android_kernel_samsung_hero.../sound/firewire/dice.c
2016-08-17 16:41:52 +08:00

1511 lines
37 KiB
C

/*
* TC Applied Technologies Digital Interface Communications Engine driver
*
* Copyright (c) Clemens Ladisch <clemens@ladisch.de>
* Licensed under the terms of the GNU General Public License, version 2.
*/
#include <linux/compat.h>
#include <linux/completion.h>
#include <linux/delay.h>
#include <linux/device.h>
#include <linux/firewire.h>
#include <linux/firewire-constants.h>
#include <linux/jiffies.h>
#include <linux/module.h>
#include <linux/mod_devicetable.h>
#include <linux/mutex.h>
#include <linux/slab.h>
#include <linux/spinlock.h>
#include <linux/wait.h>
#include <sound/control.h>
#include <sound/core.h>
#include <sound/firewire.h>
#include <sound/hwdep.h>
#include <sound/info.h>
#include <sound/initval.h>
#include <sound/pcm.h>
#include <sound/pcm_params.h>
#include "amdtp.h"
#include "iso-resources.h"
#include "lib.h"
#include "dice-interface.h"
struct dice {
struct snd_card *card;
struct fw_unit *unit;
spinlock_t lock;
struct mutex mutex;
unsigned int global_offset;
unsigned int rx_offset;
unsigned int clock_caps;
unsigned int rx_channels[3];
unsigned int rx_midi_ports[3];
struct fw_address_handler notification_handler;
int owner_generation;
int dev_lock_count; /* > 0 driver, < 0 userspace */
bool dev_lock_changed;
bool global_enabled;
struct completion clock_accepted;
wait_queue_head_t hwdep_wait;
u32 notification_bits;
struct fw_iso_resources resources;
struct amdtp_stream stream;
};
MODULE_DESCRIPTION("DICE driver");
MODULE_AUTHOR("Clemens Ladisch <clemens@ladisch.de>");
MODULE_LICENSE("GPL v2");
static const unsigned int dice_rates[] = {
/* mode 0 */
[0] = 32000,
[1] = 44100,
[2] = 48000,
/* mode 1 */
[3] = 88200,
[4] = 96000,
/* mode 2 */
[5] = 176400,
[6] = 192000,
};
static unsigned int rate_to_index(unsigned int rate)
{
unsigned int i;
for (i = 0; i < ARRAY_SIZE(dice_rates); ++i)
if (dice_rates[i] == rate)
return i;
return 0;
}
static unsigned int rate_index_to_mode(unsigned int rate_index)
{
return ((int)rate_index - 1) / 2;
}
static void dice_lock_changed(struct dice *dice)
{
dice->dev_lock_changed = true;
wake_up(&dice->hwdep_wait);
}
static int dice_try_lock(struct dice *dice)
{
int err;
spin_lock_irq(&dice->lock);
if (dice->dev_lock_count < 0) {
err = -EBUSY;
goto out;
}
if (dice->dev_lock_count++ == 0)
dice_lock_changed(dice);
err = 0;
out:
spin_unlock_irq(&dice->lock);
return err;
}
static void dice_unlock(struct dice *dice)
{
spin_lock_irq(&dice->lock);
if (WARN_ON(dice->dev_lock_count <= 0))
goto out;
if (--dice->dev_lock_count == 0)
dice_lock_changed(dice);
out:
spin_unlock_irq(&dice->lock);
}
static inline u64 global_address(struct dice *dice, unsigned int offset)
{
return DICE_PRIVATE_SPACE + dice->global_offset + offset;
}
// TODO: rx index
static inline u64 rx_address(struct dice *dice, unsigned int offset)
{
return DICE_PRIVATE_SPACE + dice->rx_offset + offset;
}
static int dice_owner_set(struct dice *dice)
{
struct fw_device *device = fw_parent_device(dice->unit);
__be64 *buffer;
int err, errors = 0;
buffer = kmalloc(2 * 8, GFP_KERNEL);
if (!buffer)
return -ENOMEM;
for (;;) {
buffer[0] = cpu_to_be64(OWNER_NO_OWNER);
buffer[1] = cpu_to_be64(
((u64)device->card->node_id << OWNER_NODE_SHIFT) |
dice->notification_handler.offset);
dice->owner_generation = device->generation;
smp_rmb(); /* node_id vs. generation */
err = snd_fw_transaction(dice->unit,
TCODE_LOCK_COMPARE_SWAP,
global_address(dice, GLOBAL_OWNER),
buffer, 2 * 8,
FW_FIXED_GENERATION |
dice->owner_generation);
if (err == 0) {
if (buffer[0] != cpu_to_be64(OWNER_NO_OWNER)) {
dev_err(&dice->unit->device,
"device is already in use\n");
err = -EBUSY;
}
break;
}
if (err != -EAGAIN || ++errors >= 3)
break;
msleep(20);
}
kfree(buffer);
return err;
}
static int dice_owner_update(struct dice *dice)
{
struct fw_device *device = fw_parent_device(dice->unit);
__be64 *buffer;
int err;
if (dice->owner_generation == -1)
return 0;
buffer = kmalloc(2 * 8, GFP_KERNEL);
if (!buffer)
return -ENOMEM;
buffer[0] = cpu_to_be64(OWNER_NO_OWNER);
buffer[1] = cpu_to_be64(
((u64)device->card->node_id << OWNER_NODE_SHIFT) |
dice->notification_handler.offset);
dice->owner_generation = device->generation;
smp_rmb(); /* node_id vs. generation */
err = snd_fw_transaction(dice->unit, TCODE_LOCK_COMPARE_SWAP,
global_address(dice, GLOBAL_OWNER),
buffer, 2 * 8,
FW_FIXED_GENERATION | dice->owner_generation);
if (err == 0) {
if (buffer[0] != cpu_to_be64(OWNER_NO_OWNER)) {
dev_err(&dice->unit->device,
"device is already in use\n");
err = -EBUSY;
}
} else if (err == -EAGAIN) {
err = 0; /* try again later */
}
kfree(buffer);
if (err < 0)
dice->owner_generation = -1;
return err;
}
static void dice_owner_clear(struct dice *dice)
{
struct fw_device *device = fw_parent_device(dice->unit);
__be64 *buffer;
buffer = kmalloc(2 * 8, GFP_KERNEL);
if (!buffer)
return;
buffer[0] = cpu_to_be64(
((u64)device->card->node_id << OWNER_NODE_SHIFT) |
dice->notification_handler.offset);
buffer[1] = cpu_to_be64(OWNER_NO_OWNER);
snd_fw_transaction(dice->unit, TCODE_LOCK_COMPARE_SWAP,
global_address(dice, GLOBAL_OWNER),
buffer, 2 * 8, FW_QUIET |
FW_FIXED_GENERATION | dice->owner_generation);
kfree(buffer);
dice->owner_generation = -1;
}
static int dice_enable_set(struct dice *dice)
{
__be32 value;
int err;
value = cpu_to_be32(1);
err = snd_fw_transaction(dice->unit, TCODE_WRITE_QUADLET_REQUEST,
global_address(dice, GLOBAL_ENABLE),
&value, 4,
FW_FIXED_GENERATION | dice->owner_generation);
if (err < 0)
return err;
dice->global_enabled = true;
return 0;
}
static void dice_enable_clear(struct dice *dice)
{
__be32 value;
if (!dice->global_enabled)
return;
value = 0;
snd_fw_transaction(dice->unit, TCODE_WRITE_QUADLET_REQUEST,
global_address(dice, GLOBAL_ENABLE),
&value, 4, FW_QUIET |
FW_FIXED_GENERATION | dice->owner_generation);
dice->global_enabled = false;
}
static void dice_notification(struct fw_card *card, struct fw_request *request,
int tcode, int destination, int source,
int generation, unsigned long long offset,
void *data, size_t length, void *callback_data)
{
struct dice *dice = callback_data;
u32 bits;
unsigned long flags;
if (tcode != TCODE_WRITE_QUADLET_REQUEST) {
fw_send_response(card, request, RCODE_TYPE_ERROR);
return;
}
if ((offset & 3) != 0) {
fw_send_response(card, request, RCODE_ADDRESS_ERROR);
return;
}
bits = be32_to_cpup(data);
spin_lock_irqsave(&dice->lock, flags);
dice->notification_bits |= bits;
spin_unlock_irqrestore(&dice->lock, flags);
fw_send_response(card, request, RCODE_COMPLETE);
if (bits & NOTIFY_CLOCK_ACCEPTED)
complete(&dice->clock_accepted);
wake_up(&dice->hwdep_wait);
}
static int dice_rate_constraint(struct snd_pcm_hw_params *params,
struct snd_pcm_hw_rule *rule)
{
struct dice *dice = rule->private;
const struct snd_interval *channels =
hw_param_interval_c(params, SNDRV_PCM_HW_PARAM_CHANNELS);
struct snd_interval *rate =
hw_param_interval(params, SNDRV_PCM_HW_PARAM_RATE);
struct snd_interval allowed_rates = {
.min = UINT_MAX, .max = 0, .integer = 1
};
unsigned int i, mode;
for (i = 0; i < ARRAY_SIZE(dice_rates); ++i) {
mode = rate_index_to_mode(i);
if ((dice->clock_caps & (1 << i)) &&
snd_interval_test(channels, dice->rx_channels[mode])) {
allowed_rates.min = min(allowed_rates.min,
dice_rates[i]);
allowed_rates.max = max(allowed_rates.max,
dice_rates[i]);
}
}
return snd_interval_refine(rate, &allowed_rates);
}
static int dice_channels_constraint(struct snd_pcm_hw_params *params,
struct snd_pcm_hw_rule *rule)
{
struct dice *dice = rule->private;
const struct snd_interval *rate =
hw_param_interval_c(params, SNDRV_PCM_HW_PARAM_RATE);
struct snd_interval *channels =
hw_param_interval(params, SNDRV_PCM_HW_PARAM_CHANNELS);
struct snd_interval allowed_channels = {
.min = UINT_MAX, .max = 0, .integer = 1
};
unsigned int i, mode;
for (i = 0; i < ARRAY_SIZE(dice_rates); ++i)
if ((dice->clock_caps & (1 << i)) &&
snd_interval_test(rate, dice_rates[i])) {
mode = rate_index_to_mode(i);
allowed_channels.min = min(allowed_channels.min,
dice->rx_channels[mode]);
allowed_channels.max = max(allowed_channels.max,
dice->rx_channels[mode]);
}
return snd_interval_refine(channels, &allowed_channels);
}
static int dice_open(struct snd_pcm_substream *substream)
{
static const struct snd_pcm_hardware hardware = {
.info = SNDRV_PCM_INFO_MMAP |
SNDRV_PCM_INFO_MMAP_VALID |
SNDRV_PCM_INFO_BATCH |
SNDRV_PCM_INFO_INTERLEAVED |
SNDRV_PCM_INFO_BLOCK_TRANSFER,
.formats = AMDTP_OUT_PCM_FORMAT_BITS,
.channels_min = UINT_MAX,
.channels_max = 0,
.buffer_bytes_max = 16 * 1024 * 1024,
.period_bytes_min = 1,
.period_bytes_max = UINT_MAX,
.periods_min = 1,
.periods_max = UINT_MAX,
};
struct dice *dice = substream->private_data;
struct snd_pcm_runtime *runtime = substream->runtime;
unsigned int i;
int err;
err = dice_try_lock(dice);
if (err < 0)
goto error;
runtime->hw = hardware;
for (i = 0; i < ARRAY_SIZE(dice_rates); ++i)
if (dice->clock_caps & (1 << i))
runtime->hw.rates |=
snd_pcm_rate_to_rate_bit(dice_rates[i]);
snd_pcm_limit_hw_rates(runtime);
for (i = 0; i < 3; ++i)
if (dice->rx_channels[i]) {
runtime->hw.channels_min = min(runtime->hw.channels_min,
dice->rx_channels[i]);
runtime->hw.channels_max = max(runtime->hw.channels_max,
dice->rx_channels[i]);
}
err = snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_RATE,
dice_rate_constraint, dice,
SNDRV_PCM_HW_PARAM_CHANNELS, -1);
if (err < 0)
goto err_lock;
err = snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS,
dice_channels_constraint, dice,
SNDRV_PCM_HW_PARAM_RATE, -1);
if (err < 0)
goto err_lock;
err = amdtp_stream_add_pcm_hw_constraints(&dice->stream, runtime);
if (err < 0)
goto err_lock;
return 0;
err_lock:
dice_unlock(dice);
error:
return err;
}
static int dice_close(struct snd_pcm_substream *substream)
{
struct dice *dice = substream->private_data;
dice_unlock(dice);
return 0;
}
static int dice_stream_start_packets(struct dice *dice)
{
int err;
if (amdtp_stream_running(&dice->stream))
return 0;
err = amdtp_stream_start(&dice->stream, dice->resources.channel,
fw_parent_device(dice->unit)->max_speed);
if (err < 0)
return err;
err = dice_enable_set(dice);
if (err < 0) {
amdtp_stream_stop(&dice->stream);
return err;
}
return 0;
}
static int dice_stream_start(struct dice *dice)
{
__be32 channel;
int err;
if (!dice->resources.allocated) {
err = fw_iso_resources_allocate(&dice->resources,
amdtp_stream_get_max_payload(&dice->stream),
fw_parent_device(dice->unit)->max_speed);
if (err < 0)
goto error;
channel = cpu_to_be32(dice->resources.channel);
err = snd_fw_transaction(dice->unit,
TCODE_WRITE_QUADLET_REQUEST,
rx_address(dice, RX_ISOCHRONOUS),
&channel, 4, 0);
if (err < 0)
goto err_resources;
}
err = dice_stream_start_packets(dice);
if (err < 0)
goto err_rx_channel;
return 0;
err_rx_channel:
channel = cpu_to_be32((u32)-1);
snd_fw_transaction(dice->unit, TCODE_WRITE_QUADLET_REQUEST,
rx_address(dice, RX_ISOCHRONOUS), &channel, 4, 0);
err_resources:
fw_iso_resources_free(&dice->resources);
error:
return err;
}
static void dice_stream_stop_packets(struct dice *dice)
{
if (amdtp_stream_running(&dice->stream)) {
dice_enable_clear(dice);
amdtp_stream_stop(&dice->stream);
}
}
static void dice_stream_stop(struct dice *dice)
{
__be32 channel;
dice_stream_stop_packets(dice);
if (!dice->resources.allocated)
return;
channel = cpu_to_be32((u32)-1);
snd_fw_transaction(dice->unit, TCODE_WRITE_QUADLET_REQUEST,
rx_address(dice, RX_ISOCHRONOUS), &channel, 4, 0);
fw_iso_resources_free(&dice->resources);
}
static int dice_change_rate(struct dice *dice, unsigned int clock_rate)
{
__be32 value;
int err;
reinit_completion(&dice->clock_accepted);
value = cpu_to_be32(clock_rate | CLOCK_SOURCE_ARX1);
err = snd_fw_transaction(dice->unit, TCODE_WRITE_QUADLET_REQUEST,
global_address(dice, GLOBAL_CLOCK_SELECT),
&value, 4, 0);
if (err < 0)
return err;
if (!wait_for_completion_timeout(&dice->clock_accepted,
msecs_to_jiffies(100)))
dev_warn(&dice->unit->device, "clock change timed out\n");
return 0;
}
static int dice_hw_params(struct snd_pcm_substream *substream,
struct snd_pcm_hw_params *hw_params)
{
struct dice *dice = substream->private_data;
unsigned int rate_index, mode, rate, channels, i;
int err;
mutex_lock(&dice->mutex);
dice_stream_stop(dice);
mutex_unlock(&dice->mutex);
err = snd_pcm_lib_alloc_vmalloc_buffer(substream,
params_buffer_bytes(hw_params));
if (err < 0)
return err;
rate = params_rate(hw_params);
rate_index = rate_to_index(rate);
err = dice_change_rate(dice, rate_index << CLOCK_RATE_SHIFT);
if (err < 0)
return err;
/*
* At 176.4/192.0 kHz, Dice has a quirk to transfer two PCM frames in
* one data block of AMDTP packet. Thus sampling transfer frequency is
* a half of PCM sampling frequency, i.e. PCM frames at 192.0 kHz are
* transferred on AMDTP packets at 96 kHz. Two successive samples of a
* channel are stored consecutively in the packet. This quirk is called
* as 'Dual Wire'.
* For this quirk, blocking mode is required and PCM buffer size should
* be aligned to SYT_INTERVAL.
*/
channels = params_channels(hw_params);
if (rate_index > 4) {
if (channels > AMDTP_MAX_CHANNELS_FOR_PCM / 2) {
err = -ENOSYS;
return err;
}
rate /= 2;
channels *= 2;
dice->stream.double_pcm_frames = true;
} else {
dice->stream.double_pcm_frames = false;
}
mode = rate_index_to_mode(rate_index);
amdtp_stream_set_parameters(&dice->stream, rate, channels,
dice->rx_midi_ports[mode]);
if (rate_index > 4) {
channels /= 2;
for (i = 0; i < channels; i++) {
dice->stream.pcm_positions[i] = i * 2;
dice->stream.pcm_positions[i + channels] = i * 2 + 1;
}
}
amdtp_stream_set_pcm_format(&dice->stream,
params_format(hw_params));
return 0;
}
static int dice_hw_free(struct snd_pcm_substream *substream)
{
struct dice *dice = substream->private_data;
mutex_lock(&dice->mutex);
dice_stream_stop(dice);
mutex_unlock(&dice->mutex);
return snd_pcm_lib_free_vmalloc_buffer(substream);
}
static int dice_prepare(struct snd_pcm_substream *substream)
{
struct dice *dice = substream->private_data;
int err;
mutex_lock(&dice->mutex);
if (amdtp_streaming_error(&dice->stream))
dice_stream_stop_packets(dice);
err = dice_stream_start(dice);
if (err < 0) {
mutex_unlock(&dice->mutex);
return err;
}
mutex_unlock(&dice->mutex);
amdtp_stream_pcm_prepare(&dice->stream);
return 0;
}
static int dice_trigger(struct snd_pcm_substream *substream, int cmd)
{
struct dice *dice = substream->private_data;
struct snd_pcm_substream *pcm;
switch (cmd) {
case SNDRV_PCM_TRIGGER_START:
pcm = substream;
break;
case SNDRV_PCM_TRIGGER_STOP:
pcm = NULL;
break;
default:
return -EINVAL;
}
amdtp_stream_pcm_trigger(&dice->stream, pcm);
return 0;
}
static snd_pcm_uframes_t dice_pointer(struct snd_pcm_substream *substream)
{
struct dice *dice = substream->private_data;
return amdtp_stream_pcm_pointer(&dice->stream);
}
static int dice_create_pcm(struct dice *dice)
{
static struct snd_pcm_ops ops = {
.open = dice_open,
.close = dice_close,
.ioctl = snd_pcm_lib_ioctl,
.hw_params = dice_hw_params,
.hw_free = dice_hw_free,
.prepare = dice_prepare,
.trigger = dice_trigger,
.pointer = dice_pointer,
.page = snd_pcm_lib_get_vmalloc_page,
.mmap = snd_pcm_lib_mmap_vmalloc,
};
struct snd_pcm *pcm;
int err;
err = snd_pcm_new(dice->card, "DICE", 0, 1, 0, &pcm);
if (err < 0)
return err;
pcm->private_data = dice;
strcpy(pcm->name, dice->card->shortname);
pcm->streams[SNDRV_PCM_STREAM_PLAYBACK].substream->ops = &ops;
return 0;
}
static long dice_hwdep_read(struct snd_hwdep *hwdep, char __user *buf,
long count, loff_t *offset)
{
struct dice *dice = hwdep->private_data;
DEFINE_WAIT(wait);
union snd_firewire_event event;
spin_lock_irq(&dice->lock);
while (!dice->dev_lock_changed && dice->notification_bits == 0) {
prepare_to_wait(&dice->hwdep_wait, &wait, TASK_INTERRUPTIBLE);
spin_unlock_irq(&dice->lock);
schedule();
finish_wait(&dice->hwdep_wait, &wait);
if (signal_pending(current))
return -ERESTARTSYS;
spin_lock_irq(&dice->lock);
}
memset(&event, 0, sizeof(event));
if (dice->dev_lock_changed) {
event.lock_status.type = SNDRV_FIREWIRE_EVENT_LOCK_STATUS;
event.lock_status.status = dice->dev_lock_count > 0;
dice->dev_lock_changed = false;
count = min(count, (long)sizeof(event.lock_status));
} else {
event.dice_notification.type = SNDRV_FIREWIRE_EVENT_DICE_NOTIFICATION;
event.dice_notification.notification = dice->notification_bits;
dice->notification_bits = 0;
count = min(count, (long)sizeof(event.dice_notification));
}
spin_unlock_irq(&dice->lock);
if (copy_to_user(buf, &event, count))
return -EFAULT;
return count;
}
static unsigned int dice_hwdep_poll(struct snd_hwdep *hwdep, struct file *file,
poll_table *wait)
{
struct dice *dice = hwdep->private_data;
unsigned int events;
poll_wait(file, &dice->hwdep_wait, wait);
spin_lock_irq(&dice->lock);
if (dice->dev_lock_changed || dice->notification_bits != 0)
events = POLLIN | POLLRDNORM;
else
events = 0;
spin_unlock_irq(&dice->lock);
return events;
}
static int dice_hwdep_get_info(struct dice *dice, void __user *arg)
{
struct fw_device *dev = fw_parent_device(dice->unit);
struct snd_firewire_get_info info;
memset(&info, 0, sizeof(info));
info.type = SNDRV_FIREWIRE_TYPE_DICE;
info.card = dev->card->index;
*(__be32 *)&info.guid[0] = cpu_to_be32(dev->config_rom[3]);
*(__be32 *)&info.guid[4] = cpu_to_be32(dev->config_rom[4]);
strlcpy(info.device_name, dev_name(&dev->device),
sizeof(info.device_name));
if (copy_to_user(arg, &info, sizeof(info)))
return -EFAULT;
return 0;
}
static int dice_hwdep_lock(struct dice *dice)
{
int err;
spin_lock_irq(&dice->lock);
if (dice->dev_lock_count == 0) {
dice->dev_lock_count = -1;
err = 0;
} else {
err = -EBUSY;
}
spin_unlock_irq(&dice->lock);
return err;
}
static int dice_hwdep_unlock(struct dice *dice)
{
int err;
spin_lock_irq(&dice->lock);
if (dice->dev_lock_count == -1) {
dice->dev_lock_count = 0;
err = 0;
} else {
err = -EBADFD;
}
spin_unlock_irq(&dice->lock);
return err;
}
static int dice_hwdep_release(struct snd_hwdep *hwdep, struct file *file)
{
struct dice *dice = hwdep->private_data;
spin_lock_irq(&dice->lock);
if (dice->dev_lock_count == -1)
dice->dev_lock_count = 0;
spin_unlock_irq(&dice->lock);
return 0;
}
static int dice_hwdep_ioctl(struct snd_hwdep *hwdep, struct file *file,
unsigned int cmd, unsigned long arg)
{
struct dice *dice = hwdep->private_data;
switch (cmd) {
case SNDRV_FIREWIRE_IOCTL_GET_INFO:
return dice_hwdep_get_info(dice, (void __user *)arg);
case SNDRV_FIREWIRE_IOCTL_LOCK:
return dice_hwdep_lock(dice);
case SNDRV_FIREWIRE_IOCTL_UNLOCK:
return dice_hwdep_unlock(dice);
default:
return -ENOIOCTLCMD;
}
}
#ifdef CONFIG_COMPAT
static int dice_hwdep_compat_ioctl(struct snd_hwdep *hwdep, struct file *file,
unsigned int cmd, unsigned long arg)
{
return dice_hwdep_ioctl(hwdep, file, cmd,
(unsigned long)compat_ptr(arg));
}
#else
#define dice_hwdep_compat_ioctl NULL
#endif
static int dice_create_hwdep(struct dice *dice)
{
static const struct snd_hwdep_ops ops = {
.read = dice_hwdep_read,
.release = dice_hwdep_release,
.poll = dice_hwdep_poll,
.ioctl = dice_hwdep_ioctl,
.ioctl_compat = dice_hwdep_compat_ioctl,
};
struct snd_hwdep *hwdep;
int err;
err = snd_hwdep_new(dice->card, "DICE", 0, &hwdep);
if (err < 0)
return err;
strcpy(hwdep->name, "DICE");
hwdep->iface = SNDRV_HWDEP_IFACE_FW_DICE;
hwdep->ops = ops;
hwdep->private_data = dice;
hwdep->exclusive = true;
return 0;
}
static int dice_proc_read_mem(struct dice *dice, void *buffer,
unsigned int offset_q, unsigned int quadlets)
{
unsigned int i;
int err;
err = snd_fw_transaction(dice->unit, TCODE_READ_BLOCK_REQUEST,
DICE_PRIVATE_SPACE + 4 * offset_q,
buffer, 4 * quadlets, 0);
if (err < 0)
return err;
for (i = 0; i < quadlets; ++i)
be32_to_cpus(&((u32 *)buffer)[i]);
return 0;
}
static const char *str_from_array(const char *const strs[], unsigned int count,
unsigned int i)
{
if (i < count)
return strs[i];
else
return "(unknown)";
}
static void dice_proc_fixup_string(char *s, unsigned int size)
{
unsigned int i;
for (i = 0; i < size; i += 4)
cpu_to_le32s((u32 *)(s + i));
for (i = 0; i < size - 2; ++i) {
if (s[i] == '\0')
return;
if (s[i] == '\\' && s[i + 1] == '\\') {
s[i + 2] = '\0';
return;
}
}
s[size - 1] = '\0';
}
static void dice_proc_read(struct snd_info_entry *entry,
struct snd_info_buffer *buffer)
{
static const char *const section_names[5] = {
"global", "tx", "rx", "ext_sync", "unused2"
};
static const char *const clock_sources[] = {
"aes1", "aes2", "aes3", "aes4", "aes", "adat", "tdif",
"wc", "arx1", "arx2", "arx3", "arx4", "internal"
};
static const char *const rates[] = {
"32000", "44100", "48000", "88200", "96000", "176400", "192000",
"any low", "any mid", "any high", "none"
};
struct dice *dice = entry->private_data;
u32 sections[ARRAY_SIZE(section_names) * 2];
struct {
u32 number;
u32 size;
} tx_rx_header;
union {
struct {
u32 owner_hi, owner_lo;
u32 notification;
char nick_name[NICK_NAME_SIZE];
u32 clock_select;
u32 enable;
u32 status;
u32 extended_status;
u32 sample_rate;
u32 version;
u32 clock_caps;
char clock_source_names[CLOCK_SOURCE_NAMES_SIZE];
} global;
struct {
u32 iso;
u32 number_audio;
u32 number_midi;
u32 speed;
char names[TX_NAMES_SIZE];
u32 ac3_caps;
u32 ac3_enable;
} tx;
struct {
u32 iso;
u32 seq_start;
u32 number_audio;
u32 number_midi;
char names[RX_NAMES_SIZE];
u32 ac3_caps;
u32 ac3_enable;
} rx;
struct {
u32 clock_source;
u32 locked;
u32 rate;
u32 adat_user_data;
} ext_sync;
} buf;
unsigned int quadlets, stream, i;
if (dice_proc_read_mem(dice, sections, 0, ARRAY_SIZE(sections)) < 0)
return;
snd_iprintf(buffer, "sections:\n");
for (i = 0; i < ARRAY_SIZE(section_names); ++i)
snd_iprintf(buffer, " %s: offset %u, size %u\n",
section_names[i],
sections[i * 2], sections[i * 2 + 1]);
quadlets = min_t(u32, sections[1], sizeof(buf.global) / 4);
if (dice_proc_read_mem(dice, &buf.global, sections[0], quadlets) < 0)
return;
snd_iprintf(buffer, "global:\n");
snd_iprintf(buffer, " owner: %04x:%04x%08x\n",
buf.global.owner_hi >> 16,
buf.global.owner_hi & 0xffff, buf.global.owner_lo);
snd_iprintf(buffer, " notification: %08x\n", buf.global.notification);
dice_proc_fixup_string(buf.global.nick_name, NICK_NAME_SIZE);
snd_iprintf(buffer, " nick name: %s\n", buf.global.nick_name);
snd_iprintf(buffer, " clock select: %s %s\n",
str_from_array(clock_sources, ARRAY_SIZE(clock_sources),
buf.global.clock_select & CLOCK_SOURCE_MASK),
str_from_array(rates, ARRAY_SIZE(rates),
(buf.global.clock_select & CLOCK_RATE_MASK)
>> CLOCK_RATE_SHIFT));
snd_iprintf(buffer, " enable: %u\n", buf.global.enable);
snd_iprintf(buffer, " status: %slocked %s\n",
buf.global.status & STATUS_SOURCE_LOCKED ? "" : "un",
str_from_array(rates, ARRAY_SIZE(rates),
(buf.global.status &
STATUS_NOMINAL_RATE_MASK)
>> CLOCK_RATE_SHIFT));
snd_iprintf(buffer, " ext status: %08x\n", buf.global.extended_status);
snd_iprintf(buffer, " sample rate: %u\n", buf.global.sample_rate);
snd_iprintf(buffer, " version: %u.%u.%u.%u\n",
(buf.global.version >> 24) & 0xff,
(buf.global.version >> 16) & 0xff,
(buf.global.version >> 8) & 0xff,
(buf.global.version >> 0) & 0xff);
if (quadlets >= 90) {
snd_iprintf(buffer, " clock caps:");
for (i = 0; i <= 6; ++i)
if (buf.global.clock_caps & (1 << i))
snd_iprintf(buffer, " %s", rates[i]);
for (i = 0; i <= 12; ++i)
if (buf.global.clock_caps & (1 << (16 + i)))
snd_iprintf(buffer, " %s", clock_sources[i]);
snd_iprintf(buffer, "\n");
dice_proc_fixup_string(buf.global.clock_source_names,
CLOCK_SOURCE_NAMES_SIZE);
snd_iprintf(buffer, " clock source names: %s\n",
buf.global.clock_source_names);
}
if (dice_proc_read_mem(dice, &tx_rx_header, sections[2], 2) < 0)
return;
quadlets = min_t(u32, tx_rx_header.size, sizeof(buf.tx) / 4);
for (stream = 0; stream < tx_rx_header.number; ++stream) {
if (dice_proc_read_mem(dice, &buf.tx, sections[2] + 2 +
stream * tx_rx_header.size,
quadlets) < 0)
break;
snd_iprintf(buffer, "tx %u:\n", stream);
snd_iprintf(buffer, " iso channel: %d\n", (int)buf.tx.iso);
snd_iprintf(buffer, " audio channels: %u\n",
buf.tx.number_audio);
snd_iprintf(buffer, " midi ports: %u\n", buf.tx.number_midi);
snd_iprintf(buffer, " speed: S%u\n", 100u << buf.tx.speed);
if (quadlets >= 68) {
dice_proc_fixup_string(buf.tx.names, TX_NAMES_SIZE);
snd_iprintf(buffer, " names: %s\n", buf.tx.names);
}
if (quadlets >= 70) {
snd_iprintf(buffer, " ac3 caps: %08x\n",
buf.tx.ac3_caps);
snd_iprintf(buffer, " ac3 enable: %08x\n",
buf.tx.ac3_enable);
}
}
if (dice_proc_read_mem(dice, &tx_rx_header, sections[4], 2) < 0)
return;
quadlets = min_t(u32, tx_rx_header.size, sizeof(buf.rx) / 4);
for (stream = 0; stream < tx_rx_header.number; ++stream) {
if (dice_proc_read_mem(dice, &buf.rx, sections[4] + 2 +
stream * tx_rx_header.size,
quadlets) < 0)
break;
snd_iprintf(buffer, "rx %u:\n", stream);
snd_iprintf(buffer, " iso channel: %d\n", (int)buf.rx.iso);
snd_iprintf(buffer, " sequence start: %u\n", buf.rx.seq_start);
snd_iprintf(buffer, " audio channels: %u\n",
buf.rx.number_audio);
snd_iprintf(buffer, " midi ports: %u\n", buf.rx.number_midi);
if (quadlets >= 68) {
dice_proc_fixup_string(buf.rx.names, RX_NAMES_SIZE);
snd_iprintf(buffer, " names: %s\n", buf.rx.names);
}
if (quadlets >= 70) {
snd_iprintf(buffer, " ac3 caps: %08x\n",
buf.rx.ac3_caps);
snd_iprintf(buffer, " ac3 enable: %08x\n",
buf.rx.ac3_enable);
}
}
quadlets = min_t(u32, sections[7], sizeof(buf.ext_sync) / 4);
if (quadlets >= 4) {
if (dice_proc_read_mem(dice, &buf.ext_sync,
sections[6], 4) < 0)
return;
snd_iprintf(buffer, "ext status:\n");
snd_iprintf(buffer, " clock source: %s\n",
str_from_array(clock_sources,
ARRAY_SIZE(clock_sources),
buf.ext_sync.clock_source));
snd_iprintf(buffer, " locked: %u\n", buf.ext_sync.locked);
snd_iprintf(buffer, " rate: %s\n",
str_from_array(rates, ARRAY_SIZE(rates),
buf.ext_sync.rate));
snd_iprintf(buffer, " adat user data: ");
if (buf.ext_sync.adat_user_data & ADAT_USER_DATA_NO_DATA)
snd_iprintf(buffer, "-\n");
else
snd_iprintf(buffer, "%x\n",
buf.ext_sync.adat_user_data);
}
}
static void dice_create_proc(struct dice *dice)
{
struct snd_info_entry *entry;
if (!snd_card_proc_new(dice->card, "dice", &entry))
snd_info_set_text_ops(entry, dice, dice_proc_read);
}
static void dice_card_free(struct snd_card *card)
{
struct dice *dice = card->private_data;
amdtp_stream_destroy(&dice->stream);
fw_core_remove_address_handler(&dice->notification_handler);
mutex_destroy(&dice->mutex);
}
#define OUI_WEISS 0x001c6a
#define DICE_CATEGORY_ID 0x04
#define WEISS_CATEGORY_ID 0x00
static int dice_interface_check(struct fw_unit *unit)
{
static const int min_values[10] = {
10, 0x64 / 4,
10, 0x18 / 4,
10, 0x18 / 4,
0, 0,
0, 0,
};
struct fw_device *device = fw_parent_device(unit);
struct fw_csr_iterator it;
int key, value, vendor = -1, model = -1, err;
unsigned int category, i;
__be32 pointers[ARRAY_SIZE(min_values)];
__be32 tx_data[4];
__be32 version;
/*
* Check that GUID and unit directory are constructed according to DICE
* rules, i.e., that the specifier ID is the GUID's OUI, and that the
* GUID chip ID consists of the 8-bit category ID, the 10-bit product
* ID, and a 22-bit serial number.
*/
fw_csr_iterator_init(&it, unit->directory);
while (fw_csr_iterator_next(&it, &key, &value)) {
switch (key) {
case CSR_SPECIFIER_ID:
vendor = value;
break;
case CSR_MODEL:
model = value;
break;
}
}
if (vendor == OUI_WEISS)
category = WEISS_CATEGORY_ID;
else
category = DICE_CATEGORY_ID;
if (device->config_rom[3] != ((vendor << 8) | category) ||
device->config_rom[4] >> 22 != model)
return -ENODEV;
/*
* Check that the sub address spaces exist and are located inside the
* private address space. The minimum values are chosen so that all
* minimally required registers are included.
*/
err = snd_fw_transaction(unit, TCODE_READ_BLOCK_REQUEST,
DICE_PRIVATE_SPACE,
pointers, sizeof(pointers), 0);
if (err < 0)
return -ENODEV;
for (i = 0; i < ARRAY_SIZE(pointers); ++i) {
value = be32_to_cpu(pointers[i]);
if (value < min_values[i] || value >= 0x40000)
return -ENODEV;
}
/* We support playback only. Let capture devices be handled by FFADO. */
err = snd_fw_transaction(unit, TCODE_READ_BLOCK_REQUEST,
DICE_PRIVATE_SPACE +
be32_to_cpu(pointers[2]) * 4,
tx_data, sizeof(tx_data), 0);
if (err < 0 || (tx_data[0] && tx_data[3]))
return -ENODEV;
/*
* Check that the implemented DICE driver specification major version
* number matches.
*/
err = snd_fw_transaction(unit, TCODE_READ_QUADLET_REQUEST,
DICE_PRIVATE_SPACE +
be32_to_cpu(pointers[0]) * 4 + GLOBAL_VERSION,
&version, 4, 0);
if (err < 0)
return -ENODEV;
if ((version & cpu_to_be32(0xff000000)) != cpu_to_be32(0x01000000)) {
dev_err(&unit->device,
"unknown DICE version: 0x%08x\n", be32_to_cpu(version));
return -ENODEV;
}
return 0;
}
static int highest_supported_mode_rate(struct dice *dice, unsigned int mode)
{
int i;
for (i = ARRAY_SIZE(dice_rates) - 1; i >= 0; --i)
if ((dice->clock_caps & (1 << i)) &&
rate_index_to_mode(i) == mode)
return i;
return -1;
}
static int dice_read_mode_params(struct dice *dice, unsigned int mode)
{
__be32 values[2];
int rate_index, err;
rate_index = highest_supported_mode_rate(dice, mode);
if (rate_index < 0) {
dice->rx_channels[mode] = 0;
dice->rx_midi_ports[mode] = 0;
return 0;
}
err = dice_change_rate(dice, rate_index << CLOCK_RATE_SHIFT);
if (err < 0)
return err;
err = snd_fw_transaction(dice->unit, TCODE_READ_BLOCK_REQUEST,
rx_address(dice, RX_NUMBER_AUDIO),
values, 2 * 4, 0);
if (err < 0)
return err;
dice->rx_channels[mode] = be32_to_cpu(values[0]);
dice->rx_midi_ports[mode] = be32_to_cpu(values[1]);
return 0;
}
static int dice_read_params(struct dice *dice)
{
__be32 pointers[6];
__be32 value;
int mode, err;
err = snd_fw_transaction(dice->unit, TCODE_READ_BLOCK_REQUEST,
DICE_PRIVATE_SPACE,
pointers, sizeof(pointers), 0);
if (err < 0)
return err;
dice->global_offset = be32_to_cpu(pointers[0]) * 4;
dice->rx_offset = be32_to_cpu(pointers[4]) * 4;
/* some very old firmwares don't tell about their clock support */
if (be32_to_cpu(pointers[1]) * 4 >= GLOBAL_CLOCK_CAPABILITIES + 4) {
err = snd_fw_transaction(
dice->unit, TCODE_READ_QUADLET_REQUEST,
global_address(dice, GLOBAL_CLOCK_CAPABILITIES),
&value, 4, 0);
if (err < 0)
return err;
dice->clock_caps = be32_to_cpu(value);
} else {
/* this should be supported by any device */
dice->clock_caps = CLOCK_CAP_RATE_44100 |
CLOCK_CAP_RATE_48000 |
CLOCK_CAP_SOURCE_ARX1 |
CLOCK_CAP_SOURCE_INTERNAL;
}
for (mode = 2; mode >= 0; --mode) {
err = dice_read_mode_params(dice, mode);
if (err < 0)
return err;
}
return 0;
}
static void dice_card_strings(struct dice *dice)
{
struct snd_card *card = dice->card;
struct fw_device *dev = fw_parent_device(dice->unit);
char vendor[32], model[32];
unsigned int i;
int err;
strcpy(card->driver, "DICE");
strcpy(card->shortname, "DICE");
BUILD_BUG_ON(NICK_NAME_SIZE < sizeof(card->shortname));
err = snd_fw_transaction(dice->unit, TCODE_READ_BLOCK_REQUEST,
global_address(dice, GLOBAL_NICK_NAME),
card->shortname, sizeof(card->shortname), 0);
if (err >= 0) {
/* DICE strings are returned in "always-wrong" endianness */
BUILD_BUG_ON(sizeof(card->shortname) % 4 != 0);
for (i = 0; i < sizeof(card->shortname); i += 4)
swab32s((u32 *)&card->shortname[i]);
card->shortname[sizeof(card->shortname) - 1] = '\0';
}
strcpy(vendor, "?");
fw_csr_string(dev->config_rom + 5, CSR_VENDOR, vendor, sizeof(vendor));
strcpy(model, "?");
fw_csr_string(dice->unit->directory, CSR_MODEL, model, sizeof(model));
snprintf(card->longname, sizeof(card->longname),
"%s %s (serial %u) at %s, S%d",
vendor, model, dev->config_rom[4] & 0x3fffff,
dev_name(&dice->unit->device), 100 << dev->max_speed);
strcpy(card->mixername, "DICE");
}
static int dice_probe(struct fw_unit *unit, const struct ieee1394_device_id *id)
{
struct snd_card *card;
struct dice *dice;
__be32 clock_sel;
int err;
err = dice_interface_check(unit);
if (err < 0)
return err;
err = snd_card_new(&unit->device, -1, NULL, THIS_MODULE,
sizeof(*dice), &card);
if (err < 0)
return err;
dice = card->private_data;
dice->card = card;
spin_lock_init(&dice->lock);
mutex_init(&dice->mutex);
dice->unit = unit;
init_completion(&dice->clock_accepted);
init_waitqueue_head(&dice->hwdep_wait);
dice->notification_handler.length = 4;
dice->notification_handler.address_callback = dice_notification;
dice->notification_handler.callback_data = dice;
err = fw_core_add_address_handler(&dice->notification_handler,
&fw_high_memory_region);
if (err < 0)
goto err_mutex;
err = dice_owner_set(dice);
if (err < 0)
goto err_notification_handler;
err = dice_read_params(dice);
if (err < 0)
goto err_owner;
err = fw_iso_resources_init(&dice->resources, unit);
if (err < 0)
goto err_owner;
dice->resources.channels_mask = 0x00000000ffffffffuLL;
err = amdtp_stream_init(&dice->stream, unit, AMDTP_OUT_STREAM,
CIP_BLOCKING);
if (err < 0)
goto err_resources;
card->private_free = dice_card_free;
dice_card_strings(dice);
err = snd_fw_transaction(unit, TCODE_READ_QUADLET_REQUEST,
global_address(dice, GLOBAL_CLOCK_SELECT),
&clock_sel, 4, 0);
if (err < 0)
goto error;
clock_sel &= cpu_to_be32(~CLOCK_SOURCE_MASK);
clock_sel |= cpu_to_be32(CLOCK_SOURCE_ARX1);
err = snd_fw_transaction(unit, TCODE_WRITE_QUADLET_REQUEST,
global_address(dice, GLOBAL_CLOCK_SELECT),
&clock_sel, 4, 0);
if (err < 0)
goto error;
err = dice_create_pcm(dice);
if (err < 0)
goto error;
err = dice_create_hwdep(dice);
if (err < 0)
goto error;
dice_create_proc(dice);
err = snd_card_register(card);
if (err < 0)
goto error;
dev_set_drvdata(&unit->device, dice);
return 0;
err_resources:
fw_iso_resources_destroy(&dice->resources);
err_owner:
dice_owner_clear(dice);
err_notification_handler:
fw_core_remove_address_handler(&dice->notification_handler);
err_mutex:
mutex_destroy(&dice->mutex);
error:
snd_card_free(card);
return err;
}
static void dice_remove(struct fw_unit *unit)
{
struct dice *dice = dev_get_drvdata(&unit->device);
amdtp_stream_pcm_abort(&dice->stream);
snd_card_disconnect(dice->card);
mutex_lock(&dice->mutex);
dice_stream_stop(dice);
dice_owner_clear(dice);
mutex_unlock(&dice->mutex);
snd_card_free_when_closed(dice->card);
}
static void dice_bus_reset(struct fw_unit *unit)
{
struct dice *dice = dev_get_drvdata(&unit->device);
/*
* On a bus reset, the DICE firmware disables streaming and then goes
* off contemplating its own navel for hundreds of milliseconds before
* it can react to any of our attempts to reenable streaming. This
* means that we lose synchronization anyway, so we force our streams
* to stop so that the application can restart them in an orderly
* manner.
*/
amdtp_stream_pcm_abort(&dice->stream);
mutex_lock(&dice->mutex);
dice->global_enabled = false;
dice_stream_stop_packets(dice);
dice_owner_update(dice);
fw_iso_resources_update(&dice->resources);
mutex_unlock(&dice->mutex);
}
#define DICE_INTERFACE 0x000001
static const struct ieee1394_device_id dice_id_table[] = {
{
.match_flags = IEEE1394_MATCH_VERSION,
.version = DICE_INTERFACE,
},
{ }
};
MODULE_DEVICE_TABLE(ieee1394, dice_id_table);
static struct fw_driver dice_driver = {
.driver = {
.owner = THIS_MODULE,
.name = KBUILD_MODNAME,
.bus = &fw_bus_type,
},
.probe = dice_probe,
.update = dice_bus_reset,
.remove = dice_remove,
.id_table = dice_id_table,
};
static int __init alsa_dice_init(void)
{
return driver_register(&dice_driver.driver);
}
static void __exit alsa_dice_exit(void)
{
driver_unregister(&dice_driver.driver);
}
module_init(alsa_dice_init);
module_exit(alsa_dice_exit);