct device *dev)
{
struct msm_hsic_per *mhsic = dev_get_drvdata(dev);
dev_dbg(dev, "MSM HSIC Peripheral runtime resume\n");
pm_runtime_get_noresume(mhsic->dev);
return msm_hsic_resume(mhsic);
}
#endif
#ifdef CONFIG_PM
static const struct dev_pm_ops msm_hsic_dev_pm_ops = {
SET_SYSTEM_SLEEP_PM_OPS(msm_hsic_pm_suspend, msm_hsic_pm_resume)
SET_RUNTIME_PM_OPS(msm_hsic_runtime_suspend, msm_hsic_runtime_resume,
msm_hsic_runtime_idle)
};
#endif
/**
* Dummy match function - will be called only for HSIC msm
* device (msm_device_gadget_hsic_peripheral).
*/
static inline int __match(struct device *dev, void *data) { return 1; }
static void msm_hsic_connect_peripheral(struct device *msm_udc_dev)
{
struct device *dev;
struct usb_gadget *gadget;
dev = device_find_child(msm_udc_dev, NULL, __match);
gadget = dev_to_usb_gadget(dev);
usb_gadget_vbus_connect(gadget);
}
static void msm_hsic_disconnect_peripheral(struct device *msm_udc_dev)
{
struct device *dev;
struct usb_gadget *gadget;
dev = device_find_child(msm_udc_dev, NULL, __match);
gadget = dev_to_usb_gadget(dev);
usb_gadget_vbus_disconnect(gadget);
}
static irqreturn_t msm_udc_hsic_irq(int irq, void *data)
{
struct msm_hsic_per *mhsic = data;
if (atomic_read(&mhsic->in_lpm)) {
pr_debug("%s(): HSIC IRQ:%d in LPM\n", __func__, irq);
disable_irq_nosync(irq);
mhsic->async_int = irq;
pm_request_resume(mhsic->dev);
return IRQ_HANDLED;
}
return udc_irq();
}
/**
* store_hsic_init: initialize hsic interface to state passed
*/
static ssize_t store_hsic_init(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
struct msm_hsic_per *mhsic = the_mhsic;
int init_state, ret;
if (attr == NULL || buf == NULL) {
dev_err(dev, "[%s] EINVAL\n", __func__);
goto done;
}
if (kstrtoint(buf, 10, &init_state) < 0) {
dev_err(dev, "scan init_state failed\n");
goto done;
}
dev_dbg(dev, "Value for init_state = %d\n", init_state);
if (init_state == 1) {
pm_runtime_resume(mhsic->dev);
ret = msm_hsic_reset(mhsic);
if (ret)
pr_err("msm_hsic_reset failed\n");
msm_hsic_start();
usleep_range(10000, 10010);
msm_hsic_connect_peripheral(mhsic->dev);
the_mhsic->connected = true;
} else if (init_state == 0) {
msm_hsic_disconnect_peripheral(mhsic->dev);
mhsic->connected = false;
pm_runtime_put_noidle(mhsic->dev);
pm_runtime_suspend(mhsic->dev);
} else {
pr_err("Invalid value : no action taken\n");
}
done:
return count;
}
static DEVICE_ATTR(hsic_init, S_IWUSR, NULL, store_hsic_init);
static void ci13xxx_msm_hsic_notify_event(struct ci13xxx *udc, unsigned event)
{
struct device *dev = udc->gadget.dev.parent;
struct msm_hsic_per *mhsic = the_mhsic;
int temp;
switch (event) {
case CI13XXX_CONTROLLER_RESET_EVENT:
dev_info(dev, "CI13XXX_CONTROLLER_RESET_EVENT received\n");
writel_relaxed(0, USB_AHBBURST);
writel_relaxed(0x08, USB_AHBMODE);
/* workaround for rx buffer collision issue */
temp = readl_relaxed(USB_GENCONFIG);
temp &= ~GENCONFIG_TXFIFO_IDLE_FORCE_DISABLE;
writel_relaxed(temp, USB_GENCONFIG);
/*
* Ensure that register write for workaround is completed
* before configuring USBMODE.
*/
mb();
break;
case CI13XXX_CONTROLLER_CONNECT_EVENT:
dev_info(dev, "CI13XXX_CONTROLLER_CONNECT_EVENT received\n");
/* bring HSIC core out of LPM */
pm_runtime_get_sync(the_mhsic->dev);
msm_hsic_start();
the_mhsic->connected = true;
break;
case CI13XXX_CONTROLLER_SUSPEND_EVENT:
dev_info(dev, "CI13XXX_CONTROLLER_SUSPEND_EVENT received\n");
queue_work(mhsic->wq, &mhsic->suspend_w);
break;
case CI13XXX_CONTROLLER_REMOTE_WAKEUP_EVENT:
dev_info(dev,
"CI13XXX_CONTROLLER_REMOTE_WAKEUP_EVENT received\n");
msm_hsic_wakeup();
break;
case CI13XXX_CONTROLLER_UDC_STARTED_EVENT:
dev_info(dev,
"CI13XXX_CONTROLLER_UDC_STARTED_EVENT received\n");
mhsic->connected = false;
/* put HSIC core into LPM */
pm_runtime_put_noidle(the_mhsic->dev);
pm_runtime_suspend(the_mhsic->dev);
break;
default:
dev_dbg(dev, "unknown ci13xxx_udc event\n");
break;
}
}
static struct ci13xxx_udc_driver ci13xxx_msm_udc_hsic_driver = {
.name = "ci13xxx_msm_hsic",
.flags = CI13XXX_REGS_SHARED |
CI13XXX_PULLUP_ON_VBUS |
CI13XXX_DISABLE_STREAMING |
CI13XXX_ZERO_ITC,
.notify_event = ci13xxx_msm_hsic_notify_event,
};
struct ci13xxx_platform_data *msm_hsic_peripheral_dt_to_pdata(
struct platform_device *pdev)
{
struct device_node *node = pdev->dev.of_node;
struct ci13xxx_platform_data *pdata;
u32 core_id;
int ret;
pdata = devm_kzalloc(&pdev->dev, sizeof(*pdata), GFP_KERNEL);
if (!pdata)
return NULL;
ret = of_property_read_u32(node, "qcom,hsic-usb-core-id", &core_id);
if (ret)
dev_err(&pdev->dev, "hsic usb core id is not provided.\n");
else
pdata->usb_core_id = (u8)core_id;
return pdata;
}
static int msm_hsic_probe(struct platform_device *pdev)
{
struct resource *res;
struct msm_hsic_per *mhsic;
int ret = 0;
struct ci13xxx_platform_data *pdata;
dev_dbg(&pdev->dev, "msm-hsic probe\n");
if (pdev->dev.of_node) {
dev_dbg(&pdev->dev, "device tree enabled\n");
pdev->dev.platform_data = msm_hsic_peripheral_dt_to_pdata(pdev);
}
if (!pdev->dev.platform_data) {
dev_err(&pdev->dev, "No platform data given. Bailing out\n");
return -ENODEV;
}
if (!pdev->dev.dma_mask)
pdev->dev.dma_mask = &msm_hsic_peripheral_dma_mask;
if (!pdev->dev.coherent_dma_mask)
pdev->dev.coherent_dma_mask = DMA_BIT_MASK(32);
pdata = pdev->dev.platform_data;
mhsic = kzalloc(sizeof(struct msm_hsic_per), GFP_KERNEL);
if (!mhsic)
return -ENOMEM;
the_mhsic = mhsic;
platform_set_drvdata(pdev, mhsic);
mhsic->dev = &pdev->dev;
mhsic->pdata =
(struct msm_hsic_peripheral_platform_data *)pdata->prv_data;
mhsic->irq = platform_get_irq(pdev, 0);
if (mhsic->irq < 0) {
dev_err(&pdev->dev, "Unable to get IRQ resource\n");
ret = mhsic->irq;
goto error;
}
mhsic->async_irq_no = platform_get_irq(pdev, 1);
if (mhsic->async_irq_no < 0) {
dev_err(&pdev->dev, "Unable to get async IRQ resource\n");
ret = mhsic->async_irq_no;
goto error;
}
mhsic->wq = alloc_workqueue("mhsic_wq", WQ_UNBOUND | WQ_MEM_RECLAIM, 1);
if (!mhsic->wq) {
pr_err("%s: Unable to create workqueue mhsic wq\n",
__func__);
ret = -ENOMEM;
goto error;
}
INIT_WORK(&mhsic->suspend_w, msm_hsic_pm_suspend_work);
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
if (!res) {
dev_err(&pdev->dev, "Unable to get memory resource\n");
ret = -ENODEV;
goto error;
}
mhsic->regs = ioremap(res->start, resource_size(res));
if (!mhsic->regs) {
dev_err(&pdev->dev, "ioremap failed\n");
ret = -ENOMEM;
goto error;
}
dev_info(&pdev->dev, "HSIC Peripheral regs = %p\n", mhsic->regs);
ret = msm_hsic_config_gdsc(pdev, mhsic, true);
if (ret) {
dev_err(&pdev->dev, "unable to configure hsic gdsc\n");
goto unmap;
}
ret = msm_hsic_enable_clocks(pdev, mhsic, true);
if (ret) {
dev_err(&pdev->dev, "msm_hsic_enable_clocks failed\n");
ret = -ENODEV;
goto unconfig_gdsc;
}
ret = msm_hsic_init_vdd(mhsic, 1);
if (ret) {
dev_err(&pdev->dev, "unable to initialize VDDCX\n");
ret = -ENODEV;
goto deinit_clocks;
}
ret = msm_hsic_reset(mhsic);
if (ret) {
dev_err(&pdev->dev, "msm_hsic_reset failed\n");
ret = -ENODEV;
goto deinit_vddcx;
}
mhsic->bus_scale_table = msm_bus_cl_get_pdata(pdev);
if (!mhsic->bus_scale_table) {
dev_err(&pdev->dev, "bus scaling is disabled\n");
} else {
mhsic->bus_perf_client =
msm_bus_scale_register_client(mhsic->bus_scale_table);
ret = msm_bus_scale_client_update_request(
mhsic->bus_perf_client, 1);
dev_dbg(&pdev->dev, "bus scaling is enabled\n");
if (ret)
dev_err(mhsic->dev, "Failed to vote for bus scaling\n");
}
ret = udc_probe(&ci13xxx_msm_udc_hsic_driver, &pdev->dev, mhsic->regs);
if (ret < 0) {
dev_err(&pdev->dev, "udc_probe failed\n");
ret = -ENODEV;
goto deinit_vddcx;
}
ret = device_create_file(mhsic->dev, &dev_attr_hsic_init);
if (ret)
goto udc_remove;
msm_hsic_connect_peripheral(&pdev->dev);
device_init_wakeup(&pdev->dev, 1);
pm_stay_awake(mhsic->dev);
ret = request_irq(mhsic->irq, msm_udc_hsic_irq,
IRQF_SHARED, pdev->name, mhsic);
if (ret < 0) {
dev_err(&pdev->dev, "request_irq failed\n");
ret = -ENODEV;
goto remove_sysfs;
}
ret = request_irq(mhsic->async_irq_no, msm_udc_hsic_irq,
IRQF_TRIGGER_HIGH, pdev->name, mhsic);
if (ret < 0) {
dev_err(&pdev->dev, "request_irq failed\n");
ret = -ENODEV;
goto free_core_irq;
}
disable_irq(mhsic->async_irq_no);
pm_runtime_set_active(&pdev->dev);
pm_runtime_enable(&pdev->dev);
pm_runtime_get_sync(&pdev->dev);
return 0;
free_core_irq:
free_irq(mhsic->irq, mhsic);
remove_sysfs:
device_remove_file(mhsic->dev, &dev_attr_hsic_init);
udc_remove:
udc_remove();
if (mhsic->bus_perf_client)
msm_bus_scale_unregister_client(mhsic->bus_perf_client);
deinit_vddcx:
msm_hsic_init_vdd(mhsic, 0);
deinit_clocks:
msm_hsic_enable_clocks(pdev, mhsic, 0);
unconfig_gdsc:
msm_hsic_config_gdsc(pdev, mhsic, false);
unmap:
iounmap(mhsic->regs);
error:
if (mhsic->wq)
destroy_workqueue(mhsic->wq);
kfree(mhsic);
return ret;
}
static int hsic_msm_remove(struct platform_device *pdev)
{
struct msm_hsic_per *mhsic = platform_get_drvdata(pdev);
device_init_wakeup(&pdev->dev, 0);
pm_runtime_disable(&pdev->dev);
pm_runtime_set_suspended(&pdev->dev);
free_irq(mhsic->irq, mhsic);
free_irq(mhsic->async_irq_no, mhsic);
msm_hsic_init_vdd(mhsic, 0);
msm_hsic_enable_clocks(pdev, mhsic, 0);
device_wakeup_disable(mhsic->dev);
destroy_workqueue(mhsic->wq);
if (mhsic->bus_perf_client)
msm_bus_scale_unregister_client(mhsic->bus_perf_client);
device_remove_file(mhsic->dev, &dev_attr_hsic_init);
udc_remove();
iounmap(mhsic->regs);
kfree(mhsic);
return 0;
}
static const struct of_device_id hsic_peripheral_dt_match[] = {
{ .compatible = "qcom,hsic-peripheral",
},
{}
};
static struct platform_driver msm_hsic_peripheral_driver = {
.probe = msm_hsic_probe,
.remove = hsic_msm_remove,
.driver = {
.name = "msm_hsic_peripheral",
#ifdef CONFIG_PM
.pm = &msm_hsic_dev_pm_ops,
#endif
.of_match_table = hsic_peripheral_dt_match,
},
};
static int __init msm_hsic_peripheral_init(void)
{
return platform_driver_register(&msm_hsic_peripheral_driver);
}
static void __exit msm_hsic_peripheral_exit(void)
{
platform_driver_unregister(&msm_hsic_peripheral_driver);
}
module_init(msm_hsic_peripheral_init);
module_exit(msm_hsic_peripheral_exit);
MODULE_LICENSE("GPL v2");