193 lines
5.2 KiB
C
193 lines
5.2 KiB
C
/*
|
|
* linux/arch/cris/kernel/process.c
|
|
*
|
|
* Copyright (C) 1995 Linus Torvalds
|
|
* Copyright (C) 2000-2002 Axis Communications AB
|
|
*
|
|
* Authors: Bjorn Wesen (bjornw@axis.com)
|
|
* Mikael Starvik (starvik@axis.com)
|
|
*
|
|
* This file handles the architecture-dependent parts of process handling..
|
|
*/
|
|
|
|
#include <linux/sched.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/err.h>
|
|
#include <linux/fs.h>
|
|
#include <arch/svinto.h>
|
|
#include <linux/init.h>
|
|
#include <arch/system.h>
|
|
#include <linux/ptrace.h>
|
|
|
|
#ifdef CONFIG_ETRAX_GPIO
|
|
void etrax_gpio_wake_up_check(void); /* drivers/gpio.c */
|
|
#endif
|
|
|
|
/*
|
|
* We use this if we don't have any better
|
|
* idle routine..
|
|
*/
|
|
void default_idle(void)
|
|
{
|
|
#ifdef CONFIG_ETRAX_GPIO
|
|
etrax_gpio_wake_up_check();
|
|
#endif
|
|
local_irq_enable();
|
|
}
|
|
|
|
/*
|
|
* Free current thread data structures etc..
|
|
*/
|
|
|
|
void exit_thread(void)
|
|
{
|
|
/* Nothing needs to be done. */
|
|
}
|
|
|
|
/* if the watchdog is enabled, we can simply disable interrupts and go
|
|
* into an eternal loop, and the watchdog will reset the CPU after 0.1s
|
|
* if on the other hand the watchdog wasn't enabled, we just enable it and wait
|
|
*/
|
|
|
|
void hard_reset_now (void)
|
|
{
|
|
/*
|
|
* Don't declare this variable elsewhere. We don't want any other
|
|
* code to know about it than the watchdog handler in entry.S and
|
|
* this code, implementing hard reset through the watchdog.
|
|
*/
|
|
#if defined(CONFIG_ETRAX_WATCHDOG)
|
|
extern int cause_of_death;
|
|
#endif
|
|
|
|
printk("*** HARD RESET ***\n");
|
|
local_irq_disable();
|
|
|
|
#if defined(CONFIG_ETRAX_WATCHDOG)
|
|
cause_of_death = 0xbedead;
|
|
#else
|
|
/* Since we dont plan to keep on resetting the watchdog,
|
|
the key can be arbitrary hence three */
|
|
*R_WATCHDOG = IO_FIELD(R_WATCHDOG, key, 3) |
|
|
IO_STATE(R_WATCHDOG, enable, start);
|
|
#endif
|
|
|
|
while(1) /* waiting for RETRIBUTION! */ ;
|
|
}
|
|
|
|
/*
|
|
* Return saved PC of a blocked thread.
|
|
*/
|
|
unsigned long thread_saved_pc(struct task_struct *t)
|
|
{
|
|
return task_pt_regs(t)->irp;
|
|
}
|
|
|
|
/* setup the child's kernel stack with a pt_regs and switch_stack on it.
|
|
* it will be un-nested during _resume and _ret_from_sys_call when the
|
|
* new thread is scheduled.
|
|
*
|
|
* also setup the thread switching structure which is used to keep
|
|
* thread-specific data during _resumes.
|
|
*
|
|
*/
|
|
asmlinkage void ret_from_fork(void);
|
|
asmlinkage void ret_from_kernel_thread(void);
|
|
|
|
int copy_thread(unsigned long clone_flags, unsigned long usp,
|
|
unsigned long arg, struct task_struct *p)
|
|
{
|
|
struct pt_regs *childregs = task_pt_regs(p);
|
|
struct switch_stack *swstack = ((struct switch_stack *)childregs) - 1;
|
|
|
|
/* put the pt_regs structure at the end of the new kernel stack page and fix it up
|
|
* remember that the task_struct doubles as the kernel stack for the task
|
|
*/
|
|
|
|
if (unlikely(p->flags & PF_KTHREAD)) {
|
|
memset(swstack, 0,
|
|
sizeof(struct switch_stack) + sizeof(struct pt_regs));
|
|
swstack->r1 = usp;
|
|
swstack->r2 = arg;
|
|
childregs->dccr = 1 << I_DCCR_BITNR;
|
|
swstack->return_ip = (unsigned long) ret_from_kernel_thread;
|
|
p->thread.ksp = (unsigned long) swstack;
|
|
p->thread.usp = 0;
|
|
return 0;
|
|
}
|
|
*childregs = *current_pt_regs(); /* struct copy of pt_regs */
|
|
|
|
childregs->r10 = 0; /* child returns 0 after a fork/clone */
|
|
|
|
/* put the switch stack right below the pt_regs */
|
|
|
|
swstack->r9 = 0; /* parameter to ret_from_sys_call, 0 == dont restart the syscall */
|
|
|
|
/* we want to return into ret_from_sys_call after the _resume */
|
|
|
|
swstack->return_ip = (unsigned long) ret_from_fork; /* Will call ret_from_sys_call */
|
|
|
|
/* fix the user-mode stackpointer */
|
|
|
|
p->thread.usp = usp ?: rdusp();
|
|
|
|
/* and the kernel-mode one */
|
|
|
|
p->thread.ksp = (unsigned long) swstack;
|
|
|
|
#ifdef DEBUG
|
|
printk("copy_thread: new regs at 0x%p, as shown below:\n", childregs);
|
|
show_registers(childregs);
|
|
#endif
|
|
|
|
return 0;
|
|
}
|
|
|
|
unsigned long get_wchan(struct task_struct *p)
|
|
{
|
|
#if 0
|
|
/* YURGH. TODO. */
|
|
|
|
unsigned long ebp, esp, eip;
|
|
unsigned long stack_page;
|
|
int count = 0;
|
|
if (!p || p == current || p->state == TASK_RUNNING)
|
|
return 0;
|
|
stack_page = (unsigned long)p;
|
|
esp = p->thread.esp;
|
|
if (!stack_page || esp < stack_page || esp > 8188+stack_page)
|
|
return 0;
|
|
/* include/asm-i386/system.h:switch_to() pushes ebp last. */
|
|
ebp = *(unsigned long *) esp;
|
|
do {
|
|
if (ebp < stack_page || ebp > 8184+stack_page)
|
|
return 0;
|
|
eip = *(unsigned long *) (ebp+4);
|
|
if (!in_sched_functions(eip))
|
|
return eip;
|
|
ebp = *(unsigned long *) ebp;
|
|
} while (count++ < 16);
|
|
#endif
|
|
return 0;
|
|
}
|
|
#undef last_sched
|
|
#undef first_sched
|
|
|
|
void show_regs(struct pt_regs * regs)
|
|
{
|
|
unsigned long usp = rdusp();
|
|
|
|
show_regs_print_info(KERN_DEFAULT);
|
|
|
|
printk("IRP: %08lx SRP: %08lx DCCR: %08lx USP: %08lx MOF: %08lx\n",
|
|
regs->irp, regs->srp, regs->dccr, usp, regs->mof );
|
|
printk(" r0: %08lx r1: %08lx r2: %08lx r3: %08lx\n",
|
|
regs->r0, regs->r1, regs->r2, regs->r3);
|
|
printk(" r4: %08lx r5: %08lx r6: %08lx r7: %08lx\n",
|
|
regs->r4, regs->r5, regs->r6, regs->r7);
|
|
printk(" r8: %08lx r9: %08lx r10: %08lx r11: %08lx\n",
|
|
regs->r8, regs->r9, regs->r10, regs->r11);
|
|
printk("r12: %08lx r13: %08lx oR10: %08lx\n",
|
|
regs->r12, regs->r13, regs->orig_r10);
|
|
}
|
|
|