647 lines
18 KiB
C
647 lines
18 KiB
C
/*
|
|
* Basic general purpose allocator for managing special purpose
|
|
* memory, for example, memory that is not managed by the regular
|
|
* kmalloc/kfree interface. Uses for this includes on-device special
|
|
* memory, uncached memory etc.
|
|
*
|
|
* It is safe to use the allocator in NMI handlers and other special
|
|
* unblockable contexts that could otherwise deadlock on locks. This
|
|
* is implemented by using atomic operations and retries on any
|
|
* conflicts. The disadvantage is that there may be livelocks in
|
|
* extreme cases. For better scalability, one allocator can be used
|
|
* for each CPU.
|
|
*
|
|
* The lockless operation only works if there is enough memory
|
|
* available. If new memory is added to the pool a lock has to be
|
|
* still taken. So any user relying on locklessness has to ensure
|
|
* that sufficient memory is preallocated.
|
|
*
|
|
* The basic atomic operation of this allocator is cmpxchg on long.
|
|
* On architectures that don't have NMI-safe cmpxchg implementation,
|
|
* the allocator can NOT be used in NMI handler. So code uses the
|
|
* allocator in NMI handler should depend on
|
|
* CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG.
|
|
*
|
|
* Copyright 2005 (C) Jes Sorensen <jes@trained-monkey.org>
|
|
*
|
|
* This source code is licensed under the GNU General Public License,
|
|
* Version 2. See the file COPYING for more details.
|
|
*/
|
|
|
|
#include <linux/slab.h>
|
|
#include <linux/export.h>
|
|
#include <linux/bitmap.h>
|
|
#include <linux/rculist.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/genalloc.h>
|
|
#include <linux/of_address.h>
|
|
#include <linux/of_device.h>
|
|
|
|
static inline size_t chunk_size(const struct gen_pool_chunk *chunk)
|
|
{
|
|
return chunk->end_addr - chunk->start_addr + 1;
|
|
}
|
|
|
|
static int set_bits_ll(unsigned long *addr, unsigned long mask_to_set)
|
|
{
|
|
unsigned long val, nval;
|
|
|
|
nval = *addr;
|
|
do {
|
|
val = nval;
|
|
if (val & mask_to_set)
|
|
return -EBUSY;
|
|
cpu_relax();
|
|
} while ((nval = cmpxchg(addr, val, val | mask_to_set)) != val);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int clear_bits_ll(unsigned long *addr, unsigned long mask_to_clear)
|
|
{
|
|
unsigned long val, nval;
|
|
|
|
nval = *addr;
|
|
do {
|
|
val = nval;
|
|
if ((val & mask_to_clear) != mask_to_clear)
|
|
return -EBUSY;
|
|
cpu_relax();
|
|
} while ((nval = cmpxchg(addr, val, val & ~mask_to_clear)) != val);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* bitmap_set_ll - set the specified number of bits at the specified position
|
|
* @map: pointer to a bitmap
|
|
* @start: a bit position in @map
|
|
* @nr: number of bits to set
|
|
*
|
|
* Set @nr bits start from @start in @map lock-lessly. Several users
|
|
* can set/clear the same bitmap simultaneously without lock. If two
|
|
* users set the same bit, one user will return remain bits, otherwise
|
|
* return 0.
|
|
*/
|
|
static int bitmap_set_ll(unsigned long *map, int start, int nr)
|
|
{
|
|
unsigned long *p = map + BIT_WORD(start);
|
|
const int size = start + nr;
|
|
int bits_to_set = BITS_PER_LONG - (start % BITS_PER_LONG);
|
|
unsigned long mask_to_set = BITMAP_FIRST_WORD_MASK(start);
|
|
|
|
while (nr - bits_to_set >= 0) {
|
|
if (set_bits_ll(p, mask_to_set))
|
|
return nr;
|
|
nr -= bits_to_set;
|
|
bits_to_set = BITS_PER_LONG;
|
|
mask_to_set = ~0UL;
|
|
p++;
|
|
}
|
|
if (nr) {
|
|
mask_to_set &= BITMAP_LAST_WORD_MASK(size);
|
|
if (set_bits_ll(p, mask_to_set))
|
|
return nr;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* bitmap_clear_ll - clear the specified number of bits at the specified position
|
|
* @map: pointer to a bitmap
|
|
* @start: a bit position in @map
|
|
* @nr: number of bits to set
|
|
*
|
|
* Clear @nr bits start from @start in @map lock-lessly. Several users
|
|
* can set/clear the same bitmap simultaneously without lock. If two
|
|
* users clear the same bit, one user will return remain bits,
|
|
* otherwise return 0.
|
|
*/
|
|
static int bitmap_clear_ll(unsigned long *map, int start, int nr)
|
|
{
|
|
unsigned long *p = map + BIT_WORD(start);
|
|
const int size = start + nr;
|
|
int bits_to_clear = BITS_PER_LONG - (start % BITS_PER_LONG);
|
|
unsigned long mask_to_clear = BITMAP_FIRST_WORD_MASK(start);
|
|
|
|
while (nr - bits_to_clear >= 0) {
|
|
if (clear_bits_ll(p, mask_to_clear))
|
|
return nr;
|
|
nr -= bits_to_clear;
|
|
bits_to_clear = BITS_PER_LONG;
|
|
mask_to_clear = ~0UL;
|
|
p++;
|
|
}
|
|
if (nr) {
|
|
mask_to_clear &= BITMAP_LAST_WORD_MASK(size);
|
|
if (clear_bits_ll(p, mask_to_clear))
|
|
return nr;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* gen_pool_create - create a new special memory pool
|
|
* @min_alloc_order: log base 2 of number of bytes each bitmap bit represents
|
|
* @nid: node id of the node the pool structure should be allocated on, or -1
|
|
*
|
|
* Create a new special memory pool that can be used to manage special purpose
|
|
* memory not managed by the regular kmalloc/kfree interface.
|
|
*/
|
|
struct gen_pool *gen_pool_create(int min_alloc_order, int nid)
|
|
{
|
|
struct gen_pool *pool;
|
|
|
|
pool = kmalloc_node(sizeof(struct gen_pool), GFP_KERNEL, nid);
|
|
if (pool != NULL) {
|
|
spin_lock_init(&pool->lock);
|
|
INIT_LIST_HEAD(&pool->chunks);
|
|
pool->min_alloc_order = min_alloc_order;
|
|
pool->algo = gen_pool_first_fit;
|
|
pool->data = NULL;
|
|
}
|
|
return pool;
|
|
}
|
|
EXPORT_SYMBOL(gen_pool_create);
|
|
|
|
/**
|
|
* gen_pool_add_virt - add a new chunk of special memory to the pool
|
|
* @pool: pool to add new memory chunk to
|
|
* @virt: virtual starting address of memory chunk to add to pool
|
|
* @phys: physical starting address of memory chunk to add to pool
|
|
* @size: size in bytes of the memory chunk to add to pool
|
|
* @nid: node id of the node the chunk structure and bitmap should be
|
|
* allocated on, or -1
|
|
*
|
|
* Add a new chunk of special memory to the specified pool.
|
|
*
|
|
* Returns 0 on success or a -ve errno on failure.
|
|
*/
|
|
int gen_pool_add_virt(struct gen_pool *pool, unsigned long virt, phys_addr_t phys,
|
|
size_t size, int nid)
|
|
{
|
|
struct gen_pool_chunk *chunk;
|
|
int nbits = size >> pool->min_alloc_order;
|
|
int nbytes = sizeof(struct gen_pool_chunk) +
|
|
BITS_TO_LONGS(nbits) * sizeof(long);
|
|
|
|
chunk = kzalloc_node(nbytes, GFP_KERNEL, nid);
|
|
if (unlikely(chunk == NULL))
|
|
return -ENOMEM;
|
|
|
|
chunk->phys_addr = phys;
|
|
chunk->start_addr = virt;
|
|
chunk->end_addr = virt + size - 1;
|
|
atomic_set(&chunk->avail, size);
|
|
|
|
spin_lock(&pool->lock);
|
|
list_add_rcu(&chunk->next_chunk, &pool->chunks);
|
|
spin_unlock(&pool->lock);
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL(gen_pool_add_virt);
|
|
|
|
/**
|
|
* gen_pool_virt_to_phys - return the physical address of memory
|
|
* @pool: pool to allocate from
|
|
* @addr: starting address of memory
|
|
*
|
|
* Returns the physical address on success, or -1 on error.
|
|
*/
|
|
phys_addr_t gen_pool_virt_to_phys(struct gen_pool *pool, unsigned long addr)
|
|
{
|
|
struct gen_pool_chunk *chunk;
|
|
phys_addr_t paddr = -1;
|
|
|
|
rcu_read_lock();
|
|
list_for_each_entry_rcu(chunk, &pool->chunks, next_chunk) {
|
|
if (addr >= chunk->start_addr && addr <= chunk->end_addr) {
|
|
paddr = chunk->phys_addr + (addr - chunk->start_addr);
|
|
break;
|
|
}
|
|
}
|
|
rcu_read_unlock();
|
|
|
|
return paddr;
|
|
}
|
|
EXPORT_SYMBOL(gen_pool_virt_to_phys);
|
|
|
|
/**
|
|
* gen_pool_destroy - destroy a special memory pool
|
|
* @pool: pool to destroy
|
|
*
|
|
* Destroy the specified special memory pool. Verifies that there are no
|
|
* outstanding allocations.
|
|
*/
|
|
void gen_pool_destroy(struct gen_pool *pool)
|
|
{
|
|
struct list_head *_chunk, *_next_chunk;
|
|
struct gen_pool_chunk *chunk;
|
|
int order = pool->min_alloc_order;
|
|
int bit, end_bit;
|
|
|
|
list_for_each_safe(_chunk, _next_chunk, &pool->chunks) {
|
|
chunk = list_entry(_chunk, struct gen_pool_chunk, next_chunk);
|
|
list_del(&chunk->next_chunk);
|
|
|
|
end_bit = chunk_size(chunk) >> order;
|
|
bit = find_next_bit(chunk->bits, end_bit, 0);
|
|
BUG_ON(bit < end_bit);
|
|
|
|
kfree(chunk);
|
|
}
|
|
kfree(pool);
|
|
return;
|
|
}
|
|
EXPORT_SYMBOL(gen_pool_destroy);
|
|
|
|
/**
|
|
* gen_pool_alloc - allocate special memory from the pool
|
|
* @pool: pool to allocate from
|
|
* @size: number of bytes to allocate from the pool
|
|
*
|
|
* Allocate the requested number of bytes from the specified pool.
|
|
* Uses the pool allocation function (with first-fit algorithm by default).
|
|
* Can not be used in NMI handler on architectures without
|
|
* NMI-safe cmpxchg implementation.
|
|
*/
|
|
unsigned long gen_pool_alloc(struct gen_pool *pool, size_t size)
|
|
{
|
|
struct gen_pool_chunk *chunk;
|
|
unsigned long addr = 0;
|
|
int order = pool->min_alloc_order;
|
|
int nbits, start_bit = 0, end_bit, remain;
|
|
|
|
#ifndef CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG
|
|
BUG_ON(in_nmi());
|
|
#endif
|
|
|
|
if (size == 0)
|
|
return 0;
|
|
|
|
nbits = (size + (1UL << order) - 1) >> order;
|
|
rcu_read_lock();
|
|
list_for_each_entry_rcu(chunk, &pool->chunks, next_chunk) {
|
|
if (size > atomic_read(&chunk->avail))
|
|
continue;
|
|
|
|
end_bit = chunk_size(chunk) >> order;
|
|
retry:
|
|
start_bit = pool->algo(chunk->bits, end_bit, start_bit, nbits,
|
|
pool->data);
|
|
if (start_bit >= end_bit)
|
|
continue;
|
|
remain = bitmap_set_ll(chunk->bits, start_bit, nbits);
|
|
if (remain) {
|
|
remain = bitmap_clear_ll(chunk->bits, start_bit,
|
|
nbits - remain);
|
|
BUG_ON(remain);
|
|
goto retry;
|
|
}
|
|
|
|
addr = chunk->start_addr + ((unsigned long)start_bit << order);
|
|
size = nbits << order;
|
|
atomic_sub(size, &chunk->avail);
|
|
break;
|
|
}
|
|
rcu_read_unlock();
|
|
return addr;
|
|
}
|
|
EXPORT_SYMBOL(gen_pool_alloc);
|
|
|
|
/**
|
|
* gen_pool_dma_alloc - allocate special memory from the pool for DMA usage
|
|
* @pool: pool to allocate from
|
|
* @size: number of bytes to allocate from the pool
|
|
* @dma: dma-view physical address return value. Use NULL if unneeded.
|
|
*
|
|
* Allocate the requested number of bytes from the specified pool.
|
|
* Uses the pool allocation function (with first-fit algorithm by default).
|
|
* Can not be used in NMI handler on architectures without
|
|
* NMI-safe cmpxchg implementation.
|
|
*/
|
|
void *gen_pool_dma_alloc(struct gen_pool *pool, size_t size, dma_addr_t *dma)
|
|
{
|
|
unsigned long vaddr;
|
|
|
|
if (!pool)
|
|
return NULL;
|
|
|
|
vaddr = gen_pool_alloc(pool, size);
|
|
if (!vaddr)
|
|
return NULL;
|
|
|
|
if (dma)
|
|
*dma = gen_pool_virt_to_phys(pool, vaddr);
|
|
|
|
return (void *)vaddr;
|
|
}
|
|
EXPORT_SYMBOL(gen_pool_dma_alloc);
|
|
|
|
/**
|
|
* gen_pool_free - free allocated special memory back to the pool
|
|
* @pool: pool to free to
|
|
* @addr: starting address of memory to free back to pool
|
|
* @size: size in bytes of memory to free
|
|
*
|
|
* Free previously allocated special memory back to the specified
|
|
* pool. Can not be used in NMI handler on architectures without
|
|
* NMI-safe cmpxchg implementation.
|
|
*/
|
|
void gen_pool_free(struct gen_pool *pool, unsigned long addr, size_t size)
|
|
{
|
|
struct gen_pool_chunk *chunk;
|
|
int order = pool->min_alloc_order;
|
|
int start_bit, nbits, remain;
|
|
|
|
#ifndef CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG
|
|
BUG_ON(in_nmi());
|
|
#endif
|
|
|
|
nbits = (size + (1UL << order) - 1) >> order;
|
|
rcu_read_lock();
|
|
list_for_each_entry_rcu(chunk, &pool->chunks, next_chunk) {
|
|
if (addr >= chunk->start_addr && addr <= chunk->end_addr) {
|
|
BUG_ON(addr + size - 1 > chunk->end_addr);
|
|
start_bit = (addr - chunk->start_addr) >> order;
|
|
remain = bitmap_clear_ll(chunk->bits, start_bit, nbits);
|
|
BUG_ON(remain);
|
|
size = nbits << order;
|
|
atomic_add(size, &chunk->avail);
|
|
rcu_read_unlock();
|
|
return;
|
|
}
|
|
}
|
|
rcu_read_unlock();
|
|
BUG();
|
|
}
|
|
EXPORT_SYMBOL(gen_pool_free);
|
|
|
|
/**
|
|
* gen_pool_for_each_chunk - call func for every chunk of generic memory pool
|
|
* @pool: the generic memory pool
|
|
* @func: func to call
|
|
* @data: additional data used by @func
|
|
*
|
|
* Call @func for every chunk of generic memory pool. The @func is
|
|
* called with rcu_read_lock held.
|
|
*/
|
|
void gen_pool_for_each_chunk(struct gen_pool *pool,
|
|
void (*func)(struct gen_pool *pool, struct gen_pool_chunk *chunk, void *data),
|
|
void *data)
|
|
{
|
|
struct gen_pool_chunk *chunk;
|
|
|
|
rcu_read_lock();
|
|
list_for_each_entry_rcu(chunk, &(pool)->chunks, next_chunk)
|
|
func(pool, chunk, data);
|
|
rcu_read_unlock();
|
|
}
|
|
EXPORT_SYMBOL(gen_pool_for_each_chunk);
|
|
|
|
/**
|
|
* addr_in_gen_pool - checks if an address falls within the range of a pool
|
|
* @pool: the generic memory pool
|
|
* @start: start address
|
|
* @size: size of the region
|
|
*
|
|
* Check if the range of addresses falls within the specified pool. Returns
|
|
* true if the entire range is contained in the pool and false otherwise.
|
|
*/
|
|
bool addr_in_gen_pool(struct gen_pool *pool, unsigned long start,
|
|
size_t size)
|
|
{
|
|
bool found = false;
|
|
unsigned long end = start + size;
|
|
struct gen_pool_chunk *chunk;
|
|
|
|
rcu_read_lock();
|
|
list_for_each_entry_rcu(chunk, &(pool)->chunks, next_chunk) {
|
|
if (start >= chunk->start_addr && start <= chunk->end_addr) {
|
|
if (end <= chunk->end_addr) {
|
|
found = true;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
rcu_read_unlock();
|
|
return found;
|
|
}
|
|
|
|
/**
|
|
* gen_pool_avail - get available free space of the pool
|
|
* @pool: pool to get available free space
|
|
*
|
|
* Return available free space of the specified pool.
|
|
*/
|
|
size_t gen_pool_avail(struct gen_pool *pool)
|
|
{
|
|
struct gen_pool_chunk *chunk;
|
|
size_t avail = 0;
|
|
|
|
rcu_read_lock();
|
|
list_for_each_entry_rcu(chunk, &pool->chunks, next_chunk)
|
|
avail += atomic_read(&chunk->avail);
|
|
rcu_read_unlock();
|
|
return avail;
|
|
}
|
|
EXPORT_SYMBOL_GPL(gen_pool_avail);
|
|
|
|
/**
|
|
* gen_pool_size - get size in bytes of memory managed by the pool
|
|
* @pool: pool to get size
|
|
*
|
|
* Return size in bytes of memory managed by the pool.
|
|
*/
|
|
size_t gen_pool_size(struct gen_pool *pool)
|
|
{
|
|
struct gen_pool_chunk *chunk;
|
|
size_t size = 0;
|
|
|
|
rcu_read_lock();
|
|
list_for_each_entry_rcu(chunk, &pool->chunks, next_chunk)
|
|
size += chunk_size(chunk);
|
|
rcu_read_unlock();
|
|
return size;
|
|
}
|
|
EXPORT_SYMBOL_GPL(gen_pool_size);
|
|
|
|
/**
|
|
* gen_pool_set_algo - set the allocation algorithm
|
|
* @pool: pool to change allocation algorithm
|
|
* @algo: custom algorithm function
|
|
* @data: additional data used by @algo
|
|
*
|
|
* Call @algo for each memory allocation in the pool.
|
|
* If @algo is NULL use gen_pool_first_fit as default
|
|
* memory allocation function.
|
|
*/
|
|
void gen_pool_set_algo(struct gen_pool *pool, genpool_algo_t algo, void *data)
|
|
{
|
|
rcu_read_lock();
|
|
|
|
pool->algo = algo;
|
|
if (!pool->algo)
|
|
pool->algo = gen_pool_first_fit;
|
|
|
|
pool->data = data;
|
|
|
|
rcu_read_unlock();
|
|
}
|
|
EXPORT_SYMBOL(gen_pool_set_algo);
|
|
|
|
/**
|
|
* gen_pool_first_fit - find the first available region
|
|
* of memory matching the size requirement (no alignment constraint)
|
|
* @map: The address to base the search on
|
|
* @size: The bitmap size in bits
|
|
* @start: The bitnumber to start searching at
|
|
* @nr: The number of zeroed bits we're looking for
|
|
* @data: additional data - unused
|
|
*/
|
|
unsigned long gen_pool_first_fit(unsigned long *map, unsigned long size,
|
|
unsigned long start, unsigned int nr, void *data)
|
|
{
|
|
return bitmap_find_next_zero_area(map, size, start, nr, 0);
|
|
}
|
|
EXPORT_SYMBOL(gen_pool_first_fit);
|
|
|
|
/**
|
|
* gen_pool_first_fit_order_align - find the first available region
|
|
* of memory matching the size requirement. The region will be aligned
|
|
* to the order of the size specified.
|
|
* @map: The address to base the search on
|
|
* @size: The bitmap size in bits
|
|
* @start: The bitnumber to start searching at
|
|
* @nr: The number of zeroed bits we're looking for
|
|
* @data: additional data - unused
|
|
*/
|
|
unsigned long gen_pool_first_fit_order_align(unsigned long *map,
|
|
unsigned long size, unsigned long start,
|
|
unsigned int nr, void *data)
|
|
{
|
|
unsigned long align_mask = roundup_pow_of_two(nr) - 1;
|
|
|
|
return bitmap_find_next_zero_area(map, size, start, nr, align_mask);
|
|
}
|
|
EXPORT_SYMBOL(gen_pool_first_fit_order_align);
|
|
|
|
/**
|
|
* gen_pool_best_fit - find the best fitting region of memory
|
|
* macthing the size requirement (no alignment constraint)
|
|
* @map: The address to base the search on
|
|
* @size: The bitmap size in bits
|
|
* @start: The bitnumber to start searching at
|
|
* @nr: The number of zeroed bits we're looking for
|
|
* @data: additional data - unused
|
|
*
|
|
* Iterate over the bitmap to find the smallest free region
|
|
* which we can allocate the memory.
|
|
*/
|
|
unsigned long gen_pool_best_fit(unsigned long *map, unsigned long size,
|
|
unsigned long start, unsigned int nr, void *data)
|
|
{
|
|
unsigned long start_bit = size;
|
|
unsigned long len = size + 1;
|
|
unsigned long index;
|
|
|
|
index = bitmap_find_next_zero_area(map, size, start, nr, 0);
|
|
|
|
while (index < size) {
|
|
int next_bit = find_next_bit(map, size, index + nr);
|
|
if ((next_bit - index) < len) {
|
|
len = next_bit - index;
|
|
start_bit = index;
|
|
if (len == nr)
|
|
return start_bit;
|
|
}
|
|
index = bitmap_find_next_zero_area(map, size,
|
|
next_bit + 1, nr, 0);
|
|
}
|
|
|
|
return start_bit;
|
|
}
|
|
EXPORT_SYMBOL(gen_pool_best_fit);
|
|
|
|
static void devm_gen_pool_release(struct device *dev, void *res)
|
|
{
|
|
gen_pool_destroy(*(struct gen_pool **)res);
|
|
}
|
|
|
|
/**
|
|
* devm_gen_pool_create - managed gen_pool_create
|
|
* @dev: device that provides the gen_pool
|
|
* @min_alloc_order: log base 2 of number of bytes each bitmap bit represents
|
|
* @nid: node id of the node the pool structure should be allocated on, or -1
|
|
*
|
|
* Create a new special memory pool that can be used to manage special purpose
|
|
* memory not managed by the regular kmalloc/kfree interface. The pool will be
|
|
* automatically destroyed by the device management code.
|
|
*/
|
|
struct gen_pool *devm_gen_pool_create(struct device *dev, int min_alloc_order,
|
|
int nid)
|
|
{
|
|
struct gen_pool **ptr, *pool;
|
|
|
|
ptr = devres_alloc(devm_gen_pool_release, sizeof(*ptr), GFP_KERNEL);
|
|
|
|
pool = gen_pool_create(min_alloc_order, nid);
|
|
if (pool) {
|
|
*ptr = pool;
|
|
devres_add(dev, ptr);
|
|
} else {
|
|
devres_free(ptr);
|
|
}
|
|
|
|
return pool;
|
|
}
|
|
EXPORT_SYMBOL(devm_gen_pool_create);
|
|
|
|
/**
|
|
* dev_get_gen_pool - Obtain the gen_pool (if any) for a device
|
|
* @dev: device to retrieve the gen_pool from
|
|
*
|
|
* Returns the gen_pool for the device if one is present, or NULL.
|
|
*/
|
|
struct gen_pool *dev_get_gen_pool(struct device *dev)
|
|
{
|
|
struct gen_pool **p = devres_find(dev, devm_gen_pool_release, NULL,
|
|
NULL);
|
|
|
|
if (!p)
|
|
return NULL;
|
|
return *p;
|
|
}
|
|
EXPORT_SYMBOL_GPL(dev_get_gen_pool);
|
|
|
|
#ifdef CONFIG_OF
|
|
/**
|
|
* of_get_named_gen_pool - find a pool by phandle property
|
|
* @np: device node
|
|
* @propname: property name containing phandle(s)
|
|
* @index: index into the phandle array
|
|
*
|
|
* Returns the pool that contains the chunk starting at the physical
|
|
* address of the device tree node pointed at by the phandle property,
|
|
* or NULL if not found.
|
|
*/
|
|
struct gen_pool *of_get_named_gen_pool(struct device_node *np,
|
|
const char *propname, int index)
|
|
{
|
|
struct platform_device *pdev;
|
|
struct device_node *np_pool;
|
|
|
|
np_pool = of_parse_phandle(np, propname, index);
|
|
if (!np_pool)
|
|
return NULL;
|
|
pdev = of_find_device_by_node(np_pool);
|
|
of_node_put(np_pool);
|
|
if (!pdev)
|
|
return NULL;
|
|
return dev_get_gen_pool(&pdev->dev);
|
|
}
|
|
EXPORT_SYMBOL_GPL(of_get_named_gen_pool);
|
|
#endif /* CONFIG_OF */
|