2021-05-20 12:49:33 +02:00
|
|
|
// Copyright 2009-2021 Intel Corporation
|
2020-12-19 14:50:20 +01:00
|
|
|
// SPDX-License-Identifier: Apache-2.0
|
|
|
|
|
|
|
|
#pragma once
|
|
|
|
|
|
|
|
#include "catmullclark_patch.h"
|
|
|
|
#include "bezier_curve.h"
|
|
|
|
|
|
|
|
namespace embree
|
|
|
|
{
|
|
|
|
template<class T, class S>
|
|
|
|
static __forceinline T deCasteljau(const S& uu, const T& v0, const T& v1, const T& v2, const T& v3)
|
|
|
|
{
|
|
|
|
const T v0_1 = lerp(v0,v1,uu);
|
|
|
|
const T v1_1 = lerp(v1,v2,uu);
|
|
|
|
const T v2_1 = lerp(v2,v3,uu);
|
|
|
|
const T v0_2 = lerp(v0_1,v1_1,uu);
|
|
|
|
const T v1_2 = lerp(v1_1,v2_1,uu);
|
|
|
|
const T v0_3 = lerp(v0_2,v1_2,uu);
|
|
|
|
return v0_3;
|
|
|
|
}
|
|
|
|
|
|
|
|
template<class T, class S>
|
|
|
|
static __forceinline T deCasteljau_tangent(const S& uu, const T& v0, const T& v1, const T& v2, const T& v3)
|
|
|
|
{
|
|
|
|
const T v0_1 = lerp(v0,v1,uu);
|
|
|
|
const T v1_1 = lerp(v1,v2,uu);
|
|
|
|
const T v2_1 = lerp(v2,v3,uu);
|
|
|
|
const T v0_2 = lerp(v0_1,v1_1,uu);
|
|
|
|
const T v1_2 = lerp(v1_1,v2_1,uu);
|
|
|
|
return S(3.0f)*(v1_2-v0_2);
|
|
|
|
}
|
|
|
|
|
|
|
|
template<typename Vertex>
|
|
|
|
__forceinline Vertex computeInnerBezierControlPoint(const Vertex v[4][4], const size_t y, const size_t x) {
|
|
|
|
return 1.0f / 36.0f * (16.0f * v[y][x] + 4.0f * (v[y-1][x] + v[y+1][x] + v[y][x-1] + v[y][x+1]) + (v[y-1][x-1] + v[y+1][x+1] + v[y-1][x+1] + v[y+1][x-1]));
|
|
|
|
}
|
|
|
|
|
|
|
|
template<typename Vertex>
|
|
|
|
__forceinline Vertex computeTopEdgeBezierControlPoint(const Vertex v[4][4], const size_t y, const size_t x) {
|
|
|
|
return 1.0f / 18.0f * (8.0f * v[y][x] + 4.0f * v[y-1][x] + 2.0f * (v[y][x-1] + v[y][x+1]) + (v[y-1][x-1] + v[y-1][x+1]));
|
|
|
|
}
|
|
|
|
|
|
|
|
template<typename Vertex>
|
|
|
|
__forceinline Vertex computeBottomEdgeBezierControlPoint(const Vertex v[4][4], const size_t y, const size_t x) {
|
|
|
|
return 1.0f / 18.0f * (8.0f * v[y][x] + 4.0f * v[y+1][x] + 2.0f * (v[y][x-1] + v[y][x+1]) + v[y+1][x-1] + v[y+1][x+1]);
|
|
|
|
}
|
|
|
|
|
|
|
|
template<typename Vertex>
|
|
|
|
__forceinline Vertex computeLeftEdgeBezierControlPoint(const Vertex v[4][4], const size_t y, const size_t x) {
|
|
|
|
return 1.0f / 18.0f * (8.0f * v[y][x] + 4.0f * v[y][x-1] + 2.0f * (v[y-1][x] + v[y+1][x]) + v[y-1][x-1] + v[y+1][x-1]);
|
|
|
|
}
|
|
|
|
|
|
|
|
template<typename Vertex>
|
|
|
|
__forceinline Vertex computeRightEdgeBezierControlPoint(const Vertex v[4][4], const size_t y, const size_t x) {
|
|
|
|
return 1.0f / 18.0f * (8.0f * v[y][x] + 4.0f * v[y][x+1] + 2.0f * (v[y-1][x] + v[y+1][x]) + v[y-1][x+1] + v[y+1][x+1]);
|
|
|
|
}
|
|
|
|
|
|
|
|
template<typename Vertex>
|
|
|
|
__forceinline Vertex computeCornerBezierControlPoint(const Vertex v[4][4], const size_t y, const size_t x, const ssize_t delta_y, const ssize_t delta_x)
|
|
|
|
{
|
|
|
|
return 1.0f / 9.0f * (4.0f * v[y][x] + 2.0f * (v[y+delta_y][x] + v[y][x+delta_x]) + v[y+delta_y][x+delta_x]);
|
|
|
|
}
|
|
|
|
|
|
|
|
template<typename Vertex, typename Vertex_t>
|
|
|
|
class __aligned(64) BezierPatchT
|
|
|
|
{
|
|
|
|
public:
|
|
|
|
Vertex matrix[4][4];
|
|
|
|
|
|
|
|
public:
|
|
|
|
|
|
|
|
__forceinline BezierPatchT() {}
|
|
|
|
|
|
|
|
__forceinline BezierPatchT (const HalfEdge* edge, const char* vertices, size_t stride);
|
|
|
|
|
|
|
|
__forceinline BezierPatchT(const CatmullClarkPatchT<Vertex,Vertex_t>& patch);
|
|
|
|
|
|
|
|
__forceinline BezierPatchT(const CatmullClarkPatchT<Vertex,Vertex_t>& patch,
|
|
|
|
const BezierCurveT<Vertex>* border0,
|
|
|
|
const BezierCurveT<Vertex>* border1,
|
|
|
|
const BezierCurveT<Vertex>* border2,
|
|
|
|
const BezierCurveT<Vertex>* border3);
|
|
|
|
|
|
|
|
__forceinline BezierPatchT(const BSplinePatchT<Vertex,Vertex_t>& source)
|
|
|
|
{
|
|
|
|
/* compute inner bezier control points */
|
|
|
|
matrix[0][0] = computeInnerBezierControlPoint(source.v,1,1);
|
|
|
|
matrix[0][3] = computeInnerBezierControlPoint(source.v,1,2);
|
|
|
|
matrix[3][3] = computeInnerBezierControlPoint(source.v,2,2);
|
|
|
|
matrix[3][0] = computeInnerBezierControlPoint(source.v,2,1);
|
|
|
|
|
|
|
|
/* compute top edge control points */
|
|
|
|
matrix[0][1] = computeRightEdgeBezierControlPoint(source.v,1,1);
|
|
|
|
matrix[0][2] = computeLeftEdgeBezierControlPoint(source.v,1,2);
|
|
|
|
|
2022-11-24 15:45:59 +01:00
|
|
|
/* compute bottom edge control points */
|
2020-12-19 14:50:20 +01:00
|
|
|
matrix[3][1] = computeRightEdgeBezierControlPoint(source.v,2,1);
|
|
|
|
matrix[3][2] = computeLeftEdgeBezierControlPoint(source.v,2,2);
|
|
|
|
|
|
|
|
/* compute left edge control points */
|
|
|
|
matrix[1][0] = computeBottomEdgeBezierControlPoint(source.v,1,1);
|
|
|
|
matrix[2][0] = computeTopEdgeBezierControlPoint(source.v,2,1);
|
|
|
|
|
|
|
|
/* compute right edge control points */
|
|
|
|
matrix[1][3] = computeBottomEdgeBezierControlPoint(source.v,1,2);
|
|
|
|
matrix[2][3] = computeTopEdgeBezierControlPoint(source.v,2,2);
|
|
|
|
|
|
|
|
/* compute corner control points */
|
|
|
|
matrix[1][1] = computeCornerBezierControlPoint(source.v,1,1, 1, 1);
|
|
|
|
matrix[1][2] = computeCornerBezierControlPoint(source.v,1,2, 1,-1);
|
|
|
|
matrix[2][2] = computeCornerBezierControlPoint(source.v,2,2,-1,-1);
|
|
|
|
matrix[2][1] = computeCornerBezierControlPoint(source.v,2,1,-1, 1);
|
|
|
|
}
|
|
|
|
|
|
|
|
static __forceinline Vertex_t bilinear(const Vec4f Bu, const Vertex matrix[4][4], const Vec4f Bv)
|
|
|
|
{
|
|
|
|
const Vertex_t M0 = madd(Bu.x,matrix[0][0],madd(Bu.y,matrix[0][1],madd(Bu.z,matrix[0][2],Bu.w * matrix[0][3])));
|
|
|
|
const Vertex_t M1 = madd(Bu.x,matrix[1][0],madd(Bu.y,matrix[1][1],madd(Bu.z,matrix[1][2],Bu.w * matrix[1][3])));
|
|
|
|
const Vertex_t M2 = madd(Bu.x,matrix[2][0],madd(Bu.y,matrix[2][1],madd(Bu.z,matrix[2][2],Bu.w * matrix[2][3])));
|
|
|
|
const Vertex_t M3 = madd(Bu.x,matrix[3][0],madd(Bu.y,matrix[3][1],madd(Bu.z,matrix[3][2],Bu.w * matrix[3][3])));
|
|
|
|
return madd(Bv.x,M0,madd(Bv.y,M1,madd(Bv.z,M2,Bv.w*M3)));
|
|
|
|
}
|
|
|
|
|
|
|
|
static __forceinline Vertex_t eval(const Vertex matrix[4][4], const float uu, const float vv)
|
|
|
|
{
|
|
|
|
const Vec4f Bu = BezierBasis::eval(uu);
|
|
|
|
const Vec4f Bv = BezierBasis::eval(vv);
|
|
|
|
return bilinear(Bu,matrix,Bv);
|
|
|
|
}
|
|
|
|
|
|
|
|
static __forceinline Vertex_t eval_du(const Vertex matrix[4][4], const float uu, const float vv)
|
|
|
|
{
|
|
|
|
const Vec4f Bu = BezierBasis::derivative(uu);
|
|
|
|
const Vec4f Bv = BezierBasis::eval(vv);
|
|
|
|
return bilinear(Bu,matrix,Bv);
|
|
|
|
}
|
|
|
|
|
|
|
|
static __forceinline Vertex_t eval_dv(const Vertex matrix[4][4], const float uu, const float vv)
|
|
|
|
{
|
|
|
|
const Vec4f Bu = BezierBasis::eval(uu);
|
|
|
|
const Vec4f Bv = BezierBasis::derivative(vv);
|
|
|
|
return bilinear(Bu,matrix,Bv);
|
|
|
|
}
|
|
|
|
|
|
|
|
static __forceinline Vertex_t eval_dudu(const Vertex matrix[4][4], const float uu, const float vv)
|
|
|
|
{
|
|
|
|
const Vec4f Bu = BezierBasis::derivative2(uu);
|
|
|
|
const Vec4f Bv = BezierBasis::eval(vv);
|
|
|
|
return bilinear(Bu,matrix,Bv);
|
|
|
|
}
|
|
|
|
|
|
|
|
static __forceinline Vertex_t eval_dvdv(const Vertex matrix[4][4], const float uu, const float vv)
|
|
|
|
{
|
|
|
|
const Vec4f Bu = BezierBasis::eval(uu);
|
|
|
|
const Vec4f Bv = BezierBasis::derivative2(vv);
|
|
|
|
return bilinear(Bu,matrix,Bv);
|
|
|
|
}
|
|
|
|
|
|
|
|
static __forceinline Vertex_t eval_dudv(const Vertex matrix[4][4], const float uu, const float vv)
|
|
|
|
{
|
|
|
|
const Vec4f Bu = BezierBasis::derivative(uu);
|
|
|
|
const Vec4f Bv = BezierBasis::derivative(vv);
|
|
|
|
return bilinear(Bu,matrix,Bv);
|
|
|
|
}
|
|
|
|
|
|
|
|
static __forceinline Vertex_t normal(const Vertex matrix[4][4], const float uu, const float vv)
|
|
|
|
{
|
|
|
|
const Vertex_t dPdu = eval_du(matrix,uu,vv);
|
|
|
|
const Vertex_t dPdv = eval_dv(matrix,uu,vv);
|
|
|
|
return cross(dPdu,dPdv);
|
|
|
|
}
|
|
|
|
|
|
|
|
__forceinline Vertex_t normal(const float uu, const float vv)
|
|
|
|
{
|
|
|
|
const Vertex_t dPdu = eval_du(matrix,uu,vv);
|
|
|
|
const Vertex_t dPdv = eval_dv(matrix,uu,vv);
|
|
|
|
return cross(dPdu,dPdv);
|
|
|
|
}
|
|
|
|
|
|
|
|
__forceinline Vertex_t eval(const float uu, const float vv) const {
|
|
|
|
return eval(matrix,uu,vv);
|
|
|
|
}
|
|
|
|
|
|
|
|
__forceinline Vertex_t eval_du(const float uu, const float vv) const {
|
|
|
|
return eval_du(matrix,uu,vv);
|
|
|
|
}
|
|
|
|
|
|
|
|
__forceinline Vertex_t eval_dv(const float uu, const float vv) const {
|
|
|
|
return eval_dv(matrix,uu,vv);
|
|
|
|
}
|
|
|
|
|
|
|
|
__forceinline Vertex_t eval_dudu(const float uu, const float vv) const {
|
|
|
|
return eval_dudu(matrix,uu,vv);
|
|
|
|
}
|
|
|
|
|
|
|
|
__forceinline Vertex_t eval_dvdv(const float uu, const float vv) const {
|
|
|
|
return eval_dvdv(matrix,uu,vv);
|
|
|
|
}
|
|
|
|
|
|
|
|
__forceinline Vertex_t eval_dudv(const float uu, const float vv) const {
|
|
|
|
return eval_dudv(matrix,uu,vv);
|
|
|
|
}
|
|
|
|
|
|
|
|
__forceinline void eval(const float u, const float v, Vertex* P, Vertex* dPdu, Vertex* dPdv, Vertex* ddPdudu, Vertex* ddPdvdv, Vertex* ddPdudv, const float dscale = 1.0f) const
|
|
|
|
{
|
|
|
|
if (P) {
|
|
|
|
*P = eval(u,v);
|
|
|
|
}
|
|
|
|
if (dPdu) {
|
|
|
|
assert(dPdu); *dPdu = eval_du(u,v)*dscale;
|
|
|
|
assert(dPdv); *dPdv = eval_dv(u,v)*dscale;
|
|
|
|
}
|
|
|
|
if (ddPdudu) {
|
|
|
|
assert(ddPdudu); *ddPdudu = eval_dudu(u,v)*sqr(dscale);
|
|
|
|
assert(ddPdvdv); *ddPdvdv = eval_dvdv(u,v)*sqr(dscale);
|
|
|
|
assert(ddPdudv); *ddPdudv = eval_dudv(u,v)*sqr(dscale);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
template<class vfloat>
|
|
|
|
__forceinline vfloat eval(const size_t i, const vfloat& uu, const vfloat& vv, const Vec4<vfloat>& u_n, const Vec4<vfloat>& v_n) const
|
|
|
|
{
|
|
|
|
const vfloat curve0_x = v_n[0] * vfloat(matrix[0][0][i]) + v_n[1] * vfloat(matrix[1][0][i]) + v_n[2] * vfloat(matrix[2][0][i]) + v_n[3] * vfloat(matrix[3][0][i]);
|
|
|
|
const vfloat curve1_x = v_n[0] * vfloat(matrix[0][1][i]) + v_n[1] * vfloat(matrix[1][1][i]) + v_n[2] * vfloat(matrix[2][1][i]) + v_n[3] * vfloat(matrix[3][1][i]);
|
|
|
|
const vfloat curve2_x = v_n[0] * vfloat(matrix[0][2][i]) + v_n[1] * vfloat(matrix[1][2][i]) + v_n[2] * vfloat(matrix[2][2][i]) + v_n[3] * vfloat(matrix[3][2][i]);
|
|
|
|
const vfloat curve3_x = v_n[0] * vfloat(matrix[0][3][i]) + v_n[1] * vfloat(matrix[1][3][i]) + v_n[2] * vfloat(matrix[2][3][i]) + v_n[3] * vfloat(matrix[3][3][i]);
|
|
|
|
return u_n[0] * curve0_x + u_n[1] * curve1_x + u_n[2] * curve2_x + u_n[3] * curve3_x;
|
|
|
|
}
|
|
|
|
|
|
|
|
template<typename vbool, typename vfloat>
|
|
|
|
__forceinline void eval(const vbool& valid, const vfloat& uu, const vfloat& vv,
|
|
|
|
float* P, float* dPdu, float* dPdv, float* ddPdudu, float* ddPdvdv, float* ddPdudv,
|
|
|
|
const float dscale, const size_t dstride, const size_t N) const
|
|
|
|
{
|
|
|
|
if (P) {
|
|
|
|
const Vec4<vfloat> u_n = BezierBasis::eval(uu);
|
|
|
|
const Vec4<vfloat> v_n = BezierBasis::eval(vv);
|
|
|
|
for (size_t i=0; i<N; i++) vfloat::store(valid,P+i*dstride,eval(i,uu,vv,u_n,v_n));
|
|
|
|
}
|
|
|
|
if (dPdu)
|
|
|
|
{
|
|
|
|
{
|
|
|
|
assert(dPdu);
|
|
|
|
const Vec4<vfloat> u_n = BezierBasis::derivative(uu);
|
|
|
|
const Vec4<vfloat> v_n = BezierBasis::eval(vv);
|
|
|
|
for (size_t i=0; i<N; i++) vfloat::store(valid,dPdu+i*dstride,eval(i,uu,vv,u_n,v_n)*dscale);
|
|
|
|
}
|
|
|
|
{
|
|
|
|
assert(dPdv);
|
|
|
|
const Vec4<vfloat> u_n = BezierBasis::eval(uu);
|
|
|
|
const Vec4<vfloat> v_n = BezierBasis::derivative(vv);
|
|
|
|
for (size_t i=0; i<N; i++) vfloat::store(valid,dPdv+i*dstride,eval(i,uu,vv,u_n,v_n)*dscale);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
if (ddPdudu)
|
|
|
|
{
|
|
|
|
{
|
|
|
|
assert(ddPdudu);
|
|
|
|
const Vec4<vfloat> u_n = BezierBasis::derivative2(uu);
|
|
|
|
const Vec4<vfloat> v_n = BezierBasis::eval(vv);
|
|
|
|
for (size_t i=0; i<N; i++) vfloat::store(valid,ddPdudu+i*dstride,eval(i,uu,vv,u_n,v_n)*sqr(dscale));
|
|
|
|
}
|
|
|
|
{
|
|
|
|
assert(ddPdvdv);
|
|
|
|
const Vec4<vfloat> u_n = BezierBasis::eval(uu);
|
|
|
|
const Vec4<vfloat> v_n = BezierBasis::derivative2(vv);
|
|
|
|
for (size_t i=0; i<N; i++) vfloat::store(valid,ddPdvdv+i*dstride,eval(i,uu,vv,u_n,v_n)*sqr(dscale));
|
|
|
|
}
|
|
|
|
{
|
|
|
|
assert(ddPdudv);
|
|
|
|
const Vec4<vfloat> u_n = BezierBasis::derivative(uu);
|
|
|
|
const Vec4<vfloat> v_n = BezierBasis::derivative(vv);
|
|
|
|
for (size_t i=0; i<N; i++) vfloat::store(valid,ddPdudv+i*dstride,eval(i,uu,vv,u_n,v_n)*sqr(dscale));
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
template<typename T>
|
|
|
|
static __forceinline Vec3<T> eval(const Vertex matrix[4][4], const T& uu, const T& vv)
|
|
|
|
{
|
|
|
|
const T one_minus_uu = 1.0f - uu;
|
|
|
|
const T one_minus_vv = 1.0f - vv;
|
|
|
|
|
|
|
|
const T B0_u = one_minus_uu * one_minus_uu * one_minus_uu;
|
|
|
|
const T B0_v = one_minus_vv * one_minus_vv * one_minus_vv;
|
|
|
|
const T B1_u = 3.0f * (one_minus_uu * uu * one_minus_uu);
|
|
|
|
const T B1_v = 3.0f * (one_minus_vv * vv * one_minus_vv);
|
|
|
|
const T B2_u = 3.0f * (uu * one_minus_uu * uu);
|
|
|
|
const T B2_v = 3.0f * (vv * one_minus_vv * vv);
|
|
|
|
const T B3_u = uu * uu * uu;
|
|
|
|
const T B3_v = vv * vv * vv;
|
|
|
|
|
|
|
|
const T x =
|
|
|
|
madd(B0_v,madd(B0_u,matrix[0][0].x,madd(B1_u,matrix[0][1].x,madd(B2_u,matrix[0][2].x,B3_u*matrix[0][3].x))),
|
|
|
|
madd(B1_v,madd(B0_u,matrix[1][0].x,madd(B1_u,matrix[1][1].x,madd(B2_u,matrix[1][2].x,B3_u*matrix[1][3].x))),
|
|
|
|
madd(B2_v,madd(B0_u,matrix[2][0].x,madd(B1_u,matrix[2][1].x,madd(B2_u,matrix[2][2].x,B3_u*matrix[2][3].x))),
|
|
|
|
B3_v*madd(B0_u,matrix[3][0].x,madd(B1_u,matrix[3][1].x,madd(B2_u,matrix[3][2].x,B3_u*matrix[3][3].x))))));
|
|
|
|
|
|
|
|
const T y =
|
|
|
|
madd(B0_v,madd(B0_u,matrix[0][0].y,madd(B1_u,matrix[0][1].y,madd(B2_u,matrix[0][2].y,B3_u*matrix[0][3].y))),
|
|
|
|
madd(B1_v,madd(B0_u,matrix[1][0].y,madd(B1_u,matrix[1][1].y,madd(B2_u,matrix[1][2].y,B3_u*matrix[1][3].y))),
|
|
|
|
madd(B2_v,madd(B0_u,matrix[2][0].y,madd(B1_u,matrix[2][1].y,madd(B2_u,matrix[2][2].y,B3_u*matrix[2][3].y))),
|
|
|
|
B3_v*madd(B0_u,matrix[3][0].y,madd(B1_u,matrix[3][1].y,madd(B2_u,matrix[3][2].y,B3_u*matrix[3][3].y))))));
|
|
|
|
|
|
|
|
const T z =
|
|
|
|
madd(B0_v,madd(B0_u,matrix[0][0].z,madd(B1_u,matrix[0][1].z,madd(B2_u,matrix[0][2].z,B3_u*matrix[0][3].z))),
|
|
|
|
madd(B1_v,madd(B0_u,matrix[1][0].z,madd(B1_u,matrix[1][1].z,madd(B2_u,matrix[1][2].z,B3_u*matrix[1][3].z))),
|
|
|
|
madd(B2_v,madd(B0_u,matrix[2][0].z,madd(B1_u,matrix[2][1].z,madd(B2_u,matrix[2][2].z,B3_u*matrix[2][3].z))),
|
|
|
|
B3_v*madd(B0_u,matrix[3][0].z,madd(B1_u,matrix[3][1].z,madd(B2_u,matrix[3][2].z,B3_u*matrix[3][3].z))))));
|
|
|
|
|
|
|
|
return Vec3<T>(x,y,z);
|
|
|
|
}
|
|
|
|
|
|
|
|
template<typename vfloat>
|
|
|
|
__forceinline Vec3<vfloat> eval(const vfloat& uu, const vfloat& vv) const {
|
|
|
|
return eval(matrix,uu,vv);
|
|
|
|
}
|
|
|
|
|
|
|
|
template<class T>
|
|
|
|
static __forceinline Vec3<T> normal(const Vertex matrix[4][4], const T& uu, const T& vv)
|
|
|
|
{
|
|
|
|
|
|
|
|
const Vec3<T> matrix_00 = Vec3<T>(matrix[0][0].x,matrix[0][0].y,matrix[0][0].z);
|
|
|
|
const Vec3<T> matrix_01 = Vec3<T>(matrix[0][1].x,matrix[0][1].y,matrix[0][1].z);
|
|
|
|
const Vec3<T> matrix_02 = Vec3<T>(matrix[0][2].x,matrix[0][2].y,matrix[0][2].z);
|
|
|
|
const Vec3<T> matrix_03 = Vec3<T>(matrix[0][3].x,matrix[0][3].y,matrix[0][3].z);
|
|
|
|
|
|
|
|
const Vec3<T> matrix_10 = Vec3<T>(matrix[1][0].x,matrix[1][0].y,matrix[1][0].z);
|
|
|
|
const Vec3<T> matrix_11 = Vec3<T>(matrix[1][1].x,matrix[1][1].y,matrix[1][1].z);
|
|
|
|
const Vec3<T> matrix_12 = Vec3<T>(matrix[1][2].x,matrix[1][2].y,matrix[1][2].z);
|
|
|
|
const Vec3<T> matrix_13 = Vec3<T>(matrix[1][3].x,matrix[1][3].y,matrix[1][3].z);
|
|
|
|
|
|
|
|
const Vec3<T> matrix_20 = Vec3<T>(matrix[2][0].x,matrix[2][0].y,matrix[2][0].z);
|
|
|
|
const Vec3<T> matrix_21 = Vec3<T>(matrix[2][1].x,matrix[2][1].y,matrix[2][1].z);
|
|
|
|
const Vec3<T> matrix_22 = Vec3<T>(matrix[2][2].x,matrix[2][2].y,matrix[2][2].z);
|
|
|
|
const Vec3<T> matrix_23 = Vec3<T>(matrix[2][3].x,matrix[2][3].y,matrix[2][3].z);
|
|
|
|
|
|
|
|
const Vec3<T> matrix_30 = Vec3<T>(matrix[3][0].x,matrix[3][0].y,matrix[3][0].z);
|
|
|
|
const Vec3<T> matrix_31 = Vec3<T>(matrix[3][1].x,matrix[3][1].y,matrix[3][1].z);
|
|
|
|
const Vec3<T> matrix_32 = Vec3<T>(matrix[3][2].x,matrix[3][2].y,matrix[3][2].z);
|
|
|
|
const Vec3<T> matrix_33 = Vec3<T>(matrix[3][3].x,matrix[3][3].y,matrix[3][3].z);
|
|
|
|
|
|
|
|
/* tangentU */
|
|
|
|
const Vec3<T> col0 = deCasteljau(vv, matrix_00, matrix_10, matrix_20, matrix_30);
|
|
|
|
const Vec3<T> col1 = deCasteljau(vv, matrix_01, matrix_11, matrix_21, matrix_31);
|
|
|
|
const Vec3<T> col2 = deCasteljau(vv, matrix_02, matrix_12, matrix_22, matrix_32);
|
|
|
|
const Vec3<T> col3 = deCasteljau(vv, matrix_03, matrix_13, matrix_23, matrix_33);
|
|
|
|
|
|
|
|
const Vec3<T> tangentU = deCasteljau_tangent(uu, col0, col1, col2, col3);
|
|
|
|
|
|
|
|
/* tangentV */
|
|
|
|
const Vec3<T> row0 = deCasteljau(uu, matrix_00, matrix_01, matrix_02, matrix_03);
|
|
|
|
const Vec3<T> row1 = deCasteljau(uu, matrix_10, matrix_11, matrix_12, matrix_13);
|
|
|
|
const Vec3<T> row2 = deCasteljau(uu, matrix_20, matrix_21, matrix_22, matrix_23);
|
|
|
|
const Vec3<T> row3 = deCasteljau(uu, matrix_30, matrix_31, matrix_32, matrix_33);
|
|
|
|
|
|
|
|
const Vec3<T> tangentV = deCasteljau_tangent(vv, row0, row1, row2, row3);
|
|
|
|
|
|
|
|
/* normal = tangentU x tangentV */
|
|
|
|
const Vec3<T> n = cross(tangentU,tangentV);
|
|
|
|
return n;
|
|
|
|
}
|
|
|
|
|
|
|
|
template<typename vfloat>
|
|
|
|
__forceinline Vec3<vfloat> normal(const vfloat& uu, const vfloat& vv) const {
|
|
|
|
return normal(matrix,uu,vv);
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
|
|
|
typedef BezierPatchT<Vec3fa,Vec3fa_t> BezierPatch3fa;
|
|
|
|
}
|