virtualx-engine/thirdparty/etc2comp/EtcBlock4x4Encoding_RGB8.cpp

1731 lines
51 KiB
C++
Raw Permalink Normal View History

/*
* Copyright 2015 The Etc2Comp Authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/*
EtcBlock4x4Encoding_RGB8.cpp
Block4x4Encoding_RGB8 is the encoder to use for the ETC2 extensions when targetting file format RGB8.
This encoder is also used for the ETC2 subset of file format RGBA8.
Block4x4Encoding_ETC1 encodes the ETC1 subset of RGB8.
*/
#include "EtcConfig.h"
#include "EtcBlock4x4Encoding_RGB8.h"
#include "EtcBlock4x4EncodingBits.h"
#include "EtcBlock4x4.h"
#include "EtcMath.h"
#include <stdio.h>
#include <string.h>
#include <assert.h>
#include <float.h>
#include <limits>
namespace Etc
{
float Block4x4Encoding_RGB8::s_afTHDistanceTable[TH_DISTANCES] =
{
3.0f / 255.0f,
6.0f / 255.0f,
11.0f / 255.0f,
16.0f / 255.0f,
23.0f / 255.0f,
32.0f / 255.0f,
41.0f / 255.0f,
64.0f / 255.0f
};
// ----------------------------------------------------------------------------------------------------
//
Block4x4Encoding_RGB8::Block4x4Encoding_RGB8(void)
{
m_pencodingbitsRGB8 = nullptr;
}
Block4x4Encoding_RGB8::~Block4x4Encoding_RGB8(void) {}
// ----------------------------------------------------------------------------------------------------
// initialization from the encoding bits of a previous encoding
// a_pblockParent points to the block associated with this encoding
// a_errormetric is used to choose the best encoding
// a_pafrgbaSource points to a 4x4 block subset of the source image
// a_paucEncodingBits points to the final encoding bits of a previous encoding
//
void Block4x4Encoding_RGB8::InitFromEncodingBits(Block4x4 *a_pblockParent,
unsigned char *a_paucEncodingBits,
ColorFloatRGBA *a_pafrgbaSource,
ErrorMetric a_errormetric)
{
// handle ETC1 modes
Block4x4Encoding_ETC1::InitFromEncodingBits(a_pblockParent,
a_paucEncodingBits, a_pafrgbaSource,a_errormetric);
m_pencodingbitsRGB8 = (Block4x4EncodingBits_RGB8 *)a_paucEncodingBits;
// detect if there is a T, H or Planar mode present
if (m_pencodingbitsRGB8->differential.diff)
{
int iRed1 = (int)m_pencodingbitsRGB8->differential.red1;
int iDRed2 = m_pencodingbitsRGB8->differential.dred2;
int iRed2 = iRed1 + iDRed2;
int iGreen1 = (int)m_pencodingbitsRGB8->differential.green1;
int iDGreen2 = m_pencodingbitsRGB8->differential.dgreen2;
int iGreen2 = iGreen1 + iDGreen2;
int iBlue1 = (int)m_pencodingbitsRGB8->differential.blue1;
int iDBlue2 = m_pencodingbitsRGB8->differential.dblue2;
int iBlue2 = iBlue1 + iDBlue2;
if (iRed2 < 0 || iRed2 > 31)
{
InitFromEncodingBits_T();
}
else if (iGreen2 < 0 || iGreen2 > 31)
{
InitFromEncodingBits_H();
}
else if (iBlue2 < 0 || iBlue2 > 31)
{
InitFromEncodingBits_Planar();
}
}
}
// ----------------------------------------------------------------------------------------------------
// initialization from the encoding bits of a previous encoding if T mode is detected
//
void Block4x4Encoding_RGB8::InitFromEncodingBits_T(void)
{
m_mode = MODE_T;
unsigned char ucRed1 = (unsigned char)((m_pencodingbitsRGB8->t.red1a << 2) +
m_pencodingbitsRGB8->t.red1b);
unsigned char ucGreen1 = m_pencodingbitsRGB8->t.green1;
unsigned char ucBlue1 = m_pencodingbitsRGB8->t.blue1;
unsigned char ucRed2 = m_pencodingbitsRGB8->t.red2;
unsigned char ucGreen2 = m_pencodingbitsRGB8->t.green2;
unsigned char ucBlue2 = m_pencodingbitsRGB8->t.blue2;
m_frgbaColor1 = ColorFloatRGBA::ConvertFromRGB4(ucRed1, ucGreen1, ucBlue1);
m_frgbaColor2 = ColorFloatRGBA::ConvertFromRGB4(ucRed2, ucGreen2, ucBlue2);
m_uiCW1 = (m_pencodingbitsRGB8->t.da << 1) + m_pencodingbitsRGB8->t.db;
Block4x4Encoding_ETC1::InitFromEncodingBits_Selectors();
DecodePixels_T();
CalcBlockError();
}
// ----------------------------------------------------------------------------------------------------
// initialization from the encoding bits of a previous encoding if H mode is detected
//
void Block4x4Encoding_RGB8::InitFromEncodingBits_H(void)
{
m_mode = MODE_H;
unsigned char ucRed1 = m_pencodingbitsRGB8->h.red1;
unsigned char ucGreen1 = (unsigned char)((m_pencodingbitsRGB8->h.green1a << 1) +
m_pencodingbitsRGB8->h.green1b);
unsigned char ucBlue1 = (unsigned char)((m_pencodingbitsRGB8->h.blue1a << 3) +
(m_pencodingbitsRGB8->h.blue1b << 1) +
m_pencodingbitsRGB8->h.blue1c);
unsigned char ucRed2 = m_pencodingbitsRGB8->h.red2;
unsigned char ucGreen2 = (unsigned char)((m_pencodingbitsRGB8->h.green2a << 1) +
m_pencodingbitsRGB8->h.green2b);
unsigned char ucBlue2 = m_pencodingbitsRGB8->h.blue2;
m_frgbaColor1 = ColorFloatRGBA::ConvertFromRGB4(ucRed1, ucGreen1, ucBlue1);
m_frgbaColor2 = ColorFloatRGBA::ConvertFromRGB4(ucRed2, ucGreen2, ucBlue2);
// used to determine the LSB of the CW
unsigned int uiRGB1 = (unsigned int)(((int)ucRed1 << 16) + ((int)ucGreen1 << 8) + (int)ucBlue1);
unsigned int uiRGB2 = (unsigned int)(((int)ucRed2 << 16) + ((int)ucGreen2 << 8) + (int)ucBlue2);
m_uiCW1 = (m_pencodingbitsRGB8->h.da << 2) + (m_pencodingbitsRGB8->h.db << 1);
if (uiRGB1 >= uiRGB2)
{
m_uiCW1++;
}
Block4x4Encoding_ETC1::InitFromEncodingBits_Selectors();
DecodePixels_H();
CalcBlockError();
}
// ----------------------------------------------------------------------------------------------------
// initialization from the encoding bits of a previous encoding if Planar mode is detected
//
void Block4x4Encoding_RGB8::InitFromEncodingBits_Planar(void)
{
m_mode = MODE_PLANAR;
unsigned char ucOriginRed = m_pencodingbitsRGB8->planar.originRed;
unsigned char ucOriginGreen = (unsigned char)((m_pencodingbitsRGB8->planar.originGreen1 << 6) +
m_pencodingbitsRGB8->planar.originGreen2);
unsigned char ucOriginBlue = (unsigned char)((m_pencodingbitsRGB8->planar.originBlue1 << 5) +
(m_pencodingbitsRGB8->planar.originBlue2 << 3) +
(m_pencodingbitsRGB8->planar.originBlue3 << 1) +
m_pencodingbitsRGB8->planar.originBlue4);
unsigned char ucHorizRed = (unsigned char)((m_pencodingbitsRGB8->planar.horizRed1 << 1) +
m_pencodingbitsRGB8->planar.horizRed2);
unsigned char ucHorizGreen = m_pencodingbitsRGB8->planar.horizGreen;
unsigned char ucHorizBlue = (unsigned char)((m_pencodingbitsRGB8->planar.horizBlue1 << 5) +
m_pencodingbitsRGB8->planar.horizBlue2);
unsigned char ucVertRed = (unsigned char)((m_pencodingbitsRGB8->planar.vertRed1 << 3) +
m_pencodingbitsRGB8->planar.vertRed2);
unsigned char ucVertGreen = (unsigned char)((m_pencodingbitsRGB8->planar.vertGreen1 << 2) +
m_pencodingbitsRGB8->planar.vertGreen2);
unsigned char ucVertBlue = m_pencodingbitsRGB8->planar.vertBlue;
m_frgbaColor1 = ColorFloatRGBA::ConvertFromR6G7B6(ucOriginRed, ucOriginGreen, ucOriginBlue);
m_frgbaColor2 = ColorFloatRGBA::ConvertFromR6G7B6(ucHorizRed, ucHorizGreen, ucHorizBlue);
m_frgbaColor3 = ColorFloatRGBA::ConvertFromR6G7B6(ucVertRed, ucVertGreen, ucVertBlue);
DecodePixels_Planar();
CalcBlockError();
}
// ----------------------------------------------------------------------------------------------------
// perform a single encoding iteration
// replace the encoding if a better encoding was found
// subsequent iterations generally take longer for each iteration
// set m_boolDone if encoding is perfect or encoding is finished based on a_fEffort
//
void Block4x4Encoding_RGB8::PerformIteration(float a_fEffort)
{
assert(!m_boolDone);
switch (m_uiEncodingIterations)
{
case 0:
Block4x4Encoding_ETC1::PerformFirstIteration();
if (m_boolDone)
{
break;
}
TryPlanar(0);
SetDoneIfPerfect();
if (m_boolDone)
{
break;
}
TryTAndH(0);
break;
case 1:
Block4x4Encoding_ETC1::TryDifferential(m_boolMostLikelyFlip, 1, 0, 0);
break;
case 2:
Block4x4Encoding_ETC1::TryIndividual(m_boolMostLikelyFlip, 1);
break;
case 3:
Block4x4Encoding_ETC1::TryDifferential(!m_boolMostLikelyFlip, 1, 0, 0);
break;
case 4:
Block4x4Encoding_ETC1::TryIndividual(!m_boolMostLikelyFlip, 1);
break;
case 5:
TryPlanar(1);
if (a_fEffort <= 49.5f)
{
m_boolDone = true;
}
break;
case 6:
TryTAndH(1);
if (a_fEffort <= 59.5f)
{
m_boolDone = true;
}
break;
case 7:
Block4x4Encoding_ETC1::TryDegenerates1();
if (a_fEffort <= 69.5f)
{
m_boolDone = true;
}
break;
case 8:
Block4x4Encoding_ETC1::TryDegenerates2();
if (a_fEffort <= 79.5f)
{
m_boolDone = true;
}
break;
case 9:
Block4x4Encoding_ETC1::TryDegenerates3();
if (a_fEffort <= 89.5f)
{
m_boolDone = true;
}
break;
case 10:
Block4x4Encoding_ETC1::TryDegenerates4();
m_boolDone = true;
break;
default:
assert(0);
break;
}
m_uiEncodingIterations++;
SetDoneIfPerfect();
}
// ----------------------------------------------------------------------------------------------------
// try encoding in Planar mode
// save this encoding if it improves the error
//
void Block4x4Encoding_RGB8::TryPlanar(unsigned int a_uiRadius)
{
Block4x4Encoding_RGB8 encodingTry = *this;
// init "try"
{
encodingTry.m_mode = MODE_PLANAR;
encodingTry.m_boolDiff = true;
encodingTry.m_boolFlip = false;
}
encodingTry.CalculatePlanarCornerColors();
encodingTry.DecodePixels_Planar();
encodingTry.CalcBlockError();
if (a_uiRadius > 0)
{
encodingTry.TwiddlePlanar();
}
if (encodingTry.m_fError < m_fError)
{
m_mode = MODE_PLANAR;
m_boolDiff = true;
m_boolFlip = false;
m_frgbaColor1 = encodingTry.m_frgbaColor1;
m_frgbaColor2 = encodingTry.m_frgbaColor2;
m_frgbaColor3 = encodingTry.m_frgbaColor3;
for (unsigned int uiPixel = 0; uiPixel < PIXELS; uiPixel++)
{
m_afrgbaDecodedColors[uiPixel] = encodingTry.m_afrgbaDecodedColors[uiPixel];
}
m_fError = encodingTry.m_fError;
}
}
// ----------------------------------------------------------------------------------------------------
// try encoding in T mode or H mode
// save this encoding if it improves the error
//
void Block4x4Encoding_RGB8::TryTAndH(unsigned int a_uiRadius)
{
CalculateBaseColorsForTAndH();
TryT(a_uiRadius);
TryH(a_uiRadius);
}
// ----------------------------------------------------------------------------------------------------
// calculate original values for base colors
// store them in m_frgbaOriginalColor1 and m_frgbaOriginalColor2
//
void Block4x4Encoding_RGB8::CalculateBaseColorsForTAndH(void)
{
bool boolRGBX = m_pblockParent->GetImageSource()->GetErrorMetric() == ErrorMetric::RGBX;
ColorFloatRGBA frgbaBlockAverage = (m_frgbaSourceAverageLeft + m_frgbaSourceAverageRight) * 0.5f;
// find pixel farthest from average gray line
unsigned int uiFarthestPixel = 0;
float fFarthestGrayDistance2 = 0.0f;
unsigned int uiTransparentPixels = 0;
for (unsigned int uiPixel = 0; uiPixel < PIXELS; uiPixel++)
{
// don't count transparent
if (m_pafrgbaSource[uiPixel].fA == 0.0f && !boolRGBX)
{
uiTransparentPixels++;
}
else
{
float fGrayDistance2 = CalcGrayDistance2(m_pafrgbaSource[uiPixel], frgbaBlockAverage);
if (fGrayDistance2 > fFarthestGrayDistance2)
{
uiFarthestPixel = uiPixel;
fFarthestGrayDistance2 = fGrayDistance2;
}
}
}
// a transparent block should not reach this method
assert(uiTransparentPixels < PIXELS);
// set the original base colors to:
// half way to the farthest pixel and
// the mirror color on the other side of the average
ColorFloatRGBA frgbaOffset = (m_pafrgbaSource[uiFarthestPixel] - frgbaBlockAverage) * 0.5f;
m_frgbaOriginalColor1_TAndH = (frgbaBlockAverage + frgbaOffset).QuantizeR4G4B4();
m_frgbaOriginalColor2_TAndH = (frgbaBlockAverage - frgbaOffset).ClampRGB().QuantizeR4G4B4(); // the "other side" might be out of range
// move base colors to find best fit
for (unsigned int uiIteration = 0; uiIteration < 10; uiIteration++)
{
// find the center of pixels closest to each color
float fPixelsCloserToColor1 = 0.0f;
ColorFloatRGBA frgbSumPixelsCloserToColor1;
float fPixelsCloserToColor2 = 0.0f;
ColorFloatRGBA frgbSumPixelsCloserToColor2;
for (unsigned int uiPixel = 0; uiPixel < PIXELS; uiPixel++)
{
// don't count transparent pixels
if (m_pafrgbaSource[uiPixel].fA == 0.0f)
{
continue;
}
float fGrayDistance2ToColor1 = CalcGrayDistance2(m_pafrgbaSource[uiPixel], m_frgbaOriginalColor1_TAndH);
float fGrayDistance2ToColor2 = CalcGrayDistance2(m_pafrgbaSource[uiPixel], m_frgbaOriginalColor2_TAndH);
ColorFloatRGBA frgbaAlphaWeightedSource = m_pafrgbaSource[uiPixel] * m_pafrgbaSource[uiPixel].fA;
if (fGrayDistance2ToColor1 <= fGrayDistance2ToColor2)
{
fPixelsCloserToColor1 += m_pafrgbaSource[uiPixel].fA;
frgbSumPixelsCloserToColor1 = frgbSumPixelsCloserToColor1 + frgbaAlphaWeightedSource;
}
else
{
fPixelsCloserToColor2 += m_pafrgbaSource[uiPixel].fA;
frgbSumPixelsCloserToColor2 = frgbSumPixelsCloserToColor2 + frgbaAlphaWeightedSource;
}
}
if (fPixelsCloserToColor1 == 0.0f || fPixelsCloserToColor2 == 0.0f)
{
break;
}
ColorFloatRGBA frgbAvgColor1Pixels = (frgbSumPixelsCloserToColor1 * (1.0f / fPixelsCloserToColor1)).QuantizeR4G4B4();
ColorFloatRGBA frgbAvgColor2Pixels = (frgbSumPixelsCloserToColor2 * (1.0f / fPixelsCloserToColor2)).QuantizeR4G4B4();
if (frgbAvgColor1Pixels.fR == m_frgbaOriginalColor1_TAndH.fR &&
frgbAvgColor1Pixels.fG == m_frgbaOriginalColor1_TAndH.fG &&
frgbAvgColor1Pixels.fB == m_frgbaOriginalColor1_TAndH.fB &&
frgbAvgColor2Pixels.fR == m_frgbaOriginalColor2_TAndH.fR &&
frgbAvgColor2Pixels.fG == m_frgbaOriginalColor2_TAndH.fG &&
frgbAvgColor2Pixels.fB == m_frgbaOriginalColor2_TAndH.fB)
{
break;
}
m_frgbaOriginalColor1_TAndH = frgbAvgColor1Pixels;
m_frgbaOriginalColor2_TAndH = frgbAvgColor2Pixels;
}
}
// ----------------------------------------------------------------------------------------------------
// try encoding in T mode
// save this encoding if it improves the error
//
// since pixels that use base color1 don't use the distance table, color1 and color2 can be twiddled independently
// better encoding can be found if TWIDDLE_RADIUS is set to 2, but it will be much slower
//
void Block4x4Encoding_RGB8::TryT(unsigned int a_uiRadius)
{
Block4x4Encoding_RGB8 encodingTry = *this;
// init "try"
{
encodingTry.m_mode = MODE_T;
encodingTry.m_boolDiff = true;
encodingTry.m_boolFlip = false;
encodingTry.m_fError = FLT_MAX;
}
int iColor1Red = m_frgbaOriginalColor1_TAndH.IntRed(15.0f);
int iColor1Green = m_frgbaOriginalColor1_TAndH.IntGreen(15.0f);
int iColor1Blue = m_frgbaOriginalColor1_TAndH.IntBlue(15.0f);
int iMinRed1 = iColor1Red - (int)a_uiRadius;
if (iMinRed1 < 0)
{
iMinRed1 = 0;
}
int iMaxRed1 = iColor1Red + (int)a_uiRadius;
if (iMaxRed1 > 15)
{
iMaxRed1 = 15;
}
int iMinGreen1 = iColor1Green - (int)a_uiRadius;
if (iMinGreen1 < 0)
{
iMinGreen1 = 0;
}
int iMaxGreen1 = iColor1Green + (int)a_uiRadius;
if (iMaxGreen1 > 15)
{
iMaxGreen1 = 15;
}
int iMinBlue1 = iColor1Blue - (int)a_uiRadius;
if (iMinBlue1 < 0)
{
iMinBlue1 = 0;
}
int iMaxBlue1 = iColor1Blue + (int)a_uiRadius;
if (iMaxBlue1 > 15)
{
iMaxBlue1 = 15;
}
int iColor2Red = m_frgbaOriginalColor2_TAndH.IntRed(15.0f);
int iColor2Green = m_frgbaOriginalColor2_TAndH.IntGreen(15.0f);
int iColor2Blue = m_frgbaOriginalColor2_TAndH.IntBlue(15.0f);
int iMinRed2 = iColor2Red - (int)a_uiRadius;
if (iMinRed2 < 0)
{
iMinRed2 = 0;
}
int iMaxRed2 = iColor2Red + (int)a_uiRadius;
if (iMaxRed2 > 15)
{
iMaxRed2 = 15;
}
int iMinGreen2 = iColor2Green - (int)a_uiRadius;
if (iMinGreen2 < 0)
{
iMinGreen2 = 0;
}
int iMaxGreen2 = iColor2Green + (int)a_uiRadius;
if (iMaxGreen2 > 15)
{
iMaxGreen2 = 15;
}
int iMinBlue2 = iColor2Blue - (int)a_uiRadius;
if (iMinBlue2 < 0)
{
iMinBlue2 = 0;
}
int iMaxBlue2 = iColor2Blue + (int)a_uiRadius;
if (iMaxBlue2 > 15)
{
iMaxBlue2 = 15;
}
for (unsigned int uiDistance = 0; uiDistance < TH_DISTANCES; uiDistance++)
{
encodingTry.m_uiCW1 = uiDistance;
// twiddle m_frgbaOriginalColor2_TAndH
// twiddle color2 first, since it affects 3 selectors, while color1 only affects one selector
//
for (int iRed2 = iMinRed2; iRed2 <= iMaxRed2; iRed2++)
{
for (int iGreen2 = iMinGreen2; iGreen2 <= iMaxGreen2; iGreen2++)
{
for (int iBlue2 = iMinBlue2; iBlue2 <= iMaxBlue2; iBlue2++)
{
for (unsigned int uiBaseColorSwaps = 0; uiBaseColorSwaps < 2; uiBaseColorSwaps++)
{
if (uiBaseColorSwaps == 0)
{
encodingTry.m_frgbaColor1 = m_frgbaOriginalColor1_TAndH;
encodingTry.m_frgbaColor2 = ColorFloatRGBA::ConvertFromRGB4((unsigned char)iRed2, (unsigned char)iGreen2, (unsigned char)iBlue2);
}
else
{
encodingTry.m_frgbaColor1 = ColorFloatRGBA::ConvertFromRGB4((unsigned char)iRed2, (unsigned char)iGreen2, (unsigned char)iBlue2);
encodingTry.m_frgbaColor2 = m_frgbaOriginalColor1_TAndH;
}
encodingTry.TryT_BestSelectorCombination();
if (encodingTry.m_fError < m_fError)
{
m_mode = encodingTry.m_mode;
m_boolDiff = encodingTry.m_boolDiff;
m_boolFlip = encodingTry.m_boolFlip;
m_frgbaColor1 = encodingTry.m_frgbaColor1;
m_frgbaColor2 = encodingTry.m_frgbaColor2;
m_uiCW1 = encodingTry.m_uiCW1;
for (unsigned int uiPixel = 0; uiPixel < PIXELS; uiPixel++)
{
m_auiSelectors[uiPixel] = encodingTry.m_auiSelectors[uiPixel];
m_afrgbaDecodedColors[uiPixel] = encodingTry.m_afrgbaDecodedColors[uiPixel];
}
m_fError = encodingTry.m_fError;
}
}
}
}
}
// twiddle m_frgbaOriginalColor1_TAndH
for (int iRed1 = iMinRed1; iRed1 <= iMaxRed1; iRed1++)
{
for (int iGreen1 = iMinGreen1; iGreen1 <= iMaxGreen1; iGreen1++)
{
for (int iBlue1 = iMinBlue1; iBlue1 <= iMaxBlue1; iBlue1++)
{
for (unsigned int uiBaseColorSwaps = 0; uiBaseColorSwaps < 2; uiBaseColorSwaps++)
{
if (uiBaseColorSwaps == 0)
{
encodingTry.m_frgbaColor1 = ColorFloatRGBA::ConvertFromRGB4((unsigned char)iRed1, (unsigned char)iGreen1, (unsigned char)iBlue1);
encodingTry.m_frgbaColor2 = m_frgbaOriginalColor2_TAndH;
}
else
{
encodingTry.m_frgbaColor1 = m_frgbaOriginalColor2_TAndH;
encodingTry.m_frgbaColor2 = ColorFloatRGBA::ConvertFromRGB4((unsigned char)iRed1, (unsigned char)iGreen1, (unsigned char)iBlue1);
}
encodingTry.TryT_BestSelectorCombination();
if (encodingTry.m_fError < m_fError)
{
m_mode = encodingTry.m_mode;
m_boolDiff = encodingTry.m_boolDiff;
m_boolFlip = encodingTry.m_boolFlip;
m_frgbaColor1 = encodingTry.m_frgbaColor1;
m_frgbaColor2 = encodingTry.m_frgbaColor2;
m_uiCW1 = encodingTry.m_uiCW1;
for (unsigned int uiPixel = 0; uiPixel < PIXELS; uiPixel++)
{
m_auiSelectors[uiPixel] = encodingTry.m_auiSelectors[uiPixel];
m_afrgbaDecodedColors[uiPixel] = encodingTry.m_afrgbaDecodedColors[uiPixel];
}
m_fError = encodingTry.m_fError;
}
}
}
}
}
}
}
// ----------------------------------------------------------------------------------------------------
// find best selector combination for TryT
// called on an encodingTry
//
void Block4x4Encoding_RGB8::TryT_BestSelectorCombination(void)
{
float fDistance = s_afTHDistanceTable[m_uiCW1];
unsigned int auiBestPixelSelectors[PIXELS];
float afBestPixelErrors[PIXELS] = { FLT_MAX, FLT_MAX, FLT_MAX, FLT_MAX, FLT_MAX, FLT_MAX, FLT_MAX, FLT_MAX,
FLT_MAX, FLT_MAX, FLT_MAX, FLT_MAX, FLT_MAX, FLT_MAX, FLT_MAX, FLT_MAX };
ColorFloatRGBA afrgbaBestDecodedPixels[PIXELS];
ColorFloatRGBA afrgbaDecodedPixel[SELECTORS];
assert(SELECTORS == 4);
afrgbaDecodedPixel[0] = m_frgbaColor1;
afrgbaDecodedPixel[1] = (m_frgbaColor2 + fDistance).ClampRGB();
afrgbaDecodedPixel[2] = m_frgbaColor2;
afrgbaDecodedPixel[3] = (m_frgbaColor2 - fDistance).ClampRGB();
// try each selector
for (unsigned int uiSelector = 0; uiSelector < SELECTORS; uiSelector++)
{
for (unsigned int uiPixel = 0; uiPixel < PIXELS; uiPixel++)
{
float fPixelError = CalcPixelError(afrgbaDecodedPixel[uiSelector], m_afDecodedAlphas[uiPixel],
m_pafrgbaSource[uiPixel]);
if (fPixelError < afBestPixelErrors[uiPixel])
{
afBestPixelErrors[uiPixel] = fPixelError;
auiBestPixelSelectors[uiPixel] = uiSelector;
afrgbaBestDecodedPixels[uiPixel] = afrgbaDecodedPixel[uiSelector];
}
}
}
// add up all of the pixel errors
float fBlockError = 0.0f;
for (unsigned int uiPixel = 0; uiPixel < PIXELS; uiPixel++)
{
fBlockError += afBestPixelErrors[uiPixel];
}
if (fBlockError < m_fError)
{
m_fError = fBlockError;
for (unsigned int uiPixel = 0; uiPixel < PIXELS; uiPixel++)
{
m_auiSelectors[uiPixel] = auiBestPixelSelectors[uiPixel];
m_afrgbaDecodedColors[uiPixel] = afrgbaBestDecodedPixels[uiPixel];
}
}
}
// ----------------------------------------------------------------------------------------------------
// try encoding in T mode
// save this encoding if it improves the error
//
// since all pixels use the distance table, color1 and color2 can NOT be twiddled independently
// TWIDDLE_RADIUS of 2 is WAY too slow
//
void Block4x4Encoding_RGB8::TryH(unsigned int a_uiRadius)
{
Block4x4Encoding_RGB8 encodingTry = *this;
// init "try"
{
encodingTry.m_mode = MODE_H;
encodingTry.m_boolDiff = true;
encodingTry.m_boolFlip = false;
encodingTry.m_fError = FLT_MAX;
}
int iColor1Red = m_frgbaOriginalColor1_TAndH.IntRed(15.0f);
int iColor1Green = m_frgbaOriginalColor1_TAndH.IntGreen(15.0f);
int iColor1Blue = m_frgbaOriginalColor1_TAndH.IntBlue(15.0f);
int iMinRed1 = iColor1Red - (int)a_uiRadius;
if (iMinRed1 < 0)
{
iMinRed1 = 0;
}
int iMaxRed1 = iColor1Red + (int)a_uiRadius;
if (iMaxRed1 > 15)
{
iMaxRed1 = 15;
}
int iMinGreen1 = iColor1Green - (int)a_uiRadius;
if (iMinGreen1 < 0)
{
iMinGreen1 = 0;
}
int iMaxGreen1 = iColor1Green + (int)a_uiRadius;
if (iMaxGreen1 > 15)
{
iMaxGreen1 = 15;
}
int iMinBlue1 = iColor1Blue - (int)a_uiRadius;
if (iMinBlue1 < 0)
{
iMinBlue1 = 0;
}
int iMaxBlue1 = iColor1Blue + (int)a_uiRadius;
if (iMaxBlue1 > 15)
{
iMaxBlue1 = 15;
}
int iColor2Red = m_frgbaOriginalColor2_TAndH.IntRed(15.0f);
int iColor2Green = m_frgbaOriginalColor2_TAndH.IntGreen(15.0f);
int iColor2Blue = m_frgbaOriginalColor2_TAndH.IntBlue(15.0f);
int iMinRed2 = iColor2Red - (int)a_uiRadius;
if (iMinRed2 < 0)
{
iMinRed2 = 0;
}
int iMaxRed2 = iColor2Red + (int)a_uiRadius;
if (iMaxRed2 > 15)
{
iMaxRed2 = 15;
}
int iMinGreen2 = iColor2Green - (int)a_uiRadius;
if (iMinGreen2 < 0)
{
iMinGreen2 = 0;
}
int iMaxGreen2 = iColor2Green + (int)a_uiRadius;
if (iMaxGreen2 > 15)
{
iMaxGreen2 = 15;
}
int iMinBlue2 = iColor2Blue - (int)a_uiRadius;
if (iMinBlue2 < 0)
{
iMinBlue2 = 0;
}
int iMaxBlue2 = iColor2Blue + (int)a_uiRadius;
if (iMaxBlue2 > 15)
{
iMaxBlue2 = 15;
}
for (unsigned int uiDistance = 0; uiDistance < TH_DISTANCES; uiDistance++)
{
encodingTry.m_uiCW1 = uiDistance;
// twiddle m_frgbaOriginalColor1_TAndH
for (int iRed1 = iMinRed1; iRed1 <= iMaxRed1; iRed1++)
{
for (int iGreen1 = iMinGreen1; iGreen1 <= iMaxGreen1; iGreen1++)
{
for (int iBlue1 = iMinBlue1; iBlue1 <= iMaxBlue1; iBlue1++)
{
encodingTry.m_frgbaColor1 = ColorFloatRGBA::ConvertFromRGB4((unsigned char)iRed1, (unsigned char)iGreen1, (unsigned char)iBlue1);
encodingTry.m_frgbaColor2 = m_frgbaOriginalColor2_TAndH;
// if color1 == color2, H encoding issues can pop up, so abort
if (iRed1 == iColor2Red && iGreen1 == iColor2Green && iBlue1 == iColor2Blue)
{
continue;
}
encodingTry.TryH_BestSelectorCombination();
if (encodingTry.m_fError < m_fError)
{
m_mode = encodingTry.m_mode;
m_boolDiff = encodingTry.m_boolDiff;
m_boolFlip = encodingTry.m_boolFlip;
m_frgbaColor1 = encodingTry.m_frgbaColor1;
m_frgbaColor2 = encodingTry.m_frgbaColor2;
m_uiCW1 = encodingTry.m_uiCW1;
for (unsigned int uiPixel = 0; uiPixel < PIXELS; uiPixel++)
{
m_auiSelectors[uiPixel] = encodingTry.m_auiSelectors[uiPixel];
m_afrgbaDecodedColors[uiPixel] = encodingTry.m_afrgbaDecodedColors[uiPixel];
}
m_fError = encodingTry.m_fError;
}
}
}
}
// twiddle m_frgbaOriginalColor2_TAndH
for (int iRed2 = iMinRed2; iRed2 <= iMaxRed2; iRed2++)
{
for (int iGreen2 = iMinGreen2; iGreen2 <= iMaxGreen2; iGreen2++)
{
for (int iBlue2 = iMinBlue2; iBlue2 <= iMaxBlue2; iBlue2++)
{
encodingTry.m_frgbaColor1 = m_frgbaOriginalColor1_TAndH;
encodingTry.m_frgbaColor2 = ColorFloatRGBA::ConvertFromRGB4((unsigned char)iRed2, (unsigned char)iGreen2, (unsigned char)iBlue2);
// if color1 == color2, H encoding issues can pop up, so abort
if (iRed2 == iColor1Red && iGreen2 == iColor1Green && iBlue2 == iColor1Blue)
{
continue;
}
encodingTry.TryH_BestSelectorCombination();
if (encodingTry.m_fError < m_fError)
{
m_mode = encodingTry.m_mode;
m_boolDiff = encodingTry.m_boolDiff;
m_boolFlip = encodingTry.m_boolFlip;
m_frgbaColor1 = encodingTry.m_frgbaColor1;
m_frgbaColor2 = encodingTry.m_frgbaColor2;
m_uiCW1 = encodingTry.m_uiCW1;
for (unsigned int uiPixel = 0; uiPixel < PIXELS; uiPixel++)
{
m_auiSelectors[uiPixel] = encodingTry.m_auiSelectors[uiPixel];
m_afrgbaDecodedColors[uiPixel] = encodingTry.m_afrgbaDecodedColors[uiPixel];
}
m_fError = encodingTry.m_fError;
}
}
}
}
}
}
// ----------------------------------------------------------------------------------------------------
// find best selector combination for TryH
// called on an encodingTry
//
void Block4x4Encoding_RGB8::TryH_BestSelectorCombination(void)
{
float fDistance = s_afTHDistanceTable[m_uiCW1];
unsigned int auiBestPixelSelectors[PIXELS];
float afBestPixelErrors[PIXELS] = { FLT_MAX, FLT_MAX, FLT_MAX, FLT_MAX, FLT_MAX, FLT_MAX, FLT_MAX, FLT_MAX,
FLT_MAX, FLT_MAX, FLT_MAX, FLT_MAX, FLT_MAX, FLT_MAX, FLT_MAX, FLT_MAX };
ColorFloatRGBA afrgbaBestDecodedPixels[PIXELS];
ColorFloatRGBA afrgbaDecodedPixel[SELECTORS];
assert(SELECTORS == 4);
afrgbaDecodedPixel[0] = (m_frgbaColor1 + fDistance).ClampRGB();
afrgbaDecodedPixel[1] = (m_frgbaColor1 - fDistance).ClampRGB();
afrgbaDecodedPixel[2] = (m_frgbaColor2 + fDistance).ClampRGB();
afrgbaDecodedPixel[3] = (m_frgbaColor2 - fDistance).ClampRGB();
// try each selector
for (unsigned int uiSelector = 0; uiSelector < SELECTORS; uiSelector++)
{
for (unsigned int uiPixel = 0; uiPixel < PIXELS; uiPixel++)
{
float fPixelError = CalcPixelError(afrgbaDecodedPixel[uiSelector], m_afDecodedAlphas[uiPixel],
m_pafrgbaSource[uiPixel]);
if (fPixelError < afBestPixelErrors[uiPixel])
{
afBestPixelErrors[uiPixel] = fPixelError;
auiBestPixelSelectors[uiPixel] = uiSelector;
afrgbaBestDecodedPixels[uiPixel] = afrgbaDecodedPixel[uiSelector];
}
}
}
// add up all of the pixel errors
float fBlockError = 0.0f;
for (unsigned int uiPixel = 0; uiPixel < PIXELS; uiPixel++)
{
fBlockError += afBestPixelErrors[uiPixel];
}
if (fBlockError < m_fError)
{
m_fError = fBlockError;
for (unsigned int uiPixel = 0; uiPixel < PIXELS; uiPixel++)
{
m_auiSelectors[uiPixel] = auiBestPixelSelectors[uiPixel];
m_afrgbaDecodedColors[uiPixel] = afrgbaBestDecodedPixels[uiPixel];
}
}
}
// ----------------------------------------------------------------------------------------------------
// use linear regression to find the best fit for colors along the edges of the 4x4 block
//
void Block4x4Encoding_RGB8::CalculatePlanarCornerColors(void)
{
ColorFloatRGBA afrgbaRegression[MAX_PLANAR_REGRESSION_SIZE];
ColorFloatRGBA frgbaSlope;
ColorFloatRGBA frgbaOffset;
// top edge
afrgbaRegression[0] = m_pafrgbaSource[0];
afrgbaRegression[1] = m_pafrgbaSource[4];
afrgbaRegression[2] = m_pafrgbaSource[8];
afrgbaRegression[3] = m_pafrgbaSource[12];
ColorRegression(afrgbaRegression, 4, &frgbaSlope, &frgbaOffset);
m_frgbaColor1 = frgbaOffset;
m_frgbaColor2 = (frgbaSlope * 4.0f) + frgbaOffset;
// left edge
afrgbaRegression[0] = m_pafrgbaSource[0];
afrgbaRegression[1] = m_pafrgbaSource[1];
afrgbaRegression[2] = m_pafrgbaSource[2];
afrgbaRegression[3] = m_pafrgbaSource[3];
ColorRegression(afrgbaRegression, 4, &frgbaSlope, &frgbaOffset);
m_frgbaColor1 = (m_frgbaColor1 + frgbaOffset) * 0.5f; // average with top edge
m_frgbaColor3 = (frgbaSlope * 4.0f) + frgbaOffset;
// right edge
afrgbaRegression[0] = m_pafrgbaSource[12];
afrgbaRegression[1] = m_pafrgbaSource[13];
afrgbaRegression[2] = m_pafrgbaSource[14];
afrgbaRegression[3] = m_pafrgbaSource[15];
ColorRegression(afrgbaRegression, 4, &frgbaSlope, &frgbaOffset);
m_frgbaColor2 = (m_frgbaColor2 + frgbaOffset) * 0.5f; // average with top edge
// bottom edge
afrgbaRegression[0] = m_pafrgbaSource[3];
afrgbaRegression[1] = m_pafrgbaSource[7];
afrgbaRegression[2] = m_pafrgbaSource[11];
afrgbaRegression[3] = m_pafrgbaSource[15];
ColorRegression(afrgbaRegression, 4, &frgbaSlope, &frgbaOffset);
m_frgbaColor3 = (m_frgbaColor3 + frgbaOffset) * 0.5f; // average with left edge
// quantize corner colors to 6/7/6
m_frgbaColor1 = m_frgbaColor1.QuantizeR6G7B6();
m_frgbaColor2 = m_frgbaColor2.QuantizeR6G7B6();
m_frgbaColor3 = m_frgbaColor3.QuantizeR6G7B6();
}
// ----------------------------------------------------------------------------------------------------
// try different corner colors by slightly changing R, G and B independently
//
// R, G and B decoding and errors are independent, so R, G and B twiddles can be independent
//
// return true if improvement
//
bool Block4x4Encoding_RGB8::TwiddlePlanar(void)
{
bool boolImprovement = false;
while (TwiddlePlanarR())
{
boolImprovement = true;
}
while (TwiddlePlanarG())
{
boolImprovement = true;
}
while (TwiddlePlanarB())
{
boolImprovement = true;
}
return boolImprovement;
}
// ----------------------------------------------------------------------------------------------------
// try different corner colors by slightly changing R
//
bool Block4x4Encoding_RGB8::TwiddlePlanarR()
{
bool boolImprovement = false;
Block4x4Encoding_RGB8 encodingTry = *this;
// init "try"
{
encodingTry.m_mode = MODE_PLANAR;
encodingTry.m_boolDiff = true;
encodingTry.m_boolFlip = false;
}
int iOriginRed = encodingTry.m_frgbaColor1.IntRed(63.0f);
int iHorizRed = encodingTry.m_frgbaColor2.IntRed(63.0f);
int iVertRed = encodingTry.m_frgbaColor3.IntRed(63.0f);
for (int iTryOriginRed = iOriginRed - 1; iTryOriginRed <= iOriginRed + 1; iTryOriginRed++)
{
// check for out of range
if (iTryOriginRed < 0 || iTryOriginRed > 63)
{
continue;
}
encodingTry.m_frgbaColor1.fR = ((iTryOriginRed << 2) + (iTryOriginRed >> 4)) / 255.0f;
for (int iTryHorizRed = iHorizRed - 1; iTryHorizRed <= iHorizRed + 1; iTryHorizRed++)
{
// check for out of range
if (iTryHorizRed < 0 || iTryHorizRed > 63)
{
continue;
}
encodingTry.m_frgbaColor2.fR = ((iTryHorizRed << 2) + (iTryHorizRed >> 4)) / 255.0f;
for (int iTryVertRed = iVertRed - 1; iTryVertRed <= iVertRed + 1; iTryVertRed++)
{
// check for out of range
if (iTryVertRed < 0 || iTryVertRed > 63)
{
continue;
}
// don't bother with null twiddle
if (iTryOriginRed == iOriginRed && iTryHorizRed == iHorizRed && iTryVertRed == iVertRed)
{
continue;
}
encodingTry.m_frgbaColor3.fR = ((iTryVertRed << 2) + (iTryVertRed >> 4)) / 255.0f;
encodingTry.DecodePixels_Planar();
encodingTry.CalcBlockError();
if (encodingTry.m_fError < m_fError)
{
m_mode = MODE_PLANAR;
m_boolDiff = true;
m_boolFlip = false;
m_frgbaColor1 = encodingTry.m_frgbaColor1;
m_frgbaColor2 = encodingTry.m_frgbaColor2;
m_frgbaColor3 = encodingTry.m_frgbaColor3;
for (unsigned int uiPixel = 0; uiPixel < PIXELS; uiPixel++)
{
m_afrgbaDecodedColors[uiPixel] = encodingTry.m_afrgbaDecodedColors[uiPixel];
}
m_fError = encodingTry.m_fError;
boolImprovement = true;
}
}
}
}
return boolImprovement;
}
// ----------------------------------------------------------------------------------------------------
// try different corner colors by slightly changing G
//
bool Block4x4Encoding_RGB8::TwiddlePlanarG()
{
bool boolImprovement = false;
Block4x4Encoding_RGB8 encodingTry = *this;
// init "try"
{
encodingTry.m_mode = MODE_PLANAR;
encodingTry.m_boolDiff = true;
encodingTry.m_boolFlip = false;
}
int iOriginGreen = encodingTry.m_frgbaColor1.IntGreen(127.0f);
int iHorizGreen = encodingTry.m_frgbaColor2.IntGreen(127.0f);
int iVertGreen = encodingTry.m_frgbaColor3.IntGreen(127.0f);
for (int iTryOriginGreen = iOriginGreen - 1; iTryOriginGreen <= iOriginGreen + 1; iTryOriginGreen++)
{
// check for out of range
if (iTryOriginGreen < 0 || iTryOriginGreen > 127)
{
continue;
}
encodingTry.m_frgbaColor1.fG = ((iTryOriginGreen << 1) + (iTryOriginGreen >> 6)) / 255.0f;
for (int iTryHorizGreen = iHorizGreen - 1; iTryHorizGreen <= iHorizGreen + 1; iTryHorizGreen++)
{
// check for out of range
if (iTryHorizGreen < 0 || iTryHorizGreen > 127)
{
continue;
}
encodingTry.m_frgbaColor2.fG = ((iTryHorizGreen << 1) + (iTryHorizGreen >> 6)) / 255.0f;
for (int iTryVertGreen = iVertGreen - 1; iTryVertGreen <= iVertGreen + 1; iTryVertGreen++)
{
// check for out of range
if (iTryVertGreen < 0 || iTryVertGreen > 127)
{
continue;
}
// don't bother with null twiddle
if (iTryOriginGreen == iOriginGreen &&
iTryHorizGreen == iHorizGreen &&
iTryVertGreen == iVertGreen)
{
continue;
}
encodingTry.m_frgbaColor3.fG = ((iTryVertGreen << 1) + (iTryVertGreen >> 6)) / 255.0f;
encodingTry.DecodePixels_Planar();
encodingTry.CalcBlockError();
if (encodingTry.m_fError < m_fError)
{
m_mode = MODE_PLANAR;
m_boolDiff = true;
m_boolFlip = false;
m_frgbaColor1 = encodingTry.m_frgbaColor1;
m_frgbaColor2 = encodingTry.m_frgbaColor2;
m_frgbaColor3 = encodingTry.m_frgbaColor3;
for (unsigned int uiPixel = 0; uiPixel < PIXELS; uiPixel++)
{
m_afrgbaDecodedColors[uiPixel] = encodingTry.m_afrgbaDecodedColors[uiPixel];
}
m_fError = encodingTry.m_fError;
boolImprovement = true;
}
}
}
}
return boolImprovement;
}
// ----------------------------------------------------------------------------------------------------
// try different corner colors by slightly changing B
//
bool Block4x4Encoding_RGB8::TwiddlePlanarB()
{
bool boolImprovement = false;
Block4x4Encoding_RGB8 encodingTry = *this;
// init "try"
{
encodingTry.m_mode = MODE_PLANAR;
encodingTry.m_boolDiff = true;
encodingTry.m_boolFlip = false;
}
int iOriginBlue = encodingTry.m_frgbaColor1.IntBlue(63.0f);
int iHorizBlue = encodingTry.m_frgbaColor2.IntBlue(63.0f);
int iVertBlue = encodingTry.m_frgbaColor3.IntBlue(63.0f);
for (int iTryOriginBlue = iOriginBlue - 1; iTryOriginBlue <= iOriginBlue + 1; iTryOriginBlue++)
{
// check for out of range
if (iTryOriginBlue < 0 || iTryOriginBlue > 63)
{
continue;
}
encodingTry.m_frgbaColor1.fB = ((iTryOriginBlue << 2) + (iTryOriginBlue >> 4)) / 255.0f;
for (int iTryHorizBlue = iHorizBlue - 1; iTryHorizBlue <= iHorizBlue + 1; iTryHorizBlue++)
{
// check for out of range
if (iTryHorizBlue < 0 || iTryHorizBlue > 63)
{
continue;
}
encodingTry.m_frgbaColor2.fB = ((iTryHorizBlue << 2) + (iTryHorizBlue >> 4)) / 255.0f;
for (int iTryVertBlue = iVertBlue - 1; iTryVertBlue <= iVertBlue + 1; iTryVertBlue++)
{
// check for out of range
if (iTryVertBlue < 0 || iTryVertBlue > 63)
{
continue;
}
// don't bother with null twiddle
if (iTryOriginBlue == iOriginBlue && iTryHorizBlue == iHorizBlue && iTryVertBlue == iVertBlue)
{
continue;
}
encodingTry.m_frgbaColor3.fB = ((iTryVertBlue << 2) + (iTryVertBlue >> 4)) / 255.0f;
encodingTry.DecodePixels_Planar();
encodingTry.CalcBlockError();
if (encodingTry.m_fError < m_fError)
{
m_mode = MODE_PLANAR;
m_boolDiff = true;
m_boolFlip = false;
m_frgbaColor1 = encodingTry.m_frgbaColor1;
m_frgbaColor2 = encodingTry.m_frgbaColor2;
m_frgbaColor3 = encodingTry.m_frgbaColor3;
for (unsigned int uiPixel = 0; uiPixel < PIXELS; uiPixel++)
{
m_afrgbaDecodedColors[uiPixel] = encodingTry.m_afrgbaDecodedColors[uiPixel];
}
m_fError = encodingTry.m_fError;
boolImprovement = true;
}
}
}
}
return boolImprovement;
}
// ----------------------------------------------------------------------------------------------------
// set the encoding bits based on encoding state
//
void Block4x4Encoding_RGB8::SetEncodingBits(void)
{
switch (m_mode)
{
case MODE_ETC1:
Block4x4Encoding_ETC1::SetEncodingBits();
break;
case MODE_T:
SetEncodingBits_T();
break;
case MODE_H:
SetEncodingBits_H();
break;
case MODE_PLANAR:
SetEncodingBits_Planar();
break;
default:
assert(false);
}
}
// ----------------------------------------------------------------------------------------------------
// set the encoding bits based on encoding state for T mode
//
void Block4x4Encoding_RGB8::SetEncodingBits_T(void)
{
static const bool SANITY_CHECK = true;
assert(m_mode == MODE_T);
assert(m_boolDiff == true);
unsigned int uiRed1 = (unsigned int)m_frgbaColor1.IntRed(15.0f);
unsigned int uiGreen1 = (unsigned int)m_frgbaColor1.IntGreen(15.0f);
unsigned int uiBlue1 = (unsigned int)m_frgbaColor1.IntBlue(15.0f);
unsigned int uiRed2 = (unsigned int)m_frgbaColor2.IntRed(15.0f);
unsigned int uiGreen2 = (unsigned int)m_frgbaColor2.IntGreen(15.0f);
unsigned int uiBlue2 = (unsigned int)m_frgbaColor2.IntBlue(15.0f);
m_pencodingbitsRGB8->t.red1a = uiRed1 >> 2;
m_pencodingbitsRGB8->t.red1b = uiRed1;
m_pencodingbitsRGB8->t.green1 = uiGreen1;
m_pencodingbitsRGB8->t.blue1 = uiBlue1;
m_pencodingbitsRGB8->t.red2 = uiRed2;
m_pencodingbitsRGB8->t.green2 = uiGreen2;
m_pencodingbitsRGB8->t.blue2 = uiBlue2;
m_pencodingbitsRGB8->t.da = m_uiCW1 >> 1;
m_pencodingbitsRGB8->t.db = m_uiCW1;
m_pencodingbitsRGB8->t.diff = 1;
Block4x4Encoding_ETC1::SetEncodingBits_Selectors();
// create an invalid R differential to trigger T mode
m_pencodingbitsRGB8->t.detect1 = 0;
m_pencodingbitsRGB8->t.detect2 = 0;
int iRed2 = (int)m_pencodingbitsRGB8->differential.red1 + (int)m_pencodingbitsRGB8->differential.dred2;
if (iRed2 >= 4)
{
m_pencodingbitsRGB8->t.detect1 = 7;
m_pencodingbitsRGB8->t.detect2 = 0;
}
else
{
m_pencodingbitsRGB8->t.detect1 = 0;
m_pencodingbitsRGB8->t.detect2 = 1;
}
if (SANITY_CHECK)
{
iRed2 = (int)m_pencodingbitsRGB8->differential.red1 + (int)m_pencodingbitsRGB8->differential.dred2;
// make sure red overflows
assert(iRed2 < 0 || iRed2 > 31);
}
}
// ----------------------------------------------------------------------------------------------------
// set the encoding bits based on encoding state for H mode
//
// colors and selectors may need to swap in order to generate lsb of distance index
//
void Block4x4Encoding_RGB8::SetEncodingBits_H(void)
{
static const bool SANITY_CHECK = true;
assert(m_mode == MODE_H);
assert(m_boolDiff == true);
unsigned int uiRed1 = (unsigned int)m_frgbaColor1.IntRed(15.0f);
unsigned int uiGreen1 = (unsigned int)m_frgbaColor1.IntGreen(15.0f);
unsigned int uiBlue1 = (unsigned int)m_frgbaColor1.IntBlue(15.0f);
unsigned int uiRed2 = (unsigned int)m_frgbaColor2.IntRed(15.0f);
unsigned int uiGreen2 = (unsigned int)m_frgbaColor2.IntGreen(15.0f);
unsigned int uiBlue2 = (unsigned int)m_frgbaColor2.IntBlue(15.0f);
unsigned int uiColor1 = (uiRed1 << 16) + (uiGreen1 << 8) + uiBlue1;
unsigned int uiColor2 = (uiRed2 << 16) + (uiGreen2 << 8) + uiBlue2;
bool boolOddDistance = m_uiCW1 & 1;
bool boolSwapColors = (uiColor1 < uiColor2) ^ !boolOddDistance;
if (boolSwapColors)
{
m_pencodingbitsRGB8->h.red1 = uiRed2;
m_pencodingbitsRGB8->h.green1a = uiGreen2 >> 1;
m_pencodingbitsRGB8->h.green1b = uiGreen2;
m_pencodingbitsRGB8->h.blue1a = uiBlue2 >> 3;
m_pencodingbitsRGB8->h.blue1b = uiBlue2 >> 1;
m_pencodingbitsRGB8->h.blue1c = uiBlue2;
m_pencodingbitsRGB8->h.red2 = uiRed1;
m_pencodingbitsRGB8->h.green2a = uiGreen1 >> 1;
m_pencodingbitsRGB8->h.green2b = uiGreen1;
m_pencodingbitsRGB8->h.blue2 = uiBlue1;
m_pencodingbitsRGB8->h.da = m_uiCW1 >> 2;
m_pencodingbitsRGB8->h.db = m_uiCW1 >> 1;
}
else
{
m_pencodingbitsRGB8->h.red1 = uiRed1;
m_pencodingbitsRGB8->h.green1a = uiGreen1 >> 1;
m_pencodingbitsRGB8->h.green1b = uiGreen1;
m_pencodingbitsRGB8->h.blue1a = uiBlue1 >> 3;
m_pencodingbitsRGB8->h.blue1b = uiBlue1 >> 1;
m_pencodingbitsRGB8->h.blue1c = uiBlue1;
m_pencodingbitsRGB8->h.red2 = uiRed2;
m_pencodingbitsRGB8->h.green2a = uiGreen2 >> 1;
m_pencodingbitsRGB8->h.green2b = uiGreen2;
m_pencodingbitsRGB8->h.blue2 = uiBlue2;
m_pencodingbitsRGB8->h.da = m_uiCW1 >> 2;
m_pencodingbitsRGB8->h.db = m_uiCW1 >> 1;
}
m_pencodingbitsRGB8->h.diff = 1;
Block4x4Encoding_ETC1::SetEncodingBits_Selectors();
if (boolSwapColors)
{
m_pencodingbitsRGB8->h.selectors ^= 0x0000FFFF;
}
// create an invalid R differential to trigger T mode
m_pencodingbitsRGB8->h.detect1 = 0;
m_pencodingbitsRGB8->h.detect2 = 0;
m_pencodingbitsRGB8->h.detect3 = 0;
int iRed2 = (int)m_pencodingbitsRGB8->differential.red1 + (int)m_pencodingbitsRGB8->differential.dred2;
int iGreen2 = (int)m_pencodingbitsRGB8->differential.green1 + (int)m_pencodingbitsRGB8->differential.dgreen2;
if (iRed2 < 0 || iRed2 > 31)
{
m_pencodingbitsRGB8->h.detect1 = 1;
}
if (iGreen2 >= 4)
{
m_pencodingbitsRGB8->h.detect2 = 7;
m_pencodingbitsRGB8->h.detect3 = 0;
}
else
{
m_pencodingbitsRGB8->h.detect2 = 0;
m_pencodingbitsRGB8->h.detect3 = 1;
}
if (SANITY_CHECK)
{
iRed2 = (int)m_pencodingbitsRGB8->differential.red1 + (int)m_pencodingbitsRGB8->differential.dred2;
iGreen2 = (int)m_pencodingbitsRGB8->differential.green1 + (int)m_pencodingbitsRGB8->differential.dgreen2;
// make sure red doesn't overflow and green does
assert(iRed2 >= 0 && iRed2 <= 31);
assert(iGreen2 < 0 || iGreen2 > 31);
}
}
// ----------------------------------------------------------------------------------------------------
// set the encoding bits based on encoding state for Planar mode
//
void Block4x4Encoding_RGB8::SetEncodingBits_Planar(void)
{
static const bool SANITY_CHECK = true;
assert(m_mode == MODE_PLANAR);
assert(m_boolDiff == true);
unsigned int uiOriginRed = (unsigned int)m_frgbaColor1.IntRed(63.0f);
unsigned int uiOriginGreen = (unsigned int)m_frgbaColor1.IntGreen(127.0f);
unsigned int uiOriginBlue = (unsigned int)m_frgbaColor1.IntBlue(63.0f);
unsigned int uiHorizRed = (unsigned int)m_frgbaColor2.IntRed(63.0f);
unsigned int uiHorizGreen = (unsigned int)m_frgbaColor2.IntGreen(127.0f);
unsigned int uiHorizBlue = (unsigned int)m_frgbaColor2.IntBlue(63.0f);
unsigned int uiVertRed = (unsigned int)m_frgbaColor3.IntRed(63.0f);
unsigned int uiVertGreen = (unsigned int)m_frgbaColor3.IntGreen(127.0f);
unsigned int uiVertBlue = (unsigned int)m_frgbaColor3.IntBlue(63.0f);
m_pencodingbitsRGB8->planar.originRed = uiOriginRed;
m_pencodingbitsRGB8->planar.originGreen1 = uiOriginGreen >> 6;
m_pencodingbitsRGB8->planar.originGreen2 = uiOriginGreen;
m_pencodingbitsRGB8->planar.originBlue1 = uiOriginBlue >> 5;
m_pencodingbitsRGB8->planar.originBlue2 = uiOriginBlue >> 3;
m_pencodingbitsRGB8->planar.originBlue3 = uiOriginBlue >> 1;
m_pencodingbitsRGB8->planar.originBlue4 = uiOriginBlue;
m_pencodingbitsRGB8->planar.horizRed1 = uiHorizRed >> 1;
m_pencodingbitsRGB8->planar.horizRed2 = uiHorizRed;
m_pencodingbitsRGB8->planar.horizGreen = uiHorizGreen;
m_pencodingbitsRGB8->planar.horizBlue1 = uiHorizBlue >> 5;
m_pencodingbitsRGB8->planar.horizBlue2 = uiHorizBlue;
m_pencodingbitsRGB8->planar.vertRed1 = uiVertRed >> 3;
m_pencodingbitsRGB8->planar.vertRed2 = uiVertRed;
m_pencodingbitsRGB8->planar.vertGreen1 = uiVertGreen >> 2;
m_pencodingbitsRGB8->planar.vertGreen2 = uiVertGreen;
m_pencodingbitsRGB8->planar.vertBlue = uiVertBlue;
m_pencodingbitsRGB8->planar.diff = 1;
// create valid RG differentials and an invalid B differential to trigger planar mode
m_pencodingbitsRGB8->planar.detect1 = 0;
m_pencodingbitsRGB8->planar.detect2 = 0;
m_pencodingbitsRGB8->planar.detect3 = 0;
m_pencodingbitsRGB8->planar.detect4 = 0;
int iRed2 = (int)m_pencodingbitsRGB8->differential.red1 + (int)m_pencodingbitsRGB8->differential.dred2;
int iGreen2 = (int)m_pencodingbitsRGB8->differential.green1 + (int)m_pencodingbitsRGB8->differential.dgreen2;
int iBlue2 = (int)m_pencodingbitsRGB8->differential.blue1 + (int)m_pencodingbitsRGB8->differential.dblue2;
if (iRed2 < 0 || iRed2 > 31)
{
m_pencodingbitsRGB8->planar.detect1 = 1;
}
if (iGreen2 < 0 || iGreen2 > 31)
{
m_pencodingbitsRGB8->planar.detect2 = 1;
}
if (iBlue2 >= 4)
{
m_pencodingbitsRGB8->planar.detect3 = 7;
m_pencodingbitsRGB8->planar.detect4 = 0;
}
else
{
m_pencodingbitsRGB8->planar.detect3 = 0;
m_pencodingbitsRGB8->planar.detect4 = 1;
}
if (SANITY_CHECK)
{
iRed2 = (int)m_pencodingbitsRGB8->differential.red1 + (int)m_pencodingbitsRGB8->differential.dred2;
iGreen2 = (int)m_pencodingbitsRGB8->differential.green1 + (int)m_pencodingbitsRGB8->differential.dgreen2;
iBlue2 = (int)m_pencodingbitsRGB8->differential.blue1 + (int)m_pencodingbitsRGB8->differential.dblue2;
// make sure red and green don't overflow and blue does
assert(iRed2 >= 0 && iRed2 <= 31);
assert(iGreen2 >= 0 && iGreen2 <= 31);
assert(iBlue2 < 0 || iBlue2 > 31);
}
}
// ----------------------------------------------------------------------------------------------------
// set the decoded colors and decoded alpha based on the encoding state for T mode
//
void Block4x4Encoding_RGB8::DecodePixels_T(void)
{
float fDistance = s_afTHDistanceTable[m_uiCW1];
ColorFloatRGBA frgbaDistance(fDistance, fDistance, fDistance, 0.0f);
for (unsigned int uiPixel = 0; uiPixel < PIXELS; uiPixel++)
{
switch (m_auiSelectors[uiPixel])
{
case 0:
m_afrgbaDecodedColors[uiPixel] = m_frgbaColor1;
break;
case 1:
m_afrgbaDecodedColors[uiPixel] = (m_frgbaColor2 + frgbaDistance).ClampRGB();
break;
case 2:
m_afrgbaDecodedColors[uiPixel] = m_frgbaColor2;
break;
case 3:
m_afrgbaDecodedColors[uiPixel] = (m_frgbaColor2 - frgbaDistance).ClampRGB();
break;
}
}
}
// ----------------------------------------------------------------------------------------------------
// set the decoded colors and decoded alpha based on the encoding state for H mode
//
void Block4x4Encoding_RGB8::DecodePixels_H(void)
{
float fDistance = s_afTHDistanceTable[m_uiCW1];
ColorFloatRGBA frgbaDistance(fDistance, fDistance, fDistance, 0.0f);
for (unsigned int uiPixel = 0; uiPixel < PIXELS; uiPixel++)
{
switch (m_auiSelectors[uiPixel])
{
case 0:
m_afrgbaDecodedColors[uiPixel] = (m_frgbaColor1 + frgbaDistance).ClampRGB();
break;
case 1:
m_afrgbaDecodedColors[uiPixel] = (m_frgbaColor1 - frgbaDistance).ClampRGB();
break;
case 2:
m_afrgbaDecodedColors[uiPixel] = (m_frgbaColor2 + frgbaDistance).ClampRGB();
break;
case 3:
m_afrgbaDecodedColors[uiPixel] = (m_frgbaColor2 - frgbaDistance).ClampRGB();
break;
}
}
}
// ----------------------------------------------------------------------------------------------------
// set the decoded colors and decoded alpha based on the encoding state for Planar mode
//
void Block4x4Encoding_RGB8::DecodePixels_Planar(void)
{
int iRO = (int)roundf(m_frgbaColor1.fR * 255.0f);
int iGO = (int)roundf(m_frgbaColor1.fG * 255.0f);
int iBO = (int)roundf(m_frgbaColor1.fB * 255.0f);
int iRH = (int)roundf(m_frgbaColor2.fR * 255.0f);
int iGH = (int)roundf(m_frgbaColor2.fG * 255.0f);
int iBH = (int)roundf(m_frgbaColor2.fB * 255.0f);
int iRV = (int)roundf(m_frgbaColor3.fR * 255.0f);
int iGV = (int)roundf(m_frgbaColor3.fG * 255.0f);
int iBV = (int)roundf(m_frgbaColor3.fB * 255.0f);
for (unsigned int uiPixel = 0; uiPixel < PIXELS; uiPixel++)
{
int iX = (int)(uiPixel >> 2);
int iY = (int)(uiPixel & 3);
int iR = (iX*(iRH - iRO) + iY*(iRV - iRO) + 4*iRO + 2) >> 2;
int iG = (iX*(iGH - iGO) + iY*(iGV - iGO) + 4*iGO + 2) >> 2;
int iB = (iX*(iBH - iBO) + iY*(iBV - iBO) + 4*iBO + 2) >> 2;
ColorFloatRGBA frgba;
frgba.fR = (float)iR / 255.0f;
frgba.fG = (float)iG / 255.0f;
frgba.fB = (float)iB / 255.0f;
frgba.fA = 1.0f;
m_afrgbaDecodedColors[uiPixel] = frgba.ClampRGB();
}
}
// ----------------------------------------------------------------------------------------------------
// perform a linear regression for the a_uiPixels in a_pafrgbaPixels[]
//
// output the closest color line using a_pfrgbaSlope and a_pfrgbaOffset
//
void Block4x4Encoding_RGB8::ColorRegression(ColorFloatRGBA *a_pafrgbaPixels, unsigned int a_uiPixels,
ColorFloatRGBA *a_pfrgbaSlope, ColorFloatRGBA *a_pfrgbaOffset)
{
typedef struct
{
float f[4];
} Float4;
Float4 *paf4Pixels = (Float4 *)(a_pafrgbaPixels);
Float4 *pf4Slope = (Float4 *)(a_pfrgbaSlope);
Float4 *pf4Offset = (Float4 *)(a_pfrgbaOffset);
float afX[MAX_PLANAR_REGRESSION_SIZE];
float afY[MAX_PLANAR_REGRESSION_SIZE];
// handle r, g and b separately. don't bother with a
for (unsigned int uiComponent = 0; uiComponent < 3; uiComponent++)
{
for (unsigned int uiPixel = 0; uiPixel < a_uiPixels; uiPixel++)
{
afX[uiPixel] = (float)uiPixel;
afY[uiPixel] = paf4Pixels[uiPixel].f[uiComponent];
}
Etc::Regression(afX, afY, a_uiPixels,
&(pf4Slope->f[uiComponent]), &(pf4Offset->f[uiComponent]));
}
}
// ----------------------------------------------------------------------------------------------------
//
}