android_kernel_samsung_hero.../drivers/thermal/msm_thermal.c
2016-08-17 16:41:52 +08:00

7116 lines
174 KiB
C

/* Copyright (c) 2012-2015, The Linux Foundation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 and
* only version 2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
*/
#define pr_fmt(fmt) "%s:%s " fmt, KBUILD_MODNAME, __func__
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/module.h>
#include <linux/kthread.h>
#include <linux/mutex.h>
#include <linux/msm_tsens.h>
#include <linux/workqueue.h>
#include <linux/completion.h>
#include <linux/cpu.h>
#include <linux/cpufreq.h>
#include <linux/msm_tsens.h>
#include <linux/msm_thermal.h>
#include <linux/platform_device.h>
#include <linux/of.h>
#include <linux/err.h>
#include <linux/slab.h>
#include <linux/of.h>
#include <linux/sysfs.h>
#include <linux/types.h>
#include <linux/thermal.h>
#include <linux/regulator/rpm-smd-regulator.h>
#include <linux/regulator/consumer.h>
#include <linux/regulator/driver.h>
#include <linux/msm_thermal_ioctl.h>
#include <soc/qcom/rpm-smd.h>
#include <soc/qcom/scm.h>
#include <linux/debugfs.h>
#include <linux/pm_opp.h>
#include <linux/sched/rt.h>
#include <linux/notifier.h>
#include <linux/reboot.h>
#include <soc/qcom/msm-core.h>
#include <linux/cpumask.h>
#include <linux/suspend.h>
#include <linux/uaccess.h>
#define CREATE_TRACE_POINTS
#define TRACE_MSM_THERMAL
#include <trace/trace_thermal.h>
#define MAX_CURRENT_UA 100000
#define MAX_RAILS 5
#define TSENS_NAME_FORMAT "tsens_tz_sensor%d"
#define THERM_SECURE_BITE_CMD 8
#define SENSOR_SCALING_FACTOR 1
#define MSM_THERMAL_NAME "msm_thermal"
#define MSM_TSENS_PRINT "log_tsens_temperature"
#define CPU_BUF_SIZE 64
#define CPU_DEVICE "cpu%d"
#define MAX_DEBUGFS_CONFIG_LEN 32
#define MSM_THERMAL_CONFIG "config"
#define MSM_CONFIG_DATA "data"
#define DEBUGFS_DISABLE_ALL_MIT "disable"
#define DEBUGFS_CONFIG_UPDATE "update"
#define MSM_THERMAL_THRESH "thresh_degc"
#define MSM_THERMAL_THRESH_CLR "thresh_clr_degc"
#define MSM_THERMAL_THRESH_UPDATE "update"
#define DEVM_NAME_MAX 30
#define HOTPLUG_RETRY_INTERVAL_MS 100
#define VALIDATE_AND_SET_MASK(_node, _key, _mask, _cpu) \
do { \
if (of_property_read_bool(_node, _key)) \
_mask |= BIT(_cpu); \
} while (0)
#define THERM_CREATE_DEBUGFS_DIR(_node, _name, _parent, _ret) \
do { \
_node = debugfs_create_dir(_name, _parent); \
if (IS_ERR(_node)) { \
_ret = PTR_ERR(_node); \
pr_err("Error creating debugfs dir:%s. err:%d\n", \
_name, _ret); \
} \
} while (0)
#define UPDATE_THRESHOLD_SET(_val, _trip) do { \
if (_trip == THERMAL_TRIP_CONFIGURABLE_HI) \
_val |= 1; \
else if (_trip == THERMAL_TRIP_CONFIGURABLE_LOW)\
_val |= 2; \
} while (0)
#define UPDATE_CPU_CONFIG_THRESHOLD(_mask, _id, _high, _low) \
do { \
int cpu; \
for_each_possible_cpu(cpu) { \
if (!(_mask & BIT(cpus[cpu].cpu))) \
continue; \
cpus[cpu].threshold[_id].temp = _high \
* tsens_scaling_factor; \
cpus[cpu].threshold[_id + 1].temp = _low \
* tsens_scaling_factor; \
set_and_activate_threshold( \
cpus[cpu].sensor_id, \
&cpus[cpu].threshold[_id]); \
set_and_activate_threshold( \
cpus[cpu].sensor_id, \
&cpus[cpu].threshold[_id + 1]); \
} \
} while (0)
static struct msm_thermal_data msm_thermal_info;
static struct delayed_work check_temp_work, retry_hotplug_work;
static bool core_control_enabled;
static uint32_t cpus_offlined;
static cpumask_var_t cpus_previously_online;
static DEFINE_MUTEX(core_control_mutex);
static struct kobject *cc_kobj;
static struct kobject *mx_kobj;
static struct task_struct *hotplug_task;
static struct task_struct *freq_mitigation_task;
static struct task_struct *thermal_monitor_task;
static struct completion hotplug_notify_complete;
static struct completion freq_mitigation_complete;
static struct completion thermal_monitor_complete;
static int enabled;
static int polling_enabled;
static int rails_cnt;
static int sensor_cnt;
static int psm_rails_cnt;
static int ocr_rail_cnt;
static int limit_idx;
static int limit_idx_low;
static int limit_idx_high;
static int max_tsens_num;
static struct cpufreq_frequency_table *table;
static uint32_t usefreq;
static int freq_table_get;
static bool vdd_rstr_enabled;
static bool vdd_rstr_nodes_called;
static bool vdd_rstr_probed;
static bool sensor_info_nodes_called;
static bool sensor_info_probed;
static bool psm_enabled;
static bool psm_nodes_called;
static bool psm_probed;
static bool freq_mitigation_enabled;
static bool ocr_enabled;
static bool ocr_nodes_called;
static bool ocr_probed;
static bool ocr_reg_init_defer;
static bool hotplug_enabled;
static bool interrupt_mode_enable;
static bool msm_thermal_probed;
static bool gfx_crit_phase_ctrl_enabled;
static bool gfx_warm_phase_ctrl_enabled;
static bool cx_phase_ctrl_enabled;
static bool vdd_mx_enabled;
static bool therm_reset_enabled;
static bool online_core;
static bool cluster_info_probed;
static bool cluster_info_nodes_called;
static bool in_suspend, retry_in_progress;
static int *tsens_id_map;
static int *zone_id_tsens_map;
static DEFINE_MUTEX(vdd_rstr_mutex);
static DEFINE_MUTEX(psm_mutex);
static DEFINE_MUTEX(cx_mutex);
static DEFINE_MUTEX(gfx_mutex);
static DEFINE_MUTEX(ocr_mutex);
static DEFINE_MUTEX(vdd_mx_mutex);
static DEFINE_MUTEX(threshold_mutex);
static uint32_t curr_gfx_band;
static uint32_t curr_cx_band;
static struct kobj_attribute cx_mode_attr;
static struct kobj_attribute gfx_mode_attr;
static struct kobj_attribute mx_enabled_attr;
static struct attribute_group cx_attr_gp;
static struct attribute_group gfx_attr_gp;
static struct attribute_group mx_attr_group;
static struct regulator *vdd_mx;
static long *tsens_temp_at_panic;
static u32 tsens_temp_print;
static uint32_t bucket;
static cpumask_t throttling_mask;
static int tsens_scaling_factor = SENSOR_SCALING_FACTOR;
static LIST_HEAD(devices_list);
static LIST_HEAD(thresholds_list);
static int mitigation = 1;
enum thermal_threshold {
HOTPLUG_THRESHOLD_HIGH,
HOTPLUG_THRESHOLD_LOW,
FREQ_THRESHOLD_HIGH,
FREQ_THRESHOLD_LOW,
THRESHOLD_MAX_NR,
};
struct cluster_info {
int cluster_id;
uint32_t entity_count;
struct cluster_info *child_entity_ptr;
struct cluster_info *parent_ptr;
struct cpufreq_frequency_table *freq_table;
int freq_idx;
int freq_idx_low;
int freq_idx_high;
cpumask_t cluster_cores;
bool sync_cluster;
uint32_t limited_max_freq;
uint32_t limited_min_freq;
};
struct cpu_info {
uint32_t cpu;
const char *sensor_type;
enum sensor_id_type id_type;
uint32_t sensor_id;
bool offline;
bool user_offline;
bool hotplug_thresh_clear;
struct sensor_threshold threshold[THRESHOLD_MAX_NR];
bool max_freq;
uint32_t user_max_freq;
uint32_t shutdown_max_freq;
uint32_t suspend_max_freq;
uint32_t vdd_max_freq;
uint32_t user_min_freq;
uint32_t limited_max_freq;
uint32_t limited_min_freq;
bool freq_thresh_clear;
struct cluster_info *parent_ptr;
};
struct rail {
const char *name;
uint32_t freq_req;
uint32_t min_level;
uint32_t num_levels;
int32_t curr_level;
uint32_t levels[3];
struct kobj_attribute value_attr;
struct kobj_attribute level_attr;
struct regulator *reg;
struct attribute_group attr_gp;
uint32_t max_frequency_limit;
struct device_clnt_data *device_handle[NR_CPUS];
union device_request request[NR_CPUS];
};
struct msm_sensor_info {
const char *name;
const char *alias;
const char *type;
uint32_t scaling_factor;
};
struct psm_rail {
const char *name;
uint8_t init;
uint8_t mode;
struct kobj_attribute mode_attr;
struct rpm_regulator *reg;
struct regulator *phase_reg;
struct attribute_group attr_gp;
};
struct devmgr_devices {
struct device_manager_data *hotplug_dev;
struct device_manager_data *cpufreq_dev[NR_CPUS];
};
enum msm_thresh_list {
MSM_THERM_RESET,
MSM_VDD_RESTRICTION,
MSM_CX_PHASE_CTRL_HOT,
MSM_GFX_PHASE_CTRL_WARM,
MSM_GFX_PHASE_CTRL_HOT,
MSM_OCR,
MSM_VDD_MX_RESTRICTION,
MSM_LIST_MAX_NR,
};
enum msm_thermal_phase_ctrl {
MSM_CX_PHASE_CTRL,
MSM_GFX_PHASE_CTRL,
MSM_PHASE_CTRL_NR,
};
enum msm_temp_band {
MSM_COLD_CRITICAL = 1,
MSM_COLD,
MSM_COOL,
MSM_NORMAL,
MSM_WARM,
MSM_HOT,
MSM_HOT_CRITICAL,
MSM_TEMP_MAX_NR,
};
enum cpu_mit_type {
CPU_FREQ_MITIGATION = 0x1,
CPU_HOTPLUG_MITIGATION = 0x2,
};
enum cpu_config {
HOTPLUG_CONFIG,
CPUFREQ_CONFIG,
MAX_CPU_CONFIG
};
struct msm_thermal_debugfs_thresh_config {
char config_name[MAX_DEBUGFS_CONFIG_LEN];
long thresh;
long thresh_clr;
bool update;
void (*disable_config)(void);
struct dentry *dbg_config;
struct dentry *dbg_thresh;
struct dentry *dbg_thresh_clr;
struct dentry *dbg_thresh_update;
};
struct msm_thermal_debugfs_entry {
struct dentry *parent;
struct dentry *tsens_print;
struct dentry *config;
struct dentry *config_data;
};
static struct psm_rail *psm_rails;
static struct psm_rail *ocr_rails;
static struct rail *rails;
static struct msm_sensor_info *sensors;
static struct cpu_info cpus[NR_CPUS];
static struct threshold_info *thresh;
static bool mx_restr_applied;
static struct cluster_info *core_ptr;
static struct msm_thermal_debugfs_entry *msm_therm_debugfs;
static struct devmgr_devices *devices;
static struct msm_thermal_debugfs_thresh_config *mit_config;
struct vdd_rstr_enable {
struct kobj_attribute ko_attr;
uint32_t enabled;
};
/* For SMPS only*/
enum PMIC_SW_MODE {
PMIC_AUTO_MODE = RPM_REGULATOR_MODE_AUTO,
PMIC_IPEAK_MODE = RPM_REGULATOR_MODE_IPEAK,
PMIC_PWM_MODE = RPM_REGULATOR_MODE_HPM,
};
enum ocr_request {
OPTIMUM_CURRENT_MIN,
OPTIMUM_CURRENT_MAX,
OPTIMUM_CURRENT_NR,
};
static int thermal_config_debugfs_read(struct seq_file *m, void *data);
static ssize_t thermal_config_debugfs_write(struct file *file,
const char __user *buffer,
size_t count, loff_t *ppos);
#define SYNC_CORE(_cpu) \
(core_ptr && cpus[_cpu].parent_ptr->sync_cluster)
#define VDD_RES_RO_ATTRIB(_rail, ko_attr, j, _name) \
ko_attr.attr.name = __stringify(_name); \
ko_attr.attr.mode = 0444; \
ko_attr.show = vdd_rstr_reg_##_name##_show; \
ko_attr.store = NULL; \
sysfs_attr_init(&ko_attr.attr); \
_rail.attr_gp.attrs[j] = &ko_attr.attr;
#define VDD_RES_RW_ATTRIB(_rail, ko_attr, j, _name) \
ko_attr.attr.name = __stringify(_name); \
ko_attr.attr.mode = 0644; \
ko_attr.show = vdd_rstr_reg_##_name##_show; \
ko_attr.store = vdd_rstr_reg_##_name##_store; \
sysfs_attr_init(&ko_attr.attr); \
_rail.attr_gp.attrs[j] = &ko_attr.attr;
#define VDD_RSTR_ENABLE_FROM_ATTRIBS(attr) \
(container_of(attr, struct vdd_rstr_enable, ko_attr));
#define VDD_RSTR_REG_VALUE_FROM_ATTRIBS(attr) \
(container_of(attr, struct rail, value_attr));
#define VDD_RSTR_REG_LEVEL_FROM_ATTRIBS(attr) \
(container_of(attr, struct rail, level_attr));
#define OCR_RW_ATTRIB(_rail, ko_attr, j, _name) \
ko_attr.attr.name = __stringify(_name); \
ko_attr.attr.mode = 0644; \
ko_attr.show = ocr_reg_##_name##_show; \
ko_attr.store = ocr_reg_##_name##_store; \
sysfs_attr_init(&ko_attr.attr); \
_rail.attr_gp.attrs[j] = &ko_attr.attr;
#define PSM_RW_ATTRIB(_rail, ko_attr, j, _name) \
ko_attr.attr.name = __stringify(_name); \
ko_attr.attr.mode = 0644; \
ko_attr.show = psm_reg_##_name##_show; \
ko_attr.store = psm_reg_##_name##_store; \
sysfs_attr_init(&ko_attr.attr); \
_rail.attr_gp.attrs[j] = &ko_attr.attr;
#define PSM_REG_MODE_FROM_ATTRIBS(attr) \
(container_of(attr, struct psm_rail, mode_attr));
#define PHASE_RW_ATTR(_phase, _name, _attr, j, _attr_gr) \
_attr.attr.name = __stringify(_name); \
_attr.attr.mode = 0644; \
_attr.show = _phase##_phase_show; \
_attr.store = _phase##_phase_store; \
sysfs_attr_init(&_attr.attr); \
_attr_gr.attrs[j] = &_attr.attr;
#define MX_RW_ATTR(ko_attr, _name, _attr_gp) \
ko_attr.attr.name = __stringify(_name); \
ko_attr.attr.mode = 0644; \
ko_attr.show = show_mx_##_name; \
ko_attr.store = store_mx_##_name; \
sysfs_attr_init(&ko_attr.attr); \
_attr_gp.attrs[0] = &ko_attr.attr;
#define THERM_MITIGATION_DISABLE(_flag, _id) \
do { \
if (!_flag) \
return; \
if (_id >= 0) \
sensor_mgr_disable_threshold( \
&thresh[_id]); \
_flag = 0; \
} while (0)
static void get_cluster_mask(uint32_t cpu, cpumask_t *mask)
{
int i;
cpumask_set_cpu(cpu, mask);
if (core_ptr) {
for (i = 0; i < core_ptr->entity_count; i++) {
struct cluster_info *cluster_ptr =
&core_ptr->child_entity_ptr[i];
if (*cluster_ptr->cluster_cores.bits & BIT(cpu)) {
cpumask_copy(mask,
&cluster_ptr->cluster_cores);
break;
}
}
}
}
static uint32_t get_core_max_freq(uint32_t cpu)
{
int i;
uint32_t max_freq = 0;
if (core_ptr) {
for (i = 0; i < core_ptr->entity_count; i++) {
struct cluster_info *cluster_ptr =
&core_ptr->child_entity_ptr[i];
if (*cluster_ptr->cluster_cores.bits & BIT(cpu)) {
if (cluster_ptr->freq_table)
max_freq =
cluster_ptr->freq_table
[cluster_ptr->freq_idx_high].frequency;
break;
}
}
} else {
if (table)
max_freq = table[limit_idx_high].frequency;
}
return max_freq;
}
static void cpus_previously_online_update(void)
{
char buf[CPU_BUF_SIZE];
get_online_cpus();
cpumask_or(cpus_previously_online, cpus_previously_online,
cpu_online_mask);
put_online_cpus();
cpulist_scnprintf(buf, sizeof(buf), cpus_previously_online);
pr_debug("%s\n", buf);
}
static uint32_t get_core_min_freq(uint32_t cpu)
{
int i;
uint32_t min_freq = UINT_MAX;
if (core_ptr) {
for (i = 0; i < core_ptr->entity_count; i++) {
struct cluster_info *cluster_ptr =
&core_ptr->child_entity_ptr[i];
if (*cluster_ptr->cluster_cores.bits & BIT(cpu)) {
if (cluster_ptr->freq_table)
min_freq =
cluster_ptr->freq_table[0].frequency;
break;
}
}
} else {
if (table)
min_freq = table[0].frequency;
}
return min_freq;
}
static void msm_thermal_update_freq(bool is_shutdown, bool mitigate)
{
uint32_t cpu;
bool update = false;
for_each_possible_cpu(cpu) {
if (msm_thermal_info.freq_mitig_control_mask
& BIT(cpu)) {
uint32_t *freq = (is_shutdown)
? &cpus[cpu].shutdown_max_freq
: &cpus[cpu].suspend_max_freq;
uint32_t mitigation_freq = (mitigate) ?
get_core_min_freq(cpu) : UINT_MAX;
if (*freq == mitigation_freq)
continue;
*freq = mitigation_freq;
update = true;
pr_debug("%s mitigate CPU%u to %u\n",
(is_shutdown) ? "Shutdown" : "Suspend", cpu,
mitigation_freq);
}
}
if (!update)
goto notify_exit;
if (freq_mitigation_task)
complete(&freq_mitigation_complete);
else
pr_err("Freq mitigation task is not initialized\n");
notify_exit:
return;
}
static int msm_thermal_power_down_callback(
struct notifier_block *nfb, unsigned long action, void *data)
{
switch (action) {
case SYS_RESTART:
case SYS_POWER_OFF:
case SYS_HALT:
msm_thermal_update_freq(true, true);
break;
default:
return NOTIFY_DONE;
}
return NOTIFY_OK;
}
static int msm_thermal_suspend_callback(
struct notifier_block *nfb, unsigned long action, void *data)
{
switch (action) {
case PM_HIBERNATION_PREPARE:
case PM_SUSPEND_PREPARE:
msm_thermal_update_freq(false, true);
in_suspend = true;
retry_in_progress = false;
cancel_delayed_work_sync(&retry_hotplug_work);
break;
case PM_POST_HIBERNATION:
case PM_POST_SUSPEND:
msm_thermal_update_freq(false, false);
in_suspend = false;
if (hotplug_task)
complete(&hotplug_notify_complete);
else
pr_debug("Hotplug task not initialized\n");
break;
default:
return NOTIFY_DONE;
}
return NOTIFY_OK;
}
static struct notifier_block msm_thermal_reboot_notifier = {
.notifier_call = msm_thermal_power_down_callback,
};
static struct device_manager_data *find_device_by_name(const char *device_name)
{
struct device_manager_data *dev_mgr = NULL;
list_for_each_entry(dev_mgr, &devices_list, dev_ptr) {
if (strcmp(dev_mgr->device_name, device_name) == 0)
return dev_mgr;
}
return NULL;
}
static int validate_client(struct device_clnt_data *clnt)
{
int ret = 0;
struct device_manager_data *dev_mgr = NULL;
struct device_clnt_data *client_ptr = NULL;
if (!clnt || !clnt->dev_mgr) {
pr_err("Invalid client\n");
ret = -EINVAL;
goto validate_exit;
}
list_for_each_entry(dev_mgr, &devices_list, dev_ptr) {
if (dev_mgr == clnt->dev_mgr)
break;
}
if (dev_mgr != clnt->dev_mgr) {
pr_err("Invalid device manager\n");
ret = -EINVAL;
goto validate_exit;
}
mutex_lock(&dev_mgr->clnt_lock);
list_for_each_entry(client_ptr, &dev_mgr->client_list, clnt_ptr) {
if (clnt == client_ptr)
break;
}
if (clnt != client_ptr) {
pr_err("Invalid client\n");
ret = -EINVAL;
goto validate_unlock;
}
validate_unlock:
mutex_unlock(&dev_mgr->clnt_lock);
validate_exit:
return ret;
}
static int devmgr_client_cpufreq_update(struct device_manager_data *dev_mgr)
{
int ret = 0;
struct device_clnt_data *clnt = NULL;
uint32_t max_freq = UINT_MAX;
uint32_t min_freq = 0;
mutex_lock(&dev_mgr->clnt_lock);
list_for_each_entry(clnt, &dev_mgr->client_list, clnt_ptr) {
if (!clnt->req_active)
continue;
max_freq = min(max_freq, clnt->request.freq.max_freq);
min_freq = max(min_freq, clnt->request.freq.min_freq);
}
if (dev_mgr->active_req.freq.max_freq == max_freq &&
dev_mgr->active_req.freq.min_freq == min_freq) {
goto update_exit;
}
dev_mgr->active_req.freq.max_freq = max_freq;
dev_mgr->active_req.freq.min_freq = min_freq;
if (freq_mitigation_task) {
complete(&freq_mitigation_complete);
} else {
pr_err("Frequency mitigation task is not initialized\n");
ret = -ESRCH;
}
update_exit:
mutex_unlock(&dev_mgr->clnt_lock);
return ret;
}
static int devmgr_client_hotplug_update(struct device_manager_data *dev_mgr)
{
int ret = 0;
struct device_clnt_data *clnt = NULL;
cpumask_t offline_mask = CPU_MASK_NONE;
mutex_lock(&dev_mgr->clnt_lock);
list_for_each_entry(clnt, &dev_mgr->client_list, clnt_ptr) {
if (!clnt->req_active)
continue;
cpumask_or(&offline_mask, &offline_mask,
&clnt->request.offline_mask);
}
if (cpumask_equal(&dev_mgr->active_req.offline_mask, &offline_mask))
goto update_exit;
cpumask_copy(&dev_mgr->active_req.offline_mask, &offline_mask);
if (hotplug_task) {
complete(&hotplug_notify_complete);
} else {
pr_err("Hotplug task is not initialized\n");
ret = -ESRCH;
}
update_exit:
mutex_unlock(&dev_mgr->clnt_lock);
return ret;
}
static int devmgr_hotplug_client_request_validate_and_update(
struct device_clnt_data *clnt,
union device_request *req,
enum device_req_type type)
{
if (type != HOTPLUG_MITIGATION_REQ)
return -EINVAL;
cpumask_copy(&clnt->request.offline_mask, &req->offline_mask);
if (!cpumask_empty(&req->offline_mask))
clnt->req_active = true;
else
clnt->req_active = false;
return 0;
}
static int devmgr_cpufreq_client_request_validate_and_update(
struct device_clnt_data *clnt,
union device_request *req,
enum device_req_type type)
{
if (type != CPUFREQ_MITIGATION_REQ)
return -EINVAL;
if (req->freq.max_freq < req->freq.min_freq) {
pr_err("Invalid Max and Min freq req. max:%u min:%u\n",
req->freq.max_freq, req->freq.min_freq);
return -EINVAL;
}
clnt->request.freq.max_freq = req->freq.max_freq;
clnt->request.freq.min_freq = req->freq.min_freq;
if ((req->freq.max_freq == CPUFREQ_MAX_NO_MITIGATION) &&
(req->freq.min_freq == CPUFREQ_MIN_NO_MITIGATION))
clnt->req_active = false;
else
clnt->req_active = true;
return 0;
}
int devmgr_client_request_mitigation(struct device_clnt_data *clnt,
enum device_req_type type,
union device_request *req)
{
int ret = 0;
struct device_manager_data *dev_mgr = NULL;
if (!mitigation) {
pr_err("Thermal Mitigations disabled.\n");
goto req_exit;
}
if (!clnt || !req) {
pr_err("Invalid inputs for mitigation.\n");
ret = -EINVAL;
goto req_exit;
}
ret = validate_client(clnt);
if (ret) {
pr_err("Invalid mitigation client. ret:%d\n", ret);
goto req_exit;
}
if (!clnt->dev_mgr->request_validate) {
pr_err("Invalid dev mgr request update\n");
ret = -EINVAL;
goto req_exit;
}
dev_mgr = clnt->dev_mgr;
mutex_lock(&dev_mgr->clnt_lock);
ret = dev_mgr->request_validate(clnt, req, type);
if (ret) {
pr_err("Invalid client request\n");
goto req_unlock;
}
req_unlock:
mutex_unlock(&dev_mgr->clnt_lock);
if (!ret && dev_mgr->update)
dev_mgr->update(dev_mgr);
req_exit:
return ret;
}
struct device_clnt_data *devmgr_register_mitigation_client(struct device *dev,
const char *device_name,
void (*callback)(struct device_clnt_data *,
union device_request *, void *))
{
struct device_clnt_data *client = NULL;
struct device_manager_data *dev_mgr = NULL;
if (!dev || !device_name) {
pr_err("Invalid input\n");
return ERR_PTR(-EINVAL);
}
dev_mgr = find_device_by_name(device_name);
if (!dev_mgr) {
pr_err("Invalid device %s\n", device_name);
return ERR_PTR(-EINVAL);
}
client = devm_kzalloc(dev,
sizeof(struct device_clnt_data), GFP_KERNEL);
if (!client) {
pr_err("Memory alloc failed\n");
return ERR_PTR(-ENOMEM);
}
mutex_lock(&dev_mgr->clnt_lock);
client->dev_mgr = dev_mgr;
client->callback = callback;
list_add_tail(&client->clnt_ptr, &dev_mgr->client_list);
mutex_unlock(&dev_mgr->clnt_lock);
return client;
}
void devmgr_unregister_mitigation_client(struct device *dev,
struct device_clnt_data *clnt)
{
int ret = 0;
struct device_manager_data *dev_mgr = NULL;
if (!clnt) {
pr_err("Invalid input\n");
return;
}
ret = validate_client(clnt);
if (ret)
return;
dev_mgr = clnt->dev_mgr;
mutex_lock(&dev_mgr->clnt_lock);
list_del(&clnt->clnt_ptr);
mutex_unlock(&dev_mgr->clnt_lock);
devm_kfree(dev, clnt);
if (dev_mgr->update)
dev_mgr->update(dev_mgr);
}
static int msm_thermal_cpufreq_callback(struct notifier_block *nfb,
unsigned long event, void *data)
{
struct cpufreq_policy *policy = data;
uint32_t max_freq_req, min_freq_req;
switch (event) {
case CPUFREQ_INCOMPATIBLE:
if (SYNC_CORE(policy->cpu)) {
max_freq_req =
cpus[policy->cpu].parent_ptr->limited_max_freq;
min_freq_req =
cpus[policy->cpu].parent_ptr->limited_min_freq;
} else {
max_freq_req = cpus[policy->cpu].limited_max_freq;
min_freq_req = cpus[policy->cpu].limited_min_freq;
}
pr_debug("mitigating CPU%d to freq max: %u min: %u\n",
policy->cpu, max_freq_req, min_freq_req);
cpufreq_verify_within_limits(policy, min_freq_req,
max_freq_req);
if (max_freq_req < min_freq_req)
pr_err("Invalid frequency request Max:%u Min:%u\n",
max_freq_req, min_freq_req);
break;
}
return NOTIFY_OK;
}
static struct notifier_block msm_thermal_cpufreq_notifier = {
.notifier_call = msm_thermal_cpufreq_callback,
};
static void update_cpu_freq(int cpu)
{
int ret = 0;
cpumask_t mask;
get_cluster_mask(cpu, &mask);
if (cpu_online(cpu)) {
if ((cpumask_intersects(&mask, &throttling_mask))
&& (cpus[cpu].limited_max_freq
>= get_core_max_freq(cpu))) {
cpumask_xor(&throttling_mask, &mask, &throttling_mask);
set_cpu_throttled(&mask, false);
} else if (!cpumask_intersects(&mask, &throttling_mask)) {
cpumask_or(&throttling_mask, &mask, &throttling_mask);
set_cpu_throttled(&mask, true);
}
trace_thermal_pre_frequency_mit(cpu,
cpus[cpu].limited_max_freq,
cpus[cpu].limited_min_freq);
ret = cpufreq_update_policy(cpu);
trace_thermal_post_frequency_mit(cpu,
cpufreq_quick_get_max(cpu),
cpus[cpu].limited_min_freq);
if (ret)
pr_err("Unable to update policy for cpu:%d. err:%d\n",
cpu, ret);
}
}
static int * __init get_sync_cluster(struct device *dev, int *cnt)
{
int *sync_cluster = NULL, cluster_cnt = 0, ret = 0;
char *key = "qcom,synchronous-cluster-id";
if (!of_get_property(dev->of_node, key, &cluster_cnt)
|| cluster_cnt <= 0 || !core_ptr)
return NULL;
cluster_cnt /= sizeof(__be32);
if (cluster_cnt > core_ptr->entity_count) {
pr_err("Invalid cluster count:%d\n", cluster_cnt);
return NULL;
}
sync_cluster = devm_kzalloc(dev, sizeof(int) * cluster_cnt, GFP_KERNEL);
if (!sync_cluster) {
pr_err("Memory alloc failed\n");
return NULL;
}
ret = of_property_read_u32_array(dev->of_node, key, sync_cluster,
cluster_cnt);
if (ret) {
pr_err("Error in reading property:%s. err:%d\n", key, ret);
devm_kfree(dev, sync_cluster);
return NULL;
}
*cnt = cluster_cnt;
return sync_cluster;
}
static void update_cpu_datastructure(struct cluster_info *cluster_ptr,
int *sync_cluster, int sync_cluster_cnt)
{
int i = 0;
bool is_sync_cluster = false;
for (i = 0; (sync_cluster) && (i < sync_cluster_cnt); i++) {
if (cluster_ptr->cluster_id != sync_cluster[i])
continue;
is_sync_cluster = true;
break;
}
cluster_ptr->sync_cluster = is_sync_cluster;
pr_debug("Cluster ID:%d Sync cluster:%s Sibling mask:%lu\n",
cluster_ptr->cluster_id, is_sync_cluster ? "Yes" : "No",
*cluster_ptr->cluster_cores.bits);
for_each_cpu_mask(i, cluster_ptr->cluster_cores) {
cpus[i].parent_ptr = cluster_ptr;
}
}
static ssize_t cluster_info_show(
struct kobject *kobj, struct kobj_attribute *attr, char *buf)
{
uint32_t i = 0;
ssize_t tot_size = 0, size = 0;
for (; i < core_ptr->entity_count; i++) {
struct cluster_info *cluster_ptr =
&core_ptr->child_entity_ptr[i];
size = snprintf(&buf[tot_size], PAGE_SIZE - tot_size,
"%d:%lu:%d ", cluster_ptr->cluster_id,
*cluster_ptr->cluster_cores.bits,
cluster_ptr->sync_cluster);
if ((tot_size + size) >= PAGE_SIZE) {
pr_err("Not enough buffer size");
break;
}
tot_size += size;
}
return tot_size;
}
static int thermal_config_debugfs_open(struct inode *inode,
struct file *file)
{
return single_open(file, thermal_config_debugfs_read,
inode->i_private);
}
static const struct file_operations thermal_debugfs_config_ops = {
.open = thermal_config_debugfs_open,
.read = seq_read,
.write = thermal_config_debugfs_write,
.llseek = seq_lseek,
.release = single_release,
};
static int create_config_debugfs(
struct msm_thermal_debugfs_thresh_config *config_ptr,
struct dentry *parent)
{
int ret = 0;
if (!strlen(config_ptr->config_name))
return -ENODEV;
THERM_CREATE_DEBUGFS_DIR(config_ptr->dbg_config,
config_ptr->config_name, parent, ret);
if (ret)
goto create_exit;
config_ptr->dbg_thresh = debugfs_create_u64(MSM_THERMAL_THRESH,
0600, config_ptr->dbg_config, (u64 *)&config_ptr->thresh);
if (IS_ERR(config_ptr->dbg_thresh)) {
ret = PTR_ERR(config_ptr->dbg_thresh);
pr_err("Error creating thresh debugfs:[%s]. error:%d\n",
config_ptr->config_name, ret);
goto create_exit;
}
config_ptr->dbg_thresh_clr = debugfs_create_u64(MSM_THERMAL_THRESH_CLR,
0600, config_ptr->dbg_config, (u64 *)&config_ptr->thresh_clr);
if (IS_ERR(config_ptr->dbg_thresh)) {
ret = PTR_ERR(config_ptr->dbg_thresh);
pr_err("Error creating thresh_clr debugfs:[%s]. error:%d\n",
config_ptr->config_name, ret);
goto create_exit;
}
config_ptr->dbg_thresh_update = debugfs_create_bool(
MSM_THERMAL_THRESH_UPDATE, 0600, config_ptr->dbg_config,
(u32 *)&config_ptr->update);
if (IS_ERR(config_ptr->dbg_thresh_update)) {
ret = PTR_ERR(config_ptr->dbg_thresh_update);
pr_err("Error creating enable debugfs:[%s]. error:%d\n",
config_ptr->config_name, ret);
goto create_exit;
}
create_exit:
if (ret)
debugfs_remove_recursive(parent);
return ret;
}
static int create_thermal_debugfs(void)
{
int ret = 0, idx = 0;
if (msm_therm_debugfs)
return ret;
msm_therm_debugfs = devm_kzalloc(&msm_thermal_info.pdev->dev,
sizeof(struct msm_thermal_debugfs_entry), GFP_KERNEL);
if (!msm_therm_debugfs) {
ret = -ENOMEM;
pr_err("Memory alloc failed. err:%d\n", ret);
return ret;
}
THERM_CREATE_DEBUGFS_DIR(msm_therm_debugfs->parent, MSM_THERMAL_NAME,
NULL, ret);
if (ret)
goto create_exit;
msm_therm_debugfs->tsens_print = debugfs_create_bool(MSM_TSENS_PRINT,
0600, msm_therm_debugfs->parent, &tsens_temp_print);
if (IS_ERR(msm_therm_debugfs->tsens_print)) {
ret = PTR_ERR(msm_therm_debugfs->tsens_print);
pr_err("Error creating debugfs:[%s]. err:%d\n",
MSM_TSENS_PRINT, ret);
goto create_exit;
}
THERM_CREATE_DEBUGFS_DIR(msm_therm_debugfs->config, MSM_THERMAL_CONFIG,
msm_therm_debugfs->parent, ret);
if (ret)
goto create_exit;
msm_therm_debugfs->config_data = debugfs_create_file(MSM_CONFIG_DATA,
0600, msm_therm_debugfs->config, NULL,
&thermal_debugfs_config_ops);
if (!msm_therm_debugfs->config_data) {
pr_err("Error creating debugfs:[%s]\n",
MSM_CONFIG_DATA);
goto create_exit;
}
for (idx = 0; idx < MSM_LIST_MAX_NR + MAX_CPU_CONFIG; idx++)
create_config_debugfs(&mit_config[idx],
msm_therm_debugfs->config);
create_exit:
if (ret) {
debugfs_remove_recursive(msm_therm_debugfs->parent);
devm_kfree(&msm_thermal_info.pdev->dev, msm_therm_debugfs);
}
return ret;
}
static struct kobj_attribute cluster_info_attr = __ATTR_RO(cluster_info);
static int create_cpu_topology_sysfs(void)
{
int ret = 0;
struct kobject *module_kobj = NULL;
if (!cluster_info_probed) {
cluster_info_nodes_called = true;
return ret;
}
if (!core_ptr)
return ret;
module_kobj = kset_find_obj(module_kset, KBUILD_MODNAME);
if (!module_kobj) {
pr_err("cannot find kobject\n");
return -ENODEV;
}
sysfs_attr_init(&cluster_info_attr.attr);
ret = sysfs_create_file(module_kobj, &cluster_info_attr.attr);
if (ret) {
pr_err("cannot create cluster info attr group. err:%d\n", ret);
return ret;
}
return ret;
}
static int get_device_tree_cluster_info(struct device *dev, int *cluster_id,
cpumask_t *cluster_cpus)
{
int idx = 0, ret = 0, max_entry = 0, core_cnt = 0, c_idx = 0, cpu = 0;
uint32_t val = 0;
char *key = "qcom,synchronous-cluster-map";
struct device_node *core_phandle = NULL;
if (!of_get_property(dev->of_node, key, &max_entry)
|| max_entry <= 0) {
pr_debug("Property %s not defined.\n", key);
return -ENODEV;
}
max_entry /= sizeof(__be32);
for (idx = 0; idx < max_entry; idx++, c_idx++) {
/* Read Cluster ID */
ret = of_property_read_u32_index(dev->of_node, key, idx++,
&val);
if (ret) {
pr_err("Error reading index%d. err:%d\n", idx - 1,
ret);
return -EINVAL;
}
/* Read number of cores inside a cluster */
cluster_id[c_idx] = val;
cpumask_clear(&cluster_cpus[c_idx]);
ret = of_property_read_u32_index(dev->of_node, key, idx,
&val);
if (ret || val < 1) {
pr_err("Invalid core count[%d] for Cluster%d. err:%d\n"
, val, cluster_id[c_idx - 1], ret);
return -EINVAL;
}
core_cnt = val + idx;
/* map the cores to logical CPUs and get sibiling mask */
for (; core_cnt != idx; core_cnt--) {
core_phandle = of_parse_phandle(dev->of_node, key,
core_cnt);
if (!core_phandle) {
pr_debug("Invalid phandle. core%d cluster%d\n",
core_cnt, cluster_id[c_idx - 1]);
continue;
}
for_each_possible_cpu(cpu) {
if (of_get_cpu_node(cpu, NULL)
== core_phandle)
break;
}
if (cpu >= num_possible_cpus()) {
pr_debug("Skipping core%d in cluster%d\n",
core_cnt, cluster_id[c_idx - 1]);
continue;
}
cpumask_set_cpu(cpu, &cluster_cpus[c_idx]);
}
idx += val;
}
return c_idx;
}
static int get_kernel_cluster_info(int *cluster_id, cpumask_t *cluster_cpus)
{
uint32_t _cpu, cluster_index, cluster_cnt;
for (_cpu = 0, cluster_cnt = 0; _cpu < num_possible_cpus(); _cpu++) {
if (topology_physical_package_id(_cpu) < 0) {
pr_err("CPU%d topology not initialized.\n", _cpu);
return -ENODEV;
}
/* Do not use the sibling cpumask from topology module.
** kernel topology module updates the sibling cpumask
** only when the cores are brought online for the first time.
** KTM figures out the sibling cpumask using the
** cluster and core ID mapping.
*/
for (cluster_index = 0; cluster_index < num_possible_cpus();
cluster_index++) {
if (cluster_id[cluster_index] == -1) {
cluster_id[cluster_index] =
topology_physical_package_id(_cpu);
cpumask_clear(&cluster_cpus[cluster_index]);
cpumask_set_cpu(_cpu,
&cluster_cpus[cluster_index]);
cluster_cnt++;
break;
}
if (cluster_id[cluster_index] ==
topology_physical_package_id(_cpu)) {
cpumask_set_cpu(_cpu,
&cluster_cpus[cluster_index]);
break;
}
}
}
return cluster_cnt;
}
static void update_cpu_topology(struct device *dev)
{
int cluster_id[NR_CPUS] = {[0 ... NR_CPUS-1] = -1};
cpumask_t cluster_cpus[NR_CPUS];
uint32_t i;
int cluster_cnt, sync_cluster_cnt = 0;
struct cluster_info *temp_ptr = NULL;
int *sync_cluster_id = NULL;
cluster_info_probed = true;
cluster_cnt = get_kernel_cluster_info(cluster_id, cluster_cpus);
if (cluster_cnt <= 0) {
cluster_cnt = get_device_tree_cluster_info(dev, cluster_id,
cluster_cpus);
if (cluster_cnt <= 0) {
core_ptr = NULL;
pr_debug("Cluster Info not defined. KTM continues.\n");
return;
}
}
core_ptr = devm_kzalloc(dev, sizeof(struct cluster_info), GFP_KERNEL);
if (!core_ptr) {
pr_err("Memory alloc failed\n");
return;
}
core_ptr->parent_ptr = NULL;
core_ptr->entity_count = cluster_cnt;
core_ptr->cluster_id = -1;
core_ptr->sync_cluster = false;
sync_cluster_id = get_sync_cluster(dev, &sync_cluster_cnt);
if (!sync_cluster_id) {
devm_kfree(dev, core_ptr);
core_ptr = NULL;
return;
}
temp_ptr = devm_kzalloc(dev, sizeof(struct cluster_info) * cluster_cnt,
GFP_KERNEL);
if (!temp_ptr) {
pr_err("Memory alloc failed\n");
devm_kfree(dev, core_ptr);
core_ptr = NULL;
return;
}
for (i = 0; i < cluster_cnt; i++) {
pr_debug("Cluster_ID:%d CPU's:%lu\n", cluster_id[i],
*cpumask_bits(&cluster_cpus[i]));
temp_ptr[i].cluster_id = cluster_id[i];
temp_ptr[i].parent_ptr = core_ptr;
cpumask_copy(&temp_ptr[i].cluster_cores, &cluster_cpus[i]);
temp_ptr[i].limited_max_freq = UINT_MAX;
temp_ptr[i].limited_min_freq = 0;
temp_ptr[i].freq_idx = 0;
temp_ptr[i].freq_idx_low = 0;
temp_ptr[i].freq_idx_high = 0;
temp_ptr[i].freq_table = NULL;
temp_ptr[i].entity_count = cpumask_weight(&cluster_cpus[i]);
temp_ptr[i].child_entity_ptr = NULL;
update_cpu_datastructure(&temp_ptr[i], sync_cluster_id,
sync_cluster_cnt);
}
core_ptr->child_entity_ptr = temp_ptr;
}
static int get_cpu_freq_plan_len(int cpu)
{
int table_len = 0;
struct device *cpu_dev = NULL;
cpu_dev = get_cpu_device(cpu);
if (!cpu_dev) {
pr_err("Error in get CPU%d device\n", cpu);
goto exit;
}
rcu_read_lock();
table_len = dev_pm_opp_get_opp_count(cpu_dev);
if (table_len <= 0) {
pr_err("Error reading CPU%d freq table len. error:%d\n",
cpu, table_len);
table_len = 0;
goto unlock_and_exit;
}
unlock_and_exit:
rcu_read_unlock();
exit:
return table_len;
}
static int get_cpu_freq_plan(int cpu,
struct cpufreq_frequency_table *freq_table_ptr)
{
int table_len = 0;
struct dev_pm_opp *opp = NULL;
unsigned long freq = 0;
struct device *cpu_dev = NULL;
cpu_dev = get_cpu_device(cpu);
if (!cpu_dev) {
pr_err("Error in get CPU%d device\n", cpu);
goto exit;
}
rcu_read_lock();
while (!IS_ERR(opp = dev_pm_opp_find_freq_ceil(cpu_dev, &freq))) {
/* Convert from Hz to kHz */
freq_table_ptr[table_len].frequency = freq / 1000;
pr_debug("cpu%d freq %d :%d\n", cpu, table_len,
freq_table_ptr[table_len].frequency);
freq++;
table_len++;
}
rcu_read_unlock();
exit:
return table_len;
}
static int init_cluster_freq_table(void)
{
uint32_t _cluster = 0;
int table_len = 0;
int ret = 0;
struct cluster_info *cluster_ptr = NULL;
for (; _cluster < core_ptr->entity_count; _cluster++, table_len = 0) {
cluster_ptr = &core_ptr->child_entity_ptr[_cluster];
if (cluster_ptr->freq_table)
continue;
table_len = get_cpu_freq_plan_len(
first_cpu(cluster_ptr->cluster_cores));
if (!table_len) {
ret = -EAGAIN;
continue;
}
cluster_ptr->freq_idx_low = 0;
cluster_ptr->freq_idx_high = cluster_ptr->freq_idx =
table_len - 1;
if (cluster_ptr->freq_idx_high < 0
|| (cluster_ptr->freq_idx_high
< cluster_ptr->freq_idx_low)) {
cluster_ptr->freq_idx = cluster_ptr->freq_idx_low =
cluster_ptr->freq_idx_high = 0;
WARN(1, "Cluster%d frequency table length:%d\n",
cluster_ptr->cluster_id, table_len);
ret = -EINVAL;
goto exit;
}
cluster_ptr->freq_table = kzalloc(
sizeof(struct cpufreq_frequency_table) * table_len,
GFP_KERNEL);
if (!cluster_ptr->freq_table) {
pr_err("memory alloc failed\n");
cluster_ptr->freq_idx = cluster_ptr->freq_idx_low =
cluster_ptr->freq_idx_high = 0;
ret = -ENOMEM;
goto exit;
}
table_len = get_cpu_freq_plan(
first_cpu(cluster_ptr->cluster_cores),
cluster_ptr->freq_table);
if (!table_len) {
kfree(cluster_ptr->freq_table);
cluster_ptr->freq_table = NULL;
pr_err("Error reading cluster%d cpufreq table\n",
cluster_ptr->cluster_id);
ret = -EAGAIN;
continue;
}
}
exit:
return ret;
}
static void update_cluster_freq(void)
{
int online_cpu = -1;
struct cluster_info *cluster_ptr = NULL;
uint32_t _cluster = 0, _cpu = 0, max = UINT_MAX, min = 0;
if (!core_ptr)
return;
for (; _cluster < core_ptr->entity_count; _cluster++, _cpu = 0,
online_cpu = -1, max = UINT_MAX, min = 0) {
/*
** If a cluster is synchronous, go over the frequency limits
** of each core in that cluster and aggregate the minimum
** and maximum frequencies. After aggregating, request for
** frequency update on the first online core in that cluster.
** Cpufreq driver takes care of updating the frequency of
** other cores in a synchronous cluster.
*/
cluster_ptr = &core_ptr->child_entity_ptr[_cluster];
if (!cluster_ptr->sync_cluster)
continue;
for_each_cpu_mask(_cpu, cluster_ptr->cluster_cores) {
if (online_cpu == -1 && cpu_online(_cpu))
online_cpu = _cpu;
max = min(max, cpus[_cpu].limited_max_freq);
min = max(min, cpus[_cpu].limited_min_freq);
}
if (cluster_ptr->limited_max_freq == max
&& cluster_ptr->limited_min_freq == min)
continue;
cluster_ptr->limited_max_freq = max;
cluster_ptr->limited_min_freq = min;
if (online_cpu != -1)
update_cpu_freq(online_cpu);
}
}
static void do_cluster_freq_ctrl(long temp)
{
uint32_t _cluster = 0;
int _cpu = -1, freq_idx = 0;
bool mitigate = false;
struct cluster_info *cluster_ptr = NULL;
if (temp >= msm_thermal_info.limit_temp_degC)
mitigate = true;
else if (temp < msm_thermal_info.limit_temp_degC -
msm_thermal_info.temp_hysteresis_degC)
mitigate = false;
else
return;
get_online_cpus();
for (; _cluster < core_ptr->entity_count; _cluster++) {
cluster_ptr = &core_ptr->child_entity_ptr[_cluster];
if (!cluster_ptr->freq_table)
continue;
if (mitigate)
freq_idx = max_t(int, cluster_ptr->freq_idx_low,
(cluster_ptr->freq_idx
- msm_thermal_info.bootup_freq_step));
else
freq_idx = min_t(int, cluster_ptr->freq_idx_high,
(cluster_ptr->freq_idx
+ msm_thermal_info.bootup_freq_step));
if (freq_idx == cluster_ptr->freq_idx)
continue;
cluster_ptr->freq_idx = freq_idx;
for_each_cpu_mask(_cpu, cluster_ptr->cluster_cores) {
if (!(msm_thermal_info.bootup_freq_control_mask
& BIT(_cpu)))
continue;
pr_info("Limiting CPU%d max frequency to %u. Temp:%ld\n"
, _cpu
, cluster_ptr->freq_table[freq_idx].frequency
, temp);
cpus[_cpu].limited_max_freq = min(
cluster_ptr->freq_table[freq_idx].frequency,
cpus[_cpu].vdd_max_freq);
}
}
if (_cpu != -1)
update_cluster_freq();
put_online_cpus();
}
/* If freq table exists, then we can send freq request */
static int check_freq_table(void)
{
int ret = 0;
static bool invalid_table;
int table_len = 0;
if (invalid_table)
return -EINVAL;
if (freq_table_get)
return 0;
if (core_ptr) {
ret = init_cluster_freq_table();
if (!ret)
freq_table_get = 1;
else if (ret == -EINVAL)
invalid_table = true;
goto exit;
}
table_len = get_cpu_freq_plan_len(0);
if (!table_len)
return -EINVAL;
table = kzalloc(sizeof(struct cpufreq_frequency_table)
* table_len, GFP_KERNEL);
if (!table) {
ret = -ENOMEM;
goto exit;
}
table_len = get_cpu_freq_plan(0, table);
if (!table_len) {
pr_err("error reading cpufreq table\n");
ret = -EINVAL;
goto free_and_exit;
}
limit_idx_low = 0;
limit_idx_high = limit_idx = table_len - 1;
if (limit_idx_high < 0 || limit_idx_high < limit_idx_low) {
invalid_table = true;
limit_idx_low = limit_idx_high = limit_idx = 0;
WARN(1, "CPU0 frequency table length:%d\n", table_len);
ret = -EINVAL;
goto free_and_exit;
}
freq_table_get = 1;
free_and_exit:
if (ret) {
kfree(table);
table = NULL;
}
exit:
return ret;
}
static int update_cpu_min_freq_all(struct rail *apss_rail, uint32_t min)
{
uint32_t cpu = 0, _cluster = 0, max_freq = UINT_MAX;
int ret = 0;
struct cluster_info *cluster_ptr = NULL;
bool valid_table = false;
if (!freq_table_get) {
ret = check_freq_table();
if (ret && !core_ptr) {
pr_err("Fail to get freq table. err:%d\n", ret);
return ret;
}
}
if (min != apss_rail->min_level)
max_freq = apss_rail->max_frequency_limit;
get_online_cpus();
/* If min is larger than allowed max */
if (core_ptr) {
for (; _cluster < core_ptr->entity_count; _cluster++) {
cluster_ptr = &core_ptr->child_entity_ptr[_cluster];
if (!cluster_ptr->freq_table)
continue;
valid_table = true;
min = min(min,
cluster_ptr->freq_table[
cluster_ptr->freq_idx_high].frequency);
max_freq = max(max_freq, cluster_ptr->freq_table[
cluster_ptr->freq_idx_low].frequency);
}
if (!valid_table)
goto update_freq_exit;
} else {
min = min(min, table[limit_idx_high].frequency);
max_freq = max(max_freq, table[limit_idx_low].frequency);
}
pr_debug("Requesting min freq:%u max freq:%u for all CPU's\n",
min, max_freq);
if (freq_mitigation_task) {
if (!apss_rail->device_handle[0]) {
pr_err("device manager handle not registered\n");
ret = -ENODEV;
goto update_freq_exit;
}
for_each_possible_cpu(cpu) {
cpus[cpu].vdd_max_freq = max_freq;
apss_rail->request[cpu].freq.max_freq = max_freq;
apss_rail->request[cpu].freq.min_freq = min;
ret = devmgr_client_request_mitigation(
apss_rail->device_handle[cpu],
CPUFREQ_MITIGATION_REQ,
&apss_rail->request[cpu]);
}
} else if (core_ptr) {
for (_cluster = 0; _cluster < core_ptr->entity_count;
_cluster++) {
cluster_ptr = &core_ptr->child_entity_ptr[_cluster];
if (!cluster_ptr->freq_table)
continue;
for_each_cpu_mask(cpu, cluster_ptr->cluster_cores) {
cpus[cpu].limited_min_freq = min;
cpus[cpu].vdd_max_freq = max_freq;
cpus[cpu].limited_max_freq = min(
cluster_ptr->freq_table[
cluster_ptr->freq_idx].frequency,
cpus[cpu].vdd_max_freq);
if (!SYNC_CORE(cpu))
update_cpu_freq(cpu);
}
update_cluster_freq();
}
} else {
for_each_possible_cpu(cpu) {
cpus[cpu].limited_min_freq = min;
cpus[cpu].vdd_max_freq = max_freq;
cpus[cpu].limited_max_freq =
min(table[limit_idx].frequency,
cpus[cpu].vdd_max_freq);
if (!SYNC_CORE(cpu))
update_cpu_freq(cpu);
}
update_cluster_freq();
}
update_freq_exit:
put_online_cpus();
return ret;
}
static int vdd_restriction_apply_freq(struct rail *r, int level)
{
int ret = 0;
if (level == r->curr_level)
return ret;
/* level = -1: disable, level = 0,1,2..n: enable */
if (level == -1) {
ret = update_cpu_min_freq_all(r, r->min_level);
if (ret)
return ret;
else
r->curr_level = -1;
} else if (level >= 0 && level < (r->num_levels)) {
ret = update_cpu_min_freq_all(r, r->levels[level]);
if (ret)
return ret;
else
r->curr_level = level;
} else {
pr_err("level input:%d is not within range\n", level);
return -EINVAL;
}
return ret;
}
static int vdd_restriction_apply_voltage(struct rail *r, int level)
{
int ret = 0;
if (r->reg == NULL) {
pr_err("%s don't have regulator handle. can't apply vdd\n",
r->name);
return -EFAULT;
}
if (level == r->curr_level)
return ret;
/* level = -1: disable, level = 0,1,2..n: enable */
if (level == -1) {
ret = regulator_set_voltage(r->reg, r->min_level,
r->levels[r->num_levels - 1]);
if (!ret)
r->curr_level = -1;
pr_debug("Requested min level for %s. curr level: %d\n",
r->name, r->curr_level);
} else if (level >= 0 && level < (r->num_levels)) {
ret = regulator_set_voltage(r->reg, r->levels[level],
r->levels[r->num_levels - 1]);
if (!ret)
r->curr_level = level;
pr_debug("Requesting level %d for %s. curr level: %d\n",
r->levels[level], r->name, r->levels[r->curr_level]);
} else {
pr_err("level input:%d is not within range\n", level);
return -EINVAL;
}
return ret;
}
/* Setting all rails the same mode */
static int psm_set_mode_all(int mode)
{
int i = 0;
int fail_cnt = 0;
int ret = 0;
pr_debug("Requesting PMIC Mode: %d\n", mode);
for (i = 0; i < psm_rails_cnt; i++) {
if (psm_rails[i].mode != mode) {
ret = rpm_regulator_set_mode(psm_rails[i].reg, mode);
if (ret) {
pr_err("Cannot set mode:%d for %s. err:%d",
mode, psm_rails[i].name, ret);
fail_cnt++;
} else
psm_rails[i].mode = mode;
}
}
return fail_cnt ? (-EFAULT) : ret;
}
static ssize_t vdd_rstr_en_show(
struct kobject *kobj, struct kobj_attribute *attr, char *buf)
{
struct vdd_rstr_enable *en = VDD_RSTR_ENABLE_FROM_ATTRIBS(attr);
return snprintf(buf, PAGE_SIZE, "%d\n", en->enabled);
}
static ssize_t vdd_rstr_en_store(struct kobject *kobj,
struct kobj_attribute *attr, const char *buf, size_t count)
{
int ret = 0;
int i = 0;
uint8_t en_cnt = 0;
uint8_t dis_cnt = 0;
uint32_t val = 0;
struct kernel_param kp;
struct vdd_rstr_enable *en = VDD_RSTR_ENABLE_FROM_ATTRIBS(attr);
mutex_lock(&vdd_rstr_mutex);
kp.arg = &val;
ret = param_set_bool(buf, &kp);
if (ret) {
pr_err("Invalid input %s for enabled\n", buf);
goto done_vdd_rstr_en;
}
if ((val == 0) && (en->enabled == 0))
goto done_vdd_rstr_en;
for (i = 0; i < rails_cnt; i++) {
if (rails[i].freq_req == 1 && freq_table_get)
ret = vdd_restriction_apply_freq(&rails[i],
(val) ? 0 : -1);
else
ret = vdd_restriction_apply_voltage(&rails[i],
(val) ? 0 : -1);
/*
* Even if fail to set one rail, still try to set the
* others. Continue the loop
*/
if (ret)
pr_err("Set vdd restriction for %s failed\n",
rails[i].name);
else {
if (val)
en_cnt++;
else
dis_cnt++;
}
}
/* As long as one rail is enabled, vdd rstr is enabled */
if (val && en_cnt)
en->enabled = 1;
else if (!val && (dis_cnt == rails_cnt))
en->enabled = 0;
pr_debug("%s vdd restriction. curr: %d\n",
(val) ? "Enable" : "Disable", en->enabled);
done_vdd_rstr_en:
mutex_unlock(&vdd_rstr_mutex);
return count;
}
static int send_temperature_band(enum msm_thermal_phase_ctrl phase,
enum msm_temp_band req_band)
{
int ret = 0;
uint32_t msg_id;
struct msm_rpm_request *rpm_req;
unsigned int band = req_band;
uint32_t key, resource, resource_id;
if (phase < 0 || phase >= MSM_PHASE_CTRL_NR ||
req_band <= 0 || req_band >= MSM_TEMP_MAX_NR) {
pr_err("Invalid input\n");
ret = -EINVAL;
goto phase_ctrl_exit;
}
switch (phase) {
case MSM_CX_PHASE_CTRL:
key = msm_thermal_info.cx_phase_request_key;
break;
case MSM_GFX_PHASE_CTRL:
key = msm_thermal_info.gfx_phase_request_key;
break;
default:
goto phase_ctrl_exit;
break;
}
resource = msm_thermal_info.phase_rpm_resource_type;
resource_id = msm_thermal_info.phase_rpm_resource_id;
pr_debug("Sending %s temperature band %d\n",
(phase == MSM_CX_PHASE_CTRL) ? "CX" : "GFX",
req_band);
rpm_req = msm_rpm_create_request(MSM_RPM_CTX_ACTIVE_SET,
resource, resource_id, 1);
if (!rpm_req) {
pr_err("Creating RPM request failed\n");
ret = -ENXIO;
goto phase_ctrl_exit;
}
ret = msm_rpm_add_kvp_data(rpm_req, key, (const uint8_t *)&band,
(int)sizeof(band));
if (ret) {
pr_err("Adding KVP data failed. err:%d\n", ret);
goto free_rpm_handle;
}
msg_id = msm_rpm_send_request(rpm_req);
if (!msg_id) {
pr_err("RPM send request failed\n");
ret = -ENXIO;
goto free_rpm_handle;
}
ret = msm_rpm_wait_for_ack(msg_id);
if (ret) {
pr_err("RPM wait for ACK failed. err:%d\n", ret);
goto free_rpm_handle;
}
free_rpm_handle:
msm_rpm_free_request(rpm_req);
phase_ctrl_exit:
return ret;
}
static uint32_t msm_thermal_str_to_int(const char *inp)
{
int i, len;
uint32_t output = 0;
len = strnlen(inp, sizeof(uint32_t));
for (i = 0; i < len; i++)
output |= inp[i] << (i * 8);
return output;
}
static ssize_t sensor_info_show(
struct kobject *kobj, struct kobj_attribute *attr, char *buf)
{
int i;
ssize_t tot_size = 0, size = 0;
for (i = 0; i < sensor_cnt; i++) {
size = snprintf(&buf[tot_size], PAGE_SIZE - tot_size,
"%s:%s:%s:%d ",
sensors[i].type, sensors[i].name,
sensors[i].alias ? : "",
sensors[i].scaling_factor);
if (tot_size + size >= PAGE_SIZE) {
pr_err("Not enough buffer size\n");
break;
}
tot_size += size;
}
if (tot_size)
buf[tot_size - 1] = '\n';
return tot_size;
}
static struct vdd_rstr_enable vdd_rstr_en = {
.ko_attr.attr.name = __stringify(enabled),
.ko_attr.attr.mode = 0644,
.ko_attr.show = vdd_rstr_en_show,
.ko_attr.store = vdd_rstr_en_store,
.enabled = 1,
};
static struct attribute *vdd_rstr_en_attribs[] = {
&vdd_rstr_en.ko_attr.attr,
NULL,
};
static struct attribute_group vdd_rstr_en_attribs_gp = {
.attrs = vdd_rstr_en_attribs,
};
static ssize_t vdd_rstr_reg_value_show(
struct kobject *kobj, struct kobj_attribute *attr, char *buf)
{
int val = 0;
struct rail *reg = VDD_RSTR_REG_VALUE_FROM_ATTRIBS(attr);
/* -1:disabled, -2:fail to get regualtor handle */
if (reg->curr_level < 0)
val = reg->curr_level;
else
val = reg->levels[reg->curr_level];
return snprintf(buf, PAGE_SIZE, "%d\n", val);
}
static ssize_t vdd_rstr_reg_level_show(
struct kobject *kobj, struct kobj_attribute *attr, char *buf)
{
struct rail *reg = VDD_RSTR_REG_LEVEL_FROM_ATTRIBS(attr);
return snprintf(buf, PAGE_SIZE, "%d\n", reg->curr_level);
}
static ssize_t vdd_rstr_reg_level_store(struct kobject *kobj,
struct kobj_attribute *attr, const char *buf, size_t count)
{
int ret = 0;
int val = 0;
struct rail *reg = VDD_RSTR_REG_LEVEL_FROM_ATTRIBS(attr);
mutex_lock(&vdd_rstr_mutex);
if (vdd_rstr_en.enabled == 0)
goto done_store_level;
ret = kstrtouint(buf, 10, &val);
if (ret) {
pr_err("Invalid input %s for level\n", buf);
goto done_store_level;
}
if (val < 0 || val > reg->num_levels - 1) {
pr_err(" Invalid number %d for level\n", val);
goto done_store_level;
}
if (val != reg->curr_level) {
if (reg->freq_req == 1 && freq_table_get)
update_cpu_min_freq_all(reg, reg->levels[val]);
else {
ret = vdd_restriction_apply_voltage(reg, val);
if (ret) {
pr_err( \
"Set vdd restriction for regulator %s failed. err:%d\n",
reg->name, ret);
goto done_store_level;
}
}
reg->curr_level = val;
pr_debug("Request level %d for %s\n",
reg->curr_level, reg->name);
}
done_store_level:
mutex_unlock(&vdd_rstr_mutex);
return count;
}
static int request_optimum_current(struct psm_rail *rail, enum ocr_request req)
{
int ret = 0;
if ((!rail) || (req >= OPTIMUM_CURRENT_NR) ||
(req < 0)) {
pr_err("Invalid input %d\n", req);
ret = -EINVAL;
goto request_ocr_exit;
}
ret = regulator_set_optimum_mode(rail->phase_reg,
(req == OPTIMUM_CURRENT_MAX) ? MAX_CURRENT_UA : 0);
if (ret < 0) {
pr_err("Optimum current request failed. err:%d\n", ret);
goto request_ocr_exit;
}
ret = 0; /*regulator_set_optimum_mode returns the mode on success*/
pr_debug("Requested optimum current mode: %d\n", req);
request_ocr_exit:
return ret;
}
static int ocr_set_mode_all(enum ocr_request req)
{
int ret = 0, i;
for (i = 0; i < ocr_rail_cnt; i++) {
if (ocr_rails[i].mode == req)
continue;
ret = request_optimum_current(&ocr_rails[i], req);
if (ret)
goto ocr_set_mode_exit;
ocr_rails[i].mode = req;
}
ocr_set_mode_exit:
return ret;
}
static ssize_t ocr_reg_mode_show(struct kobject *kobj,
struct kobj_attribute *attr, char *buf)
{
struct psm_rail *reg = PSM_REG_MODE_FROM_ATTRIBS(attr);
return snprintf(buf, PAGE_SIZE, "%d\n", reg->mode);
}
static ssize_t ocr_reg_mode_store(struct kobject *kobj,
struct kobj_attribute *attr, const char *buf, size_t count)
{
int ret = 0;
int val = 0;
struct psm_rail *reg = PSM_REG_MODE_FROM_ATTRIBS(attr);
if (!ocr_enabled)
return count;
mutex_lock(&ocr_mutex);
ret = kstrtoint(buf, 10, &val);
if (ret) {
pr_err("Invalid input %s for mode. err:%d\n",
buf, ret);
goto done_ocr_store;
}
if ((val != OPTIMUM_CURRENT_MAX) &&
(val != OPTIMUM_CURRENT_MIN)) {
pr_err("Invalid value %d for mode\n", val);
goto done_ocr_store;
}
if (val != reg->mode) {
ret = request_optimum_current(reg, val);
if (ret)
goto done_ocr_store;
reg->mode = val;
}
done_ocr_store:
mutex_unlock(&ocr_mutex);
return count;
}
static ssize_t store_phase_request(const char *buf, size_t count, bool is_cx)
{
int ret = 0, val;
struct mutex *phase_mutex = (is_cx) ? (&cx_mutex) : (&gfx_mutex);
enum msm_thermal_phase_ctrl phase_req = (is_cx) ? MSM_CX_PHASE_CTRL :
MSM_GFX_PHASE_CTRL;
ret = kstrtoint(buf, 10, &val);
if (ret) {
pr_err("Invalid input %s for %s temperature band\n",
buf, (is_cx) ? "CX" : "GFX");
goto phase_store_exit;
}
if ((val <= 0) || (val >= MSM_TEMP_MAX_NR)) {
pr_err("Invalid input %d for %s temperature band\n",
val, (is_cx) ? "CX" : "GFX");
ret = -EINVAL;
goto phase_store_exit;
}
mutex_lock(phase_mutex);
if (val != ((is_cx) ? curr_cx_band : curr_gfx_band)) {
ret = send_temperature_band(phase_req, val);
if (!ret) {
*((is_cx) ? &curr_cx_band : &curr_gfx_band) = val;
} else {
pr_err("Failed to send %d temp. band to %s rail\n", val,
(is_cx) ? "CX" : "GFX");
goto phase_store_unlock_exit;
}
}
ret = count;
phase_store_unlock_exit:
mutex_unlock(phase_mutex);
phase_store_exit:
return ret;
}
#define show_phase(_name, _variable) \
static ssize_t _name##_phase_show(struct kobject *kobj, \
struct kobj_attribute *attr, char *buf) \
{ \
return snprintf(buf, PAGE_SIZE, "%u\n", _variable); \
}
#define store_phase(_name, _variable, _iscx) \
static ssize_t _name##_phase_store(struct kobject *kobj, \
struct kobj_attribute *attr, const char *buf, size_t count) \
{ \
return store_phase_request(buf, count, _iscx); \
}
show_phase(gfx, curr_gfx_band)
show_phase(cx, curr_cx_band)
store_phase(gfx, curr_gfx_band, false)
store_phase(cx, curr_cx_band, true)
static ssize_t psm_reg_mode_show(
struct kobject *kobj, struct kobj_attribute *attr, char *buf)
{
struct psm_rail *reg = PSM_REG_MODE_FROM_ATTRIBS(attr);
return snprintf(buf, PAGE_SIZE, "%d\n", reg->mode);
}
static ssize_t psm_reg_mode_store(struct kobject *kobj,
struct kobj_attribute *attr, const char *buf, size_t count)
{
int ret = 0;
int val = 0;
struct psm_rail *reg = PSM_REG_MODE_FROM_ATTRIBS(attr);
mutex_lock(&psm_mutex);
ret = kstrtoint(buf, 10, &val);
if (ret) {
pr_err("Invalid input %s for mode\n", buf);
goto done_psm_store;
}
if ((val != PMIC_PWM_MODE) && (val != PMIC_AUTO_MODE)) {
pr_err("Invalid number %d for mode\n", val);
goto done_psm_store;
}
if (val != reg->mode) {
ret = rpm_regulator_set_mode(reg->reg, val);
if (ret) {
pr_err("Fail to set Mode:%d for %s. err:%d\n",
val, reg->name, ret);
goto done_psm_store;
}
reg->mode = val;
}
done_psm_store:
mutex_unlock(&psm_mutex);
return count;
}
static int check_sensor_id(int sensor_id)
{
int i = 0;
bool hw_id_found = false;
int ret = 0;
for (i = 0; i < max_tsens_num; i++) {
if (sensor_id == tsens_id_map[i]) {
hw_id_found = true;
break;
}
}
if (!hw_id_found) {
pr_err("Invalid sensor hw id:%d\n", sensor_id);
return -EINVAL;
}
return ret;
}
static int zone_id_to_tsen_id(int zone_id, int *tsens_id)
{
int i = 0;
int ret = 0;
for (i = 0; i < max_tsens_num; i++) {
if (zone_id == zone_id_tsens_map[i]) {
*tsens_id = tsens_id_map[i];
break;
}
}
if (i == max_tsens_num) {
pr_err("Invalid sensor zone id:%d\n", zone_id);
return -EINVAL;
}
return ret;
}
static int create_sensor_zone_id_map(void)
{
int i = 0;
int zone_id = -1;
zone_id_tsens_map = devm_kzalloc(&msm_thermal_info.pdev->dev,
sizeof(int) * max_tsens_num, GFP_KERNEL);
if (!zone_id_tsens_map) {
pr_err("Cannot allocate memory for zone_id_tsens_map\n");
return -ENOMEM;
}
for (i = 0; i < max_tsens_num; i++) {
char tsens_name[TSENS_NAME_MAX] = "";
snprintf(tsens_name, TSENS_NAME_MAX, TSENS_NAME_FORMAT,
tsens_id_map[i]);
zone_id = sensor_get_id(tsens_name);
if (zone_id < 0) {
pr_err("Error getting zone id for %s. err:%d\n",
tsens_name, zone_id);
goto fail;
} else {
zone_id_tsens_map[i] = zone_id;
}
}
return 0;
fail:
devm_kfree(&msm_thermal_info.pdev->dev, zone_id_tsens_map);
return zone_id;
}
static int create_sensor_id_map(struct device *dev)
{
int i = 0;
int ret = 0;
tsens_id_map = devm_kzalloc(dev,
sizeof(int) * max_tsens_num, GFP_KERNEL);
if (!tsens_id_map) {
pr_err("Cannot allocate memory for tsens_id_map\n");
return -ENOMEM;
}
for (i = 0; i < max_tsens_num; i++) {
ret = tsens_get_hw_id_mapping(i, &tsens_id_map[i]);
/* If return -ENXIO, hw_id is default in sequence */
if (ret) {
if (ret == -ENXIO) {
tsens_id_map[i] = i;
ret = 0;
} else {
pr_err("Failed to get hw id for id:%d.err:%d\n",
i, ret);
goto fail;
}
}
}
return ret;
fail:
devm_kfree(dev, tsens_id_map);
return ret;
}
/* 1:enable, 0:disable */
static int vdd_restriction_apply_all(int en)
{
int i = 0;
int en_cnt = 0;
int dis_cnt = 0;
int fail_cnt = 0;
int ret = 0;
for (i = 0; i < rails_cnt; i++) {
if (rails[i].freq_req == 1)
if (freq_table_get)
ret = vdd_restriction_apply_freq(&rails[i],
en ? 0 : -1);
else
continue;
else
ret = vdd_restriction_apply_voltage(&rails[i],
en ? 0 : -1);
if (ret) {
pr_err("Failed to %s for %s. err:%d",
(en) ? "enable" : "disable",
rails[i].name, ret);
fail_cnt++;
} else {
if (en)
en_cnt++;
else
dis_cnt++;
}
}
/* As long as one rail is enabled, vdd rstr is enabled */
if (en && en_cnt)
vdd_rstr_en.enabled = 1;
else if (!en && (dis_cnt == rails_cnt))
vdd_rstr_en.enabled = 0;
/*
* Check fail_cnt again to make sure all of the rails are applied
* restriction successfully or not
*/
if (fail_cnt)
return -EFAULT;
return ret;
}
static int set_and_activate_threshold(uint32_t sensor_id,
struct sensor_threshold *threshold)
{
int ret = 0;
ret = sensor_set_trip(sensor_id, threshold);
if (ret != 0) {
pr_err("sensor:%u Error in setting trip:%d. err:%d\n",
sensor_id, threshold->trip, ret);
goto set_done;
}
ret = sensor_activate_trip(sensor_id, threshold, true);
if (ret != 0) {
pr_err("sensor:%u Error in enabling trip:%d. err:%d\n",
sensor_id, threshold->trip, ret);
goto set_done;
}
set_done:
return ret;
}
static int therm_get_temp(uint32_t id, enum sensor_id_type type, long *temp)
{
int ret = 0;
struct tsens_device tsens_dev;
if (!temp) {
pr_err("Invalid value\n");
ret = -EINVAL;
goto get_temp_exit;
}
switch (type) {
case THERM_ZONE_ID:
ret = sensor_get_temp(id, temp);
if (ret) {
pr_err("Unable to read thermal zone sensor:%d\n", id);
goto get_temp_exit;
}
break;
case THERM_TSENS_ID:
tsens_dev.sensor_num = id;
ret = tsens_get_temp(&tsens_dev, temp);
if (ret) {
pr_err("Unable to read TSENS sensor:%d\n",
tsens_dev.sensor_num);
goto get_temp_exit;
}
break;
default:
pr_err("Invalid type\n");
ret = -EINVAL;
goto get_temp_exit;
}
if (tsens_scaling_factor)
*temp = *temp / tsens_scaling_factor;
get_temp_exit:
return ret;
}
static int msm_thermal_panic_callback(struct notifier_block *nfb,
unsigned long event, void *data)
{
int i;
for (i = 0; i < max_tsens_num; i++) {
therm_get_temp(tsens_id_map[i],
THERM_TSENS_ID,
&tsens_temp_at_panic[i]);
if (tsens_temp_print)
pr_err("tsens%d temperature:%ldC\n",
tsens_id_map[i], tsens_temp_at_panic[i]);
}
return NOTIFY_OK;
}
static struct notifier_block msm_thermal_panic_notifier = {
.notifier_call = msm_thermal_panic_callback,
};
int sensor_mgr_set_threshold(uint32_t zone_id,
struct sensor_threshold *threshold)
{
int i = 0, ret = 0;
long temp;
if (!threshold) {
pr_err("Invalid input\n");
ret = -EINVAL;
goto set_threshold_exit;
}
ret = therm_get_temp(zone_id, THERM_ZONE_ID, &temp);
if (ret) {
pr_err("Unable to read temperature for zone:%d. err:%d\n",
zone_id, ret);
goto set_threshold_exit;
}
pr_debug("Sensor:[%d] temp:[%ld]\n", zone_id, temp);
while (i < MAX_THRESHOLD) {
switch (threshold[i].trip) {
case THERMAL_TRIP_CONFIGURABLE_HI:
if (threshold[i].temp / tsens_scaling_factor >= temp) {
ret = set_and_activate_threshold(zone_id,
&threshold[i]);
if (ret)
goto set_threshold_exit;
UPDATE_THRESHOLD_SET(ret,
THERMAL_TRIP_CONFIGURABLE_HI);
}
break;
case THERMAL_TRIP_CONFIGURABLE_LOW:
if (threshold[i].temp / tsens_scaling_factor <= temp) {
ret = set_and_activate_threshold(zone_id,
&threshold[i]);
if (ret)
goto set_threshold_exit;
UPDATE_THRESHOLD_SET(ret,
THERMAL_TRIP_CONFIGURABLE_LOW);
}
break;
default:
pr_err("zone:%u Invalid trip:%d\n", zone_id,
threshold[i].trip);
break;
}
i++;
}
set_threshold_exit:
return ret;
}
static int apply_vdd_mx_restriction(void)
{
int ret = 0;
if (mx_restr_applied)
goto done;
ret = regulator_set_voltage(vdd_mx, msm_thermal_info.vdd_mx_min,
INT_MAX);
if (ret) {
pr_err("Failed to add mx vote, error %d\n", ret);
goto done;
}
ret = regulator_enable(vdd_mx);
if (ret)
pr_err("Failed to vote for mx voltage %d, error %d\n",
msm_thermal_info.vdd_mx_min, ret);
else
mx_restr_applied = true;
done:
return ret;
}
static int remove_vdd_mx_restriction(void)
{
int ret = 0;
if (!mx_restr_applied)
goto done;
ret = regulator_disable(vdd_mx);
if (ret) {
pr_err("Failed to disable mx voting, error %d\n", ret);
goto done;
}
ret = regulator_set_voltage(vdd_mx, 0, INT_MAX);
if (ret)
pr_err("Failed to remove mx vote, error %d\n", ret);
else
mx_restr_applied = false;
done:
return ret;
}
static int do_vdd_mx(void)
{
long temp = 0;
int ret = 0;
int i = 0;
int dis_cnt = 0;
if (!vdd_mx_enabled)
return ret;
mutex_lock(&vdd_mx_mutex);
for (i = 0; i < thresh[MSM_VDD_MX_RESTRICTION].thresh_ct; i++) {
ret = therm_get_temp(
thresh[MSM_VDD_MX_RESTRICTION].thresh_list[i].sensor_id,
thresh[MSM_VDD_MX_RESTRICTION].thresh_list[i].id_type,
&temp);
if (ret) {
pr_err("Unable to read TSENS sensor:%d, err:%d\n",
thresh[MSM_VDD_MX_RESTRICTION].thresh_list[i].
sensor_id, ret);
dis_cnt++;
continue;
}
if (temp <= msm_thermal_info.vdd_mx_temp_degC) {
ret = apply_vdd_mx_restriction();
if (ret)
pr_err(
"Failed to apply mx restriction\n");
goto exit;
} else if (temp >= (msm_thermal_info.vdd_mx_temp_degC +
msm_thermal_info.vdd_mx_temp_hyst_degC)) {
dis_cnt++;
}
}
if ((dis_cnt == thresh[MSM_VDD_MX_RESTRICTION].thresh_ct)) {
ret = remove_vdd_mx_restriction();
if (ret)
pr_err("Failed to remove vdd mx restriction\n");
}
exit:
mutex_unlock(&vdd_mx_mutex);
return ret;
}
static void vdd_mx_notify(struct therm_threshold *trig_thresh)
{
static uint32_t mx_sens_status;
int ret;
pr_debug("Sensor%d trigger recevied for type %d\n",
trig_thresh->sensor_id,
trig_thresh->trip_triggered);
if (!vdd_mx_enabled)
return;
mutex_lock(&vdd_mx_mutex);
switch (trig_thresh->trip_triggered) {
case THERMAL_TRIP_CONFIGURABLE_LOW:
mx_sens_status |= BIT(trig_thresh->sensor_id);
break;
case THERMAL_TRIP_CONFIGURABLE_HI:
if (mx_sens_status & BIT(trig_thresh->sensor_id))
mx_sens_status ^= BIT(trig_thresh->sensor_id);
break;
default:
pr_err("Unsupported trip type\n");
break;
}
if (mx_sens_status) {
ret = apply_vdd_mx_restriction();
if (ret)
pr_err("Failed to apply mx restriction\n");
} else if (!mx_sens_status) {
ret = remove_vdd_mx_restriction();
if (ret)
pr_err("Failed to remove vdd mx restriction\n");
}
mutex_unlock(&vdd_mx_mutex);
sensor_mgr_set_threshold(trig_thresh->sensor_id,
trig_thresh->threshold);
}
static void msm_thermal_bite(int zone_id, long temp)
{
struct scm_desc desc;
int tsens_id = 0;
int ret = 0;
ret = zone_id_to_tsen_id(zone_id, &tsens_id);
if (ret < 0) {
pr_err("Zone:%d reached temperature:%ld. Err = %d System reset\n",
zone_id, temp, ret);
} else {
pr_err("Tsens:%d reached temperature:%ld. System reset\n",
tsens_id, temp);
}
if (!is_scm_armv8()) {
scm_call_atomic1(SCM_SVC_BOOT, THERM_SECURE_BITE_CMD, 0);
} else {
desc.args[0] = 0;
desc.arginfo = SCM_ARGS(1);
scm_call2_atomic(SCM_SIP_FNID(SCM_SVC_BOOT,
THERM_SECURE_BITE_CMD), &desc);
}
}
static int do_therm_reset(void)
{
int ret = 0, i;
long temp = 0;
if (!therm_reset_enabled)
return ret;
for (i = 0; i < thresh[MSM_THERM_RESET].thresh_ct; i++) {
ret = therm_get_temp(
thresh[MSM_THERM_RESET].thresh_list[i].sensor_id,
thresh[MSM_THERM_RESET].thresh_list[i].id_type,
&temp);
if (ret) {
pr_err("Unable to read TSENS sensor:%d. err:%d\n",
thresh[MSM_THERM_RESET].thresh_list[i].sensor_id,
ret);
continue;
}
if (temp >= msm_thermal_info.therm_reset_temp_degC)
msm_thermal_bite(
thresh[MSM_THERM_RESET].thresh_list[i].sensor_id, temp);
}
return ret;
}
static void therm_reset_notify(struct therm_threshold *thresh_data)
{
long temp;
int ret = 0;
if (!therm_reset_enabled)
return;
if (!thresh_data) {
pr_err("Invalid input\n");
return;
}
switch (thresh_data->trip_triggered) {
case THERMAL_TRIP_CONFIGURABLE_HI:
ret = therm_get_temp(thresh_data->sensor_id,
thresh_data->id_type, &temp);
if (ret)
pr_err("Unable to read TSENS sensor:%d. err:%d\n",
thresh_data->sensor_id, ret);
msm_thermal_bite(thresh_data->sensor_id, temp);
break;
case THERMAL_TRIP_CONFIGURABLE_LOW:
break;
default:
pr_err("Invalid trip type\n");
break;
}
sensor_mgr_set_threshold(thresh_data->sensor_id,
thresh_data->threshold);
}
static void retry_hotplug(struct work_struct *work)
{
mutex_lock(&core_control_mutex);
if (retry_in_progress) {
pr_debug("Retrying hotplug\n");
retry_in_progress = false;
complete(&hotplug_notify_complete);
}
mutex_unlock(&core_control_mutex);
}
#ifdef CONFIG_SMP
static void __ref do_core_control(long temp)
{
int i = 0;
int ret = 0;
struct device *cpu_dev = NULL;
if (!core_control_enabled)
return;
mutex_lock(&core_control_mutex);
if (msm_thermal_info.core_control_mask &&
temp >= msm_thermal_info.core_limit_temp_degC) {
for (i = num_possible_cpus(); i > 0; i--) {
if (!(msm_thermal_info.core_control_mask & BIT(i)))
continue;
if (cpus_offlined & BIT(i) && !cpu_online(i))
continue;
pr_info("Set Offline: CPU%d Temp: %ld\n",
i, temp);
lock_device_hotplug();
if (cpu_online(i)) {
cpu_dev = get_cpu_device(i);
trace_thermal_pre_core_offline(i);
ret = device_offline(cpu_dev);
if (ret)
pr_err("Error %d offline core %d\n",
ret, i);
trace_thermal_post_core_offline(i,
cpumask_test_cpu(i, cpu_online_mask));
}
unlock_device_hotplug();
cpus_offlined |= BIT(i);
break;
}
} else if (msm_thermal_info.core_control_mask && cpus_offlined &&
temp <= (msm_thermal_info.core_limit_temp_degC -
msm_thermal_info.core_temp_hysteresis_degC)) {
for (i = 0; i < num_possible_cpus(); i++) {
if (!(cpus_offlined & BIT(i)))
continue;
cpus_offlined &= ~BIT(i);
pr_info("Allow Online CPU%d Temp: %ld\n",
i, temp);
/*
* If this core is already online, then bring up the
* next offlined core.
*/
lock_device_hotplug();
if (cpu_online(i)) {
unlock_device_hotplug();
continue;
}
/* If this core wasn't previously online don't put it
online */
if (!(cpumask_test_cpu(i, cpus_previously_online))) {
unlock_device_hotplug();
continue;
}
cpu_dev = get_cpu_device(i);
trace_thermal_pre_core_online(i);
ret = device_online(cpu_dev);
if (ret)
pr_err("Error %d online core %d\n",
ret, i);
trace_thermal_post_core_online(i,
cpumask_test_cpu(i, cpu_online_mask));
unlock_device_hotplug();
break;
}
}
mutex_unlock(&core_control_mutex);
}
/* Call with core_control_mutex locked */
static int __ref update_offline_cores(int val)
{
uint32_t cpu = 0;
int ret = 0;
uint32_t previous_cpus_offlined = 0;
bool pend_hotplug_req = false;
struct device *cpu_dev = NULL;
if (!core_control_enabled)
return 0;
previous_cpus_offlined = cpus_offlined;
cpus_offlined = msm_thermal_info.core_control_mask & val;
for_each_possible_cpu(cpu) {
if (cpus_offlined & BIT(cpu)) {
lock_device_hotplug();
if (!cpu_online(cpu)) {
unlock_device_hotplug();
continue;
}
cpu_dev = get_cpu_device(cpu);
trace_thermal_pre_core_offline(cpu);
ret = device_offline(cpu_dev);
if (ret) {
pr_err_ratelimited(
"Unable to offline CPU%d. err:%d\n",
cpu, ret);
pend_hotplug_req = true;
} else {
pr_debug("Offlined CPU%d\n", cpu);
}
trace_thermal_post_core_offline(cpu,
cpumask_test_cpu(cpu, cpu_online_mask));
unlock_device_hotplug();
} else if (online_core && (previous_cpus_offlined & BIT(cpu))) {
lock_device_hotplug();
if (cpu_online(cpu)) {
unlock_device_hotplug();
continue;
}
/* If this core wasn't previously online don't put it
online */
if (!(cpumask_test_cpu(cpu, cpus_previously_online))) {
unlock_device_hotplug();
continue;
}
cpu_dev = get_cpu_device(cpu);
trace_thermal_pre_core_online(cpu);
ret = device_online(cpu_dev);
if (ret && ret == notifier_to_errno(NOTIFY_BAD)) {
pr_debug("Onlining CPU%d is vetoed\n", cpu);
} else if (ret) {
cpus_offlined |= BIT(cpu);
pend_hotplug_req = true;
pr_err_ratelimited(
"Unable to online CPU%d. err:%d\n",
cpu, ret);
} else {
pr_debug("Onlined CPU%d\n", cpu);
trace_thermal_post_core_online(cpu,
cpumask_test_cpu(cpu, cpu_online_mask));
}
unlock_device_hotplug();
}
}
if (pend_hotplug_req && !in_suspend && !retry_in_progress) {
retry_in_progress = true;
schedule_delayed_work(&retry_hotplug_work,
msecs_to_jiffies(HOTPLUG_RETRY_INTERVAL_MS));
}
return ret;
}
static __ref int do_hotplug(void *data)
{
int ret = 0;
uint32_t cpu = 0, mask = 0;
struct device_clnt_data *clnt = NULL;
struct sched_param param = {.sched_priority = MAX_RT_PRIO-2};
if (!core_control_enabled) {
pr_debug("Core control disabled\n");
return -EINVAL;
}
sched_setscheduler(current, SCHED_FIFO, &param);
while (!kthread_should_stop()) {
while (wait_for_completion_interruptible(
&hotplug_notify_complete) != 0)
;
reinit_completion(&hotplug_notify_complete);
mask = 0;
mutex_lock(&core_control_mutex);
for_each_possible_cpu(cpu) {
if (hotplug_enabled &&
cpus[cpu].hotplug_thresh_clear) {
ret =
sensor_mgr_set_threshold(cpus[cpu].sensor_id,
&cpus[cpu].threshold[HOTPLUG_THRESHOLD_HIGH]);
if (cpus[cpu].offline
&& !IS_LOW_THRESHOLD_SET(ret))
cpus[cpu].offline = 0;
cpus[cpu].hotplug_thresh_clear = false;
}
if (cpus[cpu].offline || cpus[cpu].user_offline)
mask |= BIT(cpu);
}
if (devices && devices->hotplug_dev) {
mutex_lock(&devices->hotplug_dev->clnt_lock);
for_each_cpu_mask(cpu,
devices->hotplug_dev->active_req.offline_mask)
mask |= BIT(cpu);
mutex_unlock(&devices->hotplug_dev->clnt_lock);
}
if (mask != cpus_offlined)
update_offline_cores(mask);
mutex_unlock(&core_control_mutex);
if (devices && devices->hotplug_dev) {
union device_request req;
req.offline_mask = CPU_MASK_NONE;
mutex_lock(&devices->hotplug_dev->clnt_lock);
for_each_cpu_mask(cpu,
devices->hotplug_dev->active_req.offline_mask)
if (mask & BIT(cpu))
cpumask_test_and_set_cpu(cpu,
&req.offline_mask);
list_for_each_entry(clnt,
&devices->hotplug_dev->client_list,
clnt_ptr) {
if (clnt->callback)
clnt->callback(clnt, &req,
clnt->usr_data);
}
mutex_unlock(&devices->hotplug_dev->clnt_lock);
}
sysfs_notify(cc_kobj, NULL, "cpus_offlined");
}
return ret;
}
#else
static void __ref do_core_control(long temp)
{
return;
}
static __ref int do_hotplug(void *data)
{
return 0;
}
static int __ref update_offline_cores(int val)
{
return 0;
}
#endif
static int do_gfx_phase_cond(void)
{
long temp = 0;
int ret = 0;
uint32_t new_req_band = curr_gfx_band;
if (!gfx_warm_phase_ctrl_enabled && !gfx_crit_phase_ctrl_enabled)
return ret;
mutex_lock(&gfx_mutex);
if (gfx_warm_phase_ctrl_enabled) {
ret = therm_get_temp(
thresh[MSM_GFX_PHASE_CTRL_WARM].thresh_list->sensor_id,
thresh[MSM_GFX_PHASE_CTRL_WARM].thresh_list->id_type,
&temp);
if (ret) {
pr_err("Unable to read TSENS sensor:%d. err:%d\n",
thresh[MSM_GFX_PHASE_CTRL_WARM].thresh_list->sensor_id,
ret);
goto gfx_phase_cond_exit;
}
} else {
ret = therm_get_temp(
thresh[MSM_GFX_PHASE_CTRL_HOT].thresh_list->sensor_id,
thresh[MSM_GFX_PHASE_CTRL_HOT].thresh_list->id_type,
&temp);
if (ret) {
pr_err("Unable to read TSENS sensor:%d. err:%d\n",
thresh[MSM_GFX_PHASE_CTRL_HOT].thresh_list->sensor_id,
ret);
goto gfx_phase_cond_exit;
}
}
switch (curr_gfx_band) {
case MSM_HOT_CRITICAL:
if (temp < (msm_thermal_info.gfx_phase_hot_temp_degC -
msm_thermal_info.gfx_phase_hot_temp_hyst_degC))
new_req_band = MSM_WARM;
break;
case MSM_WARM:
if (temp >= msm_thermal_info.gfx_phase_hot_temp_degC)
new_req_band = MSM_HOT_CRITICAL;
else if (temp < (msm_thermal_info.gfx_phase_warm_temp_degC -
msm_thermal_info.gfx_phase_warm_temp_hyst_degC))
new_req_band = MSM_NORMAL;
break;
case MSM_NORMAL:
if (temp >= msm_thermal_info.gfx_phase_warm_temp_degC)
new_req_band = MSM_WARM;
break;
default:
if (temp >= msm_thermal_info.gfx_phase_hot_temp_degC)
new_req_band = MSM_HOT_CRITICAL;
else if (temp >= msm_thermal_info.gfx_phase_warm_temp_degC)
new_req_band = MSM_WARM;
else
new_req_band = MSM_NORMAL;
break;
}
if (new_req_band != curr_gfx_band) {
ret = send_temperature_band(MSM_GFX_PHASE_CTRL, new_req_band);
if (!ret) {
pr_debug("Reached %d band. Temp:%ld\n", new_req_band,
temp);
curr_gfx_band = new_req_band;
} else {
pr_err("Error sending temp. band:%d. Temp:%ld. err:%d",
new_req_band, temp, ret);
}
}
gfx_phase_cond_exit:
mutex_unlock(&gfx_mutex);
return ret;
}
static int do_cx_phase_cond(void)
{
long temp = 0;
int i, ret = 0, dis_cnt = 0;
if (!cx_phase_ctrl_enabled)
return ret;
mutex_lock(&cx_mutex);
for (i = 0; i < thresh[MSM_CX_PHASE_CTRL_HOT].thresh_ct; i++) {
ret = therm_get_temp(
thresh[MSM_CX_PHASE_CTRL_HOT].thresh_list[i].sensor_id,
thresh[MSM_CX_PHASE_CTRL_HOT].thresh_list[i].id_type,
&temp);
if (ret) {
pr_err("Unable to read TSENS sensor:%d. err:%d\n",
thresh[MSM_CX_PHASE_CTRL_HOT].thresh_list[i].sensor_id,
ret);
dis_cnt++;
continue;
}
if (temp >= msm_thermal_info.cx_phase_hot_temp_degC) {
if (curr_cx_band != MSM_HOT_CRITICAL) {
ret = send_temperature_band(MSM_CX_PHASE_CTRL,
MSM_HOT_CRITICAL);
if (!ret) {
pr_debug("band:HOT_CRITICAL Temp:%ld\n",
temp);
curr_cx_band = MSM_HOT_CRITICAL;
} else {
pr_err("Error %d sending HOT_CRITICAL",
ret);
}
}
goto cx_phase_cond_exit;
} else if (temp < (msm_thermal_info.cx_phase_hot_temp_degC -
msm_thermal_info.cx_phase_hot_temp_hyst_degC))
dis_cnt++;
}
if (dis_cnt == max_tsens_num && curr_cx_band != MSM_WARM) {
ret = send_temperature_band(MSM_CX_PHASE_CTRL, MSM_WARM);
if (!ret) {
pr_debug("band:WARM Temp:%ld\n", temp);
curr_cx_band = MSM_WARM;
} else {
pr_err("Error sending WARM temp band. err:%d",
ret);
}
}
cx_phase_cond_exit:
mutex_unlock(&cx_mutex);
return ret;
}
static int do_ocr(void)
{
long temp = 0;
int ret = 0;
int i = 0, j = 0;
int pfm_cnt = 0;
if (!ocr_enabled)
return ret;
mutex_lock(&ocr_mutex);
for (i = 0; i < thresh[MSM_OCR].thresh_ct; i++) {
ret = therm_get_temp(
thresh[MSM_OCR].thresh_list[i].sensor_id,
thresh[MSM_OCR].thresh_list[i].id_type,
&temp);
if (ret) {
pr_err("Unable to read TSENS sensor %d. err:%d\n",
thresh[MSM_OCR].thresh_list[i].sensor_id,
ret);
pfm_cnt++;
continue;
}
if (temp > msm_thermal_info.ocr_temp_degC) {
if (ocr_rails[0].init != OPTIMUM_CURRENT_NR)
for (j = 0; j < ocr_rail_cnt; j++)
ocr_rails[j].init = OPTIMUM_CURRENT_NR;
ret = ocr_set_mode_all(OPTIMUM_CURRENT_MAX);
if (ret)
pr_err("Error setting max ocr. err:%d\n",
ret);
else
pr_debug("Requested MAX OCR. tsens:%d Temp:%ld",
thresh[MSM_OCR].thresh_list[i].sensor_id, temp);
goto do_ocr_exit;
} else if (temp <= (msm_thermal_info.ocr_temp_degC -
msm_thermal_info.ocr_temp_hyst_degC))
pfm_cnt++;
}
if (pfm_cnt == thresh[MSM_OCR].thresh_ct ||
ocr_rails[0].init != OPTIMUM_CURRENT_NR) {
/* 'init' not equal to OPTIMUM_CURRENT_NR means this is the
** first polling iteration after device probe. During first
** iteration, if temperature is less than the set point, clear
** the max current request made and reset the 'init'.
*/
if (ocr_rails[0].init != OPTIMUM_CURRENT_NR)
for (j = 0; j < ocr_rail_cnt; j++)
ocr_rails[j].init = OPTIMUM_CURRENT_NR;
ret = ocr_set_mode_all(OPTIMUM_CURRENT_MIN);
if (ret) {
pr_err("Error setting min ocr. err:%d\n",
ret);
goto do_ocr_exit;
} else {
pr_debug("Requested MIN OCR. Temp:%ld", temp);
}
}
do_ocr_exit:
mutex_unlock(&ocr_mutex);
return ret;
}
static int do_vdd_restriction(void)
{
long temp = 0;
int ret = 0;
int i = 0;
int dis_cnt = 0;
if (!vdd_rstr_enabled)
return ret;
if (usefreq && !freq_table_get) {
if (check_freq_table() && !core_ptr)
return ret;
}
mutex_lock(&vdd_rstr_mutex);
for (i = 0; i < thresh[MSM_VDD_RESTRICTION].thresh_ct; i++) {
ret = therm_get_temp(
thresh[MSM_VDD_RESTRICTION].thresh_list[i].sensor_id,
thresh[MSM_VDD_RESTRICTION].thresh_list[i].id_type,
&temp);
if (ret) {
pr_err("Unable to read TSENS sensor:%d. err:%d\n",
thresh[MSM_VDD_RESTRICTION].thresh_list[i].sensor_id,
ret);
dis_cnt++;
continue;
}
if (temp <= msm_thermal_info.vdd_rstr_temp_degC) {
ret = vdd_restriction_apply_all(1);
if (ret) {
pr_err( \
"Enable vdd rstr for all failed. err:%d\n",
ret);
goto exit;
}
pr_debug("Enabled Vdd Restriction tsens:%d. Temp:%ld\n",
thresh[MSM_VDD_RESTRICTION].thresh_list[i].sensor_id,
temp);
goto exit;
} else if (temp > msm_thermal_info.vdd_rstr_temp_hyst_degC)
dis_cnt++;
}
if (dis_cnt == max_tsens_num) {
ret = vdd_restriction_apply_all(0);
if (ret) {
pr_err("Disable vdd rstr for all failed. err:%d\n",
ret);
goto exit;
}
pr_debug("Disabled Vdd Restriction\n");
}
exit:
mutex_unlock(&vdd_rstr_mutex);
return ret;
}
static int do_psm(void)
{
long temp = 0;
int ret = 0;
int i = 0;
int auto_cnt = 0;
if (!psm_enabled)
return ret;
mutex_lock(&psm_mutex);
for (i = 0; i < max_tsens_num; i++) {
ret = therm_get_temp(tsens_id_map[i], THERM_TSENS_ID, &temp);
if (ret) {
pr_err("Unable to read TSENS sensor:%d. err:%d\n",
tsens_id_map[i], ret);
auto_cnt++;
continue;
}
/*
* As long as one sensor is above the threshold, set PWM mode
* on all rails, and loop stops. Set auto mode when all rails
* are below thershold
*/
if (temp > msm_thermal_info.psm_temp_degC) {
ret = psm_set_mode_all(PMIC_PWM_MODE);
if (ret) {
pr_err("Set pwm mode for all failed. err:%d\n",
ret);
goto exit;
}
pr_debug("Requested PMIC PWM Mode tsens:%d. Temp:%ld\n",
tsens_id_map[i], temp);
break;
} else if (temp <= msm_thermal_info.psm_temp_hyst_degC)
auto_cnt++;
}
if (auto_cnt == max_tsens_num) {
ret = psm_set_mode_all(PMIC_AUTO_MODE);
if (ret) {
pr_err("Set auto mode for all failed. err:%d\n", ret);
goto exit;
}
pr_debug("Requested PMIC AUTO Mode\n");
}
exit:
mutex_unlock(&psm_mutex);
return ret;
}
static void do_freq_control(long temp)
{
uint32_t cpu = 0;
uint32_t max_freq = cpus[cpu].limited_max_freq;
if (core_ptr)
return do_cluster_freq_ctrl(temp);
if (!freq_table_get)
return;
if (temp >= msm_thermal_info.limit_temp_degC) {
if (limit_idx == limit_idx_low)
return;
limit_idx -= msm_thermal_info.bootup_freq_step;
if (limit_idx < limit_idx_low)
limit_idx = limit_idx_low;
} else if (temp < msm_thermal_info.limit_temp_degC -
msm_thermal_info.temp_hysteresis_degC) {
if (limit_idx == limit_idx_high)
return;
limit_idx += msm_thermal_info.bootup_freq_step;
if (limit_idx >= limit_idx_high)
limit_idx = limit_idx_high;
}
/* Update new limits */
get_online_cpus();
max_freq = table[limit_idx].frequency;
if (max_freq == cpus[cpu].limited_max_freq) {
put_online_cpus();
return;
}
for_each_possible_cpu(cpu) {
if (!(msm_thermal_info.bootup_freq_control_mask & BIT(cpu)))
continue;
pr_info("Limiting CPU%d max frequency to %u. Temp:%ld\n",
cpu, max_freq, temp);
cpus[cpu].limited_max_freq =
min(max_freq, cpus[cpu].vdd_max_freq);
if (!SYNC_CORE(cpu))
update_cpu_freq(cpu);
}
update_cluster_freq();
put_online_cpus();
}
static void check_temp(struct work_struct *work)
{
long temp = 0;
int ret = 0;
do_therm_reset();
ret = therm_get_temp(msm_thermal_info.sensor_id, THERM_TSENS_ID, &temp);
if (ret) {
pr_err("Unable to read TSENS sensor:%d. err:%d\n",
msm_thermal_info.sensor_id, ret);
goto reschedule;
}
do_core_control(temp);
do_vdd_mx();
do_psm();
do_gfx_phase_cond();
do_cx_phase_cond();
do_ocr();
/*
** All mitigation involving CPU frequency should be
** placed below this check. The mitigation following this
** frequency table check, should be able to handle the failure case.
*/
if (!freq_table_get)
check_freq_table();
do_vdd_restriction();
do_freq_control(temp);
reschedule:
if (polling_enabled)
schedule_delayed_work(&check_temp_work,
msecs_to_jiffies(msm_thermal_info.poll_ms));
}
static int __ref msm_thermal_cpu_callback(struct notifier_block *nfb,
unsigned long action, void *hcpu)
{
uint32_t cpu = (uintptr_t)hcpu;
if (action == CPU_UP_PREPARE || action == CPU_UP_PREPARE_FROZEN) {
if (!cpumask_test_and_set_cpu(cpu, cpus_previously_online))
pr_debug("Total prev cores online tracked %u\n",
cpumask_weight(cpus_previously_online));
if (core_control_enabled &&
(msm_thermal_info.core_control_mask & BIT(cpu)) &&
(cpus_offlined & BIT(cpu))) {
pr_debug("Preventing CPU%d from coming online.\n",
cpu);
return NOTIFY_BAD;
}
} else if (action == CPU_DOWN_PREPARE ||
action == CPU_DOWN_PREPARE_FROZEN) {
if (!cpumask_test_and_set_cpu(cpu, cpus_previously_online))
pr_debug("Total prev cores online tracked %u\n",
cpumask_weight(cpus_previously_online));
}
pr_debug("voting for CPU%d to be online\n", cpu);
return NOTIFY_OK;
}
static struct notifier_block __refdata msm_thermal_cpu_notifier = {
.notifier_call = msm_thermal_cpu_callback,
};
static int hotplug_notify(enum thermal_trip_type type, int temp, void *data)
{
struct cpu_info *cpu_node = (struct cpu_info *)data;
pr_info_ratelimited("%s reach temp threshold: %d\n",
cpu_node->sensor_type, temp);
if (!(msm_thermal_info.core_control_mask & BIT(cpu_node->cpu)))
return 0;
switch (type) {
case THERMAL_TRIP_CONFIGURABLE_HI:
if (!(cpu_node->offline))
cpu_node->offline = 1;
break;
case THERMAL_TRIP_CONFIGURABLE_LOW:
if (cpu_node->offline)
cpu_node->offline = 0;
break;
default:
break;
}
if (hotplug_task) {
cpu_node->hotplug_thresh_clear = true;
complete(&hotplug_notify_complete);
} else
pr_err("Hotplug task is not initialized\n");
return 0;
}
/* Adjust cpus offlined bit based on temperature reading. */
static int hotplug_init_cpu_offlined(void)
{
long temp = 0;
uint32_t cpu = 0;
if (!hotplug_enabled)
return 0;
mutex_lock(&core_control_mutex);
for_each_possible_cpu(cpu) {
if (!(msm_thermal_info.core_control_mask & BIT(cpus[cpu].cpu)))
continue;
if (therm_get_temp(cpus[cpu].sensor_id, cpus[cpu].id_type,
&temp)) {
pr_err("Unable to read TSENS sensor:%d.\n",
cpus[cpu].sensor_id);
mutex_unlock(&core_control_mutex);
return -EINVAL;
}
if (temp >= msm_thermal_info.hotplug_temp_degC)
cpus[cpu].offline = 1;
else if (temp <= (msm_thermal_info.hotplug_temp_degC -
msm_thermal_info.hotplug_temp_hysteresis_degC))
cpus[cpu].offline = 0;
}
mutex_unlock(&core_control_mutex);
if (hotplug_task)
complete(&hotplug_notify_complete);
else {
pr_err("Hotplug task is not initialized\n");
return -EINVAL;
}
return 0;
}
static void hotplug_init(void)
{
uint32_t cpu = 0;
struct sensor_threshold *hi_thresh = NULL, *low_thresh = NULL;
if (hotplug_task)
return;
if (!hotplug_enabled)
goto init_kthread;
for_each_possible_cpu(cpu) {
cpus[cpu].sensor_id =
sensor_get_id((char *)cpus[cpu].sensor_type);
cpus[cpu].id_type = THERM_ZONE_ID;
if (!(msm_thermal_info.core_control_mask & BIT(cpus[cpu].cpu)))
continue;
hi_thresh = &cpus[cpu].threshold[HOTPLUG_THRESHOLD_HIGH];
low_thresh = &cpus[cpu].threshold[HOTPLUG_THRESHOLD_LOW];
hi_thresh->temp = (msm_thermal_info.hotplug_temp_degC)
* tsens_scaling_factor;
hi_thresh->trip = THERMAL_TRIP_CONFIGURABLE_HI;
low_thresh->temp = (msm_thermal_info.hotplug_temp_degC -
msm_thermal_info.hotplug_temp_hysteresis_degC)
* tsens_scaling_factor;
low_thresh->trip = THERMAL_TRIP_CONFIGURABLE_LOW;
hi_thresh->notify = low_thresh->notify = hotplug_notify;
hi_thresh->data = low_thresh->data = (void *)&cpus[cpu];
sensor_mgr_set_threshold(cpus[cpu].sensor_id, hi_thresh);
}
init_kthread:
init_completion(&hotplug_notify_complete);
hotplug_task = kthread_run(do_hotplug, NULL, "msm_thermal:hotplug");
if (IS_ERR(hotplug_task)) {
pr_err("Failed to create do_hotplug thread. err:%ld\n",
PTR_ERR(hotplug_task));
return;
}
/*
* Adjust cpus offlined bit when hotplug intitializes so that the new
* cpus offlined state is based on hotplug threshold range
*/
if (hotplug_init_cpu_offlined())
kthread_stop(hotplug_task);
}
static __ref int do_freq_mitigation(void *data)
{
int ret = 0;
uint32_t cpu = 0, max_freq_req = 0, min_freq_req = 0;
struct sched_param param = {.sched_priority = MAX_RT_PRIO-1};
struct device_clnt_data *clnt = NULL;
struct device_manager_data *cpu_dev = NULL;
sched_setscheduler(current, SCHED_FIFO, &param);
while (!kthread_should_stop()) {
while (wait_for_completion_interruptible(
&freq_mitigation_complete) != 0)
;
reinit_completion(&freq_mitigation_complete);
for_each_possible_cpu(cpu) {
max_freq_req = (cpus[cpu].max_freq) ?
msm_thermal_info.freq_limit :
UINT_MAX;
max_freq_req = min(max_freq_req,
cpus[cpu].user_max_freq);
max_freq_req = min(max_freq_req,
cpus[cpu].shutdown_max_freq);
max_freq_req = min(max_freq_req,
cpus[cpu].suspend_max_freq);
if (devices && devices->cpufreq_dev[cpu]) {
cpu_dev = devices->cpufreq_dev[cpu];
mutex_lock(&cpu_dev->clnt_lock);
max_freq_req = min(max_freq_req,
cpu_dev->active_req.freq.max_freq);
min_freq_req =
cpu_dev->active_req.freq.min_freq;
mutex_unlock(&cpu_dev->clnt_lock);
}
if ((max_freq_req == cpus[cpu].limited_max_freq)
&& (min_freq_req ==
cpus[cpu].limited_min_freq))
goto reset_threshold;
cpus[cpu].limited_max_freq = max_freq_req;
cpus[cpu].limited_min_freq = min_freq_req;
if (!SYNC_CORE(cpu))
update_cpu_freq(cpu);
reset_threshold:
if (!SYNC_CORE(cpu) &&
devices && devices->cpufreq_dev[cpu]) {
union device_request req;
req.freq.max_freq = max_freq_req;
req.freq.min_freq = min_freq_req;
cpu_dev = devices->cpufreq_dev[cpu];
mutex_lock(&cpu_dev->clnt_lock);
list_for_each_entry(clnt,
&cpu_dev->client_list,
clnt_ptr) {
if (clnt->callback)
clnt->callback(clnt,
&req,
clnt->usr_data);
}
mutex_unlock(&cpu_dev->clnt_lock);
}
if (freq_mitigation_enabled &&
cpus[cpu].freq_thresh_clear) {
ret =
sensor_mgr_set_threshold(cpus[cpu].sensor_id,
&cpus[cpu].threshold[FREQ_THRESHOLD_HIGH]);
if (cpus[cpu].max_freq
&& !IS_LOW_THRESHOLD_SET(ret)) {
cpus[cpu].max_freq = false;
complete(&freq_mitigation_complete);
}
cpus[cpu].freq_thresh_clear = false;
}
}
update_cluster_freq();
}
return ret;
}
static int freq_mitigation_notify(enum thermal_trip_type type,
int temp, void *data)
{
struct cpu_info *cpu_node = (struct cpu_info *) data;
pr_debug("%s reached temp threshold: %d\n",
cpu_node->sensor_type, temp);
if (!(msm_thermal_info.freq_mitig_control_mask &
BIT(cpu_node->cpu)))
return 0;
switch (type) {
case THERMAL_TRIP_CONFIGURABLE_HI:
if (!cpu_node->max_freq) {
pr_info_ratelimited(
"Mitigating CPU%d frequency to %d\n",
cpu_node->cpu, msm_thermal_info.freq_limit);
cpu_node->max_freq = true;
}
break;
case THERMAL_TRIP_CONFIGURABLE_LOW:
if (cpu_node->max_freq) {
pr_info_ratelimited(
"Removing frequency mitigation for CPU%d\n",
cpu_node->cpu);
cpu_node->max_freq = false;
}
break;
default:
break;
}
if (freq_mitigation_task) {
cpu_node->freq_thresh_clear = true;
complete(&freq_mitigation_complete);
} else {
pr_err("Frequency mitigation task is not initialized\n");
}
return 0;
}
static void freq_mitigation_init(void)
{
uint32_t cpu = 0;
struct sensor_threshold *hi_thresh = NULL, *low_thresh = NULL;
if (freq_mitigation_task)
return;
if (!freq_mitigation_enabled)
goto init_freq_thread;
for_each_possible_cpu(cpu) {
if (!(msm_thermal_info.freq_mitig_control_mask & BIT(cpu)))
continue;
hi_thresh = &cpus[cpu].threshold[FREQ_THRESHOLD_HIGH];
low_thresh = &cpus[cpu].threshold[FREQ_THRESHOLD_LOW];
hi_thresh->temp = msm_thermal_info.freq_mitig_temp_degc
* tsens_scaling_factor;
hi_thresh->trip = THERMAL_TRIP_CONFIGURABLE_HI;
low_thresh->temp = (msm_thermal_info.freq_mitig_temp_degc -
msm_thermal_info.freq_mitig_temp_hysteresis_degc)
* tsens_scaling_factor;
low_thresh->trip = THERMAL_TRIP_CONFIGURABLE_LOW;
hi_thresh->notify = low_thresh->notify =
freq_mitigation_notify;
hi_thresh->data = low_thresh->data = (void *)&cpus[cpu];
sensor_mgr_set_threshold(cpus[cpu].sensor_id, hi_thresh);
}
init_freq_thread:
init_completion(&freq_mitigation_complete);
freq_mitigation_task = kthread_run(do_freq_mitigation, NULL,
"msm_thermal:freq_mitig");
if (IS_ERR(freq_mitigation_task)) {
pr_err("Failed to create frequency mitigation thread. err:%ld\n",
PTR_ERR(freq_mitigation_task));
return;
}
}
int msm_thermal_get_freq_plan_size(uint32_t cluster, unsigned int *table_len)
{
uint32_t i = 0;
struct cluster_info *cluster_ptr = NULL;
if (!core_ptr) {
pr_err("Topology ptr not initialized\n");
return -ENODEV;
}
if (!table_len) {
pr_err("Invalid input\n");
return -EINVAL;
}
if (!freq_table_get)
check_freq_table();
for (; i < core_ptr->entity_count; i++) {
cluster_ptr = &core_ptr->child_entity_ptr[i];
if (cluster_ptr->cluster_id == cluster) {
if (!cluster_ptr->freq_table) {
pr_err("Cluster%d clock plan not initialized\n",
cluster);
return -EINVAL;
}
*table_len = cluster_ptr->freq_idx_high + 1;
return 0;
}
}
pr_err("Invalid cluster ID:%d\n", cluster);
return -EINVAL;
}
int msm_thermal_get_cluster_voltage_plan(uint32_t cluster, uint32_t *table_ptr)
{
int i = 0, corner = 0;
struct dev_pm_opp *opp = NULL;
unsigned int table_len = 0;
struct device *cpu_dev = NULL;
struct cluster_info *cluster_ptr = NULL;
if (!core_ptr) {
pr_err("Topology ptr not initialized\n");
return -ENODEV;
}
if (!table_ptr) {
pr_err("Invalid input\n");
return -EINVAL;
}
if (!freq_table_get)
check_freq_table();
for (i = 0; i < core_ptr->entity_count; i++) {
cluster_ptr = &core_ptr->child_entity_ptr[i];
if (cluster_ptr->cluster_id == cluster)
break;
}
if (i == core_ptr->entity_count) {
pr_err("Invalid cluster ID:%d\n", cluster);
return -EINVAL;
}
if (!cluster_ptr->freq_table) {
pr_err("Cluster%d clock plan not initialized\n", cluster);
return -EINVAL;
}
cpu_dev = get_cpu_device(first_cpu(cluster_ptr->cluster_cores));
table_len = cluster_ptr->freq_idx_high + 1;
rcu_read_lock();
for (i = 0; i < table_len; i++) {
opp = dev_pm_opp_find_freq_exact(cpu_dev,
cluster_ptr->freq_table[i].frequency * 1000, true);
if (IS_ERR(opp)) {
pr_err("Error on OPP freq :%d\n",
cluster_ptr->freq_table[i].frequency);
return -EINVAL;
}
corner = dev_pm_opp_get_voltage(opp);
if (corner == 0) {
pr_err("Bad voltage corner for OPP freq :%d\n",
cluster_ptr->freq_table[i].frequency);
return -EINVAL;
}
table_ptr[i] = corner / 1000;
pr_debug("Cluster:%d freq:%d Khz voltage:%d mV\n",
cluster, cluster_ptr->freq_table[i].frequency,
table_ptr[i]);
}
rcu_read_unlock();
return 0;
}
int msm_thermal_get_cluster_freq_plan(uint32_t cluster, unsigned int *table_ptr)
{
uint32_t i = 0;
struct cluster_info *cluster_ptr = NULL;
if (!core_ptr) {
pr_err("Topology ptr not initialized\n");
return -ENODEV;
}
if (!table_ptr) {
pr_err("Invalid input\n");
return -EINVAL;
}
if (!freq_table_get)
check_freq_table();
for (; i < core_ptr->entity_count; i++) {
cluster_ptr = &core_ptr->child_entity_ptr[i];
if (cluster_ptr->cluster_id == cluster)
break;
}
if (i == core_ptr->entity_count) {
pr_err("Invalid cluster ID:%d\n", cluster);
return -EINVAL;
}
if (!cluster_ptr->freq_table) {
pr_err("Cluster%d clock plan not initialized\n", cluster);
return -EINVAL;
}
for (i = 0; i <= cluster_ptr->freq_idx_high; i++)
table_ptr[i] = cluster_ptr->freq_table[i].frequency;
return 0;
}
int msm_thermal_set_cluster_freq(uint32_t cluster, uint32_t freq, bool is_max)
{
int ret = 0;
uint32_t i = 0;
struct cluster_info *cluster_ptr = NULL;
bool notify = false;
if (!mitigation) {
pr_err("Thermal Mitigations disabled.\n");
return -ENODEV;
}
if (!core_ptr) {
pr_err("Topology ptr not initialized\n");
return -ENODEV;
}
for (; i < core_ptr->entity_count; i++) {
cluster_ptr = &core_ptr->child_entity_ptr[i];
if (cluster_ptr->cluster_id != cluster)
continue;
if (!cluster_ptr->sync_cluster) {
pr_err("Cluster%d is not synchronous\n", cluster);
return -EINVAL;
} else {
pr_debug("Update Cluster%d %s frequency to %d\n",
cluster, (is_max) ? "max" : "min", freq);
break;
}
}
if (i == core_ptr->entity_count) {
pr_err("Invalid cluster ID:%d\n", cluster);
return -EINVAL;
}
for_each_cpu_mask(i, cluster_ptr->cluster_cores) {
uint32_t *freq_ptr = (is_max) ? &cpus[i].user_max_freq
: &cpus[i].user_min_freq;
if (*freq_ptr == freq)
continue;
notify = true;
*freq_ptr = freq;
}
if (freq_mitigation_task) {
if (notify)
complete(&freq_mitigation_complete);
} else {
pr_err("Frequency mitigation task is not initialized\n");
return -ESRCH;
}
return ret;
}
int msm_thermal_set_frequency(uint32_t cpu, uint32_t freq, bool is_max)
{
int ret = 0;
if (!mitigation) {
pr_err("Thermal Mitigations disabled.\n");
goto set_freq_exit;
}
if (cpu >= num_possible_cpus()) {
pr_err("Invalid input\n");
ret = -EINVAL;
goto set_freq_exit;
}
pr_debug("Userspace requested %s frequency %u for CPU%u\n",
(is_max) ? "Max" : "Min", freq, cpu);
if (is_max) {
if (cpus[cpu].user_max_freq == freq)
goto set_freq_exit;
cpus[cpu].user_max_freq = freq;
} else {
if (cpus[cpu].user_min_freq == freq)
goto set_freq_exit;
cpus[cpu].user_min_freq = freq;
}
if (freq_mitigation_task) {
complete(&freq_mitigation_complete);
} else {
pr_err("Frequency mitigation task is not initialized\n");
ret = -ESRCH;
goto set_freq_exit;
}
set_freq_exit:
return ret;
}
int therm_set_threshold(struct threshold_info *thresh_inp)
{
int ret = 0, i = 0, err = 0;
struct therm_threshold *thresh_ptr;
if (!thresh_inp) {
pr_err("Invalid input\n");
ret = -EINVAL;
goto therm_set_exit;
}
thresh_inp->thresh_triggered = false;
for (i = 0; i < thresh_inp->thresh_ct; i++) {
thresh_ptr = &thresh_inp->thresh_list[i];
thresh_ptr->trip_triggered = -1;
err = sensor_mgr_set_threshold(thresh_ptr->sensor_id,
thresh_ptr->threshold);
if (err < 0) {
ret = err;
err = 0;
}
}
therm_set_exit:
return ret;
}
static void cx_phase_ctrl_notify(struct therm_threshold *trig_thresh)
{
static uint32_t cx_sens_status;
int ret = 0;
if (!cx_phase_ctrl_enabled)
return;
if (trig_thresh->trip_triggered < 0)
goto cx_phase_ctrl_exit;
mutex_lock(&cx_mutex);
pr_debug("sensor:%d reached %s thresh for CX\n",
tsens_id_map[trig_thresh->sensor_id],
(trig_thresh->trip_triggered == THERMAL_TRIP_CONFIGURABLE_HI) ?
"hot critical" : "warm");
switch (trig_thresh->trip_triggered) {
case THERMAL_TRIP_CONFIGURABLE_HI:
cx_sens_status |= BIT(trig_thresh->sensor_id);
break;
case THERMAL_TRIP_CONFIGURABLE_LOW:
if (cx_sens_status & BIT(trig_thresh->sensor_id))
cx_sens_status ^= BIT(trig_thresh->sensor_id);
break;
default:
pr_err("Unsupported trip type\n");
goto cx_phase_unlock_exit;
break;
}
if ((cx_sens_status && (curr_cx_band == MSM_HOT_CRITICAL)) ||
(!cx_sens_status && (curr_cx_band == MSM_WARM)))
goto cx_phase_unlock_exit;
ret = send_temperature_band(MSM_CX_PHASE_CTRL, (cx_sens_status) ?
MSM_HOT_CRITICAL : MSM_WARM);
if (!ret)
curr_cx_band = (cx_sens_status) ? MSM_HOT_CRITICAL : MSM_WARM;
cx_phase_unlock_exit:
mutex_unlock(&cx_mutex);
cx_phase_ctrl_exit:
sensor_mgr_set_threshold(trig_thresh->sensor_id,
trig_thresh->threshold);
return;
}
static void gfx_phase_ctrl_notify(struct therm_threshold *trig_thresh)
{
uint32_t new_req_band = curr_gfx_band;
int ret = 0;
if (!gfx_warm_phase_ctrl_enabled && !gfx_crit_phase_ctrl_enabled)
return;
if (trig_thresh->trip_triggered < 0)
goto gfx_phase_ctrl_exit;
mutex_lock(&gfx_mutex);
if (gfx_crit_phase_ctrl_enabled) {
switch (
thresh[MSM_GFX_PHASE_CTRL_HOT].thresh_list->trip_triggered) {
case THERMAL_TRIP_CONFIGURABLE_HI:
new_req_band = MSM_HOT_CRITICAL;
pr_debug(
"sensor:%d reached hot critical thresh for GFX\n",
tsens_id_map[trig_thresh->sensor_id]);
goto notify_new_band;
break;
case THERMAL_TRIP_CONFIGURABLE_LOW:
new_req_band = MSM_WARM;
pr_debug("sensor:%d reached warm thresh for GFX\n",
tsens_id_map[trig_thresh->sensor_id]);
goto notify_new_band;
break;
default:
break;
}
}
if (gfx_warm_phase_ctrl_enabled) {
switch (
thresh[MSM_GFX_PHASE_CTRL_WARM].thresh_list->trip_triggered) {
case THERMAL_TRIP_CONFIGURABLE_HI:
new_req_band = MSM_WARM;
pr_debug("sensor:%d reached warm thresh for GFX\n",
tsens_id_map[trig_thresh->sensor_id]);
goto notify_new_band;
break;
case THERMAL_TRIP_CONFIGURABLE_LOW:
new_req_band = MSM_NORMAL;
pr_debug("sensor:%d reached normal thresh for GFX\n",
tsens_id_map[trig_thresh->sensor_id]);
goto notify_new_band;
break;
default:
break;
}
}
notify_new_band:
if (new_req_band != curr_gfx_band) {
ret = send_temperature_band(MSM_GFX_PHASE_CTRL, new_req_band);
if (!ret)
curr_gfx_band = new_req_band;
}
mutex_unlock(&gfx_mutex);
gfx_phase_ctrl_exit:
switch (curr_gfx_band) {
case MSM_HOT_CRITICAL:
if (gfx_crit_phase_ctrl_enabled)
therm_set_threshold(&thresh[MSM_GFX_PHASE_CTRL_HOT]);
break;
case MSM_NORMAL:
if (gfx_warm_phase_ctrl_enabled)
therm_set_threshold(&thresh[MSM_GFX_PHASE_CTRL_WARM]);
break;
case MSM_WARM:
default:
if (gfx_crit_phase_ctrl_enabled)
therm_set_threshold(&thresh[MSM_GFX_PHASE_CTRL_HOT]);
if (gfx_warm_phase_ctrl_enabled)
therm_set_threshold(&thresh[MSM_GFX_PHASE_CTRL_WARM]);
break;
}
return;
}
static void vdd_restriction_notify(struct therm_threshold *trig_thresh)
{
int ret = 0;
static uint32_t vdd_sens_status;
if (!vdd_rstr_enabled)
return;
if (!trig_thresh) {
pr_err("Invalid input\n");
return;
}
if (trig_thresh->trip_triggered < 0)
goto set_and_exit;
mutex_lock(&vdd_rstr_mutex);
pr_debug("sensor:%d reached %s thresh for Vdd restriction\n",
tsens_id_map[trig_thresh->sensor_id],
(trig_thresh->trip_triggered == THERMAL_TRIP_CONFIGURABLE_HI) ?
"high" : "low");
switch (trig_thresh->trip_triggered) {
case THERMAL_TRIP_CONFIGURABLE_HI:
if (vdd_sens_status & BIT(trig_thresh->sensor_id))
vdd_sens_status ^= BIT(trig_thresh->sensor_id);
break;
case THERMAL_TRIP_CONFIGURABLE_LOW:
vdd_sens_status |= BIT(trig_thresh->sensor_id);
break;
default:
pr_err("Unsupported trip type\n");
goto unlock_and_exit;
break;
}
ret = vdd_restriction_apply_all((vdd_sens_status) ? 1 : 0);
if (ret) {
pr_err("%s vdd rstr votlage for all failed\n",
(vdd_sens_status) ?
"Enable" : "Disable");
goto unlock_and_exit;
}
unlock_and_exit:
mutex_unlock(&vdd_rstr_mutex);
set_and_exit:
sensor_mgr_set_threshold(trig_thresh->sensor_id,
trig_thresh->threshold);
return;
}
static void ocr_notify(struct therm_threshold *trig_thresh)
{
int ret = 0;
static uint32_t ocr_sens_status;
if (!ocr_enabled)
return;
if (!trig_thresh) {
pr_err("Invalid input\n");
return;
}
if (trig_thresh->trip_triggered < 0)
goto set_and_exit;
mutex_lock(&ocr_mutex);
pr_debug("sensor%d reached %d thresh for Optimum current request\n",
tsens_id_map[trig_thresh->sensor_id],
trig_thresh->trip_triggered);
switch (trig_thresh->trip_triggered) {
case THERMAL_TRIP_CONFIGURABLE_HI:
ocr_sens_status |= BIT(trig_thresh->sensor_id);
break;
case THERMAL_TRIP_CONFIGURABLE_LOW:
if (ocr_sens_status & BIT(trig_thresh->sensor_id))
ocr_sens_status ^= BIT(trig_thresh->sensor_id);
break;
default:
pr_err("Unsupported trip type\n");
goto unlock_and_exit;
break;
}
ret = ocr_set_mode_all(ocr_sens_status ? OPTIMUM_CURRENT_MAX :
OPTIMUM_CURRENT_MIN);
if (ret) {
pr_err("%s Optimum current mode for all failed. err:%d\n",
(ocr_sens_status) ?
"Enable" : "Disable", ret);
goto unlock_and_exit;
}
unlock_and_exit:
mutex_unlock(&ocr_mutex);
set_and_exit:
sensor_mgr_set_threshold(trig_thresh->sensor_id,
trig_thresh->threshold);
return;
}
static __ref int do_thermal_monitor(void *data)
{
int ret = 0, j;
struct therm_threshold *sensor_list;
struct threshold_info *thresholds = NULL;
while (!kthread_should_stop()) {
while (wait_for_completion_interruptible(
&thermal_monitor_complete) != 0)
;
reinit_completion(&thermal_monitor_complete);
mutex_lock(&threshold_mutex);
list_for_each_entry(thresholds, &thresholds_list, list_ptr) {
if (!thresholds->thresh_triggered)
continue;
thresholds->thresh_triggered = false;
for (j = 0; j < thresholds->thresh_ct; j++) {
sensor_list = &thresholds->thresh_list[j];
if (sensor_list->trip_triggered < 0)
continue;
sensor_list->notify(sensor_list);
sensor_list->trip_triggered = -1;
}
}
mutex_unlock(&threshold_mutex);
}
return ret;
}
static int vdd_rstr_apss_freq_dev_init(void)
{
int idx = 0, ret = 0;
char device_str[DEVM_NAME_MAX] = "";
struct rail *r = NULL;
for (idx = 0; idx < rails_cnt; idx++) {
if (rails[idx].freq_req) {
r = &rails[idx];
break;
}
}
if (!r) {
pr_err("APSS rail not initialized\n");
return -ENODEV;
}
for_each_possible_cpu(idx) {
if (r->device_handle[idx])
continue;
snprintf(device_str, DEVM_NAME_MAX, CPU_DEVICE, idx);
r->device_handle[idx]
= devmgr_register_mitigation_client(
&msm_thermal_info.pdev->dev,
device_str, NULL);
if (IS_ERR(r->device_handle[idx])) {
ret = PTR_ERR(r->device_handle[idx]);
pr_err("Error registering %s handle. err:%d\n",
device_str, ret);
goto freq_init_exit;
}
r->request[idx].freq.max_freq = CPUFREQ_MAX_NO_MITIGATION;
r->request[idx].freq.min_freq = CPUFREQ_MIN_NO_MITIGATION;
}
freq_init_exit:
if (ret) {
for_each_possible_cpu(idx) {
devmgr_unregister_mitigation_client(
&msm_thermal_info.pdev->dev,
r->device_handle[idx]);
r->device_handle[idx] = NULL;
}
}
return ret;
}
static int convert_to_zone_id(struct threshold_info *thresh_inp)
{
int ret = 0, i, zone_id;
struct therm_threshold *thresh_array;
if (!thresh_inp) {
pr_err("Invalid input\n");
ret = -EINVAL;
goto convert_to_exit;
}
thresh_array = thresh_inp->thresh_list;
for (i = 0; i < thresh_inp->thresh_ct; i++) {
char tsens_name[TSENS_NAME_MAX] = "";
if (thresh_array[i].id_type == THERM_ZONE_ID)
continue;
snprintf(tsens_name, TSENS_NAME_MAX, TSENS_NAME_FORMAT,
thresh_array[i].sensor_id);
zone_id = sensor_get_id(tsens_name);
if (zone_id < 0) {
pr_err("Error getting zone id for %s. err:%d\n",
tsens_name, ret);
ret = zone_id;
goto convert_to_exit;
}
thresh_array[i].sensor_id = zone_id;
thresh_array[i].id_type = THERM_ZONE_ID;
}
convert_to_exit:
return ret;
}
int sensor_mgr_convert_id_and_set_threshold(struct threshold_info *thresh_inp)
{
int ret = 0;
if (!thresh_inp) {
pr_err("Invalid input\n");
ret = -EINVAL;
goto therm_set_exit;
}
ret = convert_to_zone_id(thresh_inp);
if (ret)
goto therm_set_exit;
ret = therm_set_threshold(thresh_inp);
therm_set_exit:
return ret;
}
static void thermal_monitor_init(void)
{
if (thermal_monitor_task)
return;
init_completion(&thermal_monitor_complete);
thermal_monitor_task = kthread_run(do_thermal_monitor, NULL,
"msm_thermal:therm_monitor");
if (IS_ERR(thermal_monitor_task)) {
pr_err("Failed to create thermal monitor thread. err:%ld\n",
PTR_ERR(thermal_monitor_task));
goto init_exit;
}
if (therm_reset_enabled &&
!(convert_to_zone_id(&thresh[MSM_THERM_RESET])))
therm_set_threshold(&thresh[MSM_THERM_RESET]);
if ((cx_phase_ctrl_enabled) &&
!(convert_to_zone_id(&thresh[MSM_CX_PHASE_CTRL_HOT])))
therm_set_threshold(&thresh[MSM_CX_PHASE_CTRL_HOT]);
if (vdd_rstr_enabled) {
if (vdd_rstr_apss_freq_dev_init())
pr_err("vdd APSS mitigation device init failed\n");
else if (!(convert_to_zone_id(&thresh[MSM_VDD_RESTRICTION])))
therm_set_threshold(&thresh[MSM_VDD_RESTRICTION]);
}
if ((gfx_warm_phase_ctrl_enabled) &&
!(convert_to_zone_id(&thresh[MSM_GFX_PHASE_CTRL_WARM]))) {
therm_set_threshold(&thresh[MSM_GFX_PHASE_CTRL_WARM]);
}
if ((gfx_crit_phase_ctrl_enabled) &&
!(convert_to_zone_id(&thresh[MSM_GFX_PHASE_CTRL_HOT]))) {
therm_set_threshold(&thresh[MSM_GFX_PHASE_CTRL_HOT]);
}
if ((ocr_enabled) &&
!(convert_to_zone_id(&thresh[MSM_OCR])))
therm_set_threshold(&thresh[MSM_OCR]);
if (vdd_mx_enabled &&
!(convert_to_zone_id(&thresh[MSM_VDD_MX_RESTRICTION])))
therm_set_threshold(&thresh[MSM_VDD_MX_RESTRICTION]);
init_exit:
return;
}
static int msm_thermal_notify(enum thermal_trip_type type, int temp, void *data)
{
struct therm_threshold *thresh_data = (struct therm_threshold *)data;
if (thermal_monitor_task) {
thresh_data->trip_triggered = type;
thresh_data->parent->thresh_triggered = true;
complete(&thermal_monitor_complete);
} else {
pr_err("Thermal monitor task is not initialized\n");
}
return 0;
}
int sensor_mgr_init_threshold(struct threshold_info *thresh_inp,
int sensor_id, int32_t high_temp, int32_t low_temp,
void (*callback)(struct therm_threshold *))
{
int ret = 0, i;
struct therm_threshold *thresh_ptr;
if (!callback || !thresh_inp
|| sensor_id == -ENODEV) {
pr_err("Invalid input\n");
ret = -EINVAL;
goto init_thresh_exit;
}
if (thresh_inp->thresh_list) {
pr_info("threshold id already initialized\n");
goto init_thresh_exit;
}
thresh_inp->thresh_ct = (sensor_id == MONITOR_ALL_TSENS) ?
max_tsens_num : 1;
thresh_inp->thresh_triggered = false;
thresh_inp->thresh_list = kzalloc(sizeof(struct therm_threshold) *
thresh_inp->thresh_ct, GFP_KERNEL);
if (!thresh_inp->thresh_list) {
pr_err("kzalloc failed for thresh\n");
ret = -ENOMEM;
goto init_thresh_exit;
}
thresh_ptr = thresh_inp->thresh_list;
if (sensor_id == MONITOR_ALL_TSENS) {
for (i = 0; i < max_tsens_num; i++) {
thresh_ptr[i].sensor_id = tsens_id_map[i];
thresh_ptr[i].id_type = THERM_TSENS_ID;
thresh_ptr[i].notify = callback;
thresh_ptr[i].trip_triggered = -1;
thresh_ptr[i].parent = thresh_inp;
thresh_ptr[i].threshold[0].temp =
high_temp * tsens_scaling_factor;
thresh_ptr[i].threshold[0].trip =
THERMAL_TRIP_CONFIGURABLE_HI;
thresh_ptr[i].threshold[1].temp =
low_temp * tsens_scaling_factor;
thresh_ptr[i].threshold[1].trip =
THERMAL_TRIP_CONFIGURABLE_LOW;
thresh_ptr[i].threshold[0].notify =
thresh_ptr[i].threshold[1].notify = msm_thermal_notify;
thresh_ptr[i].threshold[0].data =
thresh_ptr[i].threshold[1].data =
(void *)&thresh_ptr[i];
}
} else {
thresh_ptr->sensor_id = sensor_id;
thresh_ptr->id_type = THERM_TSENS_ID;
thresh_ptr->notify = callback;
thresh_ptr->trip_triggered = -1;
thresh_ptr->parent = thresh_inp;
thresh_ptr->threshold[0].temp = high_temp * tsens_scaling_factor;
thresh_ptr->threshold[0].trip =
THERMAL_TRIP_CONFIGURABLE_HI;
thresh_ptr->threshold[1].temp = low_temp * tsens_scaling_factor;
thresh_ptr->threshold[1].trip =
THERMAL_TRIP_CONFIGURABLE_LOW;
thresh_ptr->threshold[0].notify =
thresh_ptr->threshold[1].notify = msm_thermal_notify;
thresh_ptr->threshold[0].data =
thresh_ptr->threshold[1].data = (void *)thresh_ptr;
}
mutex_lock(&threshold_mutex);
list_add_tail(&thresh_inp->list_ptr, &thresholds_list);
mutex_unlock(&threshold_mutex);
init_thresh_exit:
return ret;
}
void sensor_mgr_disable_threshold(struct threshold_info *thresh_inp)
{
int i;
struct therm_threshold *thresh_ptr;
mutex_lock(&threshold_mutex);
for (i = 0; i < thresh_inp->thresh_ct; i++) {
thresh_ptr = &thresh_inp->thresh_list[i];
thresh_ptr->trip_triggered = -1;
sensor_cancel_trip(thresh_ptr->sensor_id,
&thresh_ptr->threshold[0]);
sensor_cancel_trip(thresh_ptr->sensor_id,
&thresh_ptr->threshold[1]);
}
thresh_inp->thresh_triggered = false;
mutex_unlock(&threshold_mutex);
}
void sensor_mgr_remove_threshold(struct threshold_info *thresh_inp)
{
sensor_mgr_disable_threshold(thresh_inp);
mutex_lock(&threshold_mutex);
kfree(thresh_inp->thresh_list);
thresh_inp->thresh_list = NULL;
thresh_inp->thresh_ct = 0;
list_del(&thresh_inp->list_ptr);
mutex_unlock(&threshold_mutex);
}
static int msm_thermal_add_gfx_nodes(void)
{
struct kobject *module_kobj = NULL;
struct kobject *gfx_kobj = NULL;
int ret = 0;
if (!gfx_warm_phase_ctrl_enabled && !gfx_crit_phase_ctrl_enabled)
return -EINVAL;
module_kobj = kset_find_obj(module_kset, KBUILD_MODNAME);
if (!module_kobj) {
pr_err("cannot find kobject\n");
ret = -ENOENT;
goto gfx_node_exit;
}
gfx_kobj = kobject_create_and_add("gfx_phase_ctrl", module_kobj);
if (!gfx_kobj) {
pr_err("cannot create gfx kobject\n");
ret = -ENOMEM;
goto gfx_node_exit;
}
gfx_attr_gp.attrs = kzalloc(sizeof(struct attribute *) * 2, GFP_KERNEL);
if (!gfx_attr_gp.attrs) {
pr_err("kzalloc failed\n");
ret = -ENOMEM;
goto gfx_node_fail;
}
PHASE_RW_ATTR(gfx, temp_band, gfx_mode_attr, 0, gfx_attr_gp);
gfx_attr_gp.attrs[1] = NULL;
ret = sysfs_create_group(gfx_kobj, &gfx_attr_gp);
if (ret) {
pr_err("cannot create GFX attribute group. err:%d\n", ret);
goto gfx_node_fail;
}
gfx_node_fail:
if (ret) {
kobject_put(gfx_kobj);
kfree(gfx_attr_gp.attrs);
gfx_attr_gp.attrs = NULL;
}
gfx_node_exit:
return ret;
}
static int msm_thermal_add_cx_nodes(void)
{
struct kobject *module_kobj = NULL;
struct kobject *cx_kobj = NULL;
int ret = 0;
if (!cx_phase_ctrl_enabled)
return -EINVAL;
module_kobj = kset_find_obj(module_kset, KBUILD_MODNAME);
if (!module_kobj) {
pr_err("cannot find kobject\n");
ret = -ENOENT;
goto cx_node_exit;
}
cx_kobj = kobject_create_and_add("cx_phase_ctrl", module_kobj);
if (!cx_kobj) {
pr_err("cannot create cx kobject\n");
ret = -ENOMEM;
goto cx_node_exit;
}
cx_attr_gp.attrs = kzalloc(sizeof(struct attribute *) * 2, GFP_KERNEL);
if (!cx_attr_gp.attrs) {
pr_err("kzalloc failed\n");
ret = -ENOMEM;
goto cx_node_fail;
}
PHASE_RW_ATTR(cx, temp_band, cx_mode_attr, 0, cx_attr_gp);
cx_attr_gp.attrs[1] = NULL;
ret = sysfs_create_group(cx_kobj, &cx_attr_gp);
if (ret) {
pr_err("cannot create CX attribute group. err:%d\n", ret);
goto cx_node_fail;
}
cx_node_fail:
if (ret) {
kobject_put(cx_kobj);
kfree(cx_attr_gp.attrs);
cx_attr_gp.attrs = NULL;
}
cx_node_exit:
return ret;
}
/*
* We will reset the cpu frequencies limits here. The core online/offline
* status will be carried over to the process stopping the msm_thermal, as
* we dont want to online a core and bring in the thermal issues.
*/
static void __ref disable_msm_thermal(void)
{
uint32_t cpu = 0;
/* make sure check_temp is no longer running */
cancel_delayed_work_sync(&check_temp_work);
get_online_cpus();
for_each_possible_cpu(cpu) {
if (cpus[cpu].limited_max_freq == UINT_MAX &&
cpus[cpu].limited_min_freq == 0)
continue;
pr_info("Max frequency reset for CPU%d\n", cpu);
cpus[cpu].limited_max_freq = UINT_MAX;
cpus[cpu].vdd_max_freq = UINT_MAX;
cpus[cpu].limited_min_freq = 0;
if (!SYNC_CORE(cpu))
update_cpu_freq(cpu);
}
update_cluster_freq();
put_online_cpus();
}
static void interrupt_mode_init(void)
{
if (!msm_thermal_probed) {
interrupt_mode_enable = true;
return;
}
if (polling_enabled) {
polling_enabled = 0;
create_sensor_zone_id_map();
disable_msm_thermal();
hotplug_init();
freq_mitigation_init();
thermal_monitor_init();
msm_thermal_add_cx_nodes();
msm_thermal_add_gfx_nodes();
}
}
static int __ref set_enabled(const char *val, const struct kernel_param *kp)
{
int ret = 0;
ret = param_set_bool(val, kp);
if (!enabled)
interrupt_mode_init();
else
pr_info("no action for enabled = %d\n",
enabled);
pr_info("enabled = %d\n", enabled);
return ret;
}
static struct kernel_param_ops module_ops = {
.set = set_enabled,
.get = param_get_bool,
};
module_param_cb(enabled, &module_ops, &enabled, 0644);
MODULE_PARM_DESC(enabled, "enforce thermal limit on cpu");
static ssize_t show_cc_enabled(struct kobject *kobj,
struct kobj_attribute *attr, char *buf)
{
return snprintf(buf, PAGE_SIZE, "%d\n", core_control_enabled);
}
static ssize_t __ref store_cc_enabled(struct kobject *kobj,
struct kobj_attribute *attr, const char *buf, size_t count)
{
int ret = 0;
int val = 0;
uint32_t cpu = 0;
if (!mitigation) {
pr_err("Thermal Mitigations disabled.\n");
goto done_store_cc;
}
ret = kstrtoint(buf, 10, &val);
if (ret) {
pr_err("Invalid input %s. err:%d\n", buf, ret);
goto done_store_cc;
}
if (core_control_enabled == !!val)
goto done_store_cc;
core_control_enabled = !!val;
if (core_control_enabled) {
pr_info("Core control enabled\n");
cpus_previously_online_update();
register_cpu_notifier(&msm_thermal_cpu_notifier);
/*
* Re-evaluate thermal core condition, update current status
* and set threshold for all cpus.
*/
hotplug_init_cpu_offlined();
mutex_lock(&core_control_mutex);
update_offline_cores(cpus_offlined);
if (hotplug_enabled) {
for_each_possible_cpu(cpu) {
if (!(msm_thermal_info.core_control_mask &
BIT(cpus[cpu].cpu)))
continue;
sensor_mgr_set_threshold(cpus[cpu].sensor_id,
&cpus[cpu].threshold[HOTPLUG_THRESHOLD_HIGH]);
}
}
mutex_unlock(&core_control_mutex);
} else {
pr_info("Core control disabled\n");
unregister_cpu_notifier(&msm_thermal_cpu_notifier);
}
done_store_cc:
return count;
}
static ssize_t show_cpus_offlined(struct kobject *kobj,
struct kobj_attribute *attr, char *buf)
{
return snprintf(buf, PAGE_SIZE, "%d\n", cpus_offlined);
}
static ssize_t __ref store_cpus_offlined(struct kobject *kobj,
struct kobj_attribute *attr, const char *buf, size_t count)
{
int ret = 0;
uint32_t val = 0;
uint32_t cpu;
if (!mitigation) {
pr_err("Thermal Mitigations disabled.\n");
goto done_cc;
}
mutex_lock(&core_control_mutex);
ret = kstrtouint(buf, 10, &val);
if (ret) {
pr_err("Invalid input %s. err:%d\n", buf, ret);
goto done_cc;
}
if (polling_enabled) {
pr_err("Ignoring request; polling thread is enabled.\n");
goto done_cc;
}
for_each_possible_cpu(cpu) {
if (!(msm_thermal_info.core_control_mask & BIT(cpu)))
continue;
cpus[cpu].user_offline = !!(val & BIT(cpu));
pr_debug("\"%s\"(PID:%i) requests %s CPU%d.\n", current->comm,
current->pid, (cpus[cpu].user_offline) ? "offline" :
"online", cpu);
}
if (hotplug_task)
complete(&hotplug_notify_complete);
else
pr_err("Hotplug task is not initialized\n");
done_cc:
mutex_unlock(&core_control_mutex);
return count;
}
static __refdata struct kobj_attribute cc_enabled_attr =
__ATTR(enabled, 0644, show_cc_enabled, store_cc_enabled);
static __refdata struct kobj_attribute cpus_offlined_attr =
__ATTR(cpus_offlined, 0644, show_cpus_offlined, store_cpus_offlined);
static __refdata struct attribute *cc_attrs[] = {
&cc_enabled_attr.attr,
&cpus_offlined_attr.attr,
NULL,
};
static __refdata struct attribute_group cc_attr_group = {
.attrs = cc_attrs,
};
static __init int msm_thermal_add_cc_nodes(void)
{
struct kobject *module_kobj = NULL;
int ret = 0;
module_kobj = kset_find_obj(module_kset, KBUILD_MODNAME);
if (!module_kobj) {
pr_err("cannot find kobject\n");
ret = -ENOENT;
goto done_cc_nodes;
}
cc_kobj = kobject_create_and_add("core_control", module_kobj);
if (!cc_kobj) {
pr_err("cannot create core control kobj\n");
ret = -ENOMEM;
goto done_cc_nodes;
}
ret = sysfs_create_group(cc_kobj, &cc_attr_group);
if (ret) {
pr_err("cannot create sysfs group. err:%d\n", ret);
goto done_cc_nodes;
}
return 0;
done_cc_nodes:
if (cc_kobj)
kobject_del(cc_kobj);
return ret;
}
static ssize_t show_mx_enabled(struct kobject *kobj,
struct kobj_attribute *attr, char *buf)
{
return snprintf(buf, PAGE_SIZE, "%d\n", vdd_mx_enabled);
}
static ssize_t __ref store_mx_enabled(struct kobject *kobj,
struct kobj_attribute *attr, const char *buf, size_t count)
{
int ret = 0;
int val = 0;
ret = kstrtoint(buf, 10, &val);
if (ret) {
pr_err("Invalid input %s\n", buf);
goto done_store_mx;
}
if (vdd_mx_enabled == !!val)
goto done_store_mx;
vdd_mx_enabled = !!val;
mutex_lock(&vdd_mx_mutex);
if (!vdd_mx_enabled)
remove_vdd_mx_restriction();
else if (!(convert_to_zone_id(&thresh[MSM_VDD_MX_RESTRICTION])))
therm_set_threshold(&thresh[MSM_VDD_MX_RESTRICTION]);
mutex_unlock(&vdd_mx_mutex);
done_store_mx:
return count;
}
static __init int msm_thermal_add_mx_nodes(void)
{
struct kobject *module_kobj = NULL;
int ret = 0;
if (!vdd_mx_enabled)
return -EINVAL;
module_kobj = kset_find_obj(module_kset, KBUILD_MODNAME);
if (!module_kobj) {
pr_err("cannot find kobject for module\n");
ret = -ENOENT;
goto done_mx_nodes;
}
mx_kobj = kobject_create_and_add("vdd_mx", module_kobj);
if (!mx_kobj) {
pr_err("cannot create mx restriction kobj\n");
ret = -ENOMEM;
goto done_mx_nodes;
}
mx_attr_group.attrs = kzalloc(sizeof(struct attribute *) * 2,
GFP_KERNEL);
if (!mx_attr_group.attrs) {
ret = -ENOMEM;
pr_err("cannot allocate memory for mx_attr_group.attrs");
goto done_mx_nodes;
}
MX_RW_ATTR(mx_enabled_attr, enabled, mx_attr_group);
mx_attr_group.attrs[1] = NULL;
ret = sysfs_create_group(mx_kobj, &mx_attr_group);
if (ret) {
pr_err("cannot create group\n");
goto done_mx_nodes;
}
done_mx_nodes:
if (ret) {
if (mx_kobj)
kobject_del(mx_kobj);
kfree(mx_attr_group.attrs);
}
return ret;
}
static void msm_thermal_panic_notifier_init(struct device *dev)
{
int i;
tsens_temp_at_panic = devm_kzalloc(dev,
sizeof(long) * max_tsens_num,
GFP_KERNEL);
if (!tsens_temp_at_panic) {
pr_err("kzalloc failed\n");
return;
}
for (i = 0; i < max_tsens_num; i++)
tsens_temp_at_panic[i] = LONG_MIN;
atomic_notifier_chain_register(&panic_notifier_list,
&msm_thermal_panic_notifier);
}
int msm_thermal_pre_init(struct device *dev)
{
int ret = 0;
if (tsens_is_ready() <= 0) {
pr_err("Tsens driver is not ready yet\n");
return -EPROBE_DEFER;
}
ret = tsens_get_max_sensor_num(&max_tsens_num);
if (ret < 0) {
pr_err("failed to get max sensor number, err:%d\n", ret);
return ret;
}
if (create_sensor_id_map(dev)) {
pr_err("Creating sensor id map failed\n");
ret = -EINVAL;
goto pre_init_exit;
}
if (!tsens_temp_at_panic)
msm_thermal_panic_notifier_init(dev);
if (!thresh) {
thresh = kzalloc(
sizeof(struct threshold_info) * MSM_LIST_MAX_NR,
GFP_KERNEL);
if (!thresh) {
pr_err("kzalloc failed\n");
ret = -ENOMEM;
goto pre_init_exit;
}
memset(thresh, 0, sizeof(struct threshold_info) *
MSM_LIST_MAX_NR);
}
mit_config = devm_kzalloc(dev,
sizeof(struct msm_thermal_debugfs_thresh_config)
* (MSM_LIST_MAX_NR + MAX_CPU_CONFIG), GFP_KERNEL);
if (!mit_config) {
pr_err("kzalloc failed\n");
ret = -ENOMEM;
goto pre_init_exit;
}
pre_init_exit:
return ret;
}
static int devmgr_devices_init(struct platform_device *pdev)
{
int ret = 0;
uint32_t cpu;
struct device_manager_data *dev_mgr = NULL;
devices = devm_kzalloc(&pdev->dev,
sizeof(struct devmgr_devices),
GFP_KERNEL);
if (!devices) {
pr_err("Malloc failed for devmgr devices\n");
ret = -ENOMEM;
goto device_exit;
}
if (num_possible_cpus() > 1) {
/* Add hotplug device */
dev_mgr = devm_kzalloc(&pdev->dev,
sizeof(struct device_manager_data),
GFP_KERNEL);
if (!dev_mgr) {
pr_err("Malloc failed for hotplug device\n");
ret = -ENOMEM;
goto device_exit;
}
snprintf(dev_mgr->device_name,
TSENS_NAME_MAX, HOTPLUG_DEVICE);
dev_mgr->request_validate =
devmgr_hotplug_client_request_validate_and_update;
dev_mgr->update = devmgr_client_hotplug_update;
HOTPLUG_NO_MITIGATION(&dev_mgr->active_req.offline_mask);
mutex_init(&dev_mgr->clnt_lock);
INIT_LIST_HEAD(&dev_mgr->client_list);
list_add_tail(&dev_mgr->dev_ptr, &devices_list);
devices->hotplug_dev = dev_mgr;
}
/* Add cpu devices */
for_each_possible_cpu(cpu) {
dev_mgr = devm_kzalloc(&pdev->dev,
sizeof(struct device_manager_data),
GFP_KERNEL);
if (!dev_mgr) {
pr_err("Malloc failed for cpu%d device\n", cpu);
ret = -ENOMEM;
goto device_exit;
}
snprintf(dev_mgr->device_name, TSENS_NAME_MAX, CPU_DEVICE, cpu);
dev_mgr->request_validate =
devmgr_cpufreq_client_request_validate_and_update;
dev_mgr->update = devmgr_client_cpufreq_update;
dev_mgr->active_req.freq.max_freq = CPUFREQ_MAX_NO_MITIGATION;
dev_mgr->active_req.freq.min_freq = CPUFREQ_MIN_NO_MITIGATION;
mutex_init(&dev_mgr->clnt_lock);
INIT_LIST_HEAD(&dev_mgr->client_list);
list_add_tail(&dev_mgr->dev_ptr, &devices_list);
devices->cpufreq_dev[cpu] = dev_mgr;
}
device_exit:
if (ret) {
if (devices) {
if (devices->hotplug_dev)
devm_kfree(&pdev->dev,
devices->hotplug_dev);
for_each_possible_cpu(cpu) {
if (devices->cpufreq_dev[cpu])
devm_kfree(&pdev->dev,
devices->cpufreq_dev[cpu]);
}
}
}
return ret;
}
static void msm_thermal_init_cpu_mit(enum cpu_mit_type cpu_mit)
{
uint32_t cpu;
for_each_possible_cpu(cpu) {
cpus[cpu].cpu = cpu;
if (cpu_mit & CPU_HOTPLUG_MITIGATION) {
cpus[cpu].offline = 0;
cpus[cpu].user_offline = 0;
cpus[cpu].hotplug_thresh_clear = false;
}
if (cpu_mit & CPU_FREQ_MITIGATION) {
cpus[cpu].max_freq = false;
cpus[cpu].user_max_freq = UINT_MAX;
cpus[cpu].shutdown_max_freq = UINT_MAX;
cpus[cpu].suspend_max_freq = UINT_MAX;
cpus[cpu].user_min_freq = 0;
cpus[cpu].limited_max_freq = UINT_MAX;
cpus[cpu].limited_min_freq = 0;
cpus[cpu].freq_thresh_clear = false;
}
}
}
int msm_thermal_init(struct msm_thermal_data *pdata)
{
int ret = 0;
ret = devmgr_devices_init(pdata->pdev);
if (ret)
pr_err("cannot initialize devm devices. err:%d\n", ret);
msm_thermal_init_cpu_mit(CPU_FREQ_MITIGATION | CPU_HOTPLUG_MITIGATION);
BUG_ON(!pdata);
memcpy(&msm_thermal_info, pdata, sizeof(struct msm_thermal_data));
if (check_sensor_id(msm_thermal_info.sensor_id)) {
pr_err("Invalid sensor:%d for polling\n",
msm_thermal_info.sensor_id);
return -EINVAL;
}
enabled = 1;
polling_enabled = 1;
ret = cpufreq_register_notifier(&msm_thermal_cpufreq_notifier,
CPUFREQ_POLICY_NOTIFIER);
if (ret)
pr_err("cannot register cpufreq notifier. err:%d\n", ret);
register_reboot_notifier(&msm_thermal_reboot_notifier);
pm_notifier(msm_thermal_suspend_callback, 0);
INIT_DELAYED_WORK(&retry_hotplug_work, retry_hotplug);
INIT_DELAYED_WORK(&check_temp_work, check_temp);
schedule_delayed_work(&check_temp_work, 0);
if (num_possible_cpus() > 1) {
cpus_previously_online_update();
register_cpu_notifier(&msm_thermal_cpu_notifier);
}
return ret;
}
static int ocr_reg_init(struct platform_device *pdev)
{
int ret = 0;
int i, j;
for (i = 0; i < ocr_rail_cnt; i++) {
/* Check if vdd_restriction has already initialized any
* regualtor handle. If so use the same handle.*/
for (j = 0; j < rails_cnt; j++) {
if (!strcmp(ocr_rails[i].name, rails[j].name)) {
if (rails[j].reg == NULL)
break;
ocr_rails[i].phase_reg = rails[j].reg;
goto reg_init;
}
}
ocr_rails[i].phase_reg = devm_regulator_get(&pdev->dev,
ocr_rails[i].name);
if (IS_ERR_OR_NULL(ocr_rails[i].phase_reg)) {
ret = PTR_ERR(ocr_rails[i].phase_reg);
if (ret != -EPROBE_DEFER) {
pr_err("Could not get regulator: %s, err:%d\n",
ocr_rails[i].name, ret);
ocr_rails[i].phase_reg = NULL;
ocr_rails[i].mode = 0;
ocr_rails[i].init = 0;
}
return ret;
}
reg_init:
ocr_rails[i].mode = OPTIMUM_CURRENT_MIN;
}
return ret;
}
static int vdd_restriction_reg_init(struct platform_device *pdev)
{
int ret = 0;
int i;
for (i = 0; i < rails_cnt; i++) {
if (rails[i].freq_req == 1) {
usefreq |= BIT(i);
check_freq_table();
/*
* Restrict frequency by default until we have made
* our first temp reading
*/
if (freq_table_get)
ret = vdd_restriction_apply_freq(&rails[i], 0);
else
pr_info("Defer vdd rstr freq init.\n");
} else {
rails[i].reg = devm_regulator_get(&pdev->dev,
rails[i].name);
if (IS_ERR_OR_NULL(rails[i].reg)) {
ret = PTR_ERR(rails[i].reg);
if (ret != -EPROBE_DEFER) {
pr_err( \
"could not get regulator: %s. err:%d\n",
rails[i].name, ret);
rails[i].reg = NULL;
rails[i].curr_level = -2;
return ret;
}
pr_info("Defer regulator %s probe\n",
rails[i].name);
return ret;
}
/*
* Restrict votlage by default until we have made
* our first temp reading
*/
ret = vdd_restriction_apply_voltage(&rails[i], 0);
}
}
return ret;
}
static int psm_reg_init(struct platform_device *pdev)
{
int ret = 0;
int i = 0;
int j = 0;
for (i = 0; i < psm_rails_cnt; i++) {
psm_rails[i].reg = rpm_regulator_get(&pdev->dev,
psm_rails[i].name);
if (IS_ERR_OR_NULL(psm_rails[i].reg)) {
ret = PTR_ERR(psm_rails[i].reg);
if (ret != -EPROBE_DEFER) {
pr_err("couldn't get rpm regulator %s. err%d\n",
psm_rails[i].name, ret);
psm_rails[i].reg = NULL;
goto psm_reg_exit;
}
pr_info("Defer regulator %s probe\n",
psm_rails[i].name);
return ret;
}
/* Apps default vote for PWM mode */
psm_rails[i].init = PMIC_PWM_MODE;
ret = rpm_regulator_set_mode(psm_rails[i].reg,
psm_rails[i].init);
if (ret) {
pr_err("Cannot set PMIC PWM mode. err:%d\n", ret);
return ret;
} else
psm_rails[i].mode = PMIC_PWM_MODE;
}
return ret;
psm_reg_exit:
if (ret) {
for (j = 0; j < i; j++) {
if (psm_rails[j].reg != NULL)
rpm_regulator_put(psm_rails[j].reg);
}
}
return ret;
}
static ssize_t bucket_info_store(struct kobject *kobj,
struct kobj_attribute *attr, const char *buf, size_t count)
{
int ret = 0;
uint32_t val = 0;
ret = kstrtouint(buf, 10, &val);
if (ret) {
pr_err("Invalid input:%s. ret:%d", buf, ret);
goto done_store;
}
bucket = val & 0xff;
pr_debug("\"%s\"(PID:%i) request cluster:%d bucket:%d\n",
current->comm, current->pid, (bucket & 0xf0) >> 4,
bucket & 0xf);
done_store:
return count;
}
static ssize_t bucket_info_show(
struct kobject *kobj, struct kobj_attribute *attr, char *buf)
{
return snprintf(buf, PAGE_SIZE, "%d\n", bucket);
}
static struct kobj_attribute bucket_info_attr =
__ATTR_RW(bucket_info);
static int msm_thermal_add_bucket_info_nodes(void)
{
struct kobject *module_kobj = NULL;
int ret = 0;
module_kobj = kset_find_obj(module_kset, KBUILD_MODNAME);
if (!module_kobj) {
pr_err("cannot find kobject\n");
return -ENOENT;
}
sysfs_attr_init(&bucket_info_attr.attr);
ret = sysfs_create_file(module_kobj, &bucket_info_attr.attr);
if (ret) {
pr_err(
"cannot create bucket info kobject attribute. err:%d\n", ret);
return ret;
}
return ret;
}
static struct kobj_attribute sensor_info_attr =
__ATTR_RO(sensor_info);
static int msm_thermal_add_sensor_info_nodes(void)
{
struct kobject *module_kobj = NULL;
int ret = 0;
if (!sensor_info_probed) {
sensor_info_nodes_called = true;
return ret;
}
if (sensor_info_probed && sensor_cnt == 0)
return ret;
module_kobj = kset_find_obj(module_kset, KBUILD_MODNAME);
if (!module_kobj) {
pr_err("cannot find kobject\n");
return -ENOENT;
}
sysfs_attr_init(&sensor_info_attr.attr);
ret = sysfs_create_file(module_kobj, &sensor_info_attr.attr);
if (ret) {
pr_err(
"cannot create sensor info kobject attribute. err:%d\n",
ret);
return ret;
}
return ret;
}
static int msm_thermal_add_vdd_rstr_nodes(void)
{
struct kobject *module_kobj = NULL;
struct kobject *vdd_rstr_kobj = NULL;
struct kobject *vdd_rstr_reg_kobj[MAX_RAILS] = {0};
int rc = 0;
int i = 0;
if (!vdd_rstr_probed) {
vdd_rstr_nodes_called = true;
return rc;
}
if (vdd_rstr_probed && rails_cnt == 0)
return rc;
module_kobj = kset_find_obj(module_kset, KBUILD_MODNAME);
if (!module_kobj) {
pr_err("cannot find kobject\n");
rc = -ENOENT;
goto thermal_sysfs_add_exit;
}
vdd_rstr_kobj = kobject_create_and_add("vdd_restriction", module_kobj);
if (!vdd_rstr_kobj) {
pr_err("cannot create vdd_restriction kobject\n");
rc = -ENOMEM;
goto thermal_sysfs_add_exit;
}
rc = sysfs_create_group(vdd_rstr_kobj, &vdd_rstr_en_attribs_gp);
if (rc) {
pr_err("cannot create kobject attribute group. err:%d\n", rc);
rc = -ENOMEM;
goto thermal_sysfs_add_exit;
}
for (i = 0; i < rails_cnt; i++) {
vdd_rstr_reg_kobj[i] = kobject_create_and_add(rails[i].name,
vdd_rstr_kobj);
if (!vdd_rstr_reg_kobj[i]) {
pr_err("cannot create kobject for %s\n",
rails[i].name);
rc = -ENOMEM;
goto thermal_sysfs_add_exit;
}
rails[i].attr_gp.attrs = kzalloc(sizeof(struct attribute *) * 3,
GFP_KERNEL);
if (!rails[i].attr_gp.attrs) {
pr_err("kzalloc failed\n");
rc = -ENOMEM;
goto thermal_sysfs_add_exit;
}
VDD_RES_RW_ATTRIB(rails[i], rails[i].level_attr, 0, level);
VDD_RES_RO_ATTRIB(rails[i], rails[i].value_attr, 1, value);
rails[i].attr_gp.attrs[2] = NULL;
rc = sysfs_create_group(vdd_rstr_reg_kobj[i],
&rails[i].attr_gp);
if (rc) {
pr_err("cannot create attribute group for %s. err:%d\n",
rails[i].name, rc);
goto thermal_sysfs_add_exit;
}
}
return rc;
thermal_sysfs_add_exit:
if (rc) {
for (i = 0; i < rails_cnt; i++) {
kobject_del(vdd_rstr_reg_kobj[i]);
kfree(rails[i].attr_gp.attrs);
}
if (vdd_rstr_kobj)
kobject_del(vdd_rstr_kobj);
}
return rc;
}
static int msm_thermal_add_ocr_nodes(void)
{
struct kobject *module_kobj = NULL;
struct kobject *ocr_kobj = NULL;
struct kobject *ocr_reg_kobj[MAX_RAILS] = {0};
int rc = 0;
int i = 0;
if (!ocr_probed) {
ocr_nodes_called = true;
return rc;
}
if (ocr_probed && ocr_rail_cnt == 0)
return rc;
module_kobj = kset_find_obj(module_kset, KBUILD_MODNAME);
if (!module_kobj) {
pr_err("Cannot find kobject\n");
rc = -ENOENT;
goto ocr_node_exit;
}
ocr_kobj = kobject_create_and_add("opt_curr_req", module_kobj);
if (!ocr_kobj) {
pr_err("Cannot create ocr kobject\n");
rc = -ENOMEM;
goto ocr_node_exit;
}
for (i = 0; i < ocr_rail_cnt; i++) {
ocr_reg_kobj[i] = kobject_create_and_add(ocr_rails[i].name,
ocr_kobj);
if (!ocr_reg_kobj[i]) {
pr_err("Cannot create kobject for %s\n",
ocr_rails[i].name);
rc = -ENOMEM;
goto ocr_node_exit;
}
ocr_rails[i].attr_gp.attrs = kzalloc(
sizeof(struct attribute *) * 2, GFP_KERNEL);
if (!ocr_rails[i].attr_gp.attrs) {
pr_err("Fail to allocate memory for attribute for %s\n",
ocr_rails[i].name);
rc = -ENOMEM;
goto ocr_node_exit;
}
OCR_RW_ATTRIB(ocr_rails[i], ocr_rails[i].mode_attr, 0, mode);
ocr_rails[i].attr_gp.attrs[1] = NULL;
rc = sysfs_create_group(ocr_reg_kobj[i], &ocr_rails[i].attr_gp);
if (rc) {
pr_err("Cannot create attribute group for %s. err:%d\n",
ocr_rails[i].name, rc);
goto ocr_node_exit;
}
}
ocr_node_exit:
if (rc) {
for (i = 0; i < ocr_rail_cnt; i++) {
if (ocr_reg_kobj[i])
kobject_del(ocr_reg_kobj[i]);
kfree(ocr_rails[i].attr_gp.attrs);
ocr_rails[i].attr_gp.attrs = NULL;
}
if (ocr_kobj)
kobject_del(ocr_kobj);
}
return rc;
}
static int msm_thermal_add_psm_nodes(void)
{
struct kobject *module_kobj = NULL;
struct kobject *psm_kobj = NULL;
struct kobject *psm_reg_kobj[MAX_RAILS] = {0};
int rc = 0;
int i = 0;
if (!psm_probed) {
psm_nodes_called = true;
return rc;
}
if (psm_probed && psm_rails_cnt == 0)
return rc;
module_kobj = kset_find_obj(module_kset, KBUILD_MODNAME);
if (!module_kobj) {
pr_err("cannot find kobject\n");
rc = -ENOENT;
goto psm_node_exit;
}
psm_kobj = kobject_create_and_add("pmic_sw_mode", module_kobj);
if (!psm_kobj) {
pr_err("cannot create psm kobject\n");
rc = -ENOMEM;
goto psm_node_exit;
}
for (i = 0; i < psm_rails_cnt; i++) {
psm_reg_kobj[i] = kobject_create_and_add(psm_rails[i].name,
psm_kobj);
if (!psm_reg_kobj[i]) {
pr_err("cannot create kobject for %s\n",
psm_rails[i].name);
rc = -ENOMEM;
goto psm_node_exit;
}
psm_rails[i].attr_gp.attrs = kzalloc( \
sizeof(struct attribute *) * 2, GFP_KERNEL);
if (!psm_rails[i].attr_gp.attrs) {
pr_err("kzalloc failed\n");
rc = -ENOMEM;
goto psm_node_exit;
}
PSM_RW_ATTRIB(psm_rails[i], psm_rails[i].mode_attr, 0, mode);
psm_rails[i].attr_gp.attrs[1] = NULL;
rc = sysfs_create_group(psm_reg_kobj[i], &psm_rails[i].attr_gp);
if (rc) {
pr_err("cannot create attribute group for %s. err:%d\n",
psm_rails[i].name, rc);
goto psm_node_exit;
}
}
return rc;
psm_node_exit:
if (rc) {
for (i = 0; i < psm_rails_cnt; i++) {
kobject_del(psm_reg_kobj[i]);
kfree(psm_rails[i].attr_gp.attrs);
}
if (psm_kobj)
kobject_del(psm_kobj);
}
return rc;
}
static void thermal_cpu_freq_mit_disable(void)
{
uint32_t cpu = 0, th_cnt = 0;
struct device_manager_data *dev_mgr = NULL;
struct device_clnt_data *clnt = NULL;
char device_name[TSENS_NAME_MAX] = {0};
freq_mitigation_enabled = 0;
msm_thermal_init_cpu_mit(CPU_FREQ_MITIGATION);
for_each_possible_cpu(cpu) {
for (th_cnt = FREQ_THRESHOLD_HIGH;
th_cnt <= FREQ_THRESHOLD_LOW; th_cnt++)
sensor_cancel_trip(cpus[cpu].sensor_id,
&cpus[cpu].threshold[th_cnt]);
snprintf(device_name, TSENS_NAME_MAX, CPU_DEVICE, cpu);
dev_mgr = find_device_by_name(device_name);
if (!dev_mgr) {
pr_err("Invalid device %s\n", device_name);
return;
}
mutex_lock(&dev_mgr->clnt_lock);
list_for_each_entry(clnt, &dev_mgr->client_list, clnt_ptr) {
if (!clnt->req_active)
continue;
clnt->request.freq.max_freq
= CPUFREQ_MAX_NO_MITIGATION;
clnt->request.freq.min_freq
= CPUFREQ_MIN_NO_MITIGATION;
}
dev_mgr->active_req.freq.max_freq = CPUFREQ_MAX_NO_MITIGATION;
dev_mgr->active_req.freq.min_freq = CPUFREQ_MIN_NO_MITIGATION;
mutex_unlock(&dev_mgr->clnt_lock);
}
if (freq_mitigation_task)
complete(&freq_mitigation_complete);
else
pr_err("Freq mit task is not initialized\n");
}
static void thermal_cpu_hotplug_mit_disable(void)
{
uint32_t cpu = 0, th_cnt = 0;
struct device_manager_data *dev_mgr = NULL;
struct device_clnt_data *clnt = NULL;
mutex_lock(&core_control_mutex);
hotplug_enabled = 0;
msm_thermal_init_cpu_mit(CPU_HOTPLUG_MITIGATION);
for_each_possible_cpu(cpu) {
if (!(msm_thermal_info.core_control_mask & BIT(cpu)))
continue;
for (th_cnt = HOTPLUG_THRESHOLD_HIGH;
th_cnt <= HOTPLUG_THRESHOLD_LOW; th_cnt++)
sensor_cancel_trip(cpus[cpu].sensor_id,
&cpus[cpu].threshold[th_cnt]);
}
dev_mgr = find_device_by_name(HOTPLUG_DEVICE);
if (!dev_mgr) {
pr_err("Invalid device %s\n", HOTPLUG_DEVICE);
mutex_unlock(&core_control_mutex);
return;
}
mutex_lock(&dev_mgr->clnt_lock);
list_for_each_entry(clnt, &dev_mgr->client_list, clnt_ptr) {
if (!clnt->req_active)
continue;
HOTPLUG_NO_MITIGATION(&clnt->request.offline_mask);
}
HOTPLUG_NO_MITIGATION(&dev_mgr->active_req.offline_mask);
mutex_unlock(&dev_mgr->clnt_lock);
if (hotplug_task)
complete(&hotplug_notify_complete);
else
pr_err("Hotplug task is not initialized\n");
mutex_unlock(&core_control_mutex);
}
static void thermal_reset_disable(void)
{
THERM_MITIGATION_DISABLE(therm_reset_enabled, MSM_THERM_RESET);
}
static void thermal_mx_mit_disable(void)
{
int ret = 0;
THERM_MITIGATION_DISABLE(vdd_mx_enabled, MSM_VDD_MX_RESTRICTION);
ret = remove_vdd_mx_restriction();
if (ret)
pr_err("Failed to remove vdd mx restriction\n");
}
static void thermal_vdd_mit_disable(void)
{
int ret = 0;
THERM_MITIGATION_DISABLE(vdd_rstr_enabled, MSM_VDD_RESTRICTION);
ret = vdd_restriction_apply_all(0);
if (ret)
pr_err("Disable vdd rstr for all failed. err:%d\n", ret);
}
static void thermal_psm_mit_disable(void)
{
int ret = 0;
THERM_MITIGATION_DISABLE(psm_enabled, -1);
ret = psm_set_mode_all(PMIC_AUTO_MODE);
if (ret)
pr_err("Set auto mode for all failed. err:%d\n", ret);
}
static void thermal_ocr_mit_disable(void)
{
int ret = 0;
THERM_MITIGATION_DISABLE(ocr_enabled, MSM_OCR);
ret = ocr_set_mode_all(OPTIMUM_CURRENT_MAX);
if (ret)
pr_err("Set max optimum current failed. err:%d\n", ret);
}
static void thermal_cx_phase_ctrl_mit_disable(void)
{
int ret = 0;
THERM_MITIGATION_DISABLE(cx_phase_ctrl_enabled, MSM_CX_PHASE_CTRL_HOT);
ret = send_temperature_band(MSM_CX_PHASE_CTRL, MSM_WARM);
if (ret)
pr_err("cx band set to WARM failed. err:%d\n", ret);
}
static void thermal_gfx_phase_warm_ctrl_mit_disable(void)
{
int ret = 0;
if (gfx_warm_phase_ctrl_enabled) {
THERM_MITIGATION_DISABLE(gfx_warm_phase_ctrl_enabled,
MSM_GFX_PHASE_CTRL_WARM);
ret = send_temperature_band(MSM_GFX_PHASE_CTRL, MSM_NORMAL);
if (!ret)
pr_err("gfx phase set to NORMAL failed. err:%d\n",
ret);
}
}
static void thermal_gfx_phase_crit_ctrl_mit_disable(void)
{
int ret = 0;
if (gfx_crit_phase_ctrl_enabled) {
THERM_MITIGATION_DISABLE(gfx_crit_phase_ctrl_enabled,
MSM_GFX_PHASE_CTRL_HOT);
ret = send_temperature_band(MSM_GFX_PHASE_CTRL, MSM_NORMAL);
if (!ret)
pr_err("gfx phase set to NORMAL failed. err:%d\n",
ret);
}
}
static int probe_vdd_mx(struct device_node *node,
struct msm_thermal_data *data, struct platform_device *pdev)
{
int ret = 0;
char *key = NULL;
key = "qcom,disable-vdd-mx";
if (of_property_read_bool(node, key)) {
vdd_mx_enabled = false;
return ret;
}
key = "qcom,mx-restriction-temp";
ret = of_property_read_u32(node, key, &data->vdd_mx_temp_degC);
if (ret)
goto read_node_done;
key = "qcom,mx-restriction-temp-hysteresis";
ret = of_property_read_u32(node, key, &data->vdd_mx_temp_hyst_degC);
if (ret)
goto read_node_done;
key = "qcom,mx-retention-min";
ret = of_property_read_u32(node, key, &data->vdd_mx_min);
if (ret)
goto read_node_done;
vdd_mx = devm_regulator_get(&pdev->dev, "vdd-mx");
if (IS_ERR_OR_NULL(vdd_mx)) {
ret = PTR_ERR(vdd_mx);
if (ret != -EPROBE_DEFER) {
pr_err(
"Could not get regulator: vdd-mx, err:%d\n", ret);
}
goto read_node_done;
}
ret = sensor_mgr_init_threshold(&thresh[MSM_VDD_MX_RESTRICTION],
MONITOR_ALL_TSENS,
data->vdd_mx_temp_degC + data->vdd_mx_temp_hyst_degC,
data->vdd_mx_temp_degC, vdd_mx_notify);
read_node_done:
if (!ret) {
vdd_mx_enabled = true;
snprintf(mit_config[MSM_VDD_MX_RESTRICTION].config_name,
MAX_DEBUGFS_CONFIG_LEN, "mx");
mit_config[MSM_VDD_MX_RESTRICTION].disable_config
= thermal_mx_mit_disable;
} else if (ret != -EPROBE_DEFER) {
dev_info(&pdev->dev,
"%s:Failed reading node=%s, key=%s. KTM continues\n",
__func__, node->full_name, key);
}
return ret;
}
static int probe_vdd_rstr(struct device_node *node,
struct msm_thermal_data *data, struct platform_device *pdev)
{
int ret = 0;
int i = 0;
int arr_size;
char *key = NULL;
struct device_node *child_node = NULL;
rails = NULL;
key = "qcom,disable-vdd-rstr";
if (of_property_read_bool(node, key)) {
vdd_rstr_probed = true;
vdd_rstr_enabled = false;
rails_cnt = 0;
return ret;
}
key = "qcom,vdd-restriction-temp";
ret = of_property_read_u32(node, key, &data->vdd_rstr_temp_degC);
if (ret)
goto read_node_fail;
key = "qcom,vdd-restriction-temp-hysteresis";
ret = of_property_read_u32(node, key, &data->vdd_rstr_temp_hyst_degC);
if (ret)
goto read_node_fail;
for_each_child_of_node(node, child_node) {
rails_cnt++;
}
if (rails_cnt == 0)
goto read_node_fail;
if (rails_cnt >= MAX_RAILS) {
pr_err("Too many rails:%d.\n", rails_cnt);
return -EFAULT;
}
rails = kzalloc(sizeof(struct rail) * rails_cnt,
GFP_KERNEL);
if (!rails) {
pr_err("Fail to allocate memory for rails.\n");
return -ENOMEM;
}
i = 0;
for_each_child_of_node(node, child_node) {
key = "qcom,vdd-rstr-reg";
ret = of_property_read_string(child_node, key, &rails[i].name);
if (ret)
goto read_node_fail;
key = "qcom,levels";
if (!of_get_property(child_node, key, &arr_size))
goto read_node_fail;
rails[i].num_levels = arr_size/sizeof(__be32);
if (rails[i].num_levels >
sizeof(rails[i].levels)/sizeof(uint32_t)) {
pr_err("Array size:%d too large for index:%d\n",
rails[i].num_levels, i);
return -EFAULT;
}
ret = of_property_read_u32_array(child_node, key,
rails[i].levels, rails[i].num_levels);
if (ret)
goto read_node_fail;
key = "qcom,freq-req";
rails[i].freq_req = of_property_read_bool(child_node, key);
if (rails[i].freq_req) {
rails[i].min_level = 0;
key = "qcom,max-freq-level";
ret = of_property_read_u32(child_node, key,
&rails[i].max_frequency_limit);
if (ret)
rails[i].max_frequency_limit
= UINT_MAX;
ret = 0;
} else {
key = "qcom,min-level";
ret = of_property_read_u32(child_node, key,
&rails[i].min_level);
if (ret)
goto read_node_fail;
}
rails[i].curr_level = -1;
rails[i].reg = NULL;
i++;
}
if (rails_cnt) {
ret = vdd_restriction_reg_init(pdev);
if (ret) {
pr_err("Err regulator init. err:%d. KTM continues.\n",
ret);
goto read_node_fail;
}
ret = sensor_mgr_init_threshold(&thresh[MSM_VDD_RESTRICTION],
MONITOR_ALL_TSENS,
data->vdd_rstr_temp_hyst_degC, data->vdd_rstr_temp_degC,
vdd_restriction_notify);
if (ret) {
pr_err("Error in initializing thresholds. err:%d\n",
ret);
goto read_node_fail;
}
vdd_rstr_enabled = true;
snprintf(mit_config[MSM_VDD_RESTRICTION].config_name,
MAX_DEBUGFS_CONFIG_LEN, "vdd");
mit_config[MSM_VDD_RESTRICTION].disable_config
= thermal_vdd_mit_disable;
}
read_node_fail:
vdd_rstr_probed = true;
if (ret) {
dev_info(&pdev->dev,
"%s:Failed reading node=%s, key=%s. err=%d. KTM continues\n",
__func__, node->full_name, key, ret);
kfree(rails);
rails_cnt = 0;
}
if (ret == -EPROBE_DEFER)
vdd_rstr_probed = false;
return ret;
}
static int create_alias_name(int _cpu, struct device_node *limits,
struct platform_device *pdev)
{
char device_name[DEVM_NAME_MAX] = "";
int sensor_idx = 0, sensor_ct = 0, idx = 0, err = 0;
struct device_node *tsens = NULL;
const char *sensor_name = NULL;
if (!sensors) {
pr_debug("sensor info not defined\n");
return -ENOSYS;
}
snprintf(device_name, DEVM_NAME_MAX, CPU_DEVICE, _cpu);
if (!of_get_property(limits, "qcom,temperature-sensor", &sensor_ct)
|| sensor_ct <= 0) {
pr_err("Sensor not defined\n");
return -ENODEV;
}
sensor_ct /= sizeof(__be32);
do {
tsens = of_parse_phandle(limits, "qcom,temperature-sensor",
idx);
if (!tsens) {
pr_err("No temperature sensor defined for CPU%d\n",
_cpu);
return -ENODEV;
}
err = of_property_read_string(tsens, "qcom,sensor-name",
&sensor_name);
if (err) {
pr_err("Sensor name not populated for CPU%d. err:%d\n",
_cpu, err);
return -ENODEV;
}
for (sensor_idx = 0; sensor_idx < sensor_cnt; sensor_idx++) {
char cat_str[DEVM_NAME_MAX] = "";
if (strcmp(sensors[sensor_idx].name, sensor_name))
continue;
if (!sensors[sensor_idx].alias) {
sensors[sensor_idx].alias = devm_kzalloc(
&pdev->dev, DEVM_NAME_MAX, GFP_KERNEL);
if (!sensors[sensor_idx].alias) {
pr_err("Memory alloc failed\n");
return -ENOMEM;
}
strlcpy((char *)sensors[sensor_idx].alias,
device_name, DEVM_NAME_MAX);
if (sensor_ct > 1) {
/* Multiple sensor monitoring
* single device */
snprintf(cat_str, DEVM_NAME_MAX, "_%d",
idx);
strlcat((char *)
sensors[sensor_idx].alias,
cat_str, DEVM_NAME_MAX);
}
} else {
/* Single sensor monitoring multiple devices */
snprintf(cat_str, DEVM_NAME_MAX,
"-"CPU_DEVICE, _cpu);
strlcat((char *)sensors[sensor_idx].alias,
cat_str, DEVM_NAME_MAX);
}
break;
}
idx++;
} while (idx < sensor_ct);
return 0;
}
static int fetch_cpu_mitigaiton_info(struct msm_thermal_data *data,
struct platform_device *pdev)
{
int _cpu = 0, err = 0;
struct device_node *cpu_node = NULL, *limits = NULL, *tsens = NULL;
for_each_possible_cpu(_cpu) {
const char *sensor_name = NULL;
cpu_node = of_get_cpu_node(_cpu, NULL);
if (!cpu_node) {
pr_err("No CPU phandle for CPU%d\n", _cpu);
__WARN();
continue;
}
limits = of_parse_phandle(cpu_node, "qcom,limits-info", 0);
if (!limits) {
pr_err("No mitigation info defined for CPU%d\n", _cpu);
continue;
}
VALIDATE_AND_SET_MASK(limits, "qcom,boot-frequency-mitigate",
data->bootup_freq_control_mask, _cpu);
VALIDATE_AND_SET_MASK(limits,
"qcom,emergency-frequency-mitigate",
data->freq_mitig_control_mask, _cpu);
VALIDATE_AND_SET_MASK(limits, "qcom,hotplug-mitigation-enable",
data->core_control_mask, _cpu);
tsens = of_parse_phandle(limits, "qcom,temperature-sensor", 0);
if (!tsens) {
pr_err("No temperature sensor defined for CPU%d\n",
_cpu);
continue;
}
err = of_property_read_string(tsens, "qcom,sensor-name",
&sensor_name);
if (err) {
pr_err("Sensor name not populated for CPU%d. err:%d\n",
_cpu, err);
continue;
}
cpus[_cpu].sensor_type = devm_kzalloc(&pdev->dev,
strlen(sensor_name) + 1, GFP_KERNEL);
if (!cpus[_cpu].sensor_type) {
pr_err("Memory alloc failed\n");
err = -ENOMEM;
goto fetch_mitig_exit;
}
strlcpy((char *) cpus[_cpu].sensor_type, sensor_name,
strlen(sensor_name) + 1);
create_alias_name(_cpu, limits, pdev);
}
fetch_mitig_exit:
return err;
}
static void probe_sensor_info(struct device_node *node,
struct msm_thermal_data *data, struct platform_device *pdev)
{
int err = 0;
int i = 0;
char *key = NULL;
struct device_node *child_node = NULL;
struct device_node *np = NULL;
int scale_tsens_found = 0;
key = "qcom,disable-sensor-info";
if (of_property_read_bool(node, key)) {
sensor_info_probed = true;
return;
}
np = of_find_compatible_node(NULL, NULL, "qcom,sensor-information");
if (!np) {
dev_info(&pdev->dev,
"%s:unable to find DT for sensor-information.KTM continues\n",
__func__);
sensor_info_probed = true;
return;
}
sensor_cnt = of_get_child_count(np);
if (sensor_cnt == 0) {
err = -ENODEV;
goto read_node_fail;
}
sensors = devm_kzalloc(&pdev->dev,
sizeof(struct msm_sensor_info) * sensor_cnt,
GFP_KERNEL);
if (!sensors) {
pr_err("Fail to allocate memory for sensor_info.\n");
err = -ENOMEM;
goto read_node_fail;
}
for_each_child_of_node(np, child_node) {
const char *alias_name = NULL;
key = "qcom,sensor-type";
err = of_property_read_string(child_node,
key, &sensors[i].type);
if (err)
goto read_node_fail;
key = "qcom,sensor-name";
err = of_property_read_string(child_node,
key, &sensors[i].name);
if (err)
goto read_node_fail;
key = "qcom,alias-name";
of_property_read_string(child_node, key, &alias_name);
if (alias_name && !strnstr(alias_name, "cpu",
strlen(alias_name)))
sensors[i].alias = alias_name;
key = "qcom,scaling-factor";
err = of_property_read_u32(child_node, key,
&sensors[i].scaling_factor);
if (err || sensors[i].scaling_factor == 0) {
sensors[i].scaling_factor = SENSOR_SCALING_FACTOR;
err = 0;
}
if (scale_tsens_found == 0) {
if (!strcmp(sensors[i].type, "tsens")) {
scale_tsens_found = 1;
tsens_scaling_factor =
sensors[i].scaling_factor;
}
}
i++;
}
read_node_fail:
sensor_info_probed = true;
if (err) {
dev_info(&pdev->dev,
"%s:Failed reading node=%s, key=%s. err=%d. KTM continues\n",
__func__, np->full_name, key, err);
devm_kfree(&pdev->dev, sensors);
}
}
static int probe_ocr(struct device_node *node, struct msm_thermal_data *data,
struct platform_device *pdev)
{
int ret = 0;
int j = 0;
char *key = NULL;
if (ocr_probed) {
pr_info("Nodes already probed\n");
goto read_ocr_exit;
}
ocr_rails = NULL;
key = "qcom,disable-ocr";
if (of_property_read_bool(node, key)) {
ocr_probed = true;
ocr_enabled = false;
ocr_rail_cnt = 0;
goto read_ocr_exit;
}
key = "qcom,pmic-opt-curr-temp";
ret = of_property_read_u32(node, key, &data->ocr_temp_degC);
if (ret)
goto read_ocr_fail;
key = "qcom,pmic-opt-curr-temp-hysteresis";
ret = of_property_read_u32(node, key, &data->ocr_temp_hyst_degC);
if (ret)
goto read_ocr_fail;
key = "qcom,pmic-opt-curr-regs";
ocr_rail_cnt = of_property_count_strings(node, key);
if (ocr_rail_cnt <= 0) {
pr_err("Invalid ocr rail count. err:%d\n", ocr_rail_cnt);
goto read_ocr_fail;
}
ocr_rails = kzalloc(sizeof(struct psm_rail) * ocr_rail_cnt,
GFP_KERNEL);
if (!ocr_rails) {
pr_err("Fail to allocate memory for ocr rails\n");
ocr_rail_cnt = 0;
return -ENOMEM;
}
for (j = 0; j < ocr_rail_cnt; j++) {
ret = of_property_read_string_index(node, key, j,
&ocr_rails[j].name);
if (ret)
goto read_ocr_fail;
ocr_rails[j].phase_reg = NULL;
ocr_rails[j].init = OPTIMUM_CURRENT_MAX;
}
key = "qcom,pmic-opt-curr-sensor-id";
ret = of_property_read_u32(node, key, &data->ocr_sensor_id);
if (ret) {
pr_info("ocr sensor is not configured, use all TSENS. err:%d\n",
ret);
data->ocr_sensor_id = MONITOR_ALL_TSENS;
}
ret = ocr_reg_init(pdev);
if (ret) {
if (ret == -EPROBE_DEFER) {
ocr_reg_init_defer = true;
pr_info("ocr reg init is defered\n");
} else {
pr_err(
"Failed to get regulators. KTM continues. err:%d\n",
ret);
goto read_ocr_fail;
}
}
ret = sensor_mgr_init_threshold(&thresh[MSM_OCR], data->ocr_sensor_id,
data->ocr_temp_degC,
data->ocr_temp_degC - data->ocr_temp_hyst_degC,
ocr_notify);
if (ret)
goto read_ocr_fail;
if (!ocr_reg_init_defer)
ocr_enabled = true;
ocr_nodes_called = false;
/*
* Vote for max optimum current by default until we have made
* our first temp reading
*/
if (ocr_enabled) {
ret = ocr_set_mode_all(OPTIMUM_CURRENT_MAX);
if (ret) {
pr_err("Set max optimum current failed. err:%d\n",
ret);
ocr_enabled = false;
}
}
read_ocr_fail:
ocr_probed = true;
if (ret) {
if (ret == -EPROBE_DEFER) {
ret = 0;
goto read_ocr_exit;
}
dev_err(
&pdev->dev,
"%s:Failed reading node=%s, key=%s err:%d. KTM continues\n",
__func__, node->full_name, key, ret);
kfree(ocr_rails);
ocr_rails = NULL;
ocr_rail_cnt = 0;
} else {
snprintf(mit_config[MSM_OCR].config_name,
MAX_DEBUGFS_CONFIG_LEN, "ocr");
mit_config[MSM_OCR].disable_config = thermal_ocr_mit_disable;
}
read_ocr_exit:
return ret;
}
static int probe_psm(struct device_node *node, struct msm_thermal_data *data,
struct platform_device *pdev)
{
int ret = 0;
int j = 0;
char *key = NULL;
psm_rails = NULL;
key = "qcom,disable-psm";
if (of_property_read_bool(node, key)) {
psm_probed = true;
psm_enabled = false;
psm_rails_cnt = 0;
return ret;
}
key = "qcom,pmic-sw-mode-temp";
ret = of_property_read_u32(node, key, &data->psm_temp_degC);
if (ret)
goto read_node_fail;
key = "qcom,pmic-sw-mode-temp-hysteresis";
ret = of_property_read_u32(node, key, &data->psm_temp_hyst_degC);
if (ret)
goto read_node_fail;
key = "qcom,pmic-sw-mode-regs";
psm_rails_cnt = of_property_count_strings(node, key);
psm_rails = kzalloc(sizeof(struct psm_rail) * psm_rails_cnt,
GFP_KERNEL);
if (!psm_rails) {
pr_err("Fail to allocate memory for psm rails\n");
psm_rails_cnt = 0;
return -ENOMEM;
}
for (j = 0; j < psm_rails_cnt; j++) {
ret = of_property_read_string_index(node, key, j,
&psm_rails[j].name);
if (ret)
goto read_node_fail;
}
if (psm_rails_cnt) {
ret = psm_reg_init(pdev);
if (ret) {
pr_err("Err regulator init. err:%d. KTM continues.\n",
ret);
goto read_node_fail;
}
psm_enabled = true;
}
read_node_fail:
psm_probed = true;
if (ret) {
dev_info(&pdev->dev,
"%s:Failed reading node=%s, key=%s. err=%d. KTM continues\n",
__func__, node->full_name, key, ret);
kfree(psm_rails);
psm_rails_cnt = 0;
}
if (ret == -EPROBE_DEFER)
psm_probed = false;
return ret;
}
static int probe_cc(struct device_node *node, struct msm_thermal_data *data,
struct platform_device *pdev)
{
char *key = NULL;
int ret = 0;
if (num_possible_cpus() > 1) {
core_control_enabled = 1;
hotplug_enabled = 1;
}
key = "qcom,core-limit-temp";
ret = of_property_read_u32(node, key, &data->core_limit_temp_degC);
if (ret)
goto read_node_fail;
key = "qcom,core-temp-hysteresis";
ret = of_property_read_u32(node, key, &data->core_temp_hysteresis_degC);
if (ret)
goto read_node_fail;
key = "qcom,hotplug-temp";
ret = of_property_read_u32(node, key, &data->hotplug_temp_degC);
if (ret)
goto hotplug_node_fail;
key = "qcom,hotplug-temp-hysteresis";
ret = of_property_read_u32(node, key,
&data->hotplug_temp_hysteresis_degC);
if (ret)
goto hotplug_node_fail;
read_node_fail:
if (ret) {
dev_info(&pdev->dev,
"%s:Failed reading node=%s, key=%s. err=%d. KTM continues\n",
KBUILD_MODNAME, node->full_name, key, ret);
core_control_enabled = 0;
} else {
snprintf(mit_config[MSM_LIST_MAX_NR + HOTPLUG_CONFIG]
.config_name, MAX_DEBUGFS_CONFIG_LEN,
"hotplug");
mit_config[MSM_LIST_MAX_NR + HOTPLUG_CONFIG].disable_config
= thermal_cpu_hotplug_mit_disable;
}
return ret;
hotplug_node_fail:
if (ret) {
dev_info(&pdev->dev,
"%s:Failed reading node=%s, key=%s. err=%d. KTM continues\n",
KBUILD_MODNAME, node->full_name, key, ret);
hotplug_enabled = 0;
}
return ret;
}
static int probe_gfx_phase_ctrl(struct device_node *node,
struct msm_thermal_data *data,
struct platform_device *pdev)
{
char *key = NULL;
const char *tmp_str = NULL;
int ret = 0;
key = "qcom,disable-gfx-phase-ctrl";
if (of_property_read_bool(node, key)) {
gfx_crit_phase_ctrl_enabled = false;
gfx_warm_phase_ctrl_enabled = false;
return ret;
}
key = "qcom,gfx-sensor-id";
ret = of_property_read_u32(node, key,
&data->gfx_sensor);
if (ret)
goto probe_gfx_exit;
key = "qcom,gfx-phase-resource-key";
ret = of_property_read_string(node, key,
&tmp_str);
if (ret)
goto probe_gfx_exit;
data->gfx_phase_request_key = msm_thermal_str_to_int(tmp_str);
key = "qcom,gfx-phase-warm-temp";
ret = of_property_read_u32(node, key,
&data->gfx_phase_warm_temp_degC);
if (ret) {
dev_info(&pdev->dev,
"%s:Failed reading node=%s, key=%s. err=%d. KTM continues\n",
KBUILD_MODNAME, node->full_name, key, ret);
data->gfx_phase_warm_temp_degC = INT_MIN;
goto probe_gfx_crit;
}
key = "qcom,gfx-phase-warm-temp-hyst";
ret = of_property_read_u32(node, key,
&data->gfx_phase_warm_temp_hyst_degC);
if (ret) {
dev_info(&pdev->dev,
"%s:Failed reading node=%s, key=%s. err=%d. KTM continues\n",
KBUILD_MODNAME, node->full_name, key, ret);
goto probe_gfx_crit;
}
ret = sensor_mgr_init_threshold(&thresh[MSM_GFX_PHASE_CTRL_WARM],
data->gfx_sensor,
data->gfx_phase_warm_temp_degC, data->gfx_phase_warm_temp_degC -
data->gfx_phase_warm_temp_hyst_degC,
gfx_phase_ctrl_notify);
if (ret) {
pr_err("init WARM threshold failed. err:%d\n", ret);
goto probe_gfx_crit;
}
gfx_warm_phase_ctrl_enabled = true;
snprintf(mit_config[MSM_GFX_PHASE_CTRL_WARM].config_name,
MAX_DEBUGFS_CONFIG_LEN, "gfx_phase_warm");
mit_config[MSM_GFX_PHASE_CTRL_WARM].disable_config
= thermal_gfx_phase_warm_ctrl_mit_disable;
probe_gfx_crit:
key = "qcom,gfx-phase-hot-crit-temp";
ret = of_property_read_u32(node, key,
&data->gfx_phase_hot_temp_degC);
if (ret) {
data->gfx_phase_hot_temp_degC = INT_MAX;
goto probe_gfx_exit;
}
key = "qcom,gfx-phase-hot-crit-temp-hyst";
ret = of_property_read_u32(node, key,
&data->gfx_phase_hot_temp_hyst_degC);
if (ret)
goto probe_gfx_exit;
ret = sensor_mgr_init_threshold(&thresh[MSM_GFX_PHASE_CTRL_HOT],
data->gfx_sensor,
data->gfx_phase_hot_temp_degC, data->gfx_phase_hot_temp_degC -
data->gfx_phase_hot_temp_hyst_degC,
gfx_phase_ctrl_notify);
if (ret) {
pr_err("init HOT threshold failed. err:%d\n", ret);
goto probe_gfx_exit;
}
gfx_crit_phase_ctrl_enabled = true;
snprintf(mit_config[MSM_GFX_PHASE_CTRL_HOT].config_name,
MAX_DEBUGFS_CONFIG_LEN, "gfx_phase_crit");
mit_config[MSM_GFX_PHASE_CTRL_HOT].disable_config
= thermal_gfx_phase_crit_ctrl_mit_disable;
probe_gfx_exit:
if (ret) {
dev_info(&pdev->dev,
"%s:Failed reading node=%s, key=%s. err=%d. KTM continues\n",
KBUILD_MODNAME, node->full_name, key, ret);
}
return ret;
}
static int probe_cx_phase_ctrl(struct device_node *node,
struct msm_thermal_data *data,
struct platform_device *pdev)
{
char *key = NULL;
const char *tmp_str;
int ret = 0;
key = "qcom,disable-cx-phase-ctrl";
if (of_property_read_bool(node, key)) {
cx_phase_ctrl_enabled = false;
return ret;
}
key = "qcom,rpm-phase-resource-type";
ret = of_property_read_string(node, key,
&tmp_str);
if (ret)
goto probe_cx_exit;
data->phase_rpm_resource_type = msm_thermal_str_to_int(tmp_str);
key = "qcom,rpm-phase-resource-id";
ret = of_property_read_u32(node, key,
&data->phase_rpm_resource_id);
if (ret)
goto probe_cx_exit;
key = "qcom,cx-phase-resource-key";
ret = of_property_read_string(node, key,
&tmp_str);
if (ret)
goto probe_cx_exit;
data->cx_phase_request_key = msm_thermal_str_to_int(tmp_str);
key = "qcom,cx-phase-hot-crit-temp";
ret = of_property_read_u32(node, key,
&data->cx_phase_hot_temp_degC);
if (ret)
goto probe_cx_exit;
key = "qcom,cx-phase-hot-crit-temp-hyst";
ret = of_property_read_u32(node, key,
&data->cx_phase_hot_temp_hyst_degC);
if (ret)
goto probe_cx_exit;
ret = sensor_mgr_init_threshold(&thresh[MSM_CX_PHASE_CTRL_HOT],
MONITOR_ALL_TSENS,
data->cx_phase_hot_temp_degC, data->cx_phase_hot_temp_degC -
data->cx_phase_hot_temp_hyst_degC,
cx_phase_ctrl_notify);
if (ret) {
pr_err("init HOT threshold failed. err:%d\n", ret);
goto probe_cx_exit;
}
cx_phase_ctrl_enabled = true;
snprintf(mit_config[MSM_CX_PHASE_CTRL_HOT].config_name,
MAX_DEBUGFS_CONFIG_LEN, "cx_phase");
mit_config[MSM_CX_PHASE_CTRL_HOT].disable_config
= thermal_cx_phase_ctrl_mit_disable;
probe_cx_exit:
if (ret) {
dev_info(&pdev->dev,
"%s:Failed reading node=%s, key=%s err=%d. KTM continues\n",
KBUILD_MODNAME, node->full_name, key, ret);
cx_phase_ctrl_enabled = false;
}
return ret;
}
static int probe_therm_reset(struct device_node *node,
struct msm_thermal_data *data,
struct platform_device *pdev)
{
char *key = NULL;
int ret = 0;
key = "qcom,therm-reset-temp";
ret = of_property_read_u32(node, key, &data->therm_reset_temp_degC);
if (ret)
goto PROBE_RESET_EXIT;
ret = sensor_mgr_init_threshold(&thresh[MSM_THERM_RESET],
MONITOR_ALL_TSENS,
data->therm_reset_temp_degC, data->therm_reset_temp_degC - 10,
therm_reset_notify);
if (ret) {
pr_err("Therm reset data structure init failed\n");
goto PROBE_RESET_EXIT;
}
therm_reset_enabled = true;
snprintf(mit_config[MSM_THERM_RESET].config_name,
MAX_DEBUGFS_CONFIG_LEN, "reset");
mit_config[MSM_THERM_RESET].disable_config
= thermal_reset_disable;
PROBE_RESET_EXIT:
if (ret) {
dev_info(&pdev->dev,
"%s:Failed reading node=%s, key=%s err=%d. KTM continues\n",
__func__, node->full_name, key, ret);
therm_reset_enabled = false;
}
return ret;
}
static int probe_freq_mitigation(struct device_node *node,
struct msm_thermal_data *data,
struct platform_device *pdev)
{
char *key = NULL;
int ret = 0;
key = "qcom,freq-mitigation-temp";
ret = of_property_read_u32(node, key, &data->freq_mitig_temp_degc);
if (ret)
goto PROBE_FREQ_EXIT;
key = "qcom,freq-mitigation-temp-hysteresis";
ret = of_property_read_u32(node, key,
&data->freq_mitig_temp_hysteresis_degc);
if (ret)
goto PROBE_FREQ_EXIT;
key = "qcom,freq-mitigation-value";
ret = of_property_read_u32(node, key, &data->freq_limit);
if (ret)
goto PROBE_FREQ_EXIT;
freq_mitigation_enabled = 1;
snprintf(mit_config[MSM_LIST_MAX_NR + CPUFREQ_CONFIG].config_name,
MAX_DEBUGFS_CONFIG_LEN, "cpufreq");
mit_config[MSM_LIST_MAX_NR + CPUFREQ_CONFIG].disable_config
= thermal_cpu_freq_mit_disable;
PROBE_FREQ_EXIT:
if (ret) {
dev_info(&pdev->dev,
"%s:Failed reading node=%s, key=%s. err=%d. KTM continues\n",
__func__, node->full_name, key, ret);
freq_mitigation_enabled = 0;
}
return ret;
}
static void thermal_boot_config_read(struct seq_file *m, void *data)
{
seq_puts(m, "---------Boot Mitigation------------\n");
seq_printf(m, "tsens sensor:tsens_tz_sensor%d\n",
msm_thermal_info.sensor_id);
seq_printf(m, "polling rate:%d ms\n", msm_thermal_info.poll_ms);
seq_printf(m, "frequency threshold:%d degC\n",
msm_thermal_info.limit_temp_degC);
seq_printf(m, "frequency threshold clear:%d degC\n",
msm_thermal_info.limit_temp_degC
- msm_thermal_info.temp_hysteresis_degC);
seq_printf(m, "frequency step:%d\n",
msm_thermal_info.bootup_freq_step);
seq_printf(m, "frequency mask:0x%x\n",
msm_thermal_info.bootup_freq_control_mask);
seq_printf(m, "hotplug threshold:%d degC\n",
msm_thermal_info.core_limit_temp_degC);
seq_printf(m, "hotplug threshold clear:%d degC\n",
msm_thermal_info.core_limit_temp_degC
- msm_thermal_info.core_temp_hysteresis_degC);
seq_printf(m, "hotplug mask:0x%x\n",
msm_thermal_info.core_control_mask);
seq_printf(m, "reset threshold:%d degC\n",
msm_thermal_info.therm_reset_temp_degC);
}
static void thermal_emergency_config_read(struct seq_file *m, void *data)
{
int cpu = 0;
seq_puts(m, "\n---------Emergency Mitigation------------\n");
for_each_possible_cpu(cpu)
seq_printf(m, "cpu%d sensor:%s\n", cpu, cpus[cpu].sensor_type);
seq_printf(m, "frequency threshold:%d degC\n",
msm_thermal_info.freq_mitig_temp_degc);
seq_printf(m, "frequency threshold clr:%d degC\n",
msm_thermal_info.freq_mitig_temp_degc
- msm_thermal_info.freq_mitig_temp_hysteresis_degc);
seq_printf(m, "frequency value:%d KHz\n",
msm_thermal_info.freq_limit);
seq_printf(m, "frequency mask:0x%x\n",
msm_thermal_info.freq_mitig_control_mask);
seq_printf(m, "hotplug threshold:%d degC\n",
msm_thermal_info.hotplug_temp_degC);
seq_printf(m, "hotplug threshold clr:%d degC\n",
msm_thermal_info.hotplug_temp_degC
- msm_thermal_info.hotplug_temp_hysteresis_degC);
seq_printf(m, "hotplug mask:0x%x\n",
msm_thermal_info.core_control_mask);
seq_printf(m, "online hotplug core:%s\n", online_core
? "true" : "false");
}
static void thermal_mx_config_read(struct seq_file *m, void *data)
{
if (vdd_mx_enabled) {
seq_puts(m, "\n---------Mx Retention------------\n");
seq_printf(m, "threshold:%d degC\n",
msm_thermal_info.vdd_mx_temp_degC);
seq_printf(m, "threshold clear:%d degC\n",
msm_thermal_info.vdd_mx_temp_degC
+ msm_thermal_info.vdd_mx_temp_hyst_degC);
seq_printf(m, "retention value:%d\n",
msm_thermal_info.vdd_mx_min);
}
}
static void thermal_vdd_config_read(struct seq_file *m, void *data)
{
int i = 0;
if (vdd_rstr_enabled) {
seq_puts(m, "\n---------VDD restriction------------\n");
seq_printf(m, "threshold:%d degC\n",
msm_thermal_info.vdd_rstr_temp_degC);
seq_printf(m, "threshold clear:%d degC\n",
msm_thermal_info.vdd_rstr_temp_hyst_degC);
for (i = 0; i < rails_cnt; i++) {
if (!strcmp(rails[i].name, "vdd-dig")
&& rails[i].num_levels)
seq_printf(m, "vdd_dig restriction value:%d\n",
rails[i].levels[0]);
if (!strcmp(rails[i].name, "vdd-gfx")
&& rails[i].num_levels)
seq_printf(m, "vdd_gfx restriction value:%d\n",
rails[i].levels[0]);
if (!strcmp(rails[i].name, "vdd-apps")
&& rails[i].num_levels)
seq_printf(m,
"vdd_apps restriction value:%d KHz\n",
rails[i].levels[0]);
}
}
}
static void thermal_psm_config_read(struct seq_file *m, void *data)
{
if (psm_enabled) {
seq_puts(m, "\n------PMIC Software Mode(PSM)-------\n");
seq_printf(m, "threshold:%d degC\n",
msm_thermal_info.psm_temp_degC);
seq_printf(m, "threshold clear:%d degC\n",
msm_thermal_info.psm_temp_degC
- msm_thermal_info.psm_temp_hyst_degC);
}
}
static void thermal_ocr_config_read(struct seq_file *m, void *data)
{
if (ocr_enabled) {
seq_puts(m, "\n-----Optimum Current Request(OCR)-----\n");
seq_printf(m, "threshold:%d degC\n",
msm_thermal_info.ocr_temp_degC);
seq_printf(m, "threshold clear:%d degC\n",
msm_thermal_info.ocr_temp_degC
- msm_thermal_info.ocr_temp_hyst_degC);
seq_printf(m, "tsens sensor:tsens_tz_sensor%d\n",
msm_thermal_info.ocr_sensor_id);
}
}
static void thermal_phase_ctrl_config_read(struct seq_file *m, void *data)
{
if (cx_phase_ctrl_enabled) {
seq_puts(m, "\n---------Phase control------------\n");
seq_printf(m, "cx hot critical threshold:%d degC\n",
msm_thermal_info.cx_phase_hot_temp_degC);
seq_printf(m, "cx hot critical threshold clear:%d degC\n",
msm_thermal_info.cx_phase_hot_temp_degC
- msm_thermal_info.cx_phase_hot_temp_hyst_degC);
}
if (gfx_crit_phase_ctrl_enabled) {
seq_printf(m, "gfx hot critical threshold:%d degC\n",
msm_thermal_info.gfx_phase_hot_temp_degC);
seq_printf(m, "gfx hot critical threshold clear:%d degC\n",
msm_thermal_info.gfx_phase_hot_temp_degC
- msm_thermal_info.gfx_phase_hot_temp_hyst_degC);
}
if (gfx_warm_phase_ctrl_enabled) {
seq_printf(m, "gfx warm threshold:%d degC\n",
msm_thermal_info.gfx_phase_warm_temp_degC);
seq_printf(m, "gfx warm threshold clear:%d degC\n",
msm_thermal_info.gfx_phase_warm_temp_degC
- msm_thermal_info.gfx_phase_warm_temp_hyst_degC);
}
if (gfx_crit_phase_ctrl_enabled || gfx_warm_phase_ctrl_enabled)
seq_printf(m, "gfx tsens sensor:tsens_tz_sensor%d\n",
msm_thermal_info.gfx_sensor);
}
static void thermal_disable_all_mitigation(void)
{
thermal_cpu_freq_mit_disable();
thermal_cpu_hotplug_mit_disable();
thermal_reset_disable();
thermal_mx_mit_disable();
thermal_vdd_mit_disable();
thermal_psm_mit_disable();
thermal_ocr_mit_disable();
thermal_cx_phase_ctrl_mit_disable();
thermal_gfx_phase_warm_ctrl_mit_disable();
thermal_gfx_phase_crit_ctrl_mit_disable();
}
static void enable_config(int config_id)
{
switch (config_id) {
case MSM_THERM_RESET:
therm_reset_enabled = 1;
break;
case MSM_VDD_RESTRICTION:
vdd_rstr_enabled = 1;
break;
case MSM_CX_PHASE_CTRL_HOT:
cx_phase_ctrl_enabled = 1;
break;
case MSM_GFX_PHASE_CTRL_WARM:
gfx_warm_phase_ctrl_enabled = 1;
break;
case MSM_GFX_PHASE_CTRL_HOT:
gfx_crit_phase_ctrl_enabled = 1;
break;
case MSM_OCR:
ocr_enabled = 1;
break;
case MSM_VDD_MX_RESTRICTION:
vdd_mx_enabled = 1;
break;
case MSM_LIST_MAX_NR + HOTPLUG_CONFIG:
hotplug_enabled = 1;
break;
case MSM_LIST_MAX_NR + CPUFREQ_CONFIG:
freq_mitigation_enabled = 1;
break;
default:
pr_err("Bad config:%d\n", config_id);
break;
}
}
static void thermal_update_mit_threshold(
struct msm_thermal_debugfs_thresh_config *config, int max_mit)
{
int idx = 0, i = 0;
for (idx = 0; idx < max_mit; idx++) {
if (!config[idx].update)
continue;
config[idx].disable_config();
enable_config(idx);
if (idx >= MSM_LIST_MAX_NR) {
if (idx == MSM_LIST_MAX_NR + HOTPLUG_CONFIG)
UPDATE_CPU_CONFIG_THRESHOLD(
msm_thermal_info.core_control_mask,
HOTPLUG_THRESHOLD_HIGH,
config[idx].thresh,
config[idx].thresh_clr);
else if (idx == MSM_LIST_MAX_NR + CPUFREQ_CONFIG)
UPDATE_CPU_CONFIG_THRESHOLD(
msm_thermal_info
.freq_mitig_control_mask,
FREQ_THRESHOLD_HIGH,
config[idx].thresh,
config[idx].thresh_clr);
} else {
for (i = 0; i < thresh[idx].thresh_ct; i++) {
thresh[idx].thresh_list[i].threshold[0].temp
= config[idx].thresh
* tsens_scaling_factor;
thresh[idx].thresh_list[i].threshold[1].temp
= config[idx].thresh_clr
* tsens_scaling_factor;
set_and_activate_threshold(
thresh[idx].thresh_list[i].sensor_id,
&thresh[idx].thresh_list[i]
.threshold[0]);
set_and_activate_threshold(
thresh[idx].thresh_list[i].sensor_id,
&thresh[idx].thresh_list[i]
.threshold[1]);
}
}
config[idx].update = 0;
}
}
static ssize_t thermal_config_debugfs_write(struct file *file,
const char __user *buffer, size_t count, loff_t *ppos)
{
int ret = 0;
char config_string[MAX_DEBUGFS_CONFIG_LEN] = { '\0' };
if (!mitigation || count > (MAX_DEBUGFS_CONFIG_LEN - 1)) {
pr_err("Invalid parameters\n");
return -EINVAL;
}
if (copy_from_user(config_string, buffer, count)) {
pr_err("Error reading debugfs command\n");
ret = -EFAULT;
goto exit_debugfs_write;
}
pr_debug("Debugfs config command string: %s\n", config_string);
if (!strcmp(config_string, DEBUGFS_DISABLE_ALL_MIT)) {
mitigation = 0;
pr_err("KTM mitigations disabled via debugfs\n");
thermal_disable_all_mitigation();
} else if (!strcmp(config_string, DEBUGFS_CONFIG_UPDATE)) {
thermal_update_mit_threshold(mit_config, MSM_LIST_MAX_NR
+ MAX_CPU_CONFIG);
}
exit_debugfs_write:
if (!ret)
return count;
return ret;
}
static int thermal_config_debugfs_read(struct seq_file *m, void *data)
{
if (!mitigation) {
seq_puts(m, "KTM Mitigations Disabled\n");
return 0;
}
thermal_boot_config_read(m, data);
thermal_emergency_config_read(m, data);
thermal_mx_config_read(m, data);
thermal_vdd_config_read(m, data);
thermal_psm_config_read(m, data);
thermal_ocr_config_read(m, data);
thermal_phase_ctrl_config_read(m, data);
return 0;
}
static int msm_thermal_dev_probe(struct platform_device *pdev)
{
int ret = 0;
char *key = NULL;
struct device_node *node = pdev->dev.of_node;
struct msm_thermal_data data;
if (!mitigation)
return ret;
memset(&data, 0, sizeof(struct msm_thermal_data));
data.pdev = pdev;
ret = msm_thermal_pre_init(&pdev->dev);
if (ret) {
pr_err("thermal pre init failed. err:%d\n", ret);
goto fail;
}
key = "qcom,sensor-id";
ret = of_property_read_u32(node, key, &data.sensor_id);
if (ret)
goto fail;
key = "qcom,poll-ms";
ret = of_property_read_u32(node, key, &data.poll_ms);
if (ret)
goto fail;
key = "qcom,limit-temp";
ret = of_property_read_u32(node, key, &data.limit_temp_degC);
if (ret)
goto fail;
key = "qcom,temp-hysteresis";
ret = of_property_read_u32(node, key, &data.temp_hysteresis_degC);
if (ret)
goto fail;
key = "qcom,freq-step";
ret = of_property_read_u32(node, key, &data.bootup_freq_step);
if (ret)
goto fail;
key = "qcom,online-hotplug-core";
if (of_property_read_bool(node, key))
online_core = true;
else
online_core = false;
probe_sensor_info(node, &data, pdev);
ret = probe_cc(node, &data, pdev);
ret = probe_freq_mitigation(node, &data, pdev);
ret = probe_cx_phase_ctrl(node, &data, pdev);
ret = probe_gfx_phase_ctrl(node, &data, pdev);
ret = probe_therm_reset(node, &data, pdev);
ret = probe_vdd_mx(node, &data, pdev);
if (ret == -EPROBE_DEFER)
goto fail;
/*
* Probe optional properties below. Call probe_psm before
* probe_vdd_rstr because rpm_regulator_get has to be called
* before devm_regulator_get
* probe_ocr should be called after probe_vdd_rstr to reuse the
* regualtor handle. calling devm_regulator_get more than once
* will fail.
*/
ret = probe_psm(node, &data, pdev);
if (ret == -EPROBE_DEFER)
goto fail;
update_cpu_topology(&pdev->dev);
ret = probe_vdd_rstr(node, &data, pdev);
if (ret == -EPROBE_DEFER)
goto fail;
ret = probe_ocr(node, &data, pdev);
ret = fetch_cpu_mitigaiton_info(&data, pdev);
if (ret) {
pr_err("Error fetching CPU mitigation information. err:%d\n",
ret);
goto probe_exit;
}
/*
* In case sysfs add nodes get called before probe function.
* Need to make sure sysfs node is created again
*/
if (psm_nodes_called) {
msm_thermal_add_psm_nodes();
psm_nodes_called = false;
}
if (vdd_rstr_nodes_called) {
msm_thermal_add_vdd_rstr_nodes();
vdd_rstr_nodes_called = false;
}
if (sensor_info_nodes_called) {
msm_thermal_add_sensor_info_nodes();
sensor_info_nodes_called = false;
}
if (ocr_nodes_called) {
msm_thermal_add_ocr_nodes();
ocr_nodes_called = false;
}
if (cluster_info_nodes_called) {
create_cpu_topology_sysfs();
cluster_info_nodes_called = false;
}
msm_thermal_ioctl_init();
ret = msm_thermal_init(&data);
msm_thermal_probed = true;
if (interrupt_mode_enable) {
interrupt_mode_init();
interrupt_mode_enable = false;
}
return ret;
fail:
if (ret)
pr_err("Failed reading node=%s, key=%s. err:%d\n",
node->full_name, key, ret);
probe_exit:
return ret;
}
static int msm_thermal_dev_exit(struct platform_device *inp_dev)
{
int i = 0;
uint32_t _cluster = 0;
struct cluster_info *cluster_ptr = NULL;
struct rail *r = NULL;
unregister_reboot_notifier(&msm_thermal_reboot_notifier);
if (msm_therm_debugfs && msm_therm_debugfs->parent)
debugfs_remove_recursive(msm_therm_debugfs->parent);
msm_thermal_ioctl_cleanup();
if (thresh) {
if (vdd_rstr_enabled) {
sensor_mgr_remove_threshold(
&thresh[MSM_VDD_RESTRICTION]);
kfree(thresh[MSM_VDD_RESTRICTION].thresh_list);
for (i = 0; i < rails_cnt; i++) {
if (!rails[i].freq_req)
continue;
r = &rails[i];
for_each_possible_cpu(i) {
devmgr_unregister_mitigation_client(
&msm_thermal_info.pdev->dev,
r->device_handle[i]);
r->device_handle[i] = NULL;
}
}
}
if (cx_phase_ctrl_enabled) {
sensor_mgr_remove_threshold(
&thresh[MSM_CX_PHASE_CTRL_HOT]);
kfree(thresh[MSM_CX_PHASE_CTRL_HOT].thresh_list);
}
if (gfx_warm_phase_ctrl_enabled) {
sensor_mgr_remove_threshold(
&thresh[MSM_GFX_PHASE_CTRL_WARM]);
kfree(thresh[MSM_GFX_PHASE_CTRL_WARM].thresh_list);
}
if (gfx_crit_phase_ctrl_enabled) {
sensor_mgr_remove_threshold(
&thresh[MSM_GFX_PHASE_CTRL_HOT]);
kfree(thresh[MSM_GFX_PHASE_CTRL_HOT].thresh_list);
}
if (ocr_enabled) {
for (i = 0; i < ocr_rail_cnt; i++)
kfree(ocr_rails[i].attr_gp.attrs);
kfree(ocr_rails);
ocr_rails = NULL;
sensor_mgr_remove_threshold(
&thresh[MSM_OCR]);
kfree(thresh[MSM_OCR].thresh_list);
}
if (vdd_mx_enabled) {
kfree(mx_kobj);
kfree(mx_attr_group.attrs);
sensor_mgr_remove_threshold(
&thresh[MSM_VDD_MX_RESTRICTION]);
kfree(thresh[MSM_VDD_MX_RESTRICTION].thresh_list);
}
kfree(thresh);
thresh = NULL;
}
kfree(table);
if (core_ptr) {
for (; _cluster < core_ptr->entity_count; _cluster++) {
cluster_ptr = &core_ptr->child_entity_ptr[_cluster];
kfree(cluster_ptr->freq_table);
}
}
return 0;
}
static int __init ktm_params(char *str)
{
if (str != NULL && !strcmp(str, "disable")) {
pr_info("KTM Disabled at Boot\n");
mitigation = 0;
}
return 0;
}
early_param("qcomthermal", ktm_params);
static struct of_device_id msm_thermal_match_table[] = {
{.compatible = "qcom,msm-thermal"},
{},
};
static struct platform_driver msm_thermal_device_driver = {
.probe = msm_thermal_dev_probe,
.driver = {
.name = "msm-thermal",
.owner = THIS_MODULE,
.of_match_table = msm_thermal_match_table,
},
.remove = msm_thermal_dev_exit,
};
int __init msm_thermal_device_init(void)
{
return platform_driver_register(&msm_thermal_device_driver);
}
arch_initcall(msm_thermal_device_init);
int __init msm_thermal_late_init(void)
{
if (!msm_thermal_probed)
return 0;
if (num_possible_cpus() > 1)
msm_thermal_add_cc_nodes();
msm_thermal_add_psm_nodes();
msm_thermal_add_vdd_rstr_nodes();
msm_thermal_add_sensor_info_nodes();
if (ocr_reg_init_defer) {
if (!ocr_reg_init(msm_thermal_info.pdev)) {
ocr_enabled = true;
msm_thermal_add_ocr_nodes();
}
}
msm_thermal_add_mx_nodes();
interrupt_mode_init();
create_cpu_topology_sysfs();
create_thermal_debugfs();
msm_thermal_add_bucket_info_nodes();
return 0;
}
late_initcall(msm_thermal_late_init);