android_kernel_samsung_hero.../drivers/soc/qcom/cpu_pwr_ctl.c
2016-08-17 16:41:52 +08:00

635 lines
13 KiB
C

/* Copyright (c) 2014-2015, The Linux Foundation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 and
* only version 2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
/* MSM CPU Subsystem power control operations
*/
#include <linux/bitops.h>
#include <linux/cpu.h>
#include <linux/cpumask.h>
#include <linux/delay.h>
#include <linux/init.h>
#include <linux/io.h>
#include <linux/of.h>
#include <linux/of_address.h>
#include <linux/smp.h>
#include <soc/qcom/cpu_pwr_ctl.h>
#include <soc/qcom/spm.h>
#include <soc/qcom/scm.h>
#include <asm/barrier.h>
#include <asm/cacheflush.h>
#include <asm/smp_plat.h>
/* CPU power domain register offsets */
#define CPU_PWR_CTL 0x4
#define CPU_PWR_GATE_CTL 0x14
/* L2 power domain register offsets */
#define L2_PWR_CTL_OVERRIDE 0xc
#define L2_PWR_CTL 0x14
#define L2_PWR_STATUS 0x18
#define L2_CORE_CBCR 0x58
/*
* struct msm_l2ccc_of_info: represents of data for l2 cache clock controller.
* @compat: compat string for l2 cache clock controller
* @l2_pon: l2 cache power on routine
*/
struct msm_l2ccc_of_info {
const char *compat;
int (*l2_power_on) (struct device_node *dn, u32 l2_mask, int cpu);
u32 l2_power_on_mask;
};
static int power_on_l2_msmtitanium(struct device_node *l2ccc_node, u32 pon_mask,
int cpu)
{
u32 pon_status;
void __iomem *l2_base;
l2_base = of_iomap(l2ccc_node, 0);
if (!l2_base)
return -ENOMEM;
/* Skip power-on sequence if l2 cache is already powered up */
pon_status = (__raw_readl(l2_base + L2_PWR_STATUS) & pon_mask)
== pon_mask;
if (pon_status) {
iounmap(l2_base);
return 0;
}
/* Close Few of the head-switches for L2SCU logic */
writel_relaxed(0x10F700, l2_base + L2_PWR_CTL);
mb();
udelay(2);
/* Close Rest of the head-switches for L2SCU logic */
writel_relaxed(0x410F700, l2_base + L2_PWR_CTL);
mb();
udelay(2);
/* Assert PRESETDBG */
writel_relaxed(0x400000, l2_base + L2_PWR_CTL_OVERRIDE);
mb();
udelay(2);
/* De-assert L2/SCU memory Clamp */
writel_relaxed(0x4103700, l2_base + L2_PWR_CTL);
mb();
/* Assert L2 memory slp_nret_n */
writel_relaxed(0x4103703, l2_base + L2_PWR_CTL);
mb();
udelay(4);
/* Assert L2 memory slp_ret_n */
writel_relaxed(0x4101703, l2_base + L2_PWR_CTL);
mb();
udelay(4);
/* Assert L2 memory wl_en_clk */
writel_relaxed(0x4101783, l2_base + L2_PWR_CTL);
mb();
udelay(1);
/* De-assert L2 memory wl_en_clk */
writel_relaxed(0x4101703, l2_base + L2_PWR_CTL);
mb();
/* Enable clocks via SW_CLK_EN */
writel_relaxed(0x01, l2_base + L2_CORE_CBCR);
mb();
/* De-assert L2/SCU logic clamp */
writel_relaxed(0x4101603, l2_base + L2_PWR_CTL);
mb();
udelay(2);
/* De-assert PRESETDBG */
writel_relaxed(0x0, l2_base + L2_PWR_CTL_OVERRIDE);
mb();
/* De-assert L2/SCU Logic reset */
writel_relaxed(0x4100203, l2_base + L2_PWR_CTL);
mb();
udelay(54);
/* Turn on the PMIC_APC */
writel_relaxed(0x14100203, l2_base + L2_PWR_CTL);
mb();
/* Set H/W clock control for the cluster CBC block */
writel_relaxed(0x03, l2_base + L2_CORE_CBCR);
mb();
iounmap(l2_base);
return 0;
}
static int power_on_l2_msm8916(struct device_node *l2ccc_node, u32 pon_mask,
int cpu)
{
u32 pon_status;
void __iomem *l2_base;
l2_base = of_iomap(l2ccc_node, 0);
if (!l2_base)
return -ENOMEM;
/* Skip power-on sequence if l2 cache is already powered up*/
pon_status = (__raw_readl(l2_base + L2_PWR_STATUS) & pon_mask)
== pon_mask;
if (pon_status) {
iounmap(l2_base);
return 0;
}
/* Close L2/SCU Logic GDHS and power up the cache */
writel_relaxed(0x10D700, l2_base + L2_PWR_CTL);
/* Assert PRESETDBGn */
writel_relaxed(0x400000, l2_base + L2_PWR_CTL_OVERRIDE);
mb();
udelay(2);
/* De-assert L2/SCU memory Clamp */
writel_relaxed(0x101700, l2_base + L2_PWR_CTL);
/* Wakeup L2/SCU RAMs by deasserting sleep signals */
writel_relaxed(0x101703, l2_base + L2_PWR_CTL);
mb();
udelay(2);
/* Enable clocks via SW_CLK_EN */
writel_relaxed(0x01, l2_base + L2_CORE_CBCR);
/* De-assert L2/SCU logic clamp */
writel_relaxed(0x101603, l2_base + L2_PWR_CTL);
mb();
udelay(2);
/* De-assert PRESSETDBg */
writel_relaxed(0x0, l2_base + L2_PWR_CTL_OVERRIDE);
/* De-assert L2/SCU Logic reset */
writel_relaxed(0x100203, l2_base + L2_PWR_CTL);
mb();
udelay(54);
/* Turn on the PMIC_APC */
writel_relaxed(0x10100203, l2_base + L2_PWR_CTL);
/* Set H/W clock control for the cpu CBC block */
writel_relaxed(0x03, l2_base + L2_CORE_CBCR);
mb();
iounmap(l2_base);
return 0;
}
static int power_on_l2_msmthorium(struct device_node *l2ccc_node, u32 pon_mask,
int cpu)
{
u32 pon_status;
void __iomem *l2_base;
l2_base = of_iomap(l2ccc_node, 0);
if (!l2_base)
return -ENOMEM;
/* Skip power-on sequence if l2 cache is already powered up */
pon_status = (__raw_readl(l2_base + L2_PWR_STATUS) & pon_mask)
== pon_mask;
if (pon_status) {
iounmap(l2_base);
return 0;
}
/* Close GDHS of L2SCU logic */
writel_relaxed(0x0010D700, l2_base + L2_PWR_CTL);
mb();
/* Assert PRESETDBG */
writel_relaxed(0x00400000, l2_base + L2_PWR_CTL_OVERRIDE);
mb();
udelay(2);
/* De-assert L2/SCU memory clamp */
writel_relaxed(0x00101700, l2_base + L2_PWR_CTL);
mb();
/* Wakeup L2/SCU RAMs - deassert slp signals */
writel_relaxed(0x00101703, l2_base + L2_PWR_CTL);
mb();
udelay(2);
/* Enable clocks using SW CLK EN */
writel_relaxed(0x00000001, l2_base + L2_CORE_CBCR);
mb();
/* De-assert L2/SCU logic Clamp */
writel_relaxed(0x00101603, l2_base + L2_PWR_CTL);
mb();
udelay(2);
/* De-assert PRESETDBG */
writel_relaxed(0x00000000, l2_base + L2_PWR_CTL_OVERRIDE);
mb();
/* De-assert L2/SCU logic reset */
writel_relaxed(0x00100203, l2_base + L2_PWR_CTL);
mb();
udelay(54);
/* Set PMIC_APC_ON */
writel_relaxed(0x10100203, l2_base + L2_PWR_CTL);
mb();
/* Set H/W clock control for the cluster CBC block */
writel_relaxed(0x00000003, l2_base + L2_CORE_CBCR);
mb();
iounmap(l2_base);
return 0;
}
static const struct msm_l2ccc_of_info l2ccc_info[] = {
{
.compat = "qcom,8916-l2ccc",
.l2_power_on = power_on_l2_msm8916,
.l2_power_on_mask = BIT(9),
},
{
.compat = "qcom,titanium-l2ccc",
.l2_power_on = power_on_l2_msmtitanium,
.l2_power_on_mask = BIT(9) | BIT(28),
},
{
.compat = "qcom,thorium-l2ccc",
.l2_power_on = power_on_l2_msmthorium,
.l2_power_on_mask = BIT(9) | BIT(28),
},
};
static int power_on_l2_cache(struct device_node *l2ccc_node, int cpu)
{
int ret, i;
const char *compat;
ret = of_property_read_string(l2ccc_node, "compatible", &compat);
if (ret)
return ret;
for (i = 0; i < ARRAY_SIZE(l2ccc_info); i++) {
const struct msm_l2ccc_of_info *ptr = &l2ccc_info[i];
if (!of_compat_cmp(ptr->compat, compat, strlen(compat)))
return ptr->l2_power_on(l2ccc_node,
ptr->l2_power_on_mask, cpu);
}
pr_err("Compat string not found for L2CCC node\n");
return -EIO;
}
static inline void msmtitanium_unclamp_cpu(void __iomem *reg)
{
/* Deassert CPU in sleep state */
writel_relaxed(0x00000033, reg + CPU_PWR_CTL);
mb();
/* Program skew between en_few and en_rest to 16 XO clk cycles,
close Core logic head switch*/
writel_relaxed(0x10000001, reg + CPU_PWR_GATE_CTL);
mb();
udelay(2);
/* De-assert coremem clamp */
writel_relaxed(0x00000031, reg + CPU_PWR_CTL);
mb();
/* De-assert Core memory slp_nret_n */
writel_relaxed(0x00000039, reg + CPU_PWR_CTL);
mb();
udelay(2);
/* De-assert Core memory slp_ret_n */
writel_relaxed(0x00000239, reg + CPU_PWR_CTL);
mb();
udelay(2);
/* Assert WL_EN_CLK */
writel_relaxed(0x00004239, reg + CPU_PWR_CTL);
mb();
udelay(2);
/* De-assert WL_EN_CLK */
writel_relaxed(0x00000239, reg + CPU_PWR_CTL);
mb();
/* Deassert Clamp */
writel_relaxed(0x00000238, reg + CPU_PWR_CTL);
mb();
udelay(2);
/* Deassert Core-n reset */
writel_relaxed(0x00000208, reg + CPU_PWR_CTL);
mb();
/* Assert PWRDUP; */
writel_relaxed(0x00000288, reg + CPU_PWR_CTL);
mb();
}
int msmtitanium_unclamp_secondary_arm_cpu(unsigned int cpu)
{
int ret = 0;
struct device_node *cpu_node, *acc_node, *l2_node, *l2ccc_node;
void __iomem *reg;
cpu_node = of_get_cpu_node(cpu, NULL);
if (!cpu_node)
return -ENODEV;
acc_node = of_parse_phandle(cpu_node, "qcom,acc", 0);
if (!acc_node) {
ret = -ENODEV;
goto out_acc;
}
l2_node = of_parse_phandle(cpu_node, "next-level-cache", 0);
if (!l2_node) {
ret = -ENODEV;
goto out_l2;
}
l2ccc_node = of_parse_phandle(l2_node, "power-domain", 0);
if (!l2ccc_node) {
ret = -ENODEV;
goto out_l2ccc;
}
/*
* Ensure L2-cache of the CPU is powered on before
* unclamping cpu power rails.
*/
ret = power_on_l2_cache(l2ccc_node, cpu);
if (ret) {
pr_err("L2 cache power up failed for CPU%d\n", cpu);
goto out_acc_reg;
}
reg = of_iomap(acc_node, 0);
if (!reg) {
ret = -ENOMEM;
goto out_acc_reg;
}
msmtitanium_unclamp_cpu(reg);
/* Secondary CPU-N is now alive */
iounmap(reg);
out_acc_reg:
of_node_put(l2ccc_node);
out_l2ccc:
of_node_put(l2_node);
out_l2:
of_node_put(acc_node);
out_acc:
of_node_put(cpu_node);
return ret;
}
static inline void msmthorium_unclamp_cpu(void __iomem *reg)
{
/* Assert reset */
writel_relaxed(0x00000033, reg + CPU_PWR_CTL);
mb();
/* Program skew between en_few and en_rest to 16 XO clk cycles,
close Core logic head switch*/
writel_relaxed(0x10000001, reg + CPU_PWR_GATE_CTL);
mb();
udelay(2);
/* De-assert coremem clamp */
writel_relaxed(0x00000031, reg + CPU_PWR_CTL);
mb();
/* Close coremem array gdhs */
writel_relaxed(0x00000039, reg + CPU_PWR_CTL);
mb();
udelay(2);
/* De-assert clamp */
writel_relaxed(0x00020038, reg + CPU_PWR_CTL);
mb();
udelay(2);
/* De-assert core-n reset */
writel_relaxed(0x00020008, reg + CPU_PWR_CTL);
mb();
/* Assert PWRDUP; */
writel_relaxed(0x00020088, reg + CPU_PWR_CTL);
mb();
}
int msmthorium_unclamp_secondary_arm_cpu(unsigned int cpu)
{
int ret = 0;
struct device_node *cpu_node, *acc_node, *l2_node, *l2ccc_node;
void __iomem *reg;
cpu_node = of_get_cpu_node(cpu, NULL);
if (!cpu_node)
return -ENODEV;
acc_node = of_parse_phandle(cpu_node, "qcom,acc", 0);
if (!acc_node) {
ret = -ENODEV;
goto out_acc;
}
l2_node = of_parse_phandle(cpu_node, "next-level-cache", 0);
if (!l2_node) {
ret = -ENODEV;
goto out_l2;
}
l2ccc_node = of_parse_phandle(l2_node, "power-domain", 0);
if (!l2ccc_node) {
ret = -ENODEV;
goto out_l2ccc;
}
/*
* Ensure L2-cache of the CPU is powered on before
* unclamping cpu power rails.
*/
ret = power_on_l2_cache(l2ccc_node, cpu);
if (ret) {
pr_err("L2 cache power up failed for CPU%d\n", cpu);
goto out_acc_reg;
}
reg = of_iomap(acc_node, 0);
if (!reg) {
ret = -ENOMEM;
goto out_acc_reg;
}
msmthorium_unclamp_cpu(reg);
/* Secondary CPU-N is now alive */
iounmap(reg);
out_acc_reg:
of_node_put(l2ccc_node);
out_l2ccc:
of_node_put(l2_node);
out_l2:
of_node_put(acc_node);
out_acc:
of_node_put(cpu_node);
return ret;
}
int msm_unclamp_secondary_arm_cpu(unsigned int cpu)
{
int ret = 0;
struct device_node *cpu_node, *acc_node, *l2_node, *l2ccc_node;
void __iomem *reg;
cpu_node = of_get_cpu_node(cpu, NULL);
if (!cpu_node)
return -ENODEV;
acc_node = of_parse_phandle(cpu_node, "qcom,acc", 0);
if (!acc_node) {
ret = -ENODEV;
goto out_acc;
}
l2_node = of_parse_phandle(cpu_node, "next-level-cache", 0);
if (!l2_node) {
ret = -ENODEV;
goto out_l2;
}
l2ccc_node = of_parse_phandle(l2_node, "power-domain", 0);
if (!l2ccc_node) {
ret = -ENODEV;
goto out_l2;
}
/* Ensure L2-cache of the CPU is powered on before
* unclamping cpu power rails.
*/
ret = power_on_l2_cache(l2ccc_node, cpu);
if (ret) {
pr_err("L2 cache power up failed for CPU%d\n", cpu);
goto out_l2ccc;
}
reg = of_iomap(acc_node, 0);
if (!reg) {
ret = -ENOMEM;
goto out_acc_reg;
}
/* Assert Reset on cpu-n */
writel_relaxed(0x00000033, reg + CPU_PWR_CTL);
mb();
/*Program skew to 16 X0 clock cycles*/
writel_relaxed(0x10000001, reg + CPU_PWR_GATE_CTL);
mb();
udelay(2);
/* De-assert coremem clamp */
writel_relaxed(0x00000031, reg + CPU_PWR_CTL);
mb();
/* Close coremem array gdhs */
writel_relaxed(0x00000039, reg + CPU_PWR_CTL);
mb();
udelay(2);
/* De-assert cpu-n clamp */
writel_relaxed(0x00020038, reg + CPU_PWR_CTL);
mb();
udelay(2);
/* De-assert cpu-n reset */
writel_relaxed(0x00020008, reg + CPU_PWR_CTL);
mb();
/* Assert PWRDUP signal on core-n */
writel_relaxed(0x00020088, reg + CPU_PWR_CTL);
mb();
/* Secondary CPU-N is now alive */
iounmap(reg);
out_acc_reg:
of_node_put(l2ccc_node);
out_l2ccc:
of_node_put(l2_node);
out_l2:
of_node_put(acc_node);
out_acc:
of_node_put(cpu_node);
return ret;
}
int msm_unclamp_secondary_arm_cpu_sim(unsigned int cpu)
{
int ret = 0;
struct device_node *cpu_node, *acc_node;
void __iomem *reg;
cpu_node = of_get_cpu_node(cpu, NULL);
if (!cpu_node) {
ret = -ENODEV;
goto out_acc;
}
acc_node = of_parse_phandle(cpu_node, "qcom,acc", 0);
if (!acc_node) {
ret = -ENODEV;
goto out_acc;
}
reg = of_iomap(acc_node, 0);
if (!reg) {
ret = -ENOMEM;
goto out_acc;
}
writel_relaxed(0x800, reg + CPU_PWR_CTL);
writel_relaxed(0x3FFF, reg + CPU_PWR_GATE_CTL);
mb();
iounmap(reg);
out_acc:
of_node_put(cpu_node);
return ret;
}