android_kernel_samsung_hero.../drivers/regulator/qpnp-regulator.c
2016-08-17 16:41:52 +08:00

2170 lines
68 KiB
C

/*
* Copyright (c) 2012-2015, The Linux Foundation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 and
* only version 2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#define pr_fmt(fmt) "%s: " fmt, __func__
#include <linux/module.h>
#include <linux/delay.h>
#include <linux/err.h>
#include <linux/string.h>
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/bitops.h>
#include <linux/slab.h>
#include <linux/spmi.h>
#include <linux/of.h>
#include <linux/of_device.h>
#include <linux/platform_device.h>
#include <linux/ktime.h>
#include <linux/regulator/driver.h>
#include <linux/regulator/of_regulator.h>
#include <linux/regulator/qpnp-regulator.h>
/* Debug Flag Definitions */
enum {
QPNP_VREG_DEBUG_REQUEST = BIT(0), /* Show requests */
QPNP_VREG_DEBUG_DUPLICATE = BIT(1), /* Show duplicate requests */
QPNP_VREG_DEBUG_INIT = BIT(2), /* Show state after probe */
QPNP_VREG_DEBUG_WRITES = BIT(3), /* Show SPMI writes */
QPNP_VREG_DEBUG_READS = BIT(4), /* Show SPMI reads */
QPNP_VREG_DEBUG_OCP = BIT(5), /* Show VS OCP IRQ events */
};
static int qpnp_vreg_debug_mask;
module_param_named(
debug_mask, qpnp_vreg_debug_mask, int, S_IRUSR | S_IWUSR
);
#define vreg_err(vreg, fmt, ...) \
pr_err("%s: " fmt, vreg->rdesc.name, ##__VA_ARGS__)
/* These types correspond to unique register layouts. */
enum qpnp_regulator_logical_type {
QPNP_REGULATOR_LOGICAL_TYPE_SMPS,
QPNP_REGULATOR_LOGICAL_TYPE_LDO,
QPNP_REGULATOR_LOGICAL_TYPE_VS,
QPNP_REGULATOR_LOGICAL_TYPE_BOOST,
QPNP_REGULATOR_LOGICAL_TYPE_FTSMPS,
QPNP_REGULATOR_LOGICAL_TYPE_BOOST_BYP,
QPNP_REGULATOR_LOGICAL_TYPE_LN_LDO,
QPNP_REGULATOR_LOGICAL_TYPE_ULT_LO_SMPS,
QPNP_REGULATOR_LOGICAL_TYPE_ULT_HO_SMPS,
QPNP_REGULATOR_LOGICAL_TYPE_ULT_LDO,
};
enum qpnp_regulator_type {
QPNP_REGULATOR_TYPE_BUCK = 0x03,
QPNP_REGULATOR_TYPE_LDO = 0x04,
QPNP_REGULATOR_TYPE_VS = 0x05,
QPNP_REGULATOR_TYPE_BOOST = 0x1B,
QPNP_REGULATOR_TYPE_FTS = 0x1C,
QPNP_REGULATOR_TYPE_BOOST_BYP = 0x1F,
QPNP_REGULATOR_TYPE_ULT_LDO = 0x21,
QPNP_REGULATOR_TYPE_ULT_BUCK = 0x22,
};
enum qpnp_regulator_subtype {
QPNP_REGULATOR_SUBTYPE_GP_CTL = 0x08,
QPNP_REGULATOR_SUBTYPE_RF_CTL = 0x09,
QPNP_REGULATOR_SUBTYPE_N50 = 0x01,
QPNP_REGULATOR_SUBTYPE_N150 = 0x02,
QPNP_REGULATOR_SUBTYPE_N300 = 0x03,
QPNP_REGULATOR_SUBTYPE_N600 = 0x04,
QPNP_REGULATOR_SUBTYPE_N1200 = 0x05,
QPNP_REGULATOR_SUBTYPE_N600_ST = 0x06,
QPNP_REGULATOR_SUBTYPE_N1200_ST = 0x07,
QPNP_REGULATOR_SUBTYPE_N300_ST = 0x15,
QPNP_REGULATOR_SUBTYPE_P50 = 0x08,
QPNP_REGULATOR_SUBTYPE_P150 = 0x09,
QPNP_REGULATOR_SUBTYPE_P300 = 0x0A,
QPNP_REGULATOR_SUBTYPE_P600 = 0x0B,
QPNP_REGULATOR_SUBTYPE_P1200 = 0x0C,
QPNP_REGULATOR_SUBTYPE_LN = 0x10,
QPNP_REGULATOR_SUBTYPE_LV_P50 = 0x28,
QPNP_REGULATOR_SUBTYPE_LV_P150 = 0x29,
QPNP_REGULATOR_SUBTYPE_LV_P300 = 0x2A,
QPNP_REGULATOR_SUBTYPE_LV_P600 = 0x2B,
QPNP_REGULATOR_SUBTYPE_LV_P1200 = 0x2C,
QPNP_REGULATOR_SUBTYPE_LV100 = 0x01,
QPNP_REGULATOR_SUBTYPE_LV300 = 0x02,
QPNP_REGULATOR_SUBTYPE_MV300 = 0x08,
QPNP_REGULATOR_SUBTYPE_MV500 = 0x09,
QPNP_REGULATOR_SUBTYPE_HDMI = 0x10,
QPNP_REGULATOR_SUBTYPE_OTG = 0x11,
QPNP_REGULATOR_SUBTYPE_5V_BOOST = 0x01,
QPNP_REGULATOR_SUBTYPE_FTS_CTL = 0x08,
QPNP_REGULATOR_SUBTYPE_FTS2p5_CTL = 0x09,
QPNP_REGULATOR_SUBTYPE_BB_2A = 0x01,
QPNP_REGULATOR_SUBTYPE_ULT_HF_CTL1 = 0x0D,
QPNP_REGULATOR_SUBTYPE_ULT_HF_CTL2 = 0x0E,
QPNP_REGULATOR_SUBTYPE_ULT_HF_CTL3 = 0x0F,
QPNP_REGULATOR_SUBTYPE_ULT_HF_CTL4 = 0x10,
};
enum qpnp_common_regulator_registers {
QPNP_COMMON_REG_DIG_MAJOR_REV = 0x01,
QPNP_COMMON_REG_TYPE = 0x04,
QPNP_COMMON_REG_SUBTYPE = 0x05,
QPNP_COMMON_REG_VOLTAGE_RANGE = 0x40,
QPNP_COMMON_REG_VOLTAGE_SET = 0x41,
QPNP_COMMON_REG_MODE = 0x45,
QPNP_COMMON_REG_ENABLE = 0x46,
QPNP_COMMON_REG_PULL_DOWN = 0x48,
QPNP_COMMON_REG_STEP_CTRL = 0x61,
};
enum qpnp_ldo_registers {
QPNP_LDO_REG_SOFT_START = 0x4C,
};
enum qpnp_vs_registers {
QPNP_VS_REG_OCP = 0x4A,
QPNP_VS_REG_SOFT_START = 0x4C,
};
enum qpnp_boost_registers {
QPNP_BOOST_REG_CURRENT_LIMIT = 0x4A,
};
enum qpnp_boost_byp_registers {
QPNP_BOOST_BYP_REG_CURRENT_LIMIT = 0x4B,
};
/* Used for indexing into ctrl_reg. These are offets from 0x40 */
enum qpnp_common_control_register_index {
QPNP_COMMON_IDX_VOLTAGE_RANGE = 0,
QPNP_COMMON_IDX_VOLTAGE_SET = 1,
QPNP_COMMON_IDX_MODE = 5,
QPNP_COMMON_IDX_ENABLE = 6,
};
/* Common regulator control register layout */
#define QPNP_COMMON_ENABLE_MASK 0x80
#define QPNP_COMMON_ENABLE 0x80
#define QPNP_COMMON_DISABLE 0x00
#define QPNP_COMMON_ENABLE_FOLLOW_HW_EN3_MASK 0x08
#define QPNP_COMMON_ENABLE_FOLLOW_HW_EN2_MASK 0x04
#define QPNP_COMMON_ENABLE_FOLLOW_HW_EN1_MASK 0x02
#define QPNP_COMMON_ENABLE_FOLLOW_HW_EN0_MASK 0x01
#define QPNP_COMMON_ENABLE_FOLLOW_ALL_MASK 0x0F
/* Common regulator mode register layout */
#define QPNP_COMMON_MODE_HPM_MASK 0x80
#define QPNP_COMMON_MODE_AUTO_MASK 0x40
#define QPNP_COMMON_MODE_BYPASS_MASK 0x20
#define QPNP_COMMON_MODE_FOLLOW_AWAKE_MASK 0x10
#define QPNP_COMMON_MODE_FOLLOW_HW_EN3_MASK 0x08
#define QPNP_COMMON_MODE_FOLLOW_HW_EN2_MASK 0x04
#define QPNP_COMMON_MODE_FOLLOW_HW_EN1_MASK 0x02
#define QPNP_COMMON_MODE_FOLLOW_HW_EN0_MASK 0x01
#define QPNP_COMMON_MODE_FOLLOW_ALL_MASK 0x1F
/* Common regulator pull down control register layout */
#define QPNP_COMMON_PULL_DOWN_ENABLE_MASK 0x80
/* LDO regulator current limit control register layout */
#define QPNP_LDO_CURRENT_LIMIT_ENABLE_MASK 0x80
/* LDO regulator soft start control register layout */
#define QPNP_LDO_SOFT_START_ENABLE_MASK 0x80
/* VS regulator over current protection control register layout */
#define QPNP_VS_OCP_OVERRIDE 0x01
#define QPNP_VS_OCP_NO_OVERRIDE 0x00
/* VS regulator soft start control register layout */
#define QPNP_VS_SOFT_START_ENABLE_MASK 0x80
#define QPNP_VS_SOFT_START_SEL_MASK 0x03
/* Boost regulator current limit control register layout */
#define QPNP_BOOST_CURRENT_LIMIT_ENABLE_MASK 0x80
#define QPNP_BOOST_CURRENT_LIMIT_MASK 0x07
#define QPNP_VS_OCP_DEFAULT_MAX_RETRIES 10
#define QPNP_VS_OCP_DEFAULT_RETRY_DELAY_MS 30
#define QPNP_VS_OCP_FALL_DELAY_US 90
#define QPNP_VS_OCP_FAULT_DELAY_US 20000
#define QPNP_FTSMPS_STEP_CTRL_STEP_MASK 0x18
#define QPNP_FTSMPS_STEP_CTRL_STEP_SHIFT 3
#define QPNP_FTSMPS_STEP_CTRL_DELAY_MASK 0x07
#define QPNP_FTSMPS_STEP_CTRL_DELAY_SHIFT 0
/* Clock rate in kHz of the FTSMPS regulator reference clock. */
#define QPNP_FTSMPS_CLOCK_RATE 19200
/* Minimum voltage stepper delay for each step. */
#define QPNP_FTSMPS_STEP_DELAY 8
/*
* The ratio QPNP_FTSMPS_STEP_MARGIN_NUM/QPNP_FTSMPS_STEP_MARGIN_DEN is used to
* adjust the step rate in order to account for oscillator variance.
*/
#define QPNP_FTSMPS_STEP_MARGIN_NUM 4
#define QPNP_FTSMPS_STEP_MARGIN_DEN 5
/*
* This voltage in uV is returned by get_voltage functions when there is no way
* to determine the current voltage level. It is needed because the regulator
* framework treats a 0 uV voltage as an error.
*/
#define VOLTAGE_UNKNOWN 1
/* VSET value to decide the range of ULT SMPS */
#define ULT_SMPS_RANGE_SPLIT 0x60
/**
* struct qpnp_voltage_range - regulator set point voltage mapping description
* @min_uV: Minimum programmable output voltage resulting from
* set point register value 0x00
* @max_uV: Maximum programmable output voltage
* @step_uV: Output voltage increase resulting from the set point
* register value increasing by 1
* @set_point_min_uV: Minimum allowed voltage
* @set_point_max_uV: Maximum allowed voltage. This may be tweaked in order
* to pick which range should be used in the case of
* overlapping set points.
* @n_voltages: Number of preferred voltage set points present in this
* range
* @range_sel: Voltage range register value corresponding to this range
*
* The following relationships must be true for the values used in this struct:
* (max_uV - min_uV) % step_uV == 0
* (set_point_min_uV - min_uV) % step_uV == 0*
* (set_point_max_uV - min_uV) % step_uV == 0*
* n_voltages = (set_point_max_uV - set_point_min_uV) / step_uV + 1
*
* *Note, set_point_min_uV == set_point_max_uV == 0 is allowed in order to
* specify that the voltage range has meaning, but is not preferred.
*/
struct qpnp_voltage_range {
int min_uV;
int max_uV;
int step_uV;
int set_point_min_uV;
int set_point_max_uV;
unsigned n_voltages;
u8 range_sel;
};
/*
* The ranges specified in the qpnp_voltage_set_points struct must be listed
* so that range[i].set_point_max_uV < range[i+1].set_point_min_uV.
*/
struct qpnp_voltage_set_points {
struct qpnp_voltage_range *range;
int count;
unsigned n_voltages;
};
struct qpnp_regulator_mapping {
enum qpnp_regulator_type type;
enum qpnp_regulator_subtype subtype;
enum qpnp_regulator_logical_type logical_type;
u32 revision_min;
u32 revision_max;
struct regulator_ops *ops;
struct qpnp_voltage_set_points *set_points;
int hpm_min_load;
};
struct qpnp_regulator {
struct regulator_desc rdesc;
struct delayed_work ocp_work;
struct spmi_device *spmi_dev;
struct regulator_dev *rdev;
struct qpnp_voltage_set_points *set_points;
enum qpnp_regulator_logical_type logical_type;
int enable_time;
int ocp_enable;
int ocp_irq;
int ocp_count;
int ocp_max_retries;
int ocp_retry_delay_ms;
int system_load;
int hpm_min_load;
int slew_rate;
u32 write_count;
u32 prev_write_count;
ktime_t vs_enable_time;
u16 base_addr;
/* ctrl_reg provides a shadow copy of register values 0x40 to 0x47. */
u8 ctrl_reg[8];
};
#define QPNP_VREG_MAP(_type, _subtype, _dig_major_min, _dig_major_max, \
_logical_type, _ops_val, _set_points_val, _hpm_min_load) \
{ \
.type = QPNP_REGULATOR_TYPE_##_type, \
.subtype = QPNP_REGULATOR_SUBTYPE_##_subtype, \
.revision_min = _dig_major_min, \
.revision_max = _dig_major_max, \
.logical_type = QPNP_REGULATOR_LOGICAL_TYPE_##_logical_type, \
.ops = &qpnp_##_ops_val##_ops, \
.set_points = &_set_points_val##_set_points, \
.hpm_min_load = _hpm_min_load, \
}
#define VOLTAGE_RANGE(_range_sel, _min_uV, _set_point_min_uV, \
_set_point_max_uV, _max_uV, _step_uV) \
{ \
.min_uV = _min_uV, \
.max_uV = _max_uV, \
.set_point_min_uV = _set_point_min_uV, \
.set_point_max_uV = _set_point_max_uV, \
.step_uV = _step_uV, \
.range_sel = _range_sel, \
}
#define SET_POINTS(_ranges) \
{ \
.range = _ranges, \
.count = ARRAY_SIZE(_ranges), \
};
/*
* These tables contain the physically available PMIC regulator voltage setpoint
* ranges. Where two ranges overlap in hardware, one of the ranges is trimmed
* to ensure that the setpoints available to software are monotonically
* increasing and unique. The set_voltage callback functions expect these
* properties to hold.
*/
static struct qpnp_voltage_range pldo_ranges[] = {
VOLTAGE_RANGE(2, 750000, 750000, 1537500, 1537500, 12500),
VOLTAGE_RANGE(3, 1500000, 1550000, 3075000, 3075000, 25000),
VOLTAGE_RANGE(4, 1750000, 3100000, 4900000, 4900000, 50000),
};
static struct qpnp_voltage_range nldo1_ranges[] = {
VOLTAGE_RANGE(2, 750000, 750000, 1537500, 1537500, 12500),
};
static struct qpnp_voltage_range nldo2_ranges[] = {
VOLTAGE_RANGE(0, 375000, 0, 0, 1537500, 12500),
VOLTAGE_RANGE(1, 375000, 375000, 768750, 768750, 6250),
VOLTAGE_RANGE(2, 750000, 775000, 1537500, 1537500, 12500),
};
static struct qpnp_voltage_range nldo3_ranges[] = {
VOLTAGE_RANGE(0, 375000, 375000, 1537500, 1537500, 12500),
VOLTAGE_RANGE(1, 375000, 0, 0, 1537500, 12500),
VOLTAGE_RANGE(2, 750000, 0, 0, 1537500, 12500),
};
static struct qpnp_voltage_range ln_ldo_ranges[] = {
VOLTAGE_RANGE(1, 690000, 690000, 1110000, 1110000, 60000),
VOLTAGE_RANGE(0, 1380000, 1380000, 2220000, 2220000, 120000),
};
static struct qpnp_voltage_range smps_ranges[] = {
VOLTAGE_RANGE(0, 375000, 375000, 1562500, 1562500, 12500),
VOLTAGE_RANGE(1, 1550000, 1575000, 3125000, 3125000, 25000),
};
static struct qpnp_voltage_range ftsmps_ranges[] = {
VOLTAGE_RANGE(0, 0, 350000, 1275000, 1275000, 5000),
VOLTAGE_RANGE(1, 0, 1280000, 2040000, 2040000, 10000),
};
static struct qpnp_voltage_range ftsmps2p5_ranges[] = {
VOLTAGE_RANGE(0, 80000, 350000, 1355000, 1355000, 5000),
VOLTAGE_RANGE(1, 160000, 1360000, 2200000, 2200000, 10000),
};
static struct qpnp_voltage_range boost_ranges[] = {
VOLTAGE_RANGE(0, 4000000, 4000000, 5550000, 5550000, 50000),
};
static struct qpnp_voltage_range boost_byp_ranges[] = {
VOLTAGE_RANGE(0, 2500000, 2500000, 5200000, 5650000, 50000),
};
static struct qpnp_voltage_range ult_lo_smps_ranges[] = {
VOLTAGE_RANGE(0, 375000, 375000, 1562500, 1562500, 12500),
VOLTAGE_RANGE(1, 750000, 0, 0, 1525000, 25000),
};
static struct qpnp_voltage_range ult_ho_smps_ranges[] = {
VOLTAGE_RANGE(0, 1550000, 1550000, 2325000, 2325000, 25000),
};
static struct qpnp_voltage_range ult_nldo_ranges[] = {
VOLTAGE_RANGE(0, 375000, 375000, 1537500, 1537500, 12500),
};
static struct qpnp_voltage_range ult_pldo_ranges[] = {
VOLTAGE_RANGE(0, 1750000, 1750000, 3337500, 3337500, 12500),
};
static struct qpnp_voltage_set_points pldo_set_points = SET_POINTS(pldo_ranges);
static struct qpnp_voltage_set_points nldo1_set_points
= SET_POINTS(nldo1_ranges);
static struct qpnp_voltage_set_points nldo2_set_points
= SET_POINTS(nldo2_ranges);
static struct qpnp_voltage_set_points nldo3_set_points
= SET_POINTS(nldo3_ranges);
static struct qpnp_voltage_set_points ln_ldo_set_points
= SET_POINTS(ln_ldo_ranges);
static struct qpnp_voltage_set_points smps_set_points = SET_POINTS(smps_ranges);
static struct qpnp_voltage_set_points ftsmps_set_points
= SET_POINTS(ftsmps_ranges);
static struct qpnp_voltage_set_points ftsmps2p5_set_points
= SET_POINTS(ftsmps2p5_ranges);
static struct qpnp_voltage_set_points boost_set_points
= SET_POINTS(boost_ranges);
static struct qpnp_voltage_set_points boost_byp_set_points
= SET_POINTS(boost_byp_ranges);
static struct qpnp_voltage_set_points ult_lo_smps_set_points
= SET_POINTS(ult_lo_smps_ranges);
static struct qpnp_voltage_set_points ult_ho_smps_set_points
= SET_POINTS(ult_ho_smps_ranges);
static struct qpnp_voltage_set_points ult_nldo_set_points
= SET_POINTS(ult_nldo_ranges);
static struct qpnp_voltage_set_points ult_pldo_set_points
= SET_POINTS(ult_pldo_ranges);
static struct qpnp_voltage_set_points none_set_points;
static struct qpnp_voltage_set_points *all_set_points[] = {
&pldo_set_points,
&nldo1_set_points,
&nldo2_set_points,
&nldo3_set_points,
&ln_ldo_set_points,
&smps_set_points,
&ftsmps_set_points,
&ftsmps2p5_set_points,
&boost_set_points,
&boost_byp_set_points,
&ult_lo_smps_set_points,
&ult_ho_smps_set_points,
&ult_nldo_set_points,
&ult_pldo_set_points,
};
/* Determines which label to add to a debug print statement. */
enum qpnp_regulator_action {
QPNP_REGULATOR_ACTION_INIT,
QPNP_REGULATOR_ACTION_ENABLE,
QPNP_REGULATOR_ACTION_DISABLE,
QPNP_REGULATOR_ACTION_VOLTAGE,
QPNP_REGULATOR_ACTION_MODE,
};
static void qpnp_vreg_show_state(struct regulator_dev *rdev,
enum qpnp_regulator_action action);
#define DEBUG_PRINT_BUFFER_SIZE 64
static void fill_string(char *str, size_t str_len, u8 *buf, int buf_len)
{
int pos = 0;
int i;
for (i = 0; i < buf_len; i++) {
pos += scnprintf(str + pos, str_len - pos, "0x%02X", buf[i]);
if (i < buf_len - 1)
pos += scnprintf(str + pos, str_len - pos, ", ");
}
}
static inline int qpnp_vreg_read(struct qpnp_regulator *vreg, u16 addr, u8 *buf,
int len)
{
char str[DEBUG_PRINT_BUFFER_SIZE];
int rc = 0;
rc = spmi_ext_register_readl(vreg->spmi_dev->ctrl, vreg->spmi_dev->sid,
vreg->base_addr + addr, buf, len);
if (!rc && (qpnp_vreg_debug_mask & QPNP_VREG_DEBUG_READS)) {
str[0] = '\0';
fill_string(str, DEBUG_PRINT_BUFFER_SIZE, buf, len);
pr_info(" %-11s: read(0x%04X), sid=%d, len=%d; %s\n",
vreg->rdesc.name, vreg->base_addr + addr,
vreg->spmi_dev->sid, len, str);
}
return rc;
}
static inline int qpnp_vreg_write(struct qpnp_regulator *vreg, u16 addr,
u8 *buf, int len)
{
char str[DEBUG_PRINT_BUFFER_SIZE];
int rc = 0;
if (qpnp_vreg_debug_mask & QPNP_VREG_DEBUG_WRITES) {
str[0] = '\0';
fill_string(str, DEBUG_PRINT_BUFFER_SIZE, buf, len);
pr_info("%-11s: write(0x%04X), sid=%d, len=%d; %s\n",
vreg->rdesc.name, vreg->base_addr + addr,
vreg->spmi_dev->sid, len, str);
}
rc = spmi_ext_register_writel(vreg->spmi_dev->ctrl,
vreg->spmi_dev->sid, vreg->base_addr + addr, buf, len);
if (!rc)
vreg->write_count += len;
return rc;
}
/*
* qpnp_vreg_write_optimized - write the minimum sized contiguous subset of buf
* @vreg: qpnp_regulator pointer for this regulator
* @addr: local SPMI address offset from this peripheral's base address
* @buf: new data to write into the SPMI registers
* @buf_save: old data in the registers
* @len: number of bytes to write
*
* This function checks for unchanged register values between buf and buf_save
* starting at both ends of buf. Only the contiguous subset in the middle of
* buf starting and ending with new values is sent.
*
* Consider the following example:
* buf offset: 0 1 2 3 4 5 6 7
* reg state: U U C C U C U U
* (U = unchanged, C = changed)
* In this example registers 2 through 5 will be written with a single
* transaction.
*/
static inline int qpnp_vreg_write_optimized(struct qpnp_regulator *vreg,
u16 addr, u8 *buf, u8 *buf_save, int len)
{
int i, rc, start, end;
for (i = 0; i < len; i++)
if (buf[i] != buf_save[i])
break;
start = i;
for (i = len - 1; i >= 0; i--)
if (buf[i] != buf_save[i])
break;
end = i;
if (start > end) {
/* No modified register values present. */
return 0;
}
rc = qpnp_vreg_write(vreg, addr + start, &buf[start], end - start + 1);
if (!rc)
for (i = start; i <= end; i++)
buf_save[i] = buf[i];
return rc;
}
/*
* Perform a masked write to a PMIC register only if the new value differs
* from the last value written to the register. This removes redundant
* register writing.
*/
static int qpnp_vreg_masked_write(struct qpnp_regulator *vreg, u16 addr, u8 val,
u8 mask, u8 *reg_save)
{
int rc = 0;
u8 reg;
reg = (*reg_save & ~mask) | (val & mask);
if (reg != *reg_save) {
rc = qpnp_vreg_write(vreg, addr, &reg, 1);
if (rc) {
vreg_err(vreg, "write failed; addr=0x%03X, rc=%d\n",
addr, rc);
} else {
*reg_save = reg;
}
}
return rc;
}
/*
* Perform a masked read-modify-write to a PMIC register only if the new value
* differs from the value currently in the register. This removes redundant
* register writing.
*/
static int qpnp_vreg_masked_read_write(struct qpnp_regulator *vreg, u16 addr,
u8 val, u8 mask)
{
int rc;
u8 reg;
rc = qpnp_vreg_read(vreg, addr, &reg, 1);
if (rc) {
vreg_err(vreg, "read failed; addr=0x%03X, rc=%d\n", addr, rc);
return rc;
}
return qpnp_vreg_masked_write(vreg, addr, val, mask, &reg);
}
static int qpnp_regulator_common_is_enabled(struct regulator_dev *rdev)
{
struct qpnp_regulator *vreg = rdev_get_drvdata(rdev);
return (vreg->ctrl_reg[QPNP_COMMON_IDX_ENABLE]
& QPNP_COMMON_ENABLE_MASK)
== QPNP_COMMON_ENABLE;
}
static int qpnp_regulator_common_enable(struct regulator_dev *rdev)
{
struct qpnp_regulator *vreg = rdev_get_drvdata(rdev);
int rc;
rc = qpnp_vreg_masked_write(vreg, QPNP_COMMON_REG_ENABLE,
QPNP_COMMON_ENABLE, QPNP_COMMON_ENABLE_MASK,
&vreg->ctrl_reg[QPNP_COMMON_IDX_ENABLE]);
if (rc)
vreg_err(vreg, "qpnp_vreg_masked_write failed, rc=%d\n", rc);
else
qpnp_vreg_show_state(rdev, QPNP_REGULATOR_ACTION_ENABLE);
return rc;
}
static int qpnp_regulator_vs_enable(struct regulator_dev *rdev)
{
struct qpnp_regulator *vreg = rdev_get_drvdata(rdev);
if (vreg->ocp_irq) {
vreg->ocp_count = 0;
vreg->vs_enable_time = ktime_get();
}
return qpnp_regulator_common_enable(rdev);
}
static int qpnp_regulator_common_disable(struct regulator_dev *rdev)
{
struct qpnp_regulator *vreg = rdev_get_drvdata(rdev);
int rc;
rc = qpnp_vreg_masked_write(vreg, QPNP_COMMON_REG_ENABLE,
QPNP_COMMON_DISABLE, QPNP_COMMON_ENABLE_MASK,
&vreg->ctrl_reg[QPNP_COMMON_IDX_ENABLE]);
if (rc)
vreg_err(vreg, "qpnp_vreg_masked_write failed, rc=%d\n", rc);
else
qpnp_vreg_show_state(rdev, QPNP_REGULATOR_ACTION_DISABLE);
return rc;
}
/*
* Returns 1 if the voltage can be set in the current range, 0 if the voltage
* cannot be set in the current range, or errno if an error occurred.
*/
static int qpnp_regulator_select_voltage_same_range(struct qpnp_regulator *vreg,
int min_uV, int max_uV, int *range_sel, int *voltage_sel,
unsigned *selector)
{
struct qpnp_voltage_range *range = NULL;
int uV = min_uV;
int i;
*range_sel = vreg->ctrl_reg[QPNP_COMMON_IDX_VOLTAGE_RANGE];
for (i = 0; i < vreg->set_points->count; i++) {
if (vreg->set_points->range[i].range_sel == *range_sel) {
range = &vreg->set_points->range[i];
break;
}
}
if (!range) {
/* Unknown range */
return 0;
}
if (uV < range->min_uV && max_uV >= range->min_uV)
uV = range->min_uV;
if (uV < range->min_uV || uV > range->max_uV) {
/* Current range doesn't support the requested voltage. */
return 0;
}
/*
* Force uV to be an allowed set point by applying a ceiling function to
* the uV value.
*/
*voltage_sel = DIV_ROUND_UP(uV - range->min_uV, range->step_uV);
uV = *voltage_sel * range->step_uV + range->min_uV;
if (uV > max_uV) {
/*
* No set point in the current voltage range is within the
* requested min_uV to max_uV range.
*/
return 0;
}
*selector = 0;
for (i = 0; i < vreg->set_points->count; i++) {
if (uV >= vreg->set_points->range[i].set_point_min_uV
&& uV <= vreg->set_points->range[i].set_point_max_uV) {
*selector +=
(uV - vreg->set_points->range[i].set_point_min_uV)
/ vreg->set_points->range[i].step_uV;
break;
} else {
*selector += vreg->set_points->range[i].n_voltages;
}
}
if (*selector >= vreg->set_points->n_voltages)
return 0;
return 1;
}
static int qpnp_regulator_select_voltage(struct qpnp_regulator *vreg,
int min_uV, int max_uV, int *range_sel, int *voltage_sel,
unsigned *selector)
{
struct qpnp_voltage_range *range;
int uV = min_uV;
int lim_min_uV, lim_max_uV, i, range_id, range_max_uV;
/* Check if request voltage is outside of physically settable range. */
lim_min_uV = vreg->set_points->range[0].set_point_min_uV;
lim_max_uV =
vreg->set_points->range[vreg->set_points->count - 1].set_point_max_uV;
if (uV < lim_min_uV && max_uV >= lim_min_uV)
uV = lim_min_uV;
if (uV < lim_min_uV || uV > lim_max_uV) {
vreg_err(vreg,
"request v=[%d, %d] is outside possible v=[%d, %d]\n",
min_uV, max_uV, lim_min_uV, lim_max_uV);
return -EINVAL;
}
/* Find the range which uV is inside of. */
for (i = vreg->set_points->count - 1; i > 0; i--) {
range_max_uV = vreg->set_points->range[i - 1].set_point_max_uV;
if (uV > range_max_uV && range_max_uV > 0)
break;
}
range_id = i;
range = &vreg->set_points->range[range_id];
*range_sel = range->range_sel;
/*
* Force uV to be an allowed set point by applying a ceiling function to
* the uV value.
*/
*voltage_sel = (uV - range->min_uV + range->step_uV - 1)
/ range->step_uV;
uV = *voltage_sel * range->step_uV + range->min_uV;
if (uV > max_uV) {
vreg_err(vreg,
"request v=[%d, %d] cannot be met by any set point; "
"next set point: %d\n",
min_uV, max_uV, uV);
return -EINVAL;
}
*selector = 0;
for (i = 0; i < range_id; i++)
*selector += vreg->set_points->range[i].n_voltages;
*selector += (uV - range->set_point_min_uV) / range->step_uV;
return 0;
}
static int qpnp_regulator_common_set_voltage(struct regulator_dev *rdev,
int min_uV, int max_uV, unsigned *selector)
{
struct qpnp_regulator *vreg = rdev_get_drvdata(rdev);
int rc, range_sel, voltage_sel, voltage_old, voltage_new;
u8 buf[2];
if (vreg->slew_rate && vreg->rdesc.ops->get_voltage) {
voltage_old = vreg->rdesc.ops->get_voltage(rdev);
if (voltage_old < 0) {
vreg_err(vreg, "could not get current voltage, rc=%d\n",
voltage_old);
return voltage_old;
}
}
/*
* Favor staying in the current voltage range if possible. This avoids
* voltage spikes that occur when changing the voltage range.
*/
rc = qpnp_regulator_select_voltage_same_range(vreg, min_uV, max_uV,
&range_sel, &voltage_sel, selector);
if (rc == 0)
rc = qpnp_regulator_select_voltage(vreg, min_uV, max_uV,
&range_sel, &voltage_sel, selector);
if (rc < 0) {
vreg_err(vreg, "could not set voltage, rc=%d\n", rc);
return rc;
}
buf[0] = range_sel;
buf[1] = voltage_sel;
if ((vreg->ctrl_reg[QPNP_COMMON_IDX_VOLTAGE_RANGE] != range_sel)
&& (vreg->ctrl_reg[QPNP_COMMON_IDX_VOLTAGE_SET] == voltage_sel)) {
/* Handle latched range change. */
rc = qpnp_vreg_write(vreg, QPNP_COMMON_REG_VOLTAGE_RANGE,
buf, 2);
if (!rc) {
vreg->ctrl_reg[QPNP_COMMON_IDX_VOLTAGE_RANGE] = buf[0];
vreg->ctrl_reg[QPNP_COMMON_IDX_VOLTAGE_SET] = buf[1];
}
} else {
/* Either write can be optimized away safely. */
rc = qpnp_vreg_write_optimized(vreg,
QPNP_COMMON_REG_VOLTAGE_RANGE, buf,
&vreg->ctrl_reg[QPNP_COMMON_IDX_VOLTAGE_RANGE], 2);
}
if (rc) {
vreg_err(vreg, "SPMI write failed, rc=%d\n", rc);
} else {
/* Delay for voltage slewing if a step rate is specified. */
if (vreg->slew_rate && vreg->rdesc.ops->get_voltage) {
voltage_new = vreg->rdesc.ops->get_voltage(rdev);
if (voltage_new < 0) {
vreg_err(vreg, "could not get new voltage, rc=%d\n",
voltage_new);
return voltage_new;
}
udelay(DIV_ROUND_UP(abs(voltage_new - voltage_old),
vreg->slew_rate));
}
qpnp_vreg_show_state(rdev, QPNP_REGULATOR_ACTION_VOLTAGE);
}
return rc;
}
static int qpnp_regulator_common_get_voltage(struct regulator_dev *rdev)
{
struct qpnp_regulator *vreg = rdev_get_drvdata(rdev);
struct qpnp_voltage_range *range = NULL;
int range_sel, voltage_sel, i;
range_sel = vreg->ctrl_reg[QPNP_COMMON_IDX_VOLTAGE_RANGE];
voltage_sel = vreg->ctrl_reg[QPNP_COMMON_IDX_VOLTAGE_SET];
for (i = 0; i < vreg->set_points->count; i++) {
if (vreg->set_points->range[i].range_sel == range_sel) {
range = &vreg->set_points->range[i];
break;
}
}
if (!range) {
vreg_err(vreg, "voltage unknown, range %d is invalid\n",
range_sel);
return VOLTAGE_UNKNOWN;
}
return range->step_uV * voltage_sel + range->min_uV;
}
static int qpnp_regulator_single_range_set_voltage(struct regulator_dev *rdev,
int min_uV, int max_uV, unsigned *selector)
{
struct qpnp_regulator *vreg = rdev_get_drvdata(rdev);
int rc, range_sel, voltage_sel;
rc = qpnp_regulator_select_voltage(vreg, min_uV, max_uV, &range_sel,
&voltage_sel, selector);
if (rc) {
vreg_err(vreg, "could not set voltage, rc=%d\n", rc);
return rc;
}
/*
* Certain types of regulators do not have a range select register so
* only voltage set register needs to be written.
*/
rc = qpnp_vreg_masked_write(vreg, QPNP_COMMON_REG_VOLTAGE_SET,
voltage_sel, 0xFF, &vreg->ctrl_reg[QPNP_COMMON_IDX_VOLTAGE_SET]);
if (rc)
vreg_err(vreg, "SPMI write failed, rc=%d\n", rc);
else
qpnp_vreg_show_state(rdev, QPNP_REGULATOR_ACTION_VOLTAGE);
return rc;
}
static int qpnp_regulator_single_range_get_voltage(struct regulator_dev *rdev)
{
struct qpnp_regulator *vreg = rdev_get_drvdata(rdev);
struct qpnp_voltage_range *range = &vreg->set_points->range[0];
int voltage_sel = vreg->ctrl_reg[QPNP_COMMON_IDX_VOLTAGE_SET];
return range->step_uV * voltage_sel + range->min_uV;
}
static int qpnp_regulator_ult_lo_smps_set_voltage(struct regulator_dev *rdev,
int min_uV, int max_uV, unsigned *selector)
{
struct qpnp_regulator *vreg = rdev_get_drvdata(rdev);
int rc, range_sel, voltage_sel;
/*
* Favor staying in the current voltage range if possible. This avoids
* voltage spikes that occur when changing the voltage range.
*/
rc = qpnp_regulator_select_voltage_same_range(vreg, min_uV, max_uV,
&range_sel, &voltage_sel, selector);
if (rc == 0)
rc = qpnp_regulator_select_voltage(vreg, min_uV, max_uV,
&range_sel, &voltage_sel, selector);
if (rc < 0) {
vreg_err(vreg, "could not set voltage, rc=%d\n", rc);
return rc;
}
/*
* Calculate VSET based on range
* In case of range 0: voltage_sel is a 7 bit value, can be written
* witout any modification.
* In case of range 1: voltage_sel is a 5 bit value, bits[7-5] set to
* [011].
*/
if (range_sel == 1)
voltage_sel |= ULT_SMPS_RANGE_SPLIT;
rc = qpnp_vreg_masked_write(vreg, QPNP_COMMON_REG_VOLTAGE_SET,
voltage_sel, 0xFF, &vreg->ctrl_reg[QPNP_COMMON_IDX_VOLTAGE_SET]);
if (rc) {
vreg_err(vreg, "SPMI write failed, rc=%d\n", rc);
} else {
vreg->ctrl_reg[QPNP_COMMON_IDX_VOLTAGE_RANGE] = range_sel;
qpnp_vreg_show_state(rdev, QPNP_REGULATOR_ACTION_VOLTAGE);
}
return rc;
}
static int qpnp_regulator_ult_lo_smps_get_voltage(struct regulator_dev *rdev)
{
struct qpnp_regulator *vreg = rdev_get_drvdata(rdev);
struct qpnp_voltage_range *range = NULL;
int range_sel, voltage_sel, i;
range_sel = vreg->ctrl_reg[QPNP_COMMON_IDX_VOLTAGE_RANGE];
voltage_sel = vreg->ctrl_reg[QPNP_COMMON_IDX_VOLTAGE_SET];
for (i = 0; i < vreg->set_points->count; i++) {
if (vreg->set_points->range[i].range_sel == range_sel) {
range = &vreg->set_points->range[i];
break;
}
}
if (!range) {
vreg_err(vreg, "voltage unknown, range %d is invalid\n",
range_sel);
return VOLTAGE_UNKNOWN;
}
if (range_sel == 1)
voltage_sel &= ~ULT_SMPS_RANGE_SPLIT;
return range->step_uV * voltage_sel + range->min_uV;
}
static int qpnp_regulator_common_list_voltage(struct regulator_dev *rdev,
unsigned selector)
{
struct qpnp_regulator *vreg = rdev_get_drvdata(rdev);
int uV = 0;
int i;
if (selector >= vreg->set_points->n_voltages)
return 0;
for (i = 0; i < vreg->set_points->count; i++) {
if (selector < vreg->set_points->range[i].n_voltages) {
uV = selector * vreg->set_points->range[i].step_uV
+ vreg->set_points->range[i].set_point_min_uV;
break;
} else {
selector -= vreg->set_points->range[i].n_voltages;
}
}
return uV;
}
static unsigned int qpnp_regulator_common_get_mode(struct regulator_dev *rdev)
{
struct qpnp_regulator *vreg = rdev_get_drvdata(rdev);
return (vreg->ctrl_reg[QPNP_COMMON_IDX_MODE]
& QPNP_COMMON_MODE_HPM_MASK)
? REGULATOR_MODE_NORMAL : REGULATOR_MODE_IDLE;
}
static int qpnp_regulator_common_set_mode(struct regulator_dev *rdev,
unsigned int mode)
{
struct qpnp_regulator *vreg = rdev_get_drvdata(rdev);
int rc = 0;
u8 val;
if (mode != REGULATOR_MODE_NORMAL && mode != REGULATOR_MODE_IDLE) {
vreg_err(vreg, "invalid mode: %u\n", mode);
return -EINVAL;
}
val = (mode == REGULATOR_MODE_NORMAL ? QPNP_COMMON_MODE_HPM_MASK : 0);
rc = qpnp_vreg_masked_write(vreg, QPNP_COMMON_REG_MODE, val,
QPNP_COMMON_MODE_HPM_MASK,
&vreg->ctrl_reg[QPNP_COMMON_IDX_MODE]);
if (rc)
vreg_err(vreg, "SPMI write failed, rc=%d\n", rc);
else
qpnp_vreg_show_state(rdev, QPNP_REGULATOR_ACTION_MODE);
return rc;
}
static unsigned int qpnp_regulator_common_get_optimum_mode(
struct regulator_dev *rdev, int input_uV, int output_uV,
int load_uA)
{
struct qpnp_regulator *vreg = rdev_get_drvdata(rdev);
unsigned int mode;
if (load_uA + vreg->system_load >= vreg->hpm_min_load)
mode = REGULATOR_MODE_NORMAL;
else
mode = REGULATOR_MODE_IDLE;
return mode;
}
static int qpnp_regulator_common_enable_time(struct regulator_dev *rdev)
{
struct qpnp_regulator *vreg = rdev_get_drvdata(rdev);
return vreg->enable_time;
}
static int qpnp_regulator_vs_clear_ocp(struct qpnp_regulator *vreg)
{
int rc;
rc = qpnp_vreg_masked_write(vreg, QPNP_COMMON_REG_ENABLE,
QPNP_COMMON_DISABLE, QPNP_COMMON_ENABLE_MASK,
&vreg->ctrl_reg[QPNP_COMMON_IDX_ENABLE]);
if (rc)
vreg_err(vreg, "qpnp_vreg_masked_write failed, rc=%d\n", rc);
vreg->vs_enable_time = ktime_get();
rc = qpnp_vreg_masked_write(vreg, QPNP_COMMON_REG_ENABLE,
QPNP_COMMON_ENABLE, QPNP_COMMON_ENABLE_MASK,
&vreg->ctrl_reg[QPNP_COMMON_IDX_ENABLE]);
if (rc)
vreg_err(vreg, "qpnp_vreg_masked_write failed, rc=%d\n", rc);
if (qpnp_vreg_debug_mask & QPNP_VREG_DEBUG_OCP) {
pr_info("%s: switch state toggled after OCP event\n",
vreg->rdesc.name);
}
return rc;
}
static void qpnp_regulator_vs_ocp_work(struct work_struct *work)
{
struct delayed_work *dwork
= container_of(work, struct delayed_work, work);
struct qpnp_regulator *vreg
= container_of(dwork, struct qpnp_regulator, ocp_work);
qpnp_regulator_vs_clear_ocp(vreg);
return;
}
static irqreturn_t qpnp_regulator_vs_ocp_isr(int irq, void *data)
{
struct qpnp_regulator *vreg = data;
ktime_t ocp_irq_time;
s64 ocp_trigger_delay_us;
ocp_irq_time = ktime_get();
ocp_trigger_delay_us = ktime_us_delta(ocp_irq_time,
vreg->vs_enable_time);
/*
* Reset the OCP count if there is a large delay between switch enable
* and when OCP triggers. This is indicative of a hotplug event as
* opposed to a fault.
*/
if (ocp_trigger_delay_us > QPNP_VS_OCP_FAULT_DELAY_US)
vreg->ocp_count = 0;
/* Wait for switch output to settle back to 0 V after OCP triggered. */
udelay(QPNP_VS_OCP_FALL_DELAY_US);
vreg->ocp_count++;
if (qpnp_vreg_debug_mask & QPNP_VREG_DEBUG_OCP) {
pr_info("%s: VS OCP triggered, count = %d, delay = %lld us\n",
vreg->rdesc.name, vreg->ocp_count,
ocp_trigger_delay_us);
}
if (vreg->ocp_count == 1) {
/* Immediately clear the over current condition. */
qpnp_regulator_vs_clear_ocp(vreg);
} else if (vreg->ocp_count <= vreg->ocp_max_retries) {
/* Schedule the over current clear task to run later. */
schedule_delayed_work(&vreg->ocp_work,
msecs_to_jiffies(vreg->ocp_retry_delay_ms) + 1);
} else {
vreg_err(vreg, "OCP triggered %d times; no further retries\n",
vreg->ocp_count);
}
return IRQ_HANDLED;
}
static const char * const qpnp_print_actions[] = {
[QPNP_REGULATOR_ACTION_INIT] = "initial ",
[QPNP_REGULATOR_ACTION_ENABLE] = "enable ",
[QPNP_REGULATOR_ACTION_DISABLE] = "disable ",
[QPNP_REGULATOR_ACTION_VOLTAGE] = "set voltage",
[QPNP_REGULATOR_ACTION_MODE] = "set mode ",
};
static void qpnp_vreg_show_state(struct regulator_dev *rdev,
enum qpnp_regulator_action action)
{
struct qpnp_regulator *vreg = rdev_get_drvdata(rdev);
const char *action_label = qpnp_print_actions[action];
unsigned int mode = 0;
int uV = 0;
const char *mode_label = "";
enum qpnp_regulator_logical_type type;
const char *enable_label;
char pc_enable_label[5] = {'\0'};
char pc_mode_label[8] = {'\0'};
bool show_req, show_dupe, show_init, has_changed;
u8 en_reg, mode_reg;
/* Do not print unless appropriate flags are set. */
show_req = qpnp_vreg_debug_mask & QPNP_VREG_DEBUG_REQUEST;
show_dupe = qpnp_vreg_debug_mask & QPNP_VREG_DEBUG_DUPLICATE;
show_init = qpnp_vreg_debug_mask & QPNP_VREG_DEBUG_INIT;
has_changed = vreg->write_count != vreg->prev_write_count;
if (!((show_init && action == QPNP_REGULATOR_ACTION_INIT)
|| (show_req && (has_changed || show_dupe)))) {
return;
}
vreg->prev_write_count = vreg->write_count;
type = vreg->logical_type;
enable_label = qpnp_regulator_common_is_enabled(rdev) ? "on " : "off";
if (type == QPNP_REGULATOR_LOGICAL_TYPE_SMPS
|| type == QPNP_REGULATOR_LOGICAL_TYPE_LDO
|| type == QPNP_REGULATOR_LOGICAL_TYPE_LN_LDO
|| type == QPNP_REGULATOR_LOGICAL_TYPE_FTSMPS)
uV = qpnp_regulator_common_get_voltage(rdev);
if (type == QPNP_REGULATOR_LOGICAL_TYPE_BOOST
|| type == QPNP_REGULATOR_LOGICAL_TYPE_BOOST_BYP
|| type == QPNP_REGULATOR_LOGICAL_TYPE_ULT_HO_SMPS
|| type == QPNP_REGULATOR_LOGICAL_TYPE_ULT_LDO)
uV = qpnp_regulator_single_range_get_voltage(rdev);
if (type == QPNP_REGULATOR_LOGICAL_TYPE_ULT_LO_SMPS)
uV = qpnp_regulator_ult_lo_smps_get_voltage(rdev);
if (type == QPNP_REGULATOR_LOGICAL_TYPE_SMPS
|| type == QPNP_REGULATOR_LOGICAL_TYPE_LDO
|| type == QPNP_REGULATOR_LOGICAL_TYPE_FTSMPS
|| type == QPNP_REGULATOR_LOGICAL_TYPE_ULT_LDO
|| type == QPNP_REGULATOR_LOGICAL_TYPE_ULT_LO_SMPS
|| type == QPNP_REGULATOR_LOGICAL_TYPE_ULT_HO_SMPS
|| type == QPNP_REGULATOR_LOGICAL_TYPE_VS) {
mode = qpnp_regulator_common_get_mode(rdev);
mode_label = mode == REGULATOR_MODE_NORMAL ? "HPM" : "LPM";
}
if (type == QPNP_REGULATOR_LOGICAL_TYPE_SMPS
|| type == QPNP_REGULATOR_LOGICAL_TYPE_LDO
|| type == QPNP_REGULATOR_LOGICAL_TYPE_VS) {
en_reg = vreg->ctrl_reg[QPNP_COMMON_IDX_ENABLE];
pc_enable_label[0] =
en_reg & QPNP_COMMON_ENABLE_FOLLOW_HW_EN3_MASK ? '3' : '_';
pc_enable_label[1] =
en_reg & QPNP_COMMON_ENABLE_FOLLOW_HW_EN2_MASK ? '2' : '_';
pc_enable_label[2] =
en_reg & QPNP_COMMON_ENABLE_FOLLOW_HW_EN1_MASK ? '1' : '_';
pc_enable_label[3] =
en_reg & QPNP_COMMON_ENABLE_FOLLOW_HW_EN0_MASK ? '0' : '_';
}
switch (type) {
case QPNP_REGULATOR_LOGICAL_TYPE_SMPS:
mode_reg = vreg->ctrl_reg[QPNP_COMMON_IDX_MODE];
pc_mode_label[0] =
mode_reg & QPNP_COMMON_MODE_AUTO_MASK ? 'A' : '_';
pc_mode_label[1] =
mode_reg & QPNP_COMMON_MODE_FOLLOW_AWAKE_MASK ? 'W' : '_';
pc_mode_label[2] =
mode_reg & QPNP_COMMON_MODE_FOLLOW_HW_EN3_MASK ? '3' : '_';
pc_mode_label[3] =
mode_reg & QPNP_COMMON_MODE_FOLLOW_HW_EN2_MASK ? '2' : '_';
pc_mode_label[4] =
mode_reg & QPNP_COMMON_MODE_FOLLOW_HW_EN1_MASK ? '1' : '_';
pc_mode_label[5] =
mode_reg & QPNP_COMMON_MODE_FOLLOW_HW_EN0_MASK ? '0' : '_';
pr_info("%s %-11s: %s, v=%7d uV, mode=%s, pc_en=%s, "
"alt_mode=%s\n",
action_label, vreg->rdesc.name, enable_label, uV,
mode_label, pc_enable_label, pc_mode_label);
break;
case QPNP_REGULATOR_LOGICAL_TYPE_LDO:
mode_reg = vreg->ctrl_reg[QPNP_COMMON_IDX_MODE];
pc_mode_label[0] =
mode_reg & QPNP_COMMON_MODE_AUTO_MASK ? 'A' : '_';
pc_mode_label[1] =
mode_reg & QPNP_COMMON_MODE_BYPASS_MASK ? 'B' : '_';
pc_mode_label[2] =
mode_reg & QPNP_COMMON_MODE_FOLLOW_AWAKE_MASK ? 'W' : '_';
pc_mode_label[3] =
mode_reg & QPNP_COMMON_MODE_FOLLOW_HW_EN3_MASK ? '3' : '_';
pc_mode_label[4] =
mode_reg & QPNP_COMMON_MODE_FOLLOW_HW_EN2_MASK ? '2' : '_';
pc_mode_label[5] =
mode_reg & QPNP_COMMON_MODE_FOLLOW_HW_EN1_MASK ? '1' : '_';
pc_mode_label[6] =
mode_reg & QPNP_COMMON_MODE_FOLLOW_HW_EN0_MASK ? '0' : '_';
pr_info("%s %-11s: %s, v=%7d uV, mode=%s, pc_en=%s, "
"alt_mode=%s\n",
action_label, vreg->rdesc.name, enable_label, uV,
mode_label, pc_enable_label, pc_mode_label);
break;
case QPNP_REGULATOR_LOGICAL_TYPE_LN_LDO:
mode_reg = vreg->ctrl_reg[QPNP_COMMON_IDX_MODE];
pc_mode_label[0] =
mode_reg & QPNP_COMMON_MODE_BYPASS_MASK ? 'B' : '_';
pr_info("%s %-11s: %s, v=%7d uV, alt_mode=%s\n",
action_label, vreg->rdesc.name, enable_label, uV,
pc_mode_label);
break;
case QPNP_REGULATOR_LOGICAL_TYPE_VS:
mode_reg = vreg->ctrl_reg[QPNP_COMMON_IDX_MODE];
pc_mode_label[0] =
mode_reg & QPNP_COMMON_MODE_AUTO_MASK ? 'A' : '_';
pc_mode_label[1] =
mode_reg & QPNP_COMMON_MODE_FOLLOW_AWAKE_MASK ? 'W' : '_';
pr_info("%s %-11s: %s, mode=%s, pc_en=%s, alt_mode=%s\n",
action_label, vreg->rdesc.name, enable_label,
mode_label, pc_enable_label, pc_mode_label);
break;
case QPNP_REGULATOR_LOGICAL_TYPE_BOOST:
pr_info("%s %-11s: %s, v=%7d uV\n",
action_label, vreg->rdesc.name, enable_label, uV);
break;
case QPNP_REGULATOR_LOGICAL_TYPE_BOOST_BYP:
pr_info("%s %-11s: %s, v=%7d uV\n",
action_label, vreg->rdesc.name, enable_label, uV);
break;
case QPNP_REGULATOR_LOGICAL_TYPE_FTSMPS:
mode_reg = vreg->ctrl_reg[QPNP_COMMON_IDX_MODE];
pc_mode_label[0] =
mode_reg & QPNP_COMMON_MODE_AUTO_MASK ? 'A' : '_';
pr_info("%s %-11s: %s, v=%7d uV, mode=%s, alt_mode=%s\n",
action_label, vreg->rdesc.name, enable_label, uV,
mode_label, pc_mode_label);
break;
case QPNP_REGULATOR_LOGICAL_TYPE_ULT_LO_SMPS:
case QPNP_REGULATOR_LOGICAL_TYPE_ULT_HO_SMPS:
mode_reg = vreg->ctrl_reg[QPNP_COMMON_IDX_MODE];
pc_mode_label[0] =
mode_reg & QPNP_COMMON_MODE_FOLLOW_AWAKE_MASK ? 'W' : '_';
pr_info("%s %-11s: %s, v=%7d uV, mode=%s, alt_mode=%s\n",
action_label, vreg->rdesc.name, enable_label, uV,
mode_label, pc_mode_label);
break;
case QPNP_REGULATOR_LOGICAL_TYPE_ULT_LDO:
mode_reg = vreg->ctrl_reg[QPNP_COMMON_IDX_MODE];
pc_mode_label[0] =
mode_reg & QPNP_COMMON_MODE_BYPASS_MASK ? 'B' : '_';
pc_mode_label[1] =
mode_reg & QPNP_COMMON_MODE_FOLLOW_AWAKE_MASK ? 'W' : '_';
pr_info("%s %-11s: %s, v=%7d uV, mode=%s, alt_mode=%s\n",
action_label, vreg->rdesc.name, enable_label, uV,
mode_label, pc_mode_label);
break;
default:
break;
}
}
static struct regulator_ops qpnp_smps_ops = {
.enable = qpnp_regulator_common_enable,
.disable = qpnp_regulator_common_disable,
.is_enabled = qpnp_regulator_common_is_enabled,
.set_voltage = qpnp_regulator_common_set_voltage,
.get_voltage = qpnp_regulator_common_get_voltage,
.list_voltage = qpnp_regulator_common_list_voltage,
.set_mode = qpnp_regulator_common_set_mode,
.get_mode = qpnp_regulator_common_get_mode,
.get_optimum_mode = qpnp_regulator_common_get_optimum_mode,
.enable_time = qpnp_regulator_common_enable_time,
};
static struct regulator_ops qpnp_ldo_ops = {
.enable = qpnp_regulator_common_enable,
.disable = qpnp_regulator_common_disable,
.is_enabled = qpnp_regulator_common_is_enabled,
.set_voltage = qpnp_regulator_common_set_voltage,
.get_voltage = qpnp_regulator_common_get_voltage,
.list_voltage = qpnp_regulator_common_list_voltage,
.set_mode = qpnp_regulator_common_set_mode,
.get_mode = qpnp_regulator_common_get_mode,
.get_optimum_mode = qpnp_regulator_common_get_optimum_mode,
.enable_time = qpnp_regulator_common_enable_time,
};
static struct regulator_ops qpnp_ln_ldo_ops = {
.enable = qpnp_regulator_common_enable,
.disable = qpnp_regulator_common_disable,
.is_enabled = qpnp_regulator_common_is_enabled,
.set_voltage = qpnp_regulator_common_set_voltage,
.get_voltage = qpnp_regulator_common_get_voltage,
.list_voltage = qpnp_regulator_common_list_voltage,
.enable_time = qpnp_regulator_common_enable_time,
};
static struct regulator_ops qpnp_vs_ops = {
.enable = qpnp_regulator_vs_enable,
.disable = qpnp_regulator_common_disable,
.is_enabled = qpnp_regulator_common_is_enabled,
.enable_time = qpnp_regulator_common_enable_time,
};
static struct regulator_ops qpnp_boost_ops = {
.enable = qpnp_regulator_common_enable,
.disable = qpnp_regulator_common_disable,
.is_enabled = qpnp_regulator_common_is_enabled,
.set_voltage = qpnp_regulator_single_range_set_voltage,
.get_voltage = qpnp_regulator_single_range_get_voltage,
.list_voltage = qpnp_regulator_common_list_voltage,
.enable_time = qpnp_regulator_common_enable_time,
};
static struct regulator_ops qpnp_ftsmps_ops = {
.enable = qpnp_regulator_common_enable,
.disable = qpnp_regulator_common_disable,
.is_enabled = qpnp_regulator_common_is_enabled,
.set_voltage = qpnp_regulator_common_set_voltage,
.get_voltage = qpnp_regulator_common_get_voltage,
.list_voltage = qpnp_regulator_common_list_voltage,
.set_mode = qpnp_regulator_common_set_mode,
.get_mode = qpnp_regulator_common_get_mode,
.get_optimum_mode = qpnp_regulator_common_get_optimum_mode,
.enable_time = qpnp_regulator_common_enable_time,
};
static struct regulator_ops qpnp_ult_lo_smps_ops = {
.enable = qpnp_regulator_common_enable,
.disable = qpnp_regulator_common_disable,
.is_enabled = qpnp_regulator_common_is_enabled,
.set_voltage = qpnp_regulator_ult_lo_smps_set_voltage,
.get_voltage = qpnp_regulator_ult_lo_smps_get_voltage,
.list_voltage = qpnp_regulator_common_list_voltage,
.set_mode = qpnp_regulator_common_set_mode,
.get_mode = qpnp_regulator_common_get_mode,
.get_optimum_mode = qpnp_regulator_common_get_optimum_mode,
.enable_time = qpnp_regulator_common_enable_time,
};
static struct regulator_ops qpnp_ult_ho_smps_ops = {
.enable = qpnp_regulator_common_enable,
.disable = qpnp_regulator_common_disable,
.is_enabled = qpnp_regulator_common_is_enabled,
.set_voltage = qpnp_regulator_single_range_set_voltage,
.get_voltage = qpnp_regulator_single_range_get_voltage,
.list_voltage = qpnp_regulator_common_list_voltage,
.set_mode = qpnp_regulator_common_set_mode,
.get_mode = qpnp_regulator_common_get_mode,
.get_optimum_mode = qpnp_regulator_common_get_optimum_mode,
.enable_time = qpnp_regulator_common_enable_time,
};
static struct regulator_ops qpnp_ult_ldo_ops = {
.enable = qpnp_regulator_common_enable,
.disable = qpnp_regulator_common_disable,
.is_enabled = qpnp_regulator_common_is_enabled,
.set_voltage = qpnp_regulator_single_range_set_voltage,
.get_voltage = qpnp_regulator_single_range_get_voltage,
.list_voltage = qpnp_regulator_common_list_voltage,
.set_mode = qpnp_regulator_common_set_mode,
.get_mode = qpnp_regulator_common_get_mode,
.get_optimum_mode = qpnp_regulator_common_get_optimum_mode,
.enable_time = qpnp_regulator_common_enable_time,
};
/* Maximum possible digital major revision value */
#define INF 0xFF
static const struct qpnp_regulator_mapping supported_regulators[] = {
/* type subtype dig_min dig_max ltype ops setpoints hpm_min */
QPNP_VREG_MAP(BUCK, GP_CTL, 0, INF, SMPS, smps, smps, 100000),
QPNP_VREG_MAP(LDO, N300, 0, INF, LDO, ldo, nldo1, 10000),
QPNP_VREG_MAP(LDO, N600, 0, 0, LDO, ldo, nldo2, 10000),
QPNP_VREG_MAP(LDO, N1200, 0, 0, LDO, ldo, nldo2, 10000),
QPNP_VREG_MAP(LDO, N600, 1, INF, LDO, ldo, nldo3, 10000),
QPNP_VREG_MAP(LDO, N1200, 1, INF, LDO, ldo, nldo3, 10000),
QPNP_VREG_MAP(LDO, N600_ST, 0, 0, LDO, ldo, nldo2, 10000),
QPNP_VREG_MAP(LDO, N1200_ST, 0, 0, LDO, ldo, nldo2, 10000),
QPNP_VREG_MAP(LDO, N600_ST, 1, INF, LDO, ldo, nldo3, 10000),
QPNP_VREG_MAP(LDO, N1200_ST, 1, INF, LDO, ldo, nldo3, 10000),
QPNP_VREG_MAP(LDO, P50, 0, INF, LDO, ldo, pldo, 5000),
QPNP_VREG_MAP(LDO, P150, 0, INF, LDO, ldo, pldo, 10000),
QPNP_VREG_MAP(LDO, P300, 0, INF, LDO, ldo, pldo, 10000),
QPNP_VREG_MAP(LDO, P600, 0, INF, LDO, ldo, pldo, 10000),
QPNP_VREG_MAP(LDO, P1200, 0, INF, LDO, ldo, pldo, 10000),
QPNP_VREG_MAP(LDO, LN, 0, INF, LN_LDO, ln_ldo, ln_ldo, 0),
QPNP_VREG_MAP(LDO, LV_P50, 0, INF, LDO, ldo, pldo, 5000),
QPNP_VREG_MAP(LDO, LV_P150, 0, INF, LDO, ldo, pldo, 10000),
QPNP_VREG_MAP(LDO, LV_P300, 0, INF, LDO, ldo, pldo, 10000),
QPNP_VREG_MAP(LDO, LV_P600, 0, INF, LDO, ldo, pldo, 10000),
QPNP_VREG_MAP(LDO, LV_P1200, 0, INF, LDO, ldo, pldo, 10000),
QPNP_VREG_MAP(VS, LV100, 0, INF, VS, vs, none, 0),
QPNP_VREG_MAP(VS, LV300, 0, INF, VS, vs, none, 0),
QPNP_VREG_MAP(VS, MV300, 0, INF, VS, vs, none, 0),
QPNP_VREG_MAP(VS, MV500, 0, INF, VS, vs, none, 0),
QPNP_VREG_MAP(VS, HDMI, 0, INF, VS, vs, none, 0),
QPNP_VREG_MAP(VS, OTG, 0, INF, VS, vs, none, 0),
QPNP_VREG_MAP(BOOST, 5V_BOOST, 0, INF, BOOST, boost, boost, 0),
QPNP_VREG_MAP(FTS, FTS_CTL, 0, INF, FTSMPS, ftsmps, ftsmps, 100000),
QPNP_VREG_MAP(FTS, FTS2p5_CTL, 0, INF, FTSMPS, ftsmps, ftsmps2p5,
100000),
QPNP_VREG_MAP(BOOST_BYP, BB_2A, 0, INF, BOOST_BYP, boost, boost_byp, 0),
QPNP_VREG_MAP(ULT_BUCK, ULT_HF_CTL1, 0, INF, ULT_LO_SMPS, ult_lo_smps,
ult_lo_smps, 100000),
QPNP_VREG_MAP(ULT_BUCK, ULT_HF_CTL2, 0, INF, ULT_LO_SMPS, ult_lo_smps,
ult_lo_smps, 100000),
QPNP_VREG_MAP(ULT_BUCK, ULT_HF_CTL3, 0, INF, ULT_LO_SMPS, ult_lo_smps,
ult_lo_smps, 100000),
QPNP_VREG_MAP(ULT_BUCK, ULT_HF_CTL4, 0, INF, ULT_HO_SMPS, ult_ho_smps,
ult_ho_smps, 100000),
QPNP_VREG_MAP(ULT_LDO, N300_ST, 0, INF, ULT_LDO, ult_ldo, ult_nldo,
10000),
QPNP_VREG_MAP(ULT_LDO, N600_ST, 0, INF, ULT_LDO, ult_ldo, ult_nldo,
10000),
QPNP_VREG_MAP(ULT_LDO, N1200_ST, 0, INF, ULT_LDO, ult_ldo, ult_nldo,
10000),
QPNP_VREG_MAP(ULT_LDO, LV_P150, 0, INF, ULT_LDO, ult_ldo, ult_pldo,
10000),
QPNP_VREG_MAP(ULT_LDO, LV_P300, 0, INF, ULT_LDO, ult_ldo, ult_pldo,
10000),
QPNP_VREG_MAP(ULT_LDO, P600, 0, INF, ULT_LDO, ult_ldo, ult_pldo,
10000),
QPNP_VREG_MAP(ULT_LDO, P150, 0, INF, ULT_LDO, ult_ldo, ult_pldo,
10000),
QPNP_VREG_MAP(ULT_LDO, P50, 0, INF, ULT_LDO, ult_ldo, ult_pldo,
5000),
};
static int qpnp_regulator_match(struct qpnp_regulator *vreg)
{
const struct qpnp_regulator_mapping *mapping;
struct device_node *node = vreg->spmi_dev->dev.of_node;
int rc, i;
u32 type_reg[2], dig_major_rev;
u8 version[QPNP_COMMON_REG_SUBTYPE - QPNP_COMMON_REG_DIG_MAJOR_REV + 1];
u8 type, subtype;
rc = qpnp_vreg_read(vreg, QPNP_COMMON_REG_DIG_MAJOR_REV, version,
ARRAY_SIZE(version));
if (rc) {
vreg_err(vreg, "could not read version registers, rc=%d\n", rc);
return rc;
}
dig_major_rev = version[QPNP_COMMON_REG_DIG_MAJOR_REV
- QPNP_COMMON_REG_DIG_MAJOR_REV];
type = version[QPNP_COMMON_REG_TYPE
- QPNP_COMMON_REG_DIG_MAJOR_REV];
subtype = version[QPNP_COMMON_REG_SUBTYPE
- QPNP_COMMON_REG_DIG_MAJOR_REV];
/*
* Override type and subtype register values if qcom,force-type is
* present in the device tree node.
*/
rc = of_property_read_u32_array(node, "qcom,force-type", type_reg, 2);
if (!rc) {
type = type_reg[0];
subtype = type_reg[1];
}
rc = -ENODEV;
for (i = 0; i < ARRAY_SIZE(supported_regulators); i++) {
mapping = &supported_regulators[i];
if (mapping->type == type && mapping->subtype == subtype
&& mapping->revision_min <= dig_major_rev
&& mapping->revision_max >= dig_major_rev) {
vreg->logical_type = mapping->logical_type;
vreg->set_points = mapping->set_points;
vreg->hpm_min_load = mapping->hpm_min_load;
vreg->rdesc.ops = mapping->ops;
vreg->rdesc.n_voltages
= mapping->set_points->n_voltages;
rc = 0;
break;
}
}
if (rc)
vreg_err(vreg, "unsupported regulator: type=0x%02X, subtype=0x%02X, dig major rev=0x%02X\n",
type, subtype, dig_major_rev);
return rc;
}
static int qpnp_regulator_ftsmps_init_slew_rate(struct qpnp_regulator *vreg)
{
int rc;
u8 reg = 0;
int step = 0, delay, i, range_sel;
struct qpnp_voltage_range *range = NULL;
rc = qpnp_vreg_read(vreg, QPNP_COMMON_REG_STEP_CTRL, &reg, 1);
if (rc) {
vreg_err(vreg, "spmi read failed, rc=%d\n", rc);
return rc;
}
range_sel = vreg->ctrl_reg[QPNP_COMMON_IDX_VOLTAGE_RANGE];
for (i = 0; i < vreg->set_points->count; i++) {
if (vreg->set_points->range[i].range_sel == range_sel) {
range = &vreg->set_points->range[i];
break;
}
}
if (!range) {
vreg_err(vreg, "range %d is invalid\n", range_sel);
return -EINVAL;
}
step = (reg & QPNP_FTSMPS_STEP_CTRL_STEP_MASK)
>> QPNP_FTSMPS_STEP_CTRL_STEP_SHIFT;
delay = (reg & QPNP_FTSMPS_STEP_CTRL_DELAY_MASK)
>> QPNP_FTSMPS_STEP_CTRL_DELAY_SHIFT;
/* slew_rate has units of uV/us. */
vreg->slew_rate = QPNP_FTSMPS_CLOCK_RATE * range->step_uV * (1 << step);
vreg->slew_rate /= 1000 * (QPNP_FTSMPS_STEP_DELAY << delay);
vreg->slew_rate = vreg->slew_rate * QPNP_FTSMPS_STEP_MARGIN_NUM
/ QPNP_FTSMPS_STEP_MARGIN_DEN;
/* Ensure that the slew rate is greater than 0. */
vreg->slew_rate = max(vreg->slew_rate, 1);
return rc;
}
static int qpnp_regulator_init_registers(struct qpnp_regulator *vreg,
struct qpnp_regulator_platform_data *pdata)
{
int rc, i;
enum qpnp_regulator_logical_type type;
u8 ctrl_reg[8], reg, mask;
type = vreg->logical_type;
rc = qpnp_vreg_read(vreg, QPNP_COMMON_REG_VOLTAGE_RANGE,
vreg->ctrl_reg, 8);
if (rc) {
vreg_err(vreg, "spmi read failed, rc=%d\n", rc);
return rc;
}
for (i = 0; i < ARRAY_SIZE(ctrl_reg); i++)
ctrl_reg[i] = vreg->ctrl_reg[i];
/* Set up enable pin control. */
if ((type == QPNP_REGULATOR_LOGICAL_TYPE_SMPS
|| type == QPNP_REGULATOR_LOGICAL_TYPE_LDO
|| type == QPNP_REGULATOR_LOGICAL_TYPE_VS)
&& !(pdata->pin_ctrl_enable
& QPNP_REGULATOR_PIN_CTRL_ENABLE_HW_DEFAULT)) {
ctrl_reg[QPNP_COMMON_IDX_ENABLE] &=
~QPNP_COMMON_ENABLE_FOLLOW_ALL_MASK;
ctrl_reg[QPNP_COMMON_IDX_ENABLE] |=
pdata->pin_ctrl_enable & QPNP_COMMON_ENABLE_FOLLOW_ALL_MASK;
}
/* Set up HPM control. */
if ((type == QPNP_REGULATOR_LOGICAL_TYPE_SMPS
|| type == QPNP_REGULATOR_LOGICAL_TYPE_ULT_LO_SMPS
|| type == QPNP_REGULATOR_LOGICAL_TYPE_ULT_HO_SMPS
|| type == QPNP_REGULATOR_LOGICAL_TYPE_ULT_LDO
|| type == QPNP_REGULATOR_LOGICAL_TYPE_LDO
|| type == QPNP_REGULATOR_LOGICAL_TYPE_VS
|| type == QPNP_REGULATOR_LOGICAL_TYPE_FTSMPS)
&& (pdata->hpm_enable != QPNP_REGULATOR_USE_HW_DEFAULT)) {
ctrl_reg[QPNP_COMMON_IDX_MODE] &= ~QPNP_COMMON_MODE_HPM_MASK;
ctrl_reg[QPNP_COMMON_IDX_MODE] |=
(pdata->hpm_enable ? QPNP_COMMON_MODE_HPM_MASK : 0);
}
/* Set up auto mode control. */
if ((type == QPNP_REGULATOR_LOGICAL_TYPE_SMPS
|| type == QPNP_REGULATOR_LOGICAL_TYPE_LDO
|| type == QPNP_REGULATOR_LOGICAL_TYPE_VS
|| type == QPNP_REGULATOR_LOGICAL_TYPE_FTSMPS)
&& (pdata->auto_mode_enable != QPNP_REGULATOR_USE_HW_DEFAULT)) {
ctrl_reg[QPNP_COMMON_IDX_MODE] &=
~QPNP_COMMON_MODE_AUTO_MASK;
ctrl_reg[QPNP_COMMON_IDX_MODE] |=
(pdata->auto_mode_enable ? QPNP_COMMON_MODE_AUTO_MASK : 0);
}
/* Set up mode pin control. */
if ((type == QPNP_REGULATOR_LOGICAL_TYPE_SMPS
|| type == QPNP_REGULATOR_LOGICAL_TYPE_LDO)
&& !(pdata->pin_ctrl_hpm
& QPNP_REGULATOR_PIN_CTRL_HPM_HW_DEFAULT)) {
ctrl_reg[QPNP_COMMON_IDX_MODE] &=
~QPNP_COMMON_MODE_FOLLOW_ALL_MASK;
ctrl_reg[QPNP_COMMON_IDX_MODE] |=
pdata->pin_ctrl_hpm & QPNP_COMMON_MODE_FOLLOW_ALL_MASK;
}
if (type == QPNP_REGULATOR_LOGICAL_TYPE_VS
&& !(pdata->pin_ctrl_hpm & QPNP_REGULATOR_PIN_CTRL_HPM_HW_DEFAULT)) {
ctrl_reg[QPNP_COMMON_IDX_MODE] &=
~QPNP_COMMON_MODE_FOLLOW_AWAKE_MASK;
ctrl_reg[QPNP_COMMON_IDX_MODE] |=
pdata->pin_ctrl_hpm & QPNP_COMMON_MODE_FOLLOW_AWAKE_MASK;
}
if ((type == QPNP_REGULATOR_LOGICAL_TYPE_ULT_LO_SMPS
|| type == QPNP_REGULATOR_LOGICAL_TYPE_ULT_HO_SMPS
|| type == QPNP_REGULATOR_LOGICAL_TYPE_ULT_LDO)
&& !(pdata->pin_ctrl_hpm
& QPNP_REGULATOR_PIN_CTRL_HPM_HW_DEFAULT)) {
ctrl_reg[QPNP_COMMON_IDX_MODE] &=
~QPNP_COMMON_MODE_FOLLOW_AWAKE_MASK;
ctrl_reg[QPNP_COMMON_IDX_MODE] |=
pdata->pin_ctrl_hpm & QPNP_COMMON_MODE_FOLLOW_AWAKE_MASK;
}
if ((type == QPNP_REGULATOR_LOGICAL_TYPE_LDO
|| type == QPNP_REGULATOR_LOGICAL_TYPE_LN_LDO
|| type == QPNP_REGULATOR_LOGICAL_TYPE_ULT_LDO)
&& pdata->bypass_mode_enable != QPNP_REGULATOR_USE_HW_DEFAULT) {
ctrl_reg[QPNP_COMMON_IDX_MODE] &=
~QPNP_COMMON_MODE_BYPASS_MASK;
ctrl_reg[QPNP_COMMON_IDX_MODE] |=
(pdata->bypass_mode_enable
? QPNP_COMMON_MODE_BYPASS_MASK : 0);
}
/* Set boost current limit. */
if ((type == QPNP_REGULATOR_LOGICAL_TYPE_BOOST
|| type == QPNP_REGULATOR_LOGICAL_TYPE_BOOST_BYP)
&& pdata->boost_current_limit
!= QPNP_BOOST_CURRENT_LIMIT_HW_DEFAULT) {
reg = pdata->boost_current_limit;
mask = QPNP_BOOST_CURRENT_LIMIT_MASK;
rc = qpnp_vreg_masked_read_write(vreg,
(type == QPNP_REGULATOR_LOGICAL_TYPE_BOOST
? QPNP_BOOST_REG_CURRENT_LIMIT
: QPNP_BOOST_BYP_REG_CURRENT_LIMIT),
reg, mask);
if (rc) {
vreg_err(vreg, "spmi write failed, rc=%d\n", rc);
return rc;
}
}
/* Write back any control register values that were modified. */
rc = qpnp_vreg_write_optimized(vreg, QPNP_COMMON_REG_VOLTAGE_RANGE,
ctrl_reg, vreg->ctrl_reg, 8);
if (rc) {
vreg_err(vreg, "spmi write failed, rc=%d\n", rc);
return rc;
}
/* Setup initial range for ULT_LO_SMPS */
if (type == QPNP_REGULATOR_LOGICAL_TYPE_ULT_LO_SMPS) {
ctrl_reg[QPNP_COMMON_IDX_VOLTAGE_RANGE] =
(ctrl_reg[QPNP_COMMON_IDX_VOLTAGE_SET]
< ULT_SMPS_RANGE_SPLIT) ? 0 : 1;
}
/* Set pull down. */
if ((type == QPNP_REGULATOR_LOGICAL_TYPE_SMPS
|| type == QPNP_REGULATOR_LOGICAL_TYPE_ULT_LO_SMPS
|| type == QPNP_REGULATOR_LOGICAL_TYPE_ULT_HO_SMPS
|| type == QPNP_REGULATOR_LOGICAL_TYPE_ULT_LDO
|| type == QPNP_REGULATOR_LOGICAL_TYPE_LDO
|| type == QPNP_REGULATOR_LOGICAL_TYPE_VS)
&& pdata->pull_down_enable != QPNP_REGULATOR_USE_HW_DEFAULT) {
reg = pdata->pull_down_enable
? QPNP_COMMON_PULL_DOWN_ENABLE_MASK : 0;
rc = qpnp_vreg_write(vreg, QPNP_COMMON_REG_PULL_DOWN, &reg, 1);
if (rc) {
vreg_err(vreg, "spmi write failed, rc=%d\n", rc);
return rc;
}
}
if (type == QPNP_REGULATOR_LOGICAL_TYPE_FTSMPS
&& pdata->pull_down_enable != QPNP_REGULATOR_USE_HW_DEFAULT) {
/* FTSMPS has other bits in the pull down control register. */
reg = pdata->pull_down_enable
? QPNP_COMMON_PULL_DOWN_ENABLE_MASK : 0;
rc = qpnp_vreg_masked_read_write(vreg,
QPNP_COMMON_REG_PULL_DOWN, reg,
QPNP_COMMON_PULL_DOWN_ENABLE_MASK);
if (rc) {
vreg_err(vreg, "spmi write failed, rc=%d\n", rc);
return rc;
}
}
/* Set soft start for LDO. */
if ((type == QPNP_REGULATOR_LOGICAL_TYPE_LDO
|| type == QPNP_REGULATOR_LOGICAL_TYPE_ULT_LDO)
&& pdata->soft_start_enable != QPNP_REGULATOR_USE_HW_DEFAULT) {
reg = pdata->soft_start_enable
? QPNP_LDO_SOFT_START_ENABLE_MASK : 0;
rc = qpnp_vreg_write(vreg, QPNP_LDO_REG_SOFT_START, &reg, 1);
if (rc) {
vreg_err(vreg, "spmi write failed, rc=%d\n", rc);
return rc;
}
}
/* Set soft start strength and over current protection for VS. */
if (type == QPNP_REGULATOR_LOGICAL_TYPE_VS) {
reg = 0;
mask = 0;
if (pdata->soft_start_enable != QPNP_REGULATOR_USE_HW_DEFAULT) {
reg |= pdata->soft_start_enable
? QPNP_VS_SOFT_START_ENABLE_MASK : 0;
mask |= QPNP_VS_SOFT_START_ENABLE_MASK;
}
if (pdata->vs_soft_start_strength
!= QPNP_VS_SOFT_START_STR_HW_DEFAULT) {
reg |= pdata->vs_soft_start_strength
& QPNP_VS_SOFT_START_SEL_MASK;
mask |= QPNP_VS_SOFT_START_SEL_MASK;
}
rc = qpnp_vreg_masked_read_write(vreg, QPNP_VS_REG_SOFT_START,
reg, mask);
if (rc) {
vreg_err(vreg, "spmi write failed, rc=%d\n", rc);
return rc;
}
if (pdata->ocp_enable != QPNP_REGULATOR_USE_HW_DEFAULT) {
reg = pdata->ocp_enable ? QPNP_VS_OCP_NO_OVERRIDE
: QPNP_VS_OCP_OVERRIDE;
rc = qpnp_vreg_write(vreg, QPNP_VS_REG_OCP, &reg, 1);
if (rc) {
vreg_err(vreg, "spmi write failed, rc=%d\n",
rc);
return rc;
}
}
}
/* Calculate the slew rate for FTSMPS regulators. */
if (type == QPNP_REGULATOR_LOGICAL_TYPE_FTSMPS) {
rc = qpnp_regulator_ftsmps_init_slew_rate(vreg);
if (rc) {
vreg_err(vreg, "failed to initialize step rate, rc=%d\n",
rc);
return rc;
}
}
return rc;
}
/* Fill in pdata elements based on values found in device tree. */
static int qpnp_regulator_get_dt_config(struct spmi_device *spmi,
struct qpnp_regulator_platform_data *pdata)
{
struct resource *res;
struct device_node *node = spmi->dev.of_node;
int rc = 0;
pdata->init_data.constraints.input_uV
= pdata->init_data.constraints.max_uV;
res = spmi_get_resource(spmi, NULL, IORESOURCE_MEM, 0);
if (!res) {
dev_err(&spmi->dev, "%s: node is missing base address\n",
__func__);
return -EINVAL;
}
pdata->base_addr = res->start;
/* OCP IRQ is optional so ignore get errors. */
pdata->ocp_irq = spmi_get_irq_byname(spmi, NULL, "ocp");
if (pdata->ocp_irq < 0)
pdata->ocp_irq = 0;
/*
* Initialize configuration parameters to use hardware default in case
* no value is specified via device tree.
*/
pdata->auto_mode_enable = QPNP_REGULATOR_USE_HW_DEFAULT;
pdata->bypass_mode_enable = QPNP_REGULATOR_USE_HW_DEFAULT;
pdata->ocp_enable = QPNP_REGULATOR_USE_HW_DEFAULT;
pdata->pull_down_enable = QPNP_REGULATOR_USE_HW_DEFAULT;
pdata->soft_start_enable = QPNP_REGULATOR_USE_HW_DEFAULT;
pdata->boost_current_limit = QPNP_BOOST_CURRENT_LIMIT_HW_DEFAULT;
pdata->pin_ctrl_enable = QPNP_REGULATOR_PIN_CTRL_ENABLE_HW_DEFAULT;
pdata->pin_ctrl_hpm = QPNP_REGULATOR_PIN_CTRL_HPM_HW_DEFAULT;
pdata->vs_soft_start_strength = QPNP_VS_SOFT_START_STR_HW_DEFAULT;
pdata->hpm_enable = QPNP_REGULATOR_USE_HW_DEFAULT;
/* These bindings are optional, so it is okay if they are not found. */
of_property_read_u32(node, "qcom,auto-mode-enable",
&pdata->auto_mode_enable);
of_property_read_u32(node, "qcom,bypass-mode-enable",
&pdata->bypass_mode_enable);
of_property_read_u32(node, "qcom,ocp-enable", &pdata->ocp_enable);
of_property_read_u32(node, "qcom,ocp-max-retries",
&pdata->ocp_max_retries);
of_property_read_u32(node, "qcom,ocp-retry-delay",
&pdata->ocp_retry_delay_ms);
of_property_read_u32(node, "qcom,pull-down-enable",
&pdata->pull_down_enable);
of_property_read_u32(node, "qcom,soft-start-enable",
&pdata->soft_start_enable);
of_property_read_u32(node, "qcom,boost-current-limit",
&pdata->boost_current_limit);
of_property_read_u32(node, "qcom,pin-ctrl-enable",
&pdata->pin_ctrl_enable);
of_property_read_u32(node, "qcom,pin-ctrl-hpm", &pdata->pin_ctrl_hpm);
of_property_read_u32(node, "qcom,hpm-enable", &pdata->hpm_enable);
of_property_read_u32(node, "qcom,vs-soft-start-strength",
&pdata->vs_soft_start_strength);
of_property_read_u32(node, "qcom,system-load", &pdata->system_load);
of_property_read_u32(node, "qcom,enable-time", &pdata->enable_time);
return rc;
}
static struct of_device_id spmi_match_table[];
#define MAX_NAME_LEN 127
static int qpnp_regulator_probe(struct spmi_device *spmi)
{
struct regulator_config reg_config = {};
struct qpnp_regulator_platform_data *pdata;
struct qpnp_regulator *vreg;
struct regulator_desc *rdesc;
struct qpnp_regulator_platform_data of_pdata;
struct regulator_init_data *init_data;
char *reg_name;
int rc;
bool is_dt;
vreg = kzalloc(sizeof(struct qpnp_regulator), GFP_KERNEL);
if (!vreg) {
dev_err(&spmi->dev, "%s: Can't allocate qpnp_regulator\n",
__func__);
return -ENOMEM;
}
is_dt = of_match_device(spmi_match_table, &spmi->dev);
/* Check if device tree is in use. */
if (is_dt) {
init_data = of_get_regulator_init_data(&spmi->dev,
spmi->dev.of_node);
if (!init_data) {
dev_err(&spmi->dev, "%s: unable to allocate memory\n",
__func__);
kfree(vreg);
return -ENOMEM;
}
memset(&of_pdata, 0,
sizeof(struct qpnp_regulator_platform_data));
memcpy(&of_pdata.init_data, init_data,
sizeof(struct regulator_init_data));
if (of_get_property(spmi->dev.of_node, "parent-supply", NULL))
of_pdata.init_data.supply_regulator = "parent";
rc = qpnp_regulator_get_dt_config(spmi, &of_pdata);
if (rc) {
dev_err(&spmi->dev, "%s: DT parsing failed, rc=%d\n",
__func__, rc);
kfree(vreg);
return -ENOMEM;
}
pdata = &of_pdata;
} else {
pdata = spmi->dev.platform_data;
}
if (pdata == NULL) {
dev_err(&spmi->dev, "%s: no platform data specified\n",
__func__);
kfree(vreg);
return -EINVAL;
}
vreg->spmi_dev = spmi;
vreg->prev_write_count = -1;
vreg->write_count = 0;
vreg->base_addr = pdata->base_addr;
vreg->enable_time = pdata->enable_time;
vreg->system_load = pdata->system_load;
vreg->ocp_enable = pdata->ocp_enable;
vreg->ocp_irq = pdata->ocp_irq;
vreg->ocp_max_retries = pdata->ocp_max_retries;
vreg->ocp_retry_delay_ms = pdata->ocp_retry_delay_ms;
if (vreg->ocp_max_retries == 0)
vreg->ocp_max_retries = QPNP_VS_OCP_DEFAULT_MAX_RETRIES;
if (vreg->ocp_retry_delay_ms == 0)
vreg->ocp_retry_delay_ms = QPNP_VS_OCP_DEFAULT_RETRY_DELAY_MS;
rdesc = &vreg->rdesc;
rdesc->id = spmi->ctrl->nr;
rdesc->owner = THIS_MODULE;
rdesc->type = REGULATOR_VOLTAGE;
reg_name = kzalloc(strnlen(pdata->init_data.constraints.name,
MAX_NAME_LEN) + 1, GFP_KERNEL);
if (!reg_name) {
dev_err(&spmi->dev, "%s: Can't allocate regulator name\n",
__func__);
kfree(vreg);
return -ENOMEM;
}
strlcpy(reg_name, pdata->init_data.constraints.name,
strnlen(pdata->init_data.constraints.name, MAX_NAME_LEN) + 1);
rdesc->name = reg_name;
dev_set_drvdata(&spmi->dev, vreg);
rc = qpnp_regulator_match(vreg);
if (rc)
goto bail;
if (is_dt && rdesc->ops) {
/* Fill in ops and mode masks when using device tree. */
if (rdesc->ops->enable)
pdata->init_data.constraints.valid_ops_mask
|= REGULATOR_CHANGE_STATUS;
if (rdesc->ops->get_voltage)
pdata->init_data.constraints.valid_ops_mask
|= REGULATOR_CHANGE_VOLTAGE;
if (rdesc->ops->get_mode) {
pdata->init_data.constraints.valid_ops_mask
|= REGULATOR_CHANGE_MODE
| REGULATOR_CHANGE_DRMS;
pdata->init_data.constraints.valid_modes_mask
= REGULATOR_MODE_NORMAL | REGULATOR_MODE_IDLE;
}
}
rc = qpnp_regulator_init_registers(vreg, pdata);
if (rc) {
vreg_err(vreg, "common initialization failed, rc=%d\n", rc);
goto bail;
}
if (vreg->logical_type != QPNP_REGULATOR_LOGICAL_TYPE_VS)
vreg->ocp_irq = 0;
if (vreg->ocp_irq) {
rc = devm_request_irq(&spmi->dev, vreg->ocp_irq,
qpnp_regulator_vs_ocp_isr, IRQF_TRIGGER_RISING, "ocp",
vreg);
if (rc < 0) {
vreg_err(vreg, "failed to request irq %d, rc=%d\n",
vreg->ocp_irq, rc);
goto bail;
}
INIT_DELAYED_WORK(&vreg->ocp_work, qpnp_regulator_vs_ocp_work);
}
reg_config.dev = &spmi->dev;
reg_config.init_data = &pdata->init_data;
reg_config.driver_data = vreg;
reg_config.of_node = spmi->dev.of_node;
vreg->rdev = regulator_register(rdesc, &reg_config);
if (IS_ERR(vreg->rdev)) {
rc = PTR_ERR(vreg->rdev);
if (rc != -EPROBE_DEFER)
vreg_err(vreg, "regulator_register failed, rc=%d\n",
rc);
goto cancel_ocp_work;
}
qpnp_vreg_show_state(vreg->rdev, QPNP_REGULATOR_ACTION_INIT);
return 0;
cancel_ocp_work:
if (vreg->ocp_irq)
cancel_delayed_work_sync(&vreg->ocp_work);
bail:
if (rc && rc != -EPROBE_DEFER)
vreg_err(vreg, "probe failed, rc=%d\n", rc);
kfree(vreg->rdesc.name);
kfree(vreg);
return rc;
}
static int qpnp_regulator_remove(struct spmi_device *spmi)
{
struct qpnp_regulator *vreg;
vreg = dev_get_drvdata(&spmi->dev);
dev_set_drvdata(&spmi->dev, NULL);
if (vreg) {
regulator_unregister(vreg->rdev);
if (vreg->ocp_irq)
cancel_delayed_work_sync(&vreg->ocp_work);
kfree(vreg->rdesc.name);
kfree(vreg);
}
return 0;
}
static struct of_device_id spmi_match_table[] = {
{ .compatible = QPNP_REGULATOR_DRIVER_NAME, },
{}
};
static const struct spmi_device_id qpnp_regulator_id[] = {
{ QPNP_REGULATOR_DRIVER_NAME, 0 },
{ }
};
MODULE_DEVICE_TABLE(spmi, qpnp_regulator_id);
static struct spmi_driver qpnp_regulator_driver = {
.driver = {
.name = QPNP_REGULATOR_DRIVER_NAME,
.of_match_table = spmi_match_table,
.owner = THIS_MODULE,
},
.probe = qpnp_regulator_probe,
.remove = qpnp_regulator_remove,
.id_table = qpnp_regulator_id,
};
/*
* Pre-compute the number of set points available for each regulator type to
* avoid unnecessary calculations later in runtime.
*/
static void qpnp_regulator_set_point_init(void)
{
struct qpnp_voltage_set_points **set_points;
int i, j, temp;
set_points = all_set_points;
for (i = 0; i < ARRAY_SIZE(all_set_points); i++) {
temp = 0;
for (j = 0; j < all_set_points[i]->count; j++) {
all_set_points[i]->range[j].n_voltages
= (all_set_points[i]->range[j].set_point_max_uV
- all_set_points[i]->range[j].set_point_min_uV)
/ all_set_points[i]->range[j].step_uV + 1;
if (all_set_points[i]->range[j].set_point_max_uV == 0)
all_set_points[i]->range[j].n_voltages = 0;
temp += all_set_points[i]->range[j].n_voltages;
}
all_set_points[i]->n_voltages = temp;
}
}
/**
* qpnp_regulator_init() - register spmi driver for qpnp-regulator
*
* This initialization function should be called in systems in which driver
* registration ordering must be controlled precisely.
*/
int __init qpnp_regulator_init(void)
{
static bool has_registered;
if (has_registered)
return 0;
else
has_registered = true;
qpnp_regulator_set_point_init();
return spmi_driver_register(&qpnp_regulator_driver);
}
EXPORT_SYMBOL(qpnp_regulator_init);
static void __exit qpnp_regulator_exit(void)
{
spmi_driver_unregister(&qpnp_regulator_driver);
}
MODULE_DESCRIPTION("QPNP PMIC regulator driver");
MODULE_LICENSE("GPL v2");
arch_initcall(qpnp_regulator_init);
module_exit(qpnp_regulator_exit);