android_kernel_samsung_hero.../drivers/usb/gadget/function/f_uac1.c
2016-08-17 16:41:52 +08:00

1641 lines
46 KiB
C

/*
* f_audio.c -- USB Audio class function driver
*
* Copyright (c) 2012-2015, The Linux Foundation. All rights reserved.
* Copyright (C) 2008 Bryan Wu <cooloney@kernel.org>
* Copyright (C) 2008 Analog Devices, Inc
*
* Enter bugs at http://blackfin.uclinux.org/
*
* Licensed under the GPL-2 or later.
*/
#ifdef pr_fmt
#undef pr_fmt
#endif
#define pr_fmt(fmt) "%s: " fmt, __func__
#include <linux/slab.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/device.h>
#include <linux/atomic.h>
#include "u_uac1.h"
static int generic_set_cmd(struct usb_audio_control *con, u8 cmd, int value);
static int generic_get_cmd(struct usb_audio_control *con, u8 cmd);
#define SPEAKER_INPUT_TERMINAL_ID 3
#define SPEAKER_OUTPUT_TERMINAL_ID 4
#define MICROPHONE_INPUT_TERMINAL_ID 1
#define MICROPHONE_OUTPUT_TERMINAL_ID 2
/*
* DESCRIPTORS ... most are static, but strings and full
* configuration descriptors are built on demand.
*/
/*
* We have two interfaces- AudioControl and AudioStreaming
*/
#define F_AUDIO_AC_INTERFACE 0
#define F_AUDIO_AS_INTERFACE 1
#define F_AUDIO_NUM_INTERFACES 2
/* B.3.1 Standard AC Interface Descriptor */
static struct usb_interface_descriptor uac1_interface_desc = {
.bLength = USB_DT_INTERFACE_SIZE,
.bDescriptorType = USB_DT_INTERFACE,
.bNumEndpoints = 0,
.bInterfaceClass = USB_CLASS_AUDIO,
.bInterfaceSubClass = USB_SUBCLASS_AUDIOCONTROL,
};
DECLARE_UAC_AC_HEADER_DESCRIPTOR(2);
#define UAC_DT_AC_HEADER_LENGTH UAC_DT_AC_HEADER_SIZE(F_AUDIO_NUM_INTERFACES)
#define UAC_DT_TOTAL_LENGTH ( \
UAC_DT_AC_HEADER_LENGTH + \
UAC_DT_INPUT_TERMINAL_SIZE + \
UAC_DT_OUTPUT_TERMINAL_SIZE + \
UAC_DT_INPUT_TERMINAL_SIZE + \
UAC_DT_OUTPUT_TERMINAL_SIZE \
)
/* B.3.2 Class-Specific AC Interface Descriptor */
static struct uac1_ac_header_descriptor_2 uac1_header_desc = {
.bLength = UAC_DT_AC_HEADER_LENGTH,
.bDescriptorType = USB_DT_CS_INTERFACE,
.bDescriptorSubtype = UAC_HEADER,
.bcdADC = cpu_to_le16(0x0100),
.wTotalLength = cpu_to_le16(UAC_DT_TOTAL_LENGTH),
.bInCollection = F_AUDIO_NUM_INTERFACES,
/*.baInterfaceNr = {
[0] = F_AUDIO_AC_INTERFACE,
[1] = F_AUDIO_AS_INTERFACE,
}
*/
};
static struct uac_input_terminal_descriptor speaker_input_terminal_desc = {
.bLength = UAC_DT_INPUT_TERMINAL_SIZE,
.bDescriptorType = USB_DT_CS_INTERFACE,
.bDescriptorSubtype = UAC_INPUT_TERMINAL,
.bTerminalID = SPEAKER_INPUT_TERMINAL_ID,
.wTerminalType = UAC_TERMINAL_STREAMING,
.bAssocTerminal = SPEAKER_OUTPUT_TERMINAL_ID,
.wChannelConfig = 0x3,
};
static struct uac1_output_terminal_descriptor speaker_output_terminal_desc = {
.bLength = UAC_DT_OUTPUT_TERMINAL_SIZE,
.bDescriptorType = USB_DT_CS_INTERFACE,
.bDescriptorSubtype = UAC_OUTPUT_TERMINAL,
.bTerminalID = SPEAKER_OUTPUT_TERMINAL_ID,
.wTerminalType = UAC_OUTPUT_TERMINAL_SPEAKER,
.bAssocTerminal = SPEAKER_INPUT_TERMINAL_ID,
.bSourceID = SPEAKER_INPUT_TERMINAL_ID,
};
static struct usb_audio_control speaker_mute_control = {
.list = LIST_HEAD_INIT(speaker_mute_control.list),
.name = "Speaker Mute Control",
.type = UAC_FU_MUTE,
/* Todo: add real Mute control code */
.set = generic_set_cmd,
.get = generic_get_cmd,
};
static struct usb_audio_control speaker_volume_control = {
.list = LIST_HEAD_INIT(speaker_volume_control.list),
.name = "Speaker Volume Control",
.type = UAC_FU_VOLUME,
/* Todo: add real Volume control code */
.set = generic_set_cmd,
.get = generic_get_cmd,
};
static struct usb_audio_control_selector speaker_fu_controls = {
.list = LIST_HEAD_INIT(speaker_fu_controls.list),
.name = "Speaker Function Unit Controls",
};
static struct uac_input_terminal_descriptor microphone_input_terminal_desc = {
.bLength = UAC_DT_INPUT_TERMINAL_SIZE,
.bDescriptorType = USB_DT_CS_INTERFACE,
.bDescriptorSubtype = UAC_INPUT_TERMINAL,
.bTerminalID = MICROPHONE_INPUT_TERMINAL_ID,
.wTerminalType = UAC_INPUT_TERMINAL_MICROPHONE,
.bAssocTerminal = MICROPHONE_OUTPUT_TERMINAL_ID,
.bNrChannels = 1,
.wChannelConfig = 0x3,
};
static struct
uac1_output_terminal_descriptor microphone_output_terminal_desc = {
.bLength = UAC_DT_OUTPUT_TERMINAL_SIZE,
.bDescriptorType = USB_DT_CS_INTERFACE,
.bDescriptorSubtype = UAC_OUTPUT_TERMINAL,
.bTerminalID = MICROPHONE_OUTPUT_TERMINAL_ID,
.wTerminalType = UAC_TERMINAL_STREAMING,
.bAssocTerminal = MICROPHONE_INPUT_TERMINAL_ID,
.bSourceID = MICROPHONE_INPUT_TERMINAL_ID,
};
static struct usb_audio_control microphone_mute_control = {
.list = LIST_HEAD_INIT(microphone_mute_control.list),
.name = "Microphone Mute Control",
.type = UAC_FU_MUTE,
/* Todo: add real Mute control code */
.set = generic_set_cmd,
.get = generic_get_cmd,
};
static struct usb_audio_control microphone_volume_control = {
.list = LIST_HEAD_INIT(microphone_volume_control.list),
.name = "Microphone Volume Control",
.type = UAC_FU_VOLUME,
/* Todo: add real Volume control code */
.set = generic_set_cmd,
.get = generic_get_cmd,
};
static struct usb_audio_control_selector microphone_fu_controls = {
.list = LIST_HEAD_INIT(microphone_fu_controls.list),
.name = "Microphone Feature Unit Controls",
};
/* B.4.1 Standard AS Interface Descriptor */
static struct usb_interface_descriptor speaker_as_interface_alt_0_desc = {
.bLength = USB_DT_INTERFACE_SIZE,
.bDescriptorType = USB_DT_INTERFACE,
.bAlternateSetting = 0,
.bNumEndpoints = 0,
.bInterfaceClass = USB_CLASS_AUDIO,
.bInterfaceSubClass = USB_SUBCLASS_AUDIOSTREAMING,
};
static struct usb_interface_descriptor speaker_as_interface_alt_1_desc = {
.bLength = USB_DT_INTERFACE_SIZE,
.bDescriptorType = USB_DT_INTERFACE,
.bAlternateSetting = 1,
.bNumEndpoints = 1,
.bInterfaceClass = USB_CLASS_AUDIO,
.bInterfaceSubClass = USB_SUBCLASS_AUDIOSTREAMING,
};
/* B.4.2 Class-Specific AS Interface Descriptor */
static struct uac1_as_header_descriptor speaker_as_header_desc = {
.bLength = UAC_DT_AS_HEADER_SIZE,
.bDescriptorType = USB_DT_CS_INTERFACE,
.bDescriptorSubtype = UAC_AS_GENERAL,
.bTerminalLink = SPEAKER_INPUT_TERMINAL_ID,
.bDelay = 1,
.wFormatTag = UAC_FORMAT_TYPE_I_PCM,
};
DECLARE_UAC_FORMAT_TYPE_I_DISCRETE_DESC(1);
static struct uac_format_type_i_discrete_descriptor_1 speaker_as_type_i_desc = {
.bLength = UAC_FORMAT_TYPE_I_DISCRETE_DESC_SIZE(1),
.bDescriptorType = USB_DT_CS_INTERFACE,
.bDescriptorSubtype = UAC_FORMAT_TYPE,
.bFormatType = UAC_FORMAT_TYPE_I,
.bSubframeSize = 2,
.bBitResolution = 16,
.bSamFreqType = 1,
};
/* Standard ISO OUT Endpoint Descriptor */
static struct usb_endpoint_descriptor speaker_as_ep_out_desc = {
.bLength = USB_DT_ENDPOINT_AUDIO_SIZE,
.bDescriptorType = USB_DT_ENDPOINT,
.bEndpointAddress = USB_DIR_OUT,
.bmAttributes = USB_ENDPOINT_SYNC_ADAPTIVE
| USB_ENDPOINT_XFER_ISOC,
.wMaxPacketSize = cpu_to_le16(UAC1_OUT_EP_MAX_PACKET_SIZE),
.bInterval = 4,
};
static struct usb_ss_ep_comp_descriptor speaker_as_ep_out_comp_desc = {
.bLength = sizeof(speaker_as_ep_out_comp_desc),
.bDescriptorType = USB_DT_SS_ENDPOINT_COMP,
.wBytesPerInterval = cpu_to_le16(1024),
};
/* Class-specific AS ISO OUT Endpoint Descriptor */
static struct uac_iso_endpoint_descriptor speaker_as_iso_out_desc = {
.bLength = UAC_ISO_ENDPOINT_DESC_SIZE,
.bDescriptorType = USB_DT_CS_ENDPOINT,
.bDescriptorSubtype = UAC_EP_GENERAL,
.bmAttributes = 1,
.bLockDelayUnits = 1,
.wLockDelay = cpu_to_le16(1),
};
static struct usb_audio_control speaker_sample_freq_control = {
.list = LIST_HEAD_INIT(speaker_sample_freq_control.list),
.name = "Speaker Sampling Frequency Control",
.type = UAC_EP_CS_ATTR_SAMPLE_RATE,
.set = generic_set_cmd,
.get = generic_get_cmd,
};
static struct usb_audio_control_selector speaker_as_iso_out = {
.list = LIST_HEAD_INIT(speaker_as_iso_out.list),
.name = "Speaker Iso-out Endpoint Control",
.type = UAC_EP_GENERAL,
.desc = (struct usb_descriptor_header *)&speaker_as_iso_out_desc,
};
/*---------------------------------*/
/* B.4.1 Standard AS Interface Descriptor */
static struct usb_interface_descriptor microphone_as_interface_alt_0_desc = {
.bLength = USB_DT_INTERFACE_SIZE,
.bDescriptorType = USB_DT_INTERFACE,
.bAlternateSetting = 0,
.bNumEndpoints = 0,
.bInterfaceClass = USB_CLASS_AUDIO,
.bInterfaceSubClass = USB_SUBCLASS_AUDIOSTREAMING,
};
static struct usb_interface_descriptor microphone_as_interface_alt_1_desc = {
.bLength = USB_DT_INTERFACE_SIZE,
.bDescriptorType = USB_DT_INTERFACE,
.bAlternateSetting = 1,
.bNumEndpoints = 1,
.bInterfaceClass = USB_CLASS_AUDIO,
.bInterfaceSubClass = USB_SUBCLASS_AUDIOSTREAMING,
};
/* B.4.2 Class-Specific AS Interface Descriptor */
static struct uac1_as_header_descriptor microphone_as_header_desc = {
.bLength = UAC_DT_AS_HEADER_SIZE,
.bDescriptorType = USB_DT_CS_INTERFACE,
.bDescriptorSubtype = UAC_AS_GENERAL,
.bTerminalLink = MICROPHONE_OUTPUT_TERMINAL_ID,
.bDelay = 1,
.wFormatTag = UAC_FORMAT_TYPE_I_PCM,
};
static struct
uac_format_type_i_discrete_descriptor_1 microphone_as_type_i_desc = {
.bLength = UAC_FORMAT_TYPE_I_DISCRETE_DESC_SIZE(1),
.bDescriptorType = USB_DT_CS_INTERFACE,
.bDescriptorSubtype = UAC_FORMAT_TYPE,
.bFormatType = UAC_FORMAT_TYPE_I,
.bNrChannels = 1,
.bSubframeSize = 2,
.bBitResolution = 16,
.bSamFreqType = 1,
};
/* Standard ISO IN Endpoint Descriptor */
static struct usb_endpoint_descriptor microphone_as_ep_in_desc = {
.bLength = USB_DT_ENDPOINT_AUDIO_SIZE,
.bDescriptorType = USB_DT_ENDPOINT,
.bEndpointAddress = USB_DIR_IN,
.bmAttributes =
USB_ENDPOINT_XFER_ISOC | USB_ENDPOINT_SYNC_ASYNC,
.wMaxPacketSize = cpu_to_le16(UAC1_IN_EP_MAX_PACKET_SIZE),
.bInterval = 4,
};
static struct usb_ss_ep_comp_descriptor microphone_as_ep_in_comp_desc = {
.bLength = sizeof(microphone_as_ep_in_comp_desc),
.bDescriptorType = USB_DT_SS_ENDPOINT_COMP,
.wBytesPerInterval = cpu_to_le16(1024),
};
/* Class-specific AS ISO IN Endpoint Descriptor */
static struct uac_iso_endpoint_descriptor microphone_as_iso_in_desc = {
.bLength = UAC_ISO_ENDPOINT_DESC_SIZE,
.bDescriptorType = USB_DT_CS_ENDPOINT,
.bDescriptorSubtype = UAC_EP_GENERAL,
.bmAttributes = 1,
.bLockDelayUnits = 1,
.wLockDelay = cpu_to_le16(1),
};
static struct usb_audio_control microphone_sample_freq_control = {
.list = LIST_HEAD_INIT(microphone_sample_freq_control.list),
.name = "Microphone Sampling Frequency Control",
.type = UAC_EP_CS_ATTR_SAMPLE_RATE,
.set = generic_set_cmd,
.get = generic_get_cmd,
};
static struct usb_audio_control_selector microphone_as_iso_in = {
.list = LIST_HEAD_INIT(microphone_as_iso_in.list),
.name = "Microphone Iso-IN Endpoint Control",
.type = UAC_EP_GENERAL,
.desc = (struct usb_descriptor_header *)&microphone_as_iso_in_desc,
};
static struct usb_interface_assoc_descriptor
audio_iad_descriptor = {
.bLength = sizeof(audio_iad_descriptor),
.bDescriptorType = USB_DT_INTERFACE_ASSOCIATION,
.bFirstInterface = 0, /* updated at bind */
.bInterfaceCount = 3,
.bFunctionClass = USB_CLASS_AUDIO,
.bFunctionSubClass = 0,
.bFunctionProtocol = UAC_VERSION_1,
};
static struct usb_descriptor_header *f_audio_desc[] = {
(struct usb_descriptor_header *)&audio_iad_descriptor,
(struct usb_descriptor_header *)&uac1_interface_desc,
(struct usb_descriptor_header *)&uac1_header_desc,
(struct usb_descriptor_header *)&microphone_input_terminal_desc,
(struct usb_descriptor_header *)&microphone_output_terminal_desc,
(struct usb_descriptor_header *)&speaker_input_terminal_desc,
(struct usb_descriptor_header *)&speaker_output_terminal_desc,
(struct usb_descriptor_header *)&microphone_as_interface_alt_0_desc,
(struct usb_descriptor_header *)&microphone_as_interface_alt_1_desc,
(struct usb_descriptor_header *)&microphone_as_header_desc,
(struct usb_descriptor_header *)&microphone_as_type_i_desc,
(struct usb_descriptor_header *)&microphone_as_ep_in_desc,
(struct usb_descriptor_header *)&microphone_as_iso_in_desc,
(struct usb_descriptor_header *)&speaker_as_interface_alt_0_desc,
(struct usb_descriptor_header *)&speaker_as_interface_alt_1_desc,
(struct usb_descriptor_header *)&speaker_as_header_desc,
(struct usb_descriptor_header *)&speaker_as_type_i_desc,
(struct usb_descriptor_header *)&speaker_as_ep_out_desc,
(struct usb_descriptor_header *)&speaker_as_iso_out_desc,
NULL,
};
static struct usb_descriptor_header *f_audio_ss_desc[] = {
(struct usb_descriptor_header *)&audio_iad_descriptor,
(struct usb_descriptor_header *)&uac1_interface_desc,
(struct usb_descriptor_header *)&uac1_header_desc,
(struct usb_descriptor_header *)&microphone_input_terminal_desc,
(struct usb_descriptor_header *)&microphone_output_terminal_desc,
(struct usb_descriptor_header *)&speaker_input_terminal_desc,
(struct usb_descriptor_header *)&speaker_output_terminal_desc,
(struct usb_descriptor_header *)&microphone_as_interface_alt_0_desc,
(struct usb_descriptor_header *)&microphone_as_interface_alt_1_desc,
(struct usb_descriptor_header *)&microphone_as_header_desc,
(struct usb_descriptor_header *)&microphone_as_type_i_desc,
(struct usb_descriptor_header *)&microphone_as_ep_in_desc,
(struct usb_descriptor_header *)&microphone_as_ep_in_comp_desc,
(struct usb_descriptor_header *)&microphone_as_iso_in_desc,
(struct usb_descriptor_header *)&speaker_as_interface_alt_0_desc,
(struct usb_descriptor_header *)&speaker_as_interface_alt_1_desc,
(struct usb_descriptor_header *)&speaker_as_header_desc,
(struct usb_descriptor_header *)&speaker_as_type_i_desc,
(struct usb_descriptor_header *)&speaker_as_ep_out_desc,
(struct usb_descriptor_header *)&speaker_as_ep_out_comp_desc,
(struct usb_descriptor_header *)&speaker_as_iso_out_desc,
NULL,
};
enum {
STR_AC_IF,
STR_INPUT_TERMINAL,
STR_INPUT_TERMINAL_CH_NAMES,
STR_FEAT_DESC_0,
STR_OUTPUT_TERMINAL,
STR_AS_IF_ALT0,
STR_AS_IF_ALT1,
};
static struct usb_string strings_uac1[] = {
[STR_AC_IF].s = "AC Interface",
[STR_INPUT_TERMINAL].s = "Input terminal",
[STR_INPUT_TERMINAL_CH_NAMES].s = "Channels",
[STR_FEAT_DESC_0].s = "Volume control & mute",
[STR_OUTPUT_TERMINAL].s = "Output terminal",
[STR_AS_IF_ALT0].s = "AS Interface",
[STR_AS_IF_ALT1].s = "AS Interface",
{ },
};
static struct usb_gadget_strings str_uac1 = {
.language = 0x0409, /* en-us */
.strings = strings_uac1,
};
static struct usb_gadget_strings *uac1_strings[] = {
&str_uac1,
NULL,
};
/*
* This function is an ALSA sound card following USB Audio Class Spec 1.0.
*/
/*-------------------------------------------------------------------------*/
struct f_audio_buf {
u8 *buf;
int actual;
struct list_head list;
};
static struct f_audio_buf *f_audio_buffer_alloc(int buf_size)
{
struct f_audio_buf *copy_buf;
copy_buf = kzalloc(sizeof *copy_buf, GFP_ATOMIC);
if (!copy_buf)
return ERR_PTR(-ENOMEM);
copy_buf->buf = kzalloc(buf_size, GFP_ATOMIC);
if (!copy_buf->buf) {
kfree(copy_buf);
return ERR_PTR(-ENOMEM);
}
return copy_buf;
}
static void f_audio_buffer_free(struct f_audio_buf *audio_buf)
{
if (audio_buf) {
kfree(audio_buf->buf);
kfree(audio_buf);
}
}
/*-------------------------------------------------------------------------*/
struct f_audio {
struct gaudio card;
atomic_t online;
struct mutex mutex;
struct work_struct close_work;
/* endpoints handle full and/or high speeds */
struct usb_ep *out_ep;
struct usb_ep *in_ep;
spinlock_t playback_lock;
struct f_audio_buf *playback_copy_buf;
struct work_struct playback_work;
struct list_head play_queue;
spinlock_t capture_lock;
struct f_audio_buf *capture_copy_buf;
struct work_struct capture_work;
struct list_head capture_queue;
u8 alt_intf[F_AUDIO_NUM_INTERFACES];
/* Control Set command */
struct list_head fu_cs;
struct list_head ep_cs;
u8 set_cmd;
struct usb_audio_control *set_con;
};
static inline struct f_audio *func_to_audio(struct usb_function *f)
{
return container_of(f, struct f_audio, card.func);
}
/*-------------------------------------------------------------------------*/
static void f_audio_playback_work(struct work_struct *data)
{
struct f_audio *audio = container_of(data, struct f_audio,
playback_work);
struct f_audio_buf *play_buf;
unsigned long flags;
int res = 0;
pr_debug("%s: started\n", __func__);
if (!atomic_read(&audio->online)) {
pr_debug("%s offline\n", __func__);
return;
}
/* set up ASLA audio devices if not already done */
mutex_lock(&audio->mutex);
res = gaudio_setup(&audio->card);
if (res < 0) {
mutex_unlock(&audio->mutex);
return;
}
mutex_unlock(&audio->mutex);
spin_lock_irqsave(&audio->playback_lock, flags);
if (list_empty(&audio->play_queue)) {
pr_err("playback_buf is empty");
spin_unlock_irqrestore(&audio->playback_lock, flags);
return;
}
play_buf = list_first_entry(&audio->play_queue,
struct f_audio_buf, list);
list_del(&play_buf->list);
spin_unlock_irqrestore(&audio->playback_lock, flags);
pr_debug("play_buf->actual = %d", play_buf->actual);
res = u_audio_playback(&audio->card, play_buf->buf, play_buf->actual);
if (res)
pr_err("copying failed");
f_audio_buffer_free(play_buf);
pr_debug("%s: Done\n", __func__);
}
static int
f_audio_playback_ep_complete(struct usb_ep *ep, struct usb_request *req)
{
struct f_audio *audio = req->context;
struct usb_composite_dev *cdev = audio->card.func.config->cdev;
struct f_audio_buf *copy_buf = audio->playback_copy_buf;
struct f_uac1_opts *opts;
int audio_playback_buf_size;
unsigned long flags;
int err;
opts = container_of(audio->card.func.fi, struct f_uac1_opts,
func_inst);
audio_playback_buf_size = opts->audio_playback_buf_size;
if (!copy_buf)
return -EINVAL;
/* Copy buffer is full, add it to the play_queue */
if (audio_playback_buf_size - copy_buf->actual < req->actual) {
pr_debug("audio_playback_buf_size %d - copy_buf->actual %d, req->actual %d",
audio_playback_buf_size, copy_buf->actual, req->actual);
spin_lock_irqsave(&audio->playback_lock, flags);
if (!list_empty(&audio->play_queue) &&
opts->audio_playback_realtime) {
pr_debug("over-runs, audio write slow.. drop the packet\n");
f_audio_buffer_free(copy_buf);
} else {
list_add_tail(&copy_buf->list, &audio->play_queue);
}
spin_unlock_irqrestore(&audio->playback_lock, flags);
schedule_work(&audio->playback_work);
copy_buf = f_audio_buffer_alloc(audio_playback_buf_size);
if (IS_ERR(copy_buf)) {
pr_err("Failed to allocate playback_copy_buf");
return -ENOMEM;
}
}
pr_debug("Playback %d bytes", req->actual);
memcpy(copy_buf->buf + copy_buf->actual, req->buf, req->actual);
copy_buf->actual += req->actual;
audio->playback_copy_buf = copy_buf;
err = usb_ep_queue(ep, req, GFP_ATOMIC);
if (err)
ERROR(cdev, "%s queue req: %d\n", ep->name, err);
return err;
}
static void f_audio_capture_work(struct work_struct *data)
{
struct f_audio *audio =
container_of(data, struct f_audio, capture_work);
struct f_audio_buf *capture_buf;
struct f_uac1_opts *opts = container_of(audio->card.func.fi,
struct f_uac1_opts, func_inst);
int audio_capture_buf_size = opts->audio_capture_buf_size;
unsigned long flags;
int res = 0;
pr_debug("%s Started\n", __func__);
if (!atomic_read(&audio->online)) {
pr_debug("%s offline\n", __func__);
return;
}
/* set up ASLA audio devices if not already done */
mutex_lock(&audio->mutex);
res = gaudio_setup(&audio->card);
if (res < 0) {
mutex_unlock(&audio->mutex);
return;
}
mutex_unlock(&audio->mutex);
spin_lock_irqsave(&audio->capture_lock, flags);
if (!list_empty(&audio->capture_queue)) {
spin_unlock_irqrestore(&audio->capture_lock, flags);
pr_debug("%s !! buffer already filled\n", __func__);
return;
}
spin_unlock_irqrestore(&audio->capture_lock, flags);
capture_buf = f_audio_buffer_alloc(audio_capture_buf_size);
if (capture_buf <= 0) {
pr_err("%s: buffer alloc failed\n", __func__);
return;
}
res = u_audio_capture(&audio->card, capture_buf->buf,
audio_capture_buf_size);
if (res)
pr_err("copying failed");
pr_debug("Queue capture packet: size %d", audio_capture_buf_size);
spin_lock_irqsave(&audio->capture_lock, flags);
list_add_tail(&capture_buf->list, &audio->capture_queue);
spin_unlock_irqrestore(&audio->capture_lock, flags);
}
static int
f_audio_capture_ep_complete(struct usb_ep *ep, struct usb_request *req)
{
struct f_audio *audio = req->context;
struct f_audio_buf *copy_buf = audio->capture_copy_buf;
struct f_uac1_opts *opts = container_of(audio->card.func.fi,
struct f_uac1_opts, func_inst);
int audio_capture_buf_size = opts->audio_capture_buf_size;
unsigned long flags;
int err = 0;
if (copy_buf == 0) {
pr_debug("copy_buf == 0");
spin_lock_irqsave(&audio->capture_lock, flags);
if (list_empty(&audio->capture_queue)) {
spin_unlock_irqrestore(&audio->capture_lock, flags);
pr_debug("%s no data from Audio to send\n", __func__);
schedule_work(&audio->capture_work);
memset(req->buf, 0, opts->req_capture_buf_size);
goto done;
}
copy_buf = list_first_entry(&audio->capture_queue,
struct f_audio_buf, list);
list_del(&copy_buf->list);
if (list_empty(&audio->capture_queue))
schedule_work(&audio->capture_work);
audio->capture_copy_buf = copy_buf;
spin_unlock_irqrestore(&audio->capture_lock, flags);
}
pr_debug("Copy %d bytes", req->actual);
memcpy(req->buf, copy_buf->buf + copy_buf->actual, req->actual);
copy_buf->actual += req->actual;
if (audio_capture_buf_size - copy_buf->actual < req->actual) {
f_audio_buffer_free(copy_buf);
audio->capture_copy_buf = 0;
schedule_work(&audio->capture_work);
}
done:
err = usb_ep_queue(ep, req, GFP_ATOMIC);
if (err)
pr_err("Failed to queue %s req: err - %d\n", ep->name, err);
return err;
}
static void f_audio_complete(struct usb_ep *ep, struct usb_request *req)
{
struct f_audio *audio = req->context;
int status = req->status;
u32 data = 0;
switch (status) {
case 0: /* normal completion? */
if (ep == audio->out_ep) {
f_audio_playback_ep_complete(ep, req);
} else if (ep == audio->in_ep) {
f_audio_capture_ep_complete(ep, req);
} else if (audio->set_con) {
memcpy(&data, req->buf, req->length);
audio->set_con->set(audio->set_con, audio->set_cmd,
le16_to_cpu(data));
audio->set_con = NULL;
}
break;
default:
pr_err("Failed completion: status %d", status);
/* fall through to to free buffer and req */
case -ECONNRESET:
case -ESHUTDOWN:
kfree(req->buf);
usb_ep_free_request(ep, req);
break;
}
}
static int audio_set_intf_req(struct usb_function *f,
const struct usb_ctrlrequest *ctrl)
{
struct f_audio *audio = func_to_audio(f);
struct usb_composite_dev *cdev = f->config->cdev;
struct usb_request *req = cdev->req;
u8 id = ((le16_to_cpu(ctrl->wIndex) >> 8) & 0xFF);
u16 len = le16_to_cpu(ctrl->wLength);
u16 w_value = le16_to_cpu(ctrl->wValue);
u8 con_sel = (w_value >> 8) & 0xFF;
u8 cmd = (ctrl->bRequest & 0x0F);
struct usb_audio_control_selector *cs;
struct usb_audio_control *con;
DBG(cdev, "bRequest 0x%x, w_value 0x%04x, len %d, entity %d\n",
ctrl->bRequest, w_value, len, id);
list_for_each_entry(cs, &audio->fu_cs, list) {
if (cs->id == id) {
list_for_each_entry(con, &cs->control, list) {
if (con->type == con_sel) {
audio->set_con = con;
break;
}
}
break;
}
}
audio->set_cmd = cmd;
req->context = audio;
req->complete = f_audio_complete;
return len;
}
static int audio_get_intf_req(struct usb_function *f,
const struct usb_ctrlrequest *ctrl)
{
struct f_audio *audio = func_to_audio(f);
struct usb_composite_dev *cdev = f->config->cdev;
struct usb_request *req = cdev->req;
int value = -EOPNOTSUPP;
u8 id = ((le16_to_cpu(ctrl->wIndex) >> 8) & 0xFF);
u16 len = le16_to_cpu(ctrl->wLength);
u16 w_value = le16_to_cpu(ctrl->wValue);
u8 con_sel = (w_value >> 8) & 0xFF;
u8 cmd = (ctrl->bRequest & 0x0F);
struct usb_audio_control_selector *cs;
struct usb_audio_control *con;
DBG(cdev, "bRequest 0x%x, w_value 0x%04x, len %d, entity %d\n",
ctrl->bRequest, w_value, len, id);
list_for_each_entry(cs, &audio->fu_cs, list) {
if (cs->id == id) {
list_for_each_entry(con, &cs->control, list) {
if (con->type == con_sel && con->get) {
value = con->get(con, cmd);
break;
}
}
break;
}
}
req->context = audio;
req->complete = f_audio_complete;
len = min_t(size_t, sizeof(value), len);
memcpy(req->buf, &value, len);
return len;
}
static void audio_set_endpoint_complete(struct usb_ep *ep,
struct usb_request *req)
{
struct f_audio *audio = req->context;
u32 data = 0;
if (req->status == 0 && audio->set_con) {
memcpy(&data, req->buf, req->length);
audio->set_con->set(audio->set_con, audio->set_cmd,
le32_to_cpu(data));
audio->set_con = NULL;
}
}
static int audio_set_endpoint_req(struct usb_function *f,
const struct usb_ctrlrequest *ctrl)
{
struct usb_composite_dev *cdev = f->config->cdev;
int value = -EOPNOTSUPP;
u16 ep = le16_to_cpu(ctrl->wIndex);
u16 len = le16_to_cpu(ctrl->wLength);
u16 w_value = le16_to_cpu(ctrl->wValue);
struct f_audio *audio = func_to_audio(f);
struct usb_request *req = cdev->req;
struct usb_audio_control_selector *cs;
struct usb_audio_control *con;
u8 epnum = ep & ~0x80;
u8 con_sel = (w_value >> 8) & 0xFF;
u8 cmd = (ctrl->bRequest & 0x0F);
DBG(cdev, "bRequest 0x%x, w_value 0x%04x, len %d, endp %d, epnum %d\n",
ctrl->bRequest, w_value, len, ep, epnum);
list_for_each_entry(cs, &audio->ep_cs, list) {
if (cs->id != epnum)
continue;
list_for_each_entry(con, &cs->control, list) {
if (con->type != con_sel)
continue;
switch (cmd) {
case UAC__CUR:
case UAC__MIN:
case UAC__MAX:
case UAC__RES:
audio->set_con = con;
audio->set_cmd = cmd;
req->context = audio;
req->complete = audio_set_endpoint_complete;
value = len;
break;
case UAC__MEM:
break;
default:
pr_err("Unknown command");
break;
}
break;
}
break;
}
return value;
}
static int audio_get_endpoint_req(struct usb_function *f,
const struct usb_ctrlrequest *ctrl)
{
struct f_audio *audio = func_to_audio(f);
struct usb_composite_dev *cdev = f->config->cdev;
struct usb_request *req = cdev->req;
struct usb_audio_control_selector *cs;
struct usb_audio_control *con;
int data;
int value = -EOPNOTSUPP;
u8 ep = (le16_to_cpu(ctrl->wIndex) & 0x7F);
u8 epnum = ep & ~0x80;
u16 len = le16_to_cpu(ctrl->wLength);
u16 w_value = le16_to_cpu(ctrl->wValue);
u8 con_sel = (w_value >> 8) & 0xFF;
u8 cmd = (ctrl->bRequest & 0x0F);
DBG(cdev, "bRequest 0x%x, w_value 0x%04x, len %d, endpoint %d\n",
ctrl->bRequest, w_value, len, ep);
list_for_each_entry(cs, &audio->ep_cs, list) {
if (cs->id != epnum)
continue;
list_for_each_entry(con, &cs->control, list) {
if (con->type != con_sel)
continue;
switch (cmd) {
case UAC__CUR:
case UAC__MIN:
case UAC__MAX:
case UAC__RES:
data = cpu_to_le32(generic_get_cmd(con, cmd));
memcpy(req->buf, &data, len);
value = len;
break;
case UAC__MEM:
break;
default:
break;
}
break;
}
break;
}
return value;
}
static int
f_audio_setup(struct usb_function *f, const struct usb_ctrlrequest *ctrl)
{
struct usb_composite_dev *cdev = f->config->cdev;
struct usb_request *req = cdev->req;
int value = -EOPNOTSUPP;
u16 w_index = le16_to_cpu(ctrl->wIndex);
u16 w_value = le16_to_cpu(ctrl->wValue);
u16 w_length = le16_to_cpu(ctrl->wLength);
/* composite driver infrastructure handles everything; interface
* activation uses set_alt().
*/
switch (ctrl->bRequestType) {
case USB_DIR_OUT | USB_TYPE_CLASS | USB_RECIP_INTERFACE:
pr_debug("USB_DIR_OUT | USB_TYPE_CLASS | USB_RECIP_INTERFACE");
value = audio_set_intf_req(f, ctrl);
break;
case USB_DIR_IN | USB_TYPE_CLASS | USB_RECIP_INTERFACE:
pr_debug("USB_DIR_IN | USB_TYPE_CLASS | USB_RECIP_INTERFACE");
value = audio_get_intf_req(f, ctrl);
break;
case USB_DIR_OUT | USB_TYPE_CLASS | USB_RECIP_ENDPOINT:
pr_debug("USB_DIR_OUT | USB_TYPE_CLASS | USB_RECIP_ENDPOINT");
value = audio_set_endpoint_req(f, ctrl);
break;
case USB_DIR_IN | USB_TYPE_CLASS | USB_RECIP_ENDPOINT:
pr_debug("USB_DIR_IN | USB_TYPE_CLASS | USB_RECIP_ENDPOINT");
value = audio_get_endpoint_req(f, ctrl);
break;
default:
ERROR(cdev, "invalid control req%02x.%02x v%04x i%04x l%d\n",
ctrl->bRequestType, ctrl->bRequest,
w_value, w_index, w_length);
}
/* respond with data transfer or status phase? */
if (value >= 0) {
DBG(cdev, "audio req%02x.%02x v%04x i%04x l%d\n",
ctrl->bRequestType, ctrl->bRequest,
w_value, w_index, w_length);
req->zero = 1;
req->length = value;
value = usb_ep_queue(cdev->gadget->ep0, req, GFP_ATOMIC);
if (value < 0)
ERROR(cdev, "audio response on err %d\n", value);
}
/* device either stalls (value < 0) or reports success */
return value;
}
static int f_audio_get_alt(struct usb_function *f, unsigned intf)
{
struct f_audio *audio = func_to_audio(f);
if (intf == uac1_header_desc.baInterfaceNr[0])
return audio->alt_intf[0];
if (intf == uac1_header_desc.baInterfaceNr[1])
return audio->alt_intf[1];
return 0;
}
static int f_audio_set_alt(struct usb_function *f, unsigned intf, unsigned alt)
{
struct f_audio *audio = func_to_audio(f);
struct usb_composite_dev *cdev = f->config->cdev;
struct usb_ep *out_ep = audio->out_ep;
struct usb_ep *in_ep = audio->in_ep;
struct usb_request *req;
unsigned long flags;
struct f_uac1_opts *opts;
int req_playback_buf_size, req_playback_count, audio_playback_buf_size;
int req_capture_buf_size, req_capture_count;
int i = 0, err = 0;
DBG(cdev, "intf %d, alt %d\n", intf, alt);
opts = container_of(f->fi, struct f_uac1_opts, func_inst);
req_playback_buf_size = opts->req_playback_buf_size;
req_capture_buf_size = opts->req_capture_buf_size;
req_playback_count = opts->req_playback_count;
req_capture_count = opts->req_capture_count;
audio_playback_buf_size = opts->audio_playback_buf_size;
atomic_set(&audio->online, 1);
if (intf == uac1_header_desc.baInterfaceNr[0]) {
if (audio->alt_intf[0] == alt) {
pr_debug("Alt interface is already set to %d. Do nothing.\n",
alt);
return 0;
}
if (alt == 1) {
err = config_ep_by_speed(cdev->gadget, f, in_ep);
if (err)
return err;
err = usb_ep_enable(in_ep);
if (err) {
pr_err("Failed to enable capture ep");
return err;
}
in_ep->driver_data = audio;
audio->capture_copy_buf = 0;
schedule_work(&audio->capture_work);
for (i = 0; i < req_capture_count && err == 0; i++) {
/* Allocate a write buffer */
req = usb_ep_alloc_request(in_ep, GFP_ATOMIC);
if (!req) {
pr_err("request allocation failed\n");
return -ENOMEM;
}
req->buf = kzalloc(req_capture_buf_size +
cdev->gadget->extra_buf_alloc,
GFP_ATOMIC);
if (!req->buf)
return -ENOMEM;
req->length = req_capture_buf_size;
req->context = audio;
req->complete = f_audio_complete;
err = usb_ep_queue(in_ep, req, GFP_ATOMIC);
if (err)
pr_err("Failed to queue %s req,err%d\n",
in_ep->name, err);
}
} else {
struct f_audio_buf *capture_buf;
usb_ep_disable(in_ep);
spin_lock_irqsave(&audio->capture_lock, flags);
while (!list_empty(&audio->capture_queue)) {
capture_buf =
list_first_entry(
&audio->capture_queue,
struct f_audio_buf,
list);
list_del(&capture_buf->list);
f_audio_buffer_free(capture_buf);
}
spin_unlock_irqrestore(&audio->capture_lock, flags);
}
audio->alt_intf[0] = alt;
} else if (intf == uac1_header_desc.baInterfaceNr[1]) {
if (audio->alt_intf[1] == alt) {
pr_debug("Alt interface is already set to %d. Do nothing.\n",
alt);
return 0;
}
if (alt == 1) {
err = config_ep_by_speed(cdev->gadget, f, out_ep);
if (err)
return err;
err = usb_ep_enable(out_ep);
if (err) {
pr_err("Failed to enable playback ep");
return err;
}
out_ep->driver_data = audio;
audio->playback_copy_buf =
f_audio_buffer_alloc(audio_playback_buf_size);
if (IS_ERR(audio->playback_copy_buf)) {
pr_err("Failed to allocate playback_copy_buf");
return -ENOMEM;
}
/*
* allocate a bunch of read buffers
* and queue them all at once.
*/
for (i = 0; i < req_playback_count && err == 0; i++) {
req = usb_ep_alloc_request(out_ep, GFP_ATOMIC);
if (!req) {
pr_err("request allocation failed\n");
return -ENOMEM;
}
req->buf = kzalloc(req_playback_buf_size,
GFP_ATOMIC);
if (!req->buf) {
pr_err("request buffer allocation failed\n");
return -ENOMEM;
}
req->length = req_playback_buf_size;
req->context = audio;
req->complete = f_audio_complete;
err = usb_ep_queue(out_ep, req, GFP_ATOMIC);
if (err)
pr_err("Failed to queue %s queue req: err %d\n",
out_ep->name, err);
}
pr_debug("Allocated %d requests\n", req_playback_count);
} else {
struct f_audio_buf *playback_copy_buf =
audio->playback_copy_buf;
usb_ep_disable(out_ep);
if (playback_copy_buf) {
pr_err("Schedule playback_work");
list_add_tail(&playback_copy_buf->list,
&audio->play_queue);
schedule_work(&audio->playback_work);
audio->playback_copy_buf = NULL;
} else {
pr_err("playback_buf is empty. Stop.");
}
}
audio->alt_intf[1] = alt;
} else {
pr_err("Interface %d. Do nothing. Return %d\n", intf, err);
}
return err;
}
static void f_audio_close_work(struct work_struct *data)
{
struct f_audio *audio =
container_of(data, struct f_audio, close_work);
pr_debug("close audio files\n");
mutex_lock(&audio->mutex);
gaudio_cleanup(&audio->card);
mutex_unlock(&audio->mutex);
}
static void f_audio_disable(struct usb_function *f)
{
struct f_audio *audio = func_to_audio(f);
struct usb_ep *out_ep = audio->out_ep;
struct usb_ep *in_ep = audio->in_ep;
pr_debug("Disable audio");
atomic_set(&audio->online, 0);
usb_ep_disable(in_ep);
usb_ep_disable(out_ep);
u_audio_clear(&audio->card);
schedule_work(&audio->close_work);
return;
}
/*-------------------------------------------------------------------------*/
static void f_audio_build_desc(struct f_audio *audio)
{
struct gaudio *card = &audio->card;
u8 *sam_freq;
int rate;
/* Set channel numbers */
speaker_input_terminal_desc.bNrChannels =
u_audio_get_playback_channels(card);
speaker_as_type_i_desc.bNrChannels =
u_audio_get_playback_channels(card);
microphone_input_terminal_desc.bNrChannels =
u_audio_get_capture_channels(card);
microphone_as_type_i_desc.bNrChannels =
u_audio_get_capture_channels(card);
/* Set sample rates */
rate = u_audio_get_playback_rate(card);
sam_freq = speaker_as_type_i_desc.tSamFreq[0];
memcpy(sam_freq, &rate, 3);
/* Update maxP as per sample rate, bInterval assumed as 1msec */
speaker_as_ep_out_desc.wMaxPacketSize = (rate / 1000) * 2;
rate = u_audio_get_capture_rate(card);
sam_freq = microphone_as_type_i_desc.tSamFreq[0];
memcpy(sam_freq, &rate, 3);
/* Update maxP as per sample rate, bInterval assumed as 1msec */
microphone_as_ep_in_desc.wMaxPacketSize = (rate / 1000) * 2;
/* Todo: Set Sample bits and other parameters */
return;
}
/* audio function driver setup/binding */
static int
f_audio_bind(struct usb_configuration *c, struct usb_function *f)
{
struct usb_composite_dev *cdev = c->cdev;
struct f_audio *audio = func_to_audio(f);
struct usb_string *us;
int status;
struct usb_ep *ep = NULL;
u8 epaddr;
struct f_uac1_opts *audio_opts;
audio_opts = container_of(f->fi, struct f_uac1_opts, func_inst);
audio->card.gadget = c->cdev->gadget;
audio_opts->card = &audio->card;
/* set up ASLA audio devices */
if (!audio_opts->bound) {
status = gaudio_setup(&audio->card);
if (status < 0)
goto fail;
audio_opts->bound = true;
}
us = usb_gstrings_attach(cdev, uac1_strings, ARRAY_SIZE(strings_uac1));
if (IS_ERR(us)) {
status = PTR_ERR(us);
goto fail;
}
uac1_interface_desc.iInterface = us[STR_AC_IF].id;
speaker_input_terminal_desc.iTerminal = us[STR_INPUT_TERMINAL].id;
speaker_input_terminal_desc.iChannelNames =
us[STR_INPUT_TERMINAL_CH_NAMES].id;
speaker_output_terminal_desc.iTerminal = us[STR_OUTPUT_TERMINAL].id;
speaker_as_interface_alt_0_desc.iInterface = us[STR_AS_IF_ALT0].id;
speaker_as_interface_alt_1_desc.iInterface = us[STR_AS_IF_ALT1].id;
f_audio_build_desc(audio);
/* allocate instance-specific interface IDs, and patch descriptors */
status = usb_interface_id(c, f);
if (status < 0) {
pr_err("%s: failed to allocate desc interface", __func__);
goto fail;
}
uac1_interface_desc.bInterfaceNumber = status;
audio_iad_descriptor.bFirstInterface = status;
status = usb_interface_id(c, f);
if (status < 0) {
pr_err("%s: failed to allocate alt interface", __func__);
goto fail;
}
microphone_as_interface_alt_0_desc.bInterfaceNumber = status;
microphone_as_interface_alt_1_desc.bInterfaceNumber = status;
uac1_header_desc.baInterfaceNr[0] = status;
audio->alt_intf[0] = 0;
status = usb_interface_id(c, f);
if (status < 0) {
pr_err("%s: failed to allocate alt interface", __func__);
goto fail;
}
speaker_as_interface_alt_0_desc.bInterfaceNumber = status;
speaker_as_interface_alt_1_desc.bInterfaceNumber = status;
uac1_header_desc.baInterfaceNr[1] = status;
audio->alt_intf[1] = 0;
status = -ENODEV;
/* allocate instance-specific endpoints */
ep = usb_ep_autoconfig(cdev->gadget, &microphone_as_ep_in_desc);
if (!ep) {
pr_err("%s: failed to autoconfig in endpoint", __func__);
goto fail;
}
audio->in_ep = ep;
ep->desc = &microphone_as_ep_in_desc;
ep->driver_data = cdev;
status = -ENODEV;
ep = usb_ep_autoconfig(cdev->gadget, &speaker_as_ep_out_desc);
if (!ep) {
pr_err("%s: failed to autoconfig out endpoint", __func__);
goto fail;
}
audio->out_ep = ep;
ep->desc = &speaker_as_ep_out_desc;
ep->driver_data = cdev; /* claim */
/* associate bEndpointAddress with usb_function */
epaddr = microphone_as_ep_in_desc.bEndpointAddress & ~USB_DIR_IN;
microphone_as_iso_in.id = epaddr;
epaddr = speaker_as_ep_out_desc.bEndpointAddress & ~USB_DIR_IN;
speaker_as_iso_out.id = epaddr;
/* copy descriptors, and track endpoint copies */
status = usb_assign_descriptors(f, f_audio_desc, f_audio_desc,
f_audio_ss_desc);
if (status)
goto fail;
return 0;
fail:
gaudio_cleanup(&audio->card);
if (ep)
ep->driver_data = NULL;
return status;
}
/*-------------------------------------------------------------------------*/
static int generic_set_cmd(struct usb_audio_control *con, u8 cmd, int value)
{
con->data[cmd] = value;
return 0;
}
static int generic_get_cmd(struct usb_audio_control *con, u8 cmd)
{
return con->data[cmd];
}
/* Todo: add more control selecotor dynamically */
static int control_selector_init(struct f_audio *audio)
{
INIT_LIST_HEAD(&audio->fu_cs);
list_add(&microphone_fu_controls.list, &audio->fu_cs);
list_add(&speaker_fu_controls.list, &audio->fu_cs);
INIT_LIST_HEAD(&microphone_fu_controls.control);
list_add(&microphone_mute_control.list,
&microphone_fu_controls.control);
list_add(&microphone_volume_control.list,
&microphone_fu_controls.control);
INIT_LIST_HEAD(&speaker_fu_controls.control);
list_add(&speaker_mute_control.list,
&speaker_fu_controls.control);
list_add(&speaker_volume_control.list,
&speaker_fu_controls.control);
microphone_volume_control.data[UAC__CUR] = 0xffc0;
microphone_volume_control.data[UAC__MIN] = 0xe3a0;
microphone_volume_control.data[UAC__MAX] = 0xfff0;
microphone_volume_control.data[UAC__RES] = 0x0030;
speaker_volume_control.data[UAC__CUR] = 0xffc0;
speaker_volume_control.data[UAC__MIN] = 0xe3a0;
speaker_volume_control.data[UAC__MAX] = 0xfff0;
speaker_volume_control.data[UAC__RES] = 0x0030;
INIT_LIST_HEAD(&audio->ep_cs);
list_add(&speaker_as_iso_out.list, &audio->ep_cs);
list_add(&microphone_as_iso_in.list, &audio->ep_cs);
INIT_LIST_HEAD(&microphone_as_iso_in.control);
list_add(&microphone_sample_freq_control.list,
&microphone_as_iso_in.control);
INIT_LIST_HEAD(&speaker_as_iso_out.control);
list_add(&speaker_sample_freq_control.list,
&speaker_as_iso_out.control);
return 0;
}
static inline struct f_uac1_opts *to_f_uac1_opts(struct config_item *item)
{
return container_of(to_config_group(item), struct f_uac1_opts,
func_inst.group);
}
CONFIGFS_ATTR_STRUCT(f_uac1_opts);
CONFIGFS_ATTR_OPS(f_uac1_opts);
static void f_uac1_attr_release(struct config_item *item)
{
struct f_uac1_opts *opts = to_f_uac1_opts(item);
usb_put_function_instance(&opts->func_inst);
}
static struct configfs_item_operations f_uac1_item_ops = {
.release = f_uac1_attr_release,
.show_attribute = f_uac1_opts_attr_show,
.store_attribute = f_uac1_opts_attr_store,
};
#define UAC1_INT_ATTRIBUTE(name) \
static ssize_t f_uac1_opts_##name##_show(struct f_uac1_opts *opts, \
char *page) \
{ \
int result; \
\
mutex_lock(&opts->lock); \
result = sprintf(page, "%u\n", opts->name); \
mutex_unlock(&opts->lock); \
\
return result; \
} \
\
static ssize_t f_uac1_opts_##name##_store(struct f_uac1_opts *opts, \
const char *page, size_t len) \
{ \
int ret; \
u32 num; \
\
mutex_lock(&opts->lock); \
if (opts->refcnt) { \
ret = -EBUSY; \
goto end; \
} \
\
ret = kstrtou32(page, 0, &num); \
if (ret) \
goto end; \
\
opts->name = num; \
ret = len; \
\
end: \
mutex_unlock(&opts->lock); \
return ret; \
} \
\
static struct f_uac1_opts_attribute f_uac1_opts_##name = \
__CONFIGFS_ATTR(name, S_IRUGO | S_IWUSR, \
f_uac1_opts_##name##_show, \
f_uac1_opts_##name##_store)
UAC1_INT_ATTRIBUTE(req_playback_buf_size);
UAC1_INT_ATTRIBUTE(req_capture_buf_size);
UAC1_INT_ATTRIBUTE(req_playback_count);
UAC1_INT_ATTRIBUTE(req_capture_count);
UAC1_INT_ATTRIBUTE(audio_playback_buf_size);
UAC1_INT_ATTRIBUTE(audio_capture_buf_size);
UAC1_INT_ATTRIBUTE(audio_playback_realtime);
UAC1_INT_ATTRIBUTE(sample_rate);
#define UAC1_STR_ATTRIBUTE(name) \
static ssize_t f_uac1_opts_##name##_show(struct f_uac1_opts *opts, \
char *page) \
{ \
int result; \
\
mutex_lock(&opts->lock); \
result = sprintf(page, "%s\n", opts->name); \
mutex_unlock(&opts->lock); \
\
return result; \
} \
\
static ssize_t f_uac1_opts_##name##_store(struct f_uac1_opts *opts, \
const char *page, size_t len) \
{ \
int ret = -EBUSY; \
char *tmp; \
\
mutex_lock(&opts->lock); \
if (opts->refcnt) \
goto end; \
\
tmp = kstrndup(page, len, GFP_KERNEL); \
if (tmp) { \
ret = -ENOMEM; \
goto end; \
} \
if (opts->name##_alloc) \
kfree(opts->name); \
opts->name##_alloc = true; \
opts->name = tmp; \
ret = len; \
\
end: \
mutex_unlock(&opts->lock); \
return ret; \
} \
\
static struct f_uac1_opts_attribute f_uac1_opts_##name = \
__CONFIGFS_ATTR(name, S_IRUGO | S_IWUSR, \
f_uac1_opts_##name##_show, \
f_uac1_opts_##name##_store)
UAC1_STR_ATTRIBUTE(fn_play);
UAC1_STR_ATTRIBUTE(fn_cap);
UAC1_STR_ATTRIBUTE(fn_cntl);
static struct configfs_attribute *f_uac1_attrs[] = {
&f_uac1_opts_req_playback_buf_size.attr,
&f_uac1_opts_req_capture_buf_size.attr,
&f_uac1_opts_req_playback_count.attr,
&f_uac1_opts_req_capture_count.attr,
&f_uac1_opts_audio_playback_buf_size.attr,
&f_uac1_opts_audio_capture_buf_size.attr,
&f_uac1_opts_audio_playback_realtime.attr,
&f_uac1_opts_sample_rate.attr,
&f_uac1_opts_fn_play.attr,
&f_uac1_opts_fn_cap.attr,
&f_uac1_opts_fn_cntl.attr,
NULL,
};
static struct config_item_type f_uac1_func_type = {
.ct_item_ops = &f_uac1_item_ops,
.ct_attrs = f_uac1_attrs,
.ct_owner = THIS_MODULE,
};
static void f_audio_free_inst(struct usb_function_instance *f)
{
struct f_uac1_opts *opts;
opts = container_of(f, struct f_uac1_opts, func_inst);
gaudio_cleanup(opts->card);
if (opts->fn_play_alloc)
kfree(opts->fn_play);
if (opts->fn_cap_alloc)
kfree(opts->fn_cap);
if (opts->fn_cntl_alloc)
kfree(opts->fn_cntl);
kfree(opts);
}
static struct usb_function_instance *f_audio_alloc_inst(void)
{
struct f_uac1_opts *opts;
opts = kzalloc(sizeof(*opts), GFP_KERNEL);
if (!opts)
return ERR_PTR(-ENOMEM);
mutex_init(&opts->lock);
opts->func_inst.free_func_inst = f_audio_free_inst;
config_group_init_type_name(&opts->func_inst.group, "",
&f_uac1_func_type);
opts->req_playback_buf_size = UAC1_OUT_EP_MAX_PACKET_SIZE;
opts->req_capture_buf_size = UAC1_IN_EP_MAX_PACKET_SIZE;
opts->req_playback_count = UAC1_OUT_REQ_COUNT;
opts->req_capture_count = UAC1_IN_REQ_COUNT;
opts->audio_playback_buf_size = UAC1_AUDIO_PLAYBACK_BUF_SIZE;
opts->audio_capture_buf_size = UAC1_AUDIO_CAPTURE_BUF_SIZE;
opts->audio_playback_realtime = 1;
opts->sample_rate = UAC1_SAMPLE_RATE;
opts->fn_play = FILE_PCM_PLAYBACK;
opts->fn_cap = FILE_PCM_CAPTURE;
opts->fn_cntl = FILE_CONTROL;
return &opts->func_inst;
}
static void f_audio_free(struct usb_function *f)
{
struct f_audio *audio = func_to_audio(f);
struct f_uac1_opts *opts;
opts = container_of(f->fi, struct f_uac1_opts, func_inst);
kfree(audio);
mutex_lock(&opts->lock);
--opts->refcnt;
mutex_unlock(&opts->lock);
}
static void f_audio_unbind(struct usb_configuration *c, struct usb_function *f)
{
struct f_audio *audio = func_to_audio(f);
flush_work(&audio->playback_work);
flush_work(&audio->capture_work);
flush_work(&audio->close_work);
gaudio_cleanup(&audio->card);
usb_free_all_descriptors(f);
}
static struct usb_function *f_audio_alloc(struct usb_function_instance *fi)
{
struct f_audio *audio;
struct f_uac1_opts *opts;
/* allocate and initialize one new instance */
audio = kzalloc(sizeof(*audio), GFP_KERNEL);
if (!audio)
return ERR_PTR(-ENOMEM);
audio->card.func.name = "g_audio";
opts = container_of(fi, struct f_uac1_opts, func_inst);
mutex_lock(&opts->lock);
++opts->refcnt;
mutex_unlock(&opts->lock);
INIT_LIST_HEAD(&audio->play_queue);
spin_lock_init(&audio->playback_lock);
INIT_LIST_HEAD(&audio->capture_queue);
spin_lock_init(&audio->capture_lock);
audio->card.func.bind = f_audio_bind;
audio->card.func.unbind = f_audio_unbind;
audio->card.func.get_alt = f_audio_get_alt;
audio->card.func.set_alt = f_audio_set_alt;
audio->card.func.setup = f_audio_setup;
audio->card.func.disable = f_audio_disable;
audio->card.func.free_func = f_audio_free;
control_selector_init(audio);
INIT_WORK(&audio->playback_work, f_audio_playback_work);
INIT_WORK(&audio->capture_work, f_audio_capture_work);
INIT_WORK(&audio->close_work, f_audio_close_work);
mutex_init(&audio->mutex);
return &audio->card.func;
}
DECLARE_USB_FUNCTION_INIT(uac1, f_audio_alloc_inst, f_audio_alloc);
MODULE_LICENSE("GPL");
MODULE_AUTHOR("Bryan Wu");