1133 lines
28 KiB
C
1133 lines
28 KiB
C
/*
|
|
* CCI cache coherent interconnect driver
|
|
*
|
|
* Copyright (C) 2013 ARM Ltd.
|
|
* Author: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com>
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License version 2 as
|
|
* published by the Free Software Foundation.
|
|
*
|
|
* This program is distributed "as is" WITHOUT ANY WARRANTY of any
|
|
* kind, whether express or implied; without even the implied warranty
|
|
* of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*/
|
|
|
|
#include <linux/arm-cci.h>
|
|
#include <linux/io.h>
|
|
#include <linux/module.h>
|
|
#include <linux/of_address.h>
|
|
#include <linux/of_irq.h>
|
|
#include <linux/of_platform.h>
|
|
#include <linux/platform_device.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/spinlock.h>
|
|
|
|
#include <asm/cacheflush.h>
|
|
#include <asm/irq_regs.h>
|
|
#include <asm/pmu.h>
|
|
#include <asm/smp_plat.h>
|
|
|
|
#define DRIVER_NAME "CCI-400"
|
|
#define DRIVER_NAME_PMU DRIVER_NAME " PMU"
|
|
|
|
#define CCI_PORT_CTRL 0x0
|
|
#define CCI_CTRL_STATUS 0xc
|
|
|
|
#define CCI_ENABLE_SNOOP_REQ 0x1
|
|
#define CCI_ENABLE_DVM_REQ 0x2
|
|
#define CCI_ENABLE_REQ (CCI_ENABLE_SNOOP_REQ | CCI_ENABLE_DVM_REQ)
|
|
|
|
struct cci_nb_ports {
|
|
unsigned int nb_ace;
|
|
unsigned int nb_ace_lite;
|
|
};
|
|
|
|
enum cci_ace_port_type {
|
|
ACE_INVALID_PORT = 0x0,
|
|
ACE_PORT,
|
|
ACE_LITE_PORT,
|
|
};
|
|
|
|
struct cci_ace_port {
|
|
void __iomem *base;
|
|
unsigned long phys;
|
|
enum cci_ace_port_type type;
|
|
struct device_node *dn;
|
|
};
|
|
|
|
static struct cci_ace_port *ports;
|
|
static unsigned int nb_cci_ports;
|
|
|
|
static void __iomem *cci_ctrl_base;
|
|
static unsigned long cci_ctrl_phys;
|
|
|
|
#ifdef CONFIG_HW_PERF_EVENTS
|
|
|
|
#define CCI_PMCR 0x0100
|
|
#define CCI_PID2 0x0fe8
|
|
|
|
#define CCI_PMCR_CEN 0x00000001
|
|
#define CCI_PMCR_NCNT_MASK 0x0000f800
|
|
#define CCI_PMCR_NCNT_SHIFT 11
|
|
|
|
#define CCI_PID2_REV_MASK 0xf0
|
|
#define CCI_PID2_REV_SHIFT 4
|
|
|
|
/* Port ids */
|
|
#define CCI_PORT_S0 0
|
|
#define CCI_PORT_S1 1
|
|
#define CCI_PORT_S2 2
|
|
#define CCI_PORT_S3 3
|
|
#define CCI_PORT_S4 4
|
|
#define CCI_PORT_M0 5
|
|
#define CCI_PORT_M1 6
|
|
#define CCI_PORT_M2 7
|
|
|
|
#define CCI_REV_R0 0
|
|
#define CCI_REV_R1 1
|
|
#define CCI_REV_R1_PX 5
|
|
|
|
#define CCI_PMU_EVT_SEL 0x000
|
|
#define CCI_PMU_CNTR 0x004
|
|
#define CCI_PMU_CNTR_CTRL 0x008
|
|
#define CCI_PMU_OVRFLW 0x00c
|
|
|
|
#define CCI_PMU_OVRFLW_FLAG 1
|
|
|
|
#define CCI_PMU_CNTR_BASE(idx) ((idx) * SZ_4K)
|
|
|
|
/*
|
|
* Instead of an event id to monitor CCI cycles, a dedicated counter is
|
|
* provided. Use 0xff to represent CCI cycles and hope that no future revisions
|
|
* make use of this event in hardware.
|
|
*/
|
|
enum cci400_perf_events {
|
|
CCI_PMU_CYCLES = 0xff
|
|
};
|
|
|
|
#define CCI_PMU_EVENT_MASK 0xff
|
|
#define CCI_PMU_EVENT_SOURCE(event) ((event >> 5) & 0x7)
|
|
#define CCI_PMU_EVENT_CODE(event) (event & 0x1f)
|
|
|
|
#define CCI_PMU_MAX_HW_EVENTS 5 /* CCI PMU has 4 counters + 1 cycle counter */
|
|
|
|
#define CCI_PMU_CYCLE_CNTR_IDX 0
|
|
#define CCI_PMU_CNTR0_IDX 1
|
|
#define CCI_PMU_CNTR_LAST(cci_pmu) (CCI_PMU_CYCLE_CNTR_IDX + cci_pmu->num_events - 1)
|
|
|
|
/*
|
|
* CCI PMU event id is an 8-bit value made of two parts - bits 7:5 for one of 8
|
|
* ports and bits 4:0 are event codes. There are different event codes
|
|
* associated with each port type.
|
|
*
|
|
* Additionally, the range of events associated with the port types changed
|
|
* between Rev0 and Rev1.
|
|
*
|
|
* The constants below define the range of valid codes for each port type for
|
|
* the different revisions and are used to validate the event to be monitored.
|
|
*/
|
|
|
|
#define CCI_REV_R0_SLAVE_PORT_MIN_EV 0x00
|
|
#define CCI_REV_R0_SLAVE_PORT_MAX_EV 0x13
|
|
#define CCI_REV_R0_MASTER_PORT_MIN_EV 0x14
|
|
#define CCI_REV_R0_MASTER_PORT_MAX_EV 0x1a
|
|
|
|
#define CCI_REV_R1_SLAVE_PORT_MIN_EV 0x00
|
|
#define CCI_REV_R1_SLAVE_PORT_MAX_EV 0x14
|
|
#define CCI_REV_R1_MASTER_PORT_MIN_EV 0x00
|
|
#define CCI_REV_R1_MASTER_PORT_MAX_EV 0x11
|
|
|
|
struct pmu_port_event_ranges {
|
|
u8 slave_min;
|
|
u8 slave_max;
|
|
u8 master_min;
|
|
u8 master_max;
|
|
};
|
|
|
|
static struct pmu_port_event_ranges port_event_range[] = {
|
|
[CCI_REV_R0] = {
|
|
.slave_min = CCI_REV_R0_SLAVE_PORT_MIN_EV,
|
|
.slave_max = CCI_REV_R0_SLAVE_PORT_MAX_EV,
|
|
.master_min = CCI_REV_R0_MASTER_PORT_MIN_EV,
|
|
.master_max = CCI_REV_R0_MASTER_PORT_MAX_EV,
|
|
},
|
|
[CCI_REV_R1] = {
|
|
.slave_min = CCI_REV_R1_SLAVE_PORT_MIN_EV,
|
|
.slave_max = CCI_REV_R1_SLAVE_PORT_MAX_EV,
|
|
.master_min = CCI_REV_R1_MASTER_PORT_MIN_EV,
|
|
.master_max = CCI_REV_R1_MASTER_PORT_MAX_EV,
|
|
},
|
|
};
|
|
|
|
/*
|
|
* Export different PMU names for the different revisions so userspace knows
|
|
* because the event ids are different
|
|
*/
|
|
static char *const pmu_names[] = {
|
|
[CCI_REV_R0] = "CCI_400",
|
|
[CCI_REV_R1] = "CCI_400_r1",
|
|
};
|
|
|
|
struct cci_pmu_drv_data {
|
|
void __iomem *base;
|
|
struct arm_pmu *cci_pmu;
|
|
int nr_irqs;
|
|
int irqs[CCI_PMU_MAX_HW_EVENTS];
|
|
unsigned long active_irqs;
|
|
struct perf_event *events[CCI_PMU_MAX_HW_EVENTS];
|
|
unsigned long used_mask[BITS_TO_LONGS(CCI_PMU_MAX_HW_EVENTS)];
|
|
struct pmu_port_event_ranges *port_ranges;
|
|
struct pmu_hw_events hw_events;
|
|
};
|
|
static struct cci_pmu_drv_data *pmu;
|
|
|
|
static bool is_duplicate_irq(int irq, int *irqs, int nr_irqs)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < nr_irqs; i++)
|
|
if (irq == irqs[i])
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
static int probe_cci_revision(void)
|
|
{
|
|
int rev;
|
|
rev = readl_relaxed(cci_ctrl_base + CCI_PID2) & CCI_PID2_REV_MASK;
|
|
rev >>= CCI_PID2_REV_SHIFT;
|
|
|
|
if (rev < CCI_REV_R1_PX)
|
|
return CCI_REV_R0;
|
|
else
|
|
return CCI_REV_R1;
|
|
}
|
|
|
|
static struct pmu_port_event_ranges *port_range_by_rev(void)
|
|
{
|
|
int rev = probe_cci_revision();
|
|
|
|
return &port_event_range[rev];
|
|
}
|
|
|
|
static int pmu_is_valid_slave_event(u8 ev_code)
|
|
{
|
|
return pmu->port_ranges->slave_min <= ev_code &&
|
|
ev_code <= pmu->port_ranges->slave_max;
|
|
}
|
|
|
|
static int pmu_is_valid_master_event(u8 ev_code)
|
|
{
|
|
return pmu->port_ranges->master_min <= ev_code &&
|
|
ev_code <= pmu->port_ranges->master_max;
|
|
}
|
|
|
|
static int pmu_validate_hw_event(u8 hw_event)
|
|
{
|
|
u8 ev_source = CCI_PMU_EVENT_SOURCE(hw_event);
|
|
u8 ev_code = CCI_PMU_EVENT_CODE(hw_event);
|
|
|
|
switch (ev_source) {
|
|
case CCI_PORT_S0:
|
|
case CCI_PORT_S1:
|
|
case CCI_PORT_S2:
|
|
case CCI_PORT_S3:
|
|
case CCI_PORT_S4:
|
|
/* Slave Interface */
|
|
if (pmu_is_valid_slave_event(ev_code))
|
|
return hw_event;
|
|
break;
|
|
case CCI_PORT_M0:
|
|
case CCI_PORT_M1:
|
|
case CCI_PORT_M2:
|
|
/* Master Interface */
|
|
if (pmu_is_valid_master_event(ev_code))
|
|
return hw_event;
|
|
break;
|
|
}
|
|
|
|
return -ENOENT;
|
|
}
|
|
|
|
static int pmu_is_valid_counter(struct arm_pmu *cci_pmu, int idx)
|
|
{
|
|
return CCI_PMU_CYCLE_CNTR_IDX <= idx &&
|
|
idx <= CCI_PMU_CNTR_LAST(cci_pmu);
|
|
}
|
|
|
|
static u32 pmu_read_register(int idx, unsigned int offset)
|
|
{
|
|
return readl_relaxed(pmu->base + CCI_PMU_CNTR_BASE(idx) + offset);
|
|
}
|
|
|
|
static void pmu_write_register(u32 value, int idx, unsigned int offset)
|
|
{
|
|
return writel_relaxed(value, pmu->base + CCI_PMU_CNTR_BASE(idx) + offset);
|
|
}
|
|
|
|
static void pmu_disable_counter(int idx)
|
|
{
|
|
pmu_write_register(0, idx, CCI_PMU_CNTR_CTRL);
|
|
}
|
|
|
|
static void pmu_enable_counter(int idx)
|
|
{
|
|
pmu_write_register(1, idx, CCI_PMU_CNTR_CTRL);
|
|
}
|
|
|
|
static void pmu_set_event(int idx, unsigned long event)
|
|
{
|
|
event &= CCI_PMU_EVENT_MASK;
|
|
pmu_write_register(event, idx, CCI_PMU_EVT_SEL);
|
|
}
|
|
|
|
static u32 pmu_get_max_counters(void)
|
|
{
|
|
u32 n_cnts = (readl_relaxed(cci_ctrl_base + CCI_PMCR) &
|
|
CCI_PMCR_NCNT_MASK) >> CCI_PMCR_NCNT_SHIFT;
|
|
|
|
/* add 1 for cycle counter */
|
|
return n_cnts + 1;
|
|
}
|
|
|
|
static struct pmu_hw_events *pmu_get_hw_events(void)
|
|
{
|
|
return &pmu->hw_events;
|
|
}
|
|
|
|
static int pmu_get_event_idx(struct pmu_hw_events *hw, struct perf_event *event)
|
|
{
|
|
struct arm_pmu *cci_pmu = to_arm_pmu(event->pmu);
|
|
struct hw_perf_event *hw_event = &event->hw;
|
|
unsigned long cci_event = hw_event->config_base & CCI_PMU_EVENT_MASK;
|
|
int idx;
|
|
|
|
if (cci_event == CCI_PMU_CYCLES) {
|
|
if (test_and_set_bit(CCI_PMU_CYCLE_CNTR_IDX, hw->used_mask))
|
|
return -EAGAIN;
|
|
|
|
return CCI_PMU_CYCLE_CNTR_IDX;
|
|
}
|
|
|
|
for (idx = CCI_PMU_CNTR0_IDX; idx <= CCI_PMU_CNTR_LAST(cci_pmu); ++idx)
|
|
if (!test_and_set_bit(idx, hw->used_mask))
|
|
return idx;
|
|
|
|
/* No counters available */
|
|
return -EAGAIN;
|
|
}
|
|
|
|
static int pmu_map_event(struct perf_event *event)
|
|
{
|
|
int mapping;
|
|
u8 config = event->attr.config & CCI_PMU_EVENT_MASK;
|
|
|
|
if (event->attr.type < PERF_TYPE_MAX)
|
|
return -ENOENT;
|
|
|
|
if (config == CCI_PMU_CYCLES)
|
|
mapping = config;
|
|
else
|
|
mapping = pmu_validate_hw_event(config);
|
|
|
|
return mapping;
|
|
}
|
|
|
|
static int pmu_request_irq(struct arm_pmu *cci_pmu, irq_handler_t handler)
|
|
{
|
|
int i;
|
|
struct platform_device *pmu_device = cci_pmu->plat_device;
|
|
|
|
if (unlikely(!pmu_device))
|
|
return -ENODEV;
|
|
|
|
if (pmu->nr_irqs < 1) {
|
|
dev_err(&pmu_device->dev, "no irqs for CCI PMUs defined\n");
|
|
return -ENODEV;
|
|
}
|
|
|
|
/*
|
|
* Register all available CCI PMU interrupts. In the interrupt handler
|
|
* we iterate over the counters checking for interrupt source (the
|
|
* overflowing counter) and clear it.
|
|
*
|
|
* This should allow handling of non-unique interrupt for the counters.
|
|
*/
|
|
for (i = 0; i < pmu->nr_irqs; i++) {
|
|
int err = request_irq(pmu->irqs[i], handler, IRQF_SHARED,
|
|
"arm-cci-pmu", cci_pmu);
|
|
if (err) {
|
|
dev_err(&pmu_device->dev, "unable to request IRQ%d for ARM CCI PMU counters\n",
|
|
pmu->irqs[i]);
|
|
return err;
|
|
}
|
|
|
|
set_bit(i, &pmu->active_irqs);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static irqreturn_t pmu_handle_irq(int irq_num, void *dev)
|
|
{
|
|
unsigned long flags;
|
|
struct arm_pmu *cci_pmu = (struct arm_pmu *)dev;
|
|
struct pmu_hw_events *events = cci_pmu->get_hw_events();
|
|
struct perf_sample_data data;
|
|
struct pt_regs *regs;
|
|
int idx, handled = IRQ_NONE;
|
|
|
|
raw_spin_lock_irqsave(&events->pmu_lock, flags);
|
|
regs = get_irq_regs();
|
|
/*
|
|
* Iterate over counters and update the corresponding perf events.
|
|
* This should work regardless of whether we have per-counter overflow
|
|
* interrupt or a combined overflow interrupt.
|
|
*/
|
|
for (idx = CCI_PMU_CYCLE_CNTR_IDX; idx <= CCI_PMU_CNTR_LAST(cci_pmu); idx++) {
|
|
struct perf_event *event = events->events[idx];
|
|
struct hw_perf_event *hw_counter;
|
|
|
|
if (!event)
|
|
continue;
|
|
|
|
hw_counter = &event->hw;
|
|
|
|
/* Did this counter overflow? */
|
|
if (!(pmu_read_register(idx, CCI_PMU_OVRFLW) &
|
|
CCI_PMU_OVRFLW_FLAG))
|
|
continue;
|
|
|
|
pmu_write_register(CCI_PMU_OVRFLW_FLAG, idx, CCI_PMU_OVRFLW);
|
|
|
|
handled = IRQ_HANDLED;
|
|
|
|
armpmu_event_update(event);
|
|
perf_sample_data_init(&data, 0, hw_counter->last_period);
|
|
if (!armpmu_event_set_period(event))
|
|
continue;
|
|
|
|
if (perf_event_overflow(event, &data, regs))
|
|
cci_pmu->disable(event);
|
|
}
|
|
raw_spin_unlock_irqrestore(&events->pmu_lock, flags);
|
|
|
|
return IRQ_RETVAL(handled);
|
|
}
|
|
|
|
static void pmu_free_irq(struct arm_pmu *cci_pmu)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < pmu->nr_irqs; i++) {
|
|
if (!test_and_clear_bit(i, &pmu->active_irqs))
|
|
continue;
|
|
|
|
free_irq(pmu->irqs[i], cci_pmu);
|
|
}
|
|
}
|
|
|
|
static void pmu_enable_event(struct perf_event *event)
|
|
{
|
|
unsigned long flags;
|
|
struct arm_pmu *cci_pmu = to_arm_pmu(event->pmu);
|
|
struct pmu_hw_events *events = cci_pmu->get_hw_events();
|
|
struct hw_perf_event *hw_counter = &event->hw;
|
|
int idx = hw_counter->idx;
|
|
|
|
if (unlikely(!pmu_is_valid_counter(cci_pmu, idx))) {
|
|
dev_err(&cci_pmu->plat_device->dev, "Invalid CCI PMU counter %d\n", idx);
|
|
return;
|
|
}
|
|
|
|
raw_spin_lock_irqsave(&events->pmu_lock, flags);
|
|
|
|
/* Configure the event to count, unless you are counting cycles */
|
|
if (idx != CCI_PMU_CYCLE_CNTR_IDX)
|
|
pmu_set_event(idx, hw_counter->config_base);
|
|
|
|
pmu_enable_counter(idx);
|
|
|
|
raw_spin_unlock_irqrestore(&events->pmu_lock, flags);
|
|
}
|
|
|
|
static void pmu_disable_event(struct perf_event *event)
|
|
{
|
|
struct arm_pmu *cci_pmu = to_arm_pmu(event->pmu);
|
|
struct hw_perf_event *hw_counter = &event->hw;
|
|
int idx = hw_counter->idx;
|
|
|
|
if (unlikely(!pmu_is_valid_counter(cci_pmu, idx))) {
|
|
dev_err(&cci_pmu->plat_device->dev, "Invalid CCI PMU counter %d\n", idx);
|
|
return;
|
|
}
|
|
|
|
pmu_disable_counter(idx);
|
|
}
|
|
|
|
static void pmu_start(struct arm_pmu *cci_pmu)
|
|
{
|
|
u32 val;
|
|
unsigned long flags;
|
|
struct pmu_hw_events *events = cci_pmu->get_hw_events();
|
|
|
|
raw_spin_lock_irqsave(&events->pmu_lock, flags);
|
|
|
|
/* Enable all the PMU counters. */
|
|
val = readl_relaxed(cci_ctrl_base + CCI_PMCR) | CCI_PMCR_CEN;
|
|
writel(val, cci_ctrl_base + CCI_PMCR);
|
|
|
|
raw_spin_unlock_irqrestore(&events->pmu_lock, flags);
|
|
}
|
|
|
|
static void pmu_stop(struct arm_pmu *cci_pmu)
|
|
{
|
|
u32 val;
|
|
unsigned long flags;
|
|
struct pmu_hw_events *events = cci_pmu->get_hw_events();
|
|
|
|
raw_spin_lock_irqsave(&events->pmu_lock, flags);
|
|
|
|
/* Disable all the PMU counters. */
|
|
val = readl_relaxed(cci_ctrl_base + CCI_PMCR) & ~CCI_PMCR_CEN;
|
|
writel(val, cci_ctrl_base + CCI_PMCR);
|
|
|
|
raw_spin_unlock_irqrestore(&events->pmu_lock, flags);
|
|
}
|
|
|
|
static u32 pmu_read_counter(struct perf_event *event)
|
|
{
|
|
struct arm_pmu *cci_pmu = to_arm_pmu(event->pmu);
|
|
struct hw_perf_event *hw_counter = &event->hw;
|
|
int idx = hw_counter->idx;
|
|
u32 value;
|
|
|
|
if (unlikely(!pmu_is_valid_counter(cci_pmu, idx))) {
|
|
dev_err(&cci_pmu->plat_device->dev, "Invalid CCI PMU counter %d\n", idx);
|
|
return 0;
|
|
}
|
|
value = pmu_read_register(idx, CCI_PMU_CNTR);
|
|
|
|
return value;
|
|
}
|
|
|
|
static void pmu_write_counter(struct perf_event *event, u32 value)
|
|
{
|
|
struct arm_pmu *cci_pmu = to_arm_pmu(event->pmu);
|
|
struct hw_perf_event *hw_counter = &event->hw;
|
|
int idx = hw_counter->idx;
|
|
|
|
if (unlikely(!pmu_is_valid_counter(cci_pmu, idx)))
|
|
dev_err(&cci_pmu->plat_device->dev, "Invalid CCI PMU counter %d\n", idx);
|
|
else
|
|
pmu_write_register(value, idx, CCI_PMU_CNTR);
|
|
}
|
|
|
|
static int cci_pmu_init(struct arm_pmu *cci_pmu, struct platform_device *pdev)
|
|
{
|
|
*cci_pmu = (struct arm_pmu){
|
|
.name = pmu_names[probe_cci_revision()],
|
|
.max_period = (1LLU << 32) - 1,
|
|
.get_hw_events = pmu_get_hw_events,
|
|
.get_event_idx = pmu_get_event_idx,
|
|
.map_event = pmu_map_event,
|
|
.request_irq = pmu_request_irq,
|
|
.handle_irq = pmu_handle_irq,
|
|
.free_irq = pmu_free_irq,
|
|
.enable = pmu_enable_event,
|
|
.disable = pmu_disable_event,
|
|
.start = pmu_start,
|
|
.stop = pmu_stop,
|
|
.read_counter = pmu_read_counter,
|
|
.write_counter = pmu_write_counter,
|
|
};
|
|
|
|
cci_pmu->plat_device = pdev;
|
|
cci_pmu->num_events = pmu_get_max_counters();
|
|
|
|
return armpmu_register(cci_pmu, -1);
|
|
}
|
|
|
|
static const struct of_device_id arm_cci_pmu_matches[] = {
|
|
{
|
|
.compatible = "arm,cci-400-pmu",
|
|
},
|
|
{},
|
|
};
|
|
|
|
static int cci_pmu_probe(struct platform_device *pdev)
|
|
{
|
|
struct resource *res;
|
|
int i, ret, irq;
|
|
|
|
pmu = devm_kzalloc(&pdev->dev, sizeof(*pmu), GFP_KERNEL);
|
|
if (!pmu)
|
|
return -ENOMEM;
|
|
|
|
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
|
|
pmu->base = devm_ioremap_resource(&pdev->dev, res);
|
|
if (IS_ERR(pmu->base))
|
|
return -ENOMEM;
|
|
|
|
/*
|
|
* CCI PMU has 5 overflow signals - one per counter; but some may be tied
|
|
* together to a common interrupt.
|
|
*/
|
|
pmu->nr_irqs = 0;
|
|
for (i = 0; i < CCI_PMU_MAX_HW_EVENTS; i++) {
|
|
irq = platform_get_irq(pdev, i);
|
|
if (irq < 0)
|
|
break;
|
|
|
|
if (is_duplicate_irq(irq, pmu->irqs, pmu->nr_irqs))
|
|
continue;
|
|
|
|
pmu->irqs[pmu->nr_irqs++] = irq;
|
|
}
|
|
|
|
/*
|
|
* Ensure that the device tree has as many interrupts as the number
|
|
* of counters.
|
|
*/
|
|
if (i < CCI_PMU_MAX_HW_EVENTS) {
|
|
dev_warn(&pdev->dev, "In-correct number of interrupts: %d, should be %d\n",
|
|
i, CCI_PMU_MAX_HW_EVENTS);
|
|
return -EINVAL;
|
|
}
|
|
|
|
pmu->port_ranges = port_range_by_rev();
|
|
if (!pmu->port_ranges) {
|
|
dev_warn(&pdev->dev, "CCI PMU version not supported\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
pmu->cci_pmu = devm_kzalloc(&pdev->dev, sizeof(*(pmu->cci_pmu)), GFP_KERNEL);
|
|
if (!pmu->cci_pmu)
|
|
return -ENOMEM;
|
|
|
|
pmu->hw_events.events = pmu->events;
|
|
pmu->hw_events.used_mask = pmu->used_mask;
|
|
raw_spin_lock_init(&pmu->hw_events.pmu_lock);
|
|
|
|
ret = cci_pmu_init(pmu->cci_pmu, pdev);
|
|
if (ret)
|
|
return ret;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int cci_platform_probe(struct platform_device *pdev)
|
|
{
|
|
if (!cci_probed())
|
|
return -ENODEV;
|
|
|
|
return of_platform_populate(pdev->dev.of_node, NULL, NULL, &pdev->dev);
|
|
}
|
|
|
|
#endif /* CONFIG_HW_PERF_EVENTS */
|
|
|
|
struct cpu_port {
|
|
u64 mpidr;
|
|
u32 port;
|
|
};
|
|
|
|
/*
|
|
* Use the port MSB as valid flag, shift can be made dynamic
|
|
* by computing number of bits required for port indexes.
|
|
* Code disabling CCI cpu ports runs with D-cache invalidated
|
|
* and SCTLR bit clear so data accesses must be kept to a minimum
|
|
* to improve performance; for now shift is left static to
|
|
* avoid one more data access while disabling the CCI port.
|
|
*/
|
|
#define PORT_VALID_SHIFT 31
|
|
#define PORT_VALID (0x1 << PORT_VALID_SHIFT)
|
|
|
|
static inline void init_cpu_port(struct cpu_port *port, u32 index, u64 mpidr)
|
|
{
|
|
port->port = PORT_VALID | index;
|
|
port->mpidr = mpidr;
|
|
}
|
|
|
|
static inline bool cpu_port_is_valid(struct cpu_port *port)
|
|
{
|
|
return !!(port->port & PORT_VALID);
|
|
}
|
|
|
|
static inline bool cpu_port_match(struct cpu_port *port, u64 mpidr)
|
|
{
|
|
return port->mpidr == (mpidr & MPIDR_HWID_BITMASK);
|
|
}
|
|
|
|
static struct cpu_port cpu_port[NR_CPUS];
|
|
|
|
/**
|
|
* __cci_ace_get_port - Function to retrieve the port index connected to
|
|
* a cpu or device.
|
|
*
|
|
* @dn: device node of the device to look-up
|
|
* @type: port type
|
|
*
|
|
* Return value:
|
|
* - CCI port index if success
|
|
* - -ENODEV if failure
|
|
*/
|
|
static int __cci_ace_get_port(struct device_node *dn, int type)
|
|
{
|
|
int i;
|
|
bool ace_match;
|
|
struct device_node *cci_portn;
|
|
|
|
cci_portn = of_parse_phandle(dn, "cci-control-port", 0);
|
|
for (i = 0; i < nb_cci_ports; i++) {
|
|
ace_match = ports[i].type == type;
|
|
if (ace_match && cci_portn == ports[i].dn)
|
|
return i;
|
|
}
|
|
return -ENODEV;
|
|
}
|
|
|
|
int cci_ace_get_port(struct device_node *dn)
|
|
{
|
|
return __cci_ace_get_port(dn, ACE_LITE_PORT);
|
|
}
|
|
EXPORT_SYMBOL_GPL(cci_ace_get_port);
|
|
|
|
static void cci_ace_init_ports(void)
|
|
{
|
|
int port, cpu;
|
|
struct device_node *cpun;
|
|
|
|
/*
|
|
* Port index look-up speeds up the function disabling ports by CPU,
|
|
* since the logical to port index mapping is done once and does
|
|
* not change after system boot.
|
|
* The stashed index array is initialized for all possible CPUs
|
|
* at probe time.
|
|
*/
|
|
for_each_possible_cpu(cpu) {
|
|
/* too early to use cpu->of_node */
|
|
cpun = of_get_cpu_node(cpu, NULL);
|
|
|
|
if (WARN(!cpun, "Missing cpu device node\n"))
|
|
continue;
|
|
|
|
port = __cci_ace_get_port(cpun, ACE_PORT);
|
|
if (port < 0)
|
|
continue;
|
|
|
|
init_cpu_port(&cpu_port[cpu], port, cpu_logical_map(cpu));
|
|
}
|
|
|
|
for_each_possible_cpu(cpu) {
|
|
WARN(!cpu_port_is_valid(&cpu_port[cpu]),
|
|
"CPU %u does not have an associated CCI port\n",
|
|
cpu);
|
|
}
|
|
}
|
|
/*
|
|
* Functions to enable/disable a CCI interconnect slave port
|
|
*
|
|
* They are called by low-level power management code to disable slave
|
|
* interfaces snoops and DVM broadcast.
|
|
* Since they may execute with cache data allocation disabled and
|
|
* after the caches have been cleaned and invalidated the functions provide
|
|
* no explicit locking since they may run with D-cache disabled, so normal
|
|
* cacheable kernel locks based on ldrex/strex may not work.
|
|
* Locking has to be provided by BSP implementations to ensure proper
|
|
* operations.
|
|
*/
|
|
|
|
/**
|
|
* cci_port_control() - function to control a CCI port
|
|
*
|
|
* @port: index of the port to setup
|
|
* @enable: if true enables the port, if false disables it
|
|
*/
|
|
static void notrace cci_port_control(unsigned int port, bool enable)
|
|
{
|
|
void __iomem *base = ports[port].base;
|
|
|
|
writel_relaxed(enable ? CCI_ENABLE_REQ : 0, base + CCI_PORT_CTRL);
|
|
/*
|
|
* This function is called from power down procedures
|
|
* and must not execute any instruction that might
|
|
* cause the processor to be put in a quiescent state
|
|
* (eg wfi). Hence, cpu_relax() can not be added to this
|
|
* read loop to optimize power, since it might hide possibly
|
|
* disruptive operations.
|
|
*/
|
|
while (readl_relaxed(cci_ctrl_base + CCI_CTRL_STATUS) & 0x1)
|
|
;
|
|
}
|
|
|
|
/**
|
|
* cci_disable_port_by_cpu() - function to disable a CCI port by CPU
|
|
* reference
|
|
*
|
|
* @mpidr: mpidr of the CPU whose CCI port should be disabled
|
|
*
|
|
* Disabling a CCI port for a CPU implies disabling the CCI port
|
|
* controlling that CPU cluster. Code disabling CPU CCI ports
|
|
* must make sure that the CPU running the code is the last active CPU
|
|
* in the cluster ie all other CPUs are quiescent in a low power state.
|
|
*
|
|
* Return:
|
|
* 0 on success
|
|
* -ENODEV on port look-up failure
|
|
*/
|
|
int notrace cci_disable_port_by_cpu(u64 mpidr)
|
|
{
|
|
int cpu;
|
|
bool is_valid;
|
|
for (cpu = 0; cpu < nr_cpu_ids; cpu++) {
|
|
is_valid = cpu_port_is_valid(&cpu_port[cpu]);
|
|
if (is_valid && cpu_port_match(&cpu_port[cpu], mpidr)) {
|
|
cci_port_control(cpu_port[cpu].port, false);
|
|
return 0;
|
|
}
|
|
}
|
|
return -ENODEV;
|
|
}
|
|
EXPORT_SYMBOL_GPL(cci_disable_port_by_cpu);
|
|
|
|
/**
|
|
* cci_enable_port_for_self() - enable a CCI port for calling CPU
|
|
*
|
|
* Enabling a CCI port for the calling CPU implies enabling the CCI
|
|
* port controlling that CPU's cluster. Caller must make sure that the
|
|
* CPU running the code is the first active CPU in the cluster and all
|
|
* other CPUs are quiescent in a low power state or waiting for this CPU
|
|
* to complete the CCI initialization.
|
|
*
|
|
* Because this is called when the MMU is still off and with no stack,
|
|
* the code must be position independent and ideally rely on callee
|
|
* clobbered registers only. To achieve this we must code this function
|
|
* entirely in assembler.
|
|
*
|
|
* On success this returns with the proper CCI port enabled. In case of
|
|
* any failure this never returns as the inability to enable the CCI is
|
|
* fatal and there is no possible recovery at this stage.
|
|
*/
|
|
asmlinkage void __naked cci_enable_port_for_self(void)
|
|
{
|
|
asm volatile ("\n"
|
|
" .arch armv7-a\n"
|
|
" mrc p15, 0, r0, c0, c0, 5 @ get MPIDR value \n"
|
|
" and r0, r0, #"__stringify(MPIDR_HWID_BITMASK)" \n"
|
|
" adr r1, 5f \n"
|
|
" ldr r2, [r1] \n"
|
|
" add r1, r1, r2 @ &cpu_port \n"
|
|
" add ip, r1, %[sizeof_cpu_port] \n"
|
|
|
|
/* Loop over the cpu_port array looking for a matching MPIDR */
|
|
"1: ldr r2, [r1, %[offsetof_cpu_port_mpidr_lsb]] \n"
|
|
" cmp r2, r0 @ compare MPIDR \n"
|
|
" bne 2f \n"
|
|
|
|
/* Found a match, now test port validity */
|
|
" ldr r3, [r1, %[offsetof_cpu_port_port]] \n"
|
|
" tst r3, #"__stringify(PORT_VALID)" \n"
|
|
" bne 3f \n"
|
|
|
|
/* no match, loop with the next cpu_port entry */
|
|
"2: add r1, r1, %[sizeof_struct_cpu_port] \n"
|
|
" cmp r1, ip @ done? \n"
|
|
" blo 1b \n"
|
|
|
|
/* CCI port not found -- cheaply try to stall this CPU */
|
|
"cci_port_not_found: \n"
|
|
" wfi \n"
|
|
" wfe \n"
|
|
" b cci_port_not_found \n"
|
|
|
|
/* Use matched port index to look up the corresponding ports entry */
|
|
"3: bic r3, r3, #"__stringify(PORT_VALID)" \n"
|
|
" adr r0, 6f \n"
|
|
" ldmia r0, {r1, r2} \n"
|
|
" sub r1, r1, r0 @ virt - phys \n"
|
|
" ldr r0, [r0, r2] @ *(&ports) \n"
|
|
" mov r2, %[sizeof_struct_ace_port] \n"
|
|
" mla r0, r2, r3, r0 @ &ports[index] \n"
|
|
" sub r0, r0, r1 @ virt_to_phys() \n"
|
|
|
|
/* Enable the CCI port */
|
|
" ldr r0, [r0, %[offsetof_port_phys]] \n"
|
|
" mov r3, %[cci_enable_req]\n"
|
|
" str r3, [r0, #"__stringify(CCI_PORT_CTRL)"] \n"
|
|
|
|
/* poll the status reg for completion */
|
|
" adr r1, 7f \n"
|
|
" ldr r0, [r1] \n"
|
|
" ldr r0, [r0, r1] @ cci_ctrl_base \n"
|
|
"4: ldr r1, [r0, #"__stringify(CCI_CTRL_STATUS)"] \n"
|
|
" tst r1, %[cci_control_status_bits] \n"
|
|
" bne 4b \n"
|
|
|
|
" mov r0, #0 \n"
|
|
" bx lr \n"
|
|
|
|
" .align 2 \n"
|
|
"5: .word cpu_port - . \n"
|
|
"6: .word . \n"
|
|
" .word ports - 6b \n"
|
|
"7: .word cci_ctrl_phys - . \n"
|
|
: :
|
|
[sizeof_cpu_port] "i" (sizeof(cpu_port)),
|
|
[cci_enable_req] "i" cpu_to_le32(CCI_ENABLE_REQ),
|
|
[cci_control_status_bits] "i" cpu_to_le32(1),
|
|
#ifndef __ARMEB__
|
|
[offsetof_cpu_port_mpidr_lsb] "i" (offsetof(struct cpu_port, mpidr)),
|
|
#else
|
|
[offsetof_cpu_port_mpidr_lsb] "i" (offsetof(struct cpu_port, mpidr)+4),
|
|
#endif
|
|
[offsetof_cpu_port_port] "i" (offsetof(struct cpu_port, port)),
|
|
[sizeof_struct_cpu_port] "i" (sizeof(struct cpu_port)),
|
|
[sizeof_struct_ace_port] "i" (sizeof(struct cci_ace_port)),
|
|
[offsetof_port_phys] "i" (offsetof(struct cci_ace_port, phys)) );
|
|
|
|
unreachable();
|
|
}
|
|
|
|
/**
|
|
* __cci_control_port_by_device() - function to control a CCI port by device
|
|
* reference
|
|
*
|
|
* @dn: device node pointer of the device whose CCI port should be
|
|
* controlled
|
|
* @enable: if true enables the port, if false disables it
|
|
*
|
|
* Return:
|
|
* 0 on success
|
|
* -ENODEV on port look-up failure
|
|
*/
|
|
int notrace __cci_control_port_by_device(struct device_node *dn, bool enable)
|
|
{
|
|
int port;
|
|
|
|
if (!dn)
|
|
return -ENODEV;
|
|
|
|
port = __cci_ace_get_port(dn, ACE_LITE_PORT);
|
|
if (WARN_ONCE(port < 0, "node %s ACE lite port look-up failure\n",
|
|
dn->full_name))
|
|
return -ENODEV;
|
|
cci_port_control(port, enable);
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(__cci_control_port_by_device);
|
|
|
|
/**
|
|
* __cci_control_port_by_index() - function to control a CCI port by port index
|
|
*
|
|
* @port: port index previously retrieved with cci_ace_get_port()
|
|
* @enable: if true enables the port, if false disables it
|
|
*
|
|
* Return:
|
|
* 0 on success
|
|
* -ENODEV on port index out of range
|
|
* -EPERM if operation carried out on an ACE PORT
|
|
*/
|
|
int notrace __cci_control_port_by_index(u32 port, bool enable)
|
|
{
|
|
if (port >= nb_cci_ports || ports[port].type == ACE_INVALID_PORT)
|
|
return -ENODEV;
|
|
/*
|
|
* CCI control for ports connected to CPUS is extremely fragile
|
|
* and must be made to go through a specific and controlled
|
|
* interface (ie cci_disable_port_by_cpu(); control by general purpose
|
|
* indexing is therefore disabled for ACE ports.
|
|
*/
|
|
if (ports[port].type == ACE_PORT)
|
|
return -EPERM;
|
|
|
|
cci_port_control(port, enable);
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(__cci_control_port_by_index);
|
|
|
|
static const struct cci_nb_ports cci400_ports = {
|
|
.nb_ace = 2,
|
|
.nb_ace_lite = 3
|
|
};
|
|
|
|
static const struct of_device_id arm_cci_matches[] = {
|
|
{.compatible = "arm,cci-400", .data = &cci400_ports },
|
|
{},
|
|
};
|
|
|
|
static const struct of_device_id arm_cci_ctrl_if_matches[] = {
|
|
{.compatible = "arm,cci-400-ctrl-if", },
|
|
{},
|
|
};
|
|
|
|
static int cci_probe(void)
|
|
{
|
|
struct cci_nb_ports const *cci_config;
|
|
int ret, i, nb_ace = 0, nb_ace_lite = 0;
|
|
struct device_node *np, *cp;
|
|
struct resource res;
|
|
const char *match_str;
|
|
bool is_ace;
|
|
|
|
np = of_find_matching_node(NULL, arm_cci_matches);
|
|
if (!np)
|
|
return -ENODEV;
|
|
|
|
cci_config = of_match_node(arm_cci_matches, np)->data;
|
|
if (!cci_config)
|
|
return -ENODEV;
|
|
|
|
nb_cci_ports = cci_config->nb_ace + cci_config->nb_ace_lite;
|
|
|
|
ports = kcalloc(nb_cci_ports, sizeof(*ports), GFP_KERNEL);
|
|
if (!ports)
|
|
return -ENOMEM;
|
|
|
|
ret = of_address_to_resource(np, 0, &res);
|
|
if (!ret) {
|
|
cci_ctrl_base = ioremap(res.start, resource_size(&res));
|
|
cci_ctrl_phys = res.start;
|
|
}
|
|
if (ret || !cci_ctrl_base) {
|
|
WARN(1, "unable to ioremap CCI ctrl\n");
|
|
ret = -ENXIO;
|
|
goto memalloc_err;
|
|
}
|
|
|
|
for_each_child_of_node(np, cp) {
|
|
if (!of_match_node(arm_cci_ctrl_if_matches, cp))
|
|
continue;
|
|
|
|
i = nb_ace + nb_ace_lite;
|
|
|
|
if (i >= nb_cci_ports)
|
|
break;
|
|
|
|
if (of_property_read_string(cp, "interface-type",
|
|
&match_str)) {
|
|
WARN(1, "node %s missing interface-type property\n",
|
|
cp->full_name);
|
|
continue;
|
|
}
|
|
is_ace = strcmp(match_str, "ace") == 0;
|
|
if (!is_ace && strcmp(match_str, "ace-lite")) {
|
|
WARN(1, "node %s containing invalid interface-type property, skipping it\n",
|
|
cp->full_name);
|
|
continue;
|
|
}
|
|
|
|
ret = of_address_to_resource(cp, 0, &res);
|
|
if (!ret) {
|
|
ports[i].base = ioremap(res.start, resource_size(&res));
|
|
ports[i].phys = res.start;
|
|
}
|
|
if (ret || !ports[i].base) {
|
|
WARN(1, "unable to ioremap CCI port %d\n", i);
|
|
continue;
|
|
}
|
|
|
|
if (is_ace) {
|
|
if (WARN_ON(nb_ace >= cci_config->nb_ace))
|
|
continue;
|
|
ports[i].type = ACE_PORT;
|
|
++nb_ace;
|
|
} else {
|
|
if (WARN_ON(nb_ace_lite >= cci_config->nb_ace_lite))
|
|
continue;
|
|
ports[i].type = ACE_LITE_PORT;
|
|
++nb_ace_lite;
|
|
}
|
|
ports[i].dn = cp;
|
|
}
|
|
|
|
/* initialize a stashed array of ACE ports to speed-up look-up */
|
|
cci_ace_init_ports();
|
|
|
|
/*
|
|
* Multi-cluster systems may need this data when non-coherent, during
|
|
* cluster power-up/power-down. Make sure it reaches main memory.
|
|
*/
|
|
sync_cache_w(&cci_ctrl_base);
|
|
sync_cache_w(&cci_ctrl_phys);
|
|
sync_cache_w(&ports);
|
|
sync_cache_w(&cpu_port);
|
|
__sync_cache_range_w(ports, sizeof(*ports) * nb_cci_ports);
|
|
pr_info("ARM CCI driver probed\n");
|
|
return 0;
|
|
|
|
memalloc_err:
|
|
|
|
kfree(ports);
|
|
return ret;
|
|
}
|
|
|
|
static int cci_init_status = -EAGAIN;
|
|
static DEFINE_MUTEX(cci_probing);
|
|
|
|
static int cci_init(void)
|
|
{
|
|
if (cci_init_status != -EAGAIN)
|
|
return cci_init_status;
|
|
|
|
mutex_lock(&cci_probing);
|
|
if (cci_init_status == -EAGAIN)
|
|
cci_init_status = cci_probe();
|
|
mutex_unlock(&cci_probing);
|
|
return cci_init_status;
|
|
}
|
|
|
|
#ifdef CONFIG_HW_PERF_EVENTS
|
|
static struct platform_driver cci_pmu_driver = {
|
|
.driver = {
|
|
.name = DRIVER_NAME_PMU,
|
|
.of_match_table = arm_cci_pmu_matches,
|
|
},
|
|
.probe = cci_pmu_probe,
|
|
};
|
|
|
|
static struct platform_driver cci_platform_driver = {
|
|
.driver = {
|
|
.name = DRIVER_NAME,
|
|
.of_match_table = arm_cci_matches,
|
|
},
|
|
.probe = cci_platform_probe,
|
|
};
|
|
|
|
static int __init cci_platform_init(void)
|
|
{
|
|
int ret;
|
|
|
|
ret = platform_driver_register(&cci_pmu_driver);
|
|
if (ret)
|
|
return ret;
|
|
|
|
return platform_driver_register(&cci_platform_driver);
|
|
}
|
|
|
|
#else
|
|
|
|
static int __init cci_platform_init(void)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
#endif
|
|
/*
|
|
* To sort out early init calls ordering a helper function is provided to
|
|
* check if the CCI driver has beed initialized. Function check if the driver
|
|
* has been initialized, if not it calls the init function that probes
|
|
* the driver and updates the return value.
|
|
*/
|
|
bool cci_probed(void)
|
|
{
|
|
return cci_init() == 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(cci_probed);
|
|
|
|
early_initcall(cci_init);
|
|
core_initcall(cci_platform_init);
|
|
MODULE_LICENSE("GPL");
|
|
MODULE_DESCRIPTION("ARM CCI support");
|