virtualx-engine/thirdparty/zstd/decompress/huf_decompress.c

1883 lines
72 KiB
C
Raw Permalink Normal View History

/* ******************************************************************
* huff0 huffman decoder,
* part of Finite State Entropy library
* Copyright (c) Meta Platforms, Inc. and affiliates.
*
* You can contact the author at :
* - FSE+HUF source repository : https://github.com/Cyan4973/FiniteStateEntropy
*
* This source code is licensed under both the BSD-style license (found in the
* LICENSE file in the root directory of this source tree) and the GPLv2 (found
* in the COPYING file in the root directory of this source tree).
* You may select, at your option, one of the above-listed licenses.
****************************************************************** */
/* **************************************************************
* Dependencies
****************************************************************/
#include "../common/zstd_deps.h" /* ZSTD_memcpy, ZSTD_memset */
#include "../common/compiler.h"
#include "../common/bitstream.h" /* BIT_* */
#include "../common/fse.h" /* to compress headers */
#include "../common/huf.h"
#include "../common/error_private.h"
#include "../common/zstd_internal.h"
#include "../common/bits.h" /* ZSTD_highbit32, ZSTD_countTrailingZeros64 */
/* **************************************************************
* Constants
****************************************************************/
#define HUF_DECODER_FAST_TABLELOG 11
2019-01-04 01:30:03 +01:00
/* **************************************************************
* Macros
****************************************************************/
/* These two optional macros force the use one way or another of the two
* Huffman decompression implementations. You can't force in both directions
* at the same time.
*/
#if defined(HUF_FORCE_DECOMPRESS_X1) && \
defined(HUF_FORCE_DECOMPRESS_X2)
#error "Cannot force the use of the X1 and X2 decoders at the same time!"
#endif
/* When DYNAMIC_BMI2 is enabled, fast decoders are only called when bmi2 is
* supported at runtime, so we can add the BMI2 target attribute.
* When it is disabled, we will still get BMI2 if it is enabled statically.
*/
#if DYNAMIC_BMI2
# define HUF_FAST_BMI2_ATTRS BMI2_TARGET_ATTRIBUTE
#else
# define HUF_FAST_BMI2_ATTRS
#endif
#ifdef __cplusplus
# define HUF_EXTERN_C extern "C"
#else
# define HUF_EXTERN_C
#endif
#define HUF_ASM_DECL HUF_EXTERN_C
#if DYNAMIC_BMI2
# define HUF_NEED_BMI2_FUNCTION 1
#else
# define HUF_NEED_BMI2_FUNCTION 0
#endif
/* **************************************************************
* Error Management
****************************************************************/
#define HUF_isError ERR_isError
2017-07-22 23:46:05 +02:00
/* **************************************************************
* Byte alignment for workSpace management
****************************************************************/
2018-05-15 19:45:22 +02:00
#define HUF_ALIGN(x, a) HUF_ALIGN_MASK((x), (a) - 1)
2017-07-22 23:46:05 +02:00
#define HUF_ALIGN_MASK(x, mask) (((x) + (mask)) & ~(mask))
2018-05-15 19:45:22 +02:00
2019-01-04 01:30:03 +01:00
/* **************************************************************
* BMI2 Variant Wrappers
****************************************************************/
typedef size_t (*HUF_DecompressUsingDTableFn)(void *dst, size_t dstSize,
const void *cSrc,
size_t cSrcSize,
const HUF_DTable *DTable);
2019-01-04 01:30:03 +01:00
#if DYNAMIC_BMI2
#define HUF_DGEN(fn) \
\
static size_t fn##_default( \
void* dst, size_t dstSize, \
const void* cSrc, size_t cSrcSize, \
const HUF_DTable* DTable) \
{ \
return fn##_body(dst, dstSize, cSrc, cSrcSize, DTable); \
} \
\
static BMI2_TARGET_ATTRIBUTE size_t fn##_bmi2( \
2019-01-04 01:30:03 +01:00
void* dst, size_t dstSize, \
const void* cSrc, size_t cSrcSize, \
const HUF_DTable* DTable) \
{ \
return fn##_body(dst, dstSize, cSrc, cSrcSize, DTable); \
} \
\
static size_t fn(void* dst, size_t dstSize, void const* cSrc, \
size_t cSrcSize, HUF_DTable const* DTable, int flags) \
2019-01-04 01:30:03 +01:00
{ \
if (flags & HUF_flags_bmi2) { \
2019-01-04 01:30:03 +01:00
return fn##_bmi2(dst, dstSize, cSrc, cSrcSize, DTable); \
} \
return fn##_default(dst, dstSize, cSrc, cSrcSize, DTable); \
}
#else
#define HUF_DGEN(fn) \
static size_t fn(void* dst, size_t dstSize, void const* cSrc, \
size_t cSrcSize, HUF_DTable const* DTable, int flags) \
2019-01-04 01:30:03 +01:00
{ \
(void)flags; \
2019-01-04 01:30:03 +01:00
return fn##_body(dst, dstSize, cSrc, cSrcSize, DTable); \
}
#endif
/*-***************************/
/* generic DTableDesc */
/*-***************************/
typedef struct { BYTE maxTableLog; BYTE tableType; BYTE tableLog; BYTE reserved; } DTableDesc;
static DTableDesc HUF_getDTableDesc(const HUF_DTable* table)
{
DTableDesc dtd;
ZSTD_memcpy(&dtd, table, sizeof(dtd));
return dtd;
}
static size_t HUF_initFastDStream(BYTE const* ip) {
BYTE const lastByte = ip[7];
size_t const bitsConsumed = lastByte ? 8 - ZSTD_highbit32(lastByte) : 0;
size_t const value = MEM_readLEST(ip) | 1;
assert(bitsConsumed <= 8);
assert(sizeof(size_t) == 8);
return value << bitsConsumed;
}
/**
* The input/output arguments to the Huffman fast decoding loop:
*
* ip [in/out] - The input pointers, must be updated to reflect what is consumed.
* op [in/out] - The output pointers, must be updated to reflect what is written.
* bits [in/out] - The bitstream containers, must be updated to reflect the current state.
* dt [in] - The decoding table.
* ilimit [in] - The input limit, stop when any input pointer is below ilimit.
* oend [in] - The end of the output stream. op[3] must not cross oend.
* iend [in] - The end of each input stream. ip[i] may cross iend[i],
* as long as it is above ilimit, but that indicates corruption.
*/
typedef struct {
BYTE const* ip[4];
BYTE* op[4];
U64 bits[4];
void const* dt;
BYTE const* ilimit;
BYTE* oend;
BYTE const* iend[4];
} HUF_DecompressFastArgs;
typedef void (*HUF_DecompressFastLoopFn)(HUF_DecompressFastArgs*);
/**
* Initializes args for the fast decoding loop.
* @returns 1 on success
* 0 if the fallback implementation should be used.
* Or an error code on failure.
*/
static size_t HUF_DecompressFastArgs_init(HUF_DecompressFastArgs* args, void* dst, size_t dstSize, void const* src, size_t srcSize, const HUF_DTable* DTable)
{
void const* dt = DTable + 1;
U32 const dtLog = HUF_getDTableDesc(DTable).tableLog;
const BYTE* const ilimit = (const BYTE*)src + 6 + 8;
BYTE* const oend = (BYTE*)dst + dstSize;
/* The fast decoding loop assumes 64-bit little-endian.
* This condition is false on x32.
*/
if (!MEM_isLittleEndian() || MEM_32bits())
return 0;
/* strict minimum : jump table + 1 byte per stream */
if (srcSize < 10)
return ERROR(corruption_detected);
/* Must have at least 8 bytes per stream because we don't handle initializing smaller bit containers.
* If table log is not correct at this point, fallback to the old decoder.
* On small inputs we don't have enough data to trigger the fast loop, so use the old decoder.
*/
if (dtLog != HUF_DECODER_FAST_TABLELOG)
return 0;
/* Read the jump table. */
{
const BYTE* const istart = (const BYTE*)src;
size_t const length1 = MEM_readLE16(istart);
size_t const length2 = MEM_readLE16(istart+2);
size_t const length3 = MEM_readLE16(istart+4);
size_t const length4 = srcSize - (length1 + length2 + length3 + 6);
args->iend[0] = istart + 6; /* jumpTable */
args->iend[1] = args->iend[0] + length1;
args->iend[2] = args->iend[1] + length2;
args->iend[3] = args->iend[2] + length3;
/* HUF_initFastDStream() requires this, and this small of an input
* won't benefit from the ASM loop anyways.
* length1 must be >= 16 so that ip[0] >= ilimit before the loop
* starts.
*/
if (length1 < 16 || length2 < 8 || length3 < 8 || length4 < 8)
return 0;
if (length4 > srcSize) return ERROR(corruption_detected); /* overflow */
}
/* ip[] contains the position that is currently loaded into bits[]. */
args->ip[0] = args->iend[1] - sizeof(U64);
args->ip[1] = args->iend[2] - sizeof(U64);
args->ip[2] = args->iend[3] - sizeof(U64);
args->ip[3] = (BYTE const*)src + srcSize - sizeof(U64);
/* op[] contains the output pointers. */
args->op[0] = (BYTE*)dst;
args->op[1] = args->op[0] + (dstSize+3)/4;
args->op[2] = args->op[1] + (dstSize+3)/4;
args->op[3] = args->op[2] + (dstSize+3)/4;
/* No point to call the ASM loop for tiny outputs. */
if (args->op[3] >= oend)
return 0;
/* bits[] is the bit container.
* It is read from the MSB down to the LSB.
* It is shifted left as it is read, and zeros are
* shifted in. After the lowest valid bit a 1 is
* set, so that CountTrailingZeros(bits[]) can be used
* to count how many bits we've consumed.
*/
args->bits[0] = HUF_initFastDStream(args->ip[0]);
args->bits[1] = HUF_initFastDStream(args->ip[1]);
args->bits[2] = HUF_initFastDStream(args->ip[2]);
args->bits[3] = HUF_initFastDStream(args->ip[3]);
/* If ip[] >= ilimit, it is guaranteed to be safe to
* reload bits[]. It may be beyond its section, but is
* guaranteed to be valid (>= istart).
*/
args->ilimit = ilimit;
args->oend = oend;
args->dt = dt;
return 1;
}
static size_t HUF_initRemainingDStream(BIT_DStream_t* bit, HUF_DecompressFastArgs const* args, int stream, BYTE* segmentEnd)
{
/* Validate that we haven't overwritten. */
if (args->op[stream] > segmentEnd)
return ERROR(corruption_detected);
/* Validate that we haven't read beyond iend[].
* Note that ip[] may be < iend[] because the MSB is
* the next bit to read, and we may have consumed 100%
* of the stream, so down to iend[i] - 8 is valid.
*/
if (args->ip[stream] < args->iend[stream] - 8)
return ERROR(corruption_detected);
/* Construct the BIT_DStream_t. */
assert(sizeof(size_t) == 8);
bit->bitContainer = MEM_readLEST(args->ip[stream]);
bit->bitsConsumed = ZSTD_countTrailingZeros64(args->bits[stream]);
bit->start = (const char*)args->iend[0];
bit->limitPtr = bit->start + sizeof(size_t);
bit->ptr = (const char*)args->ip[stream];
return 0;
}
2019-01-04 01:30:03 +01:00
#ifndef HUF_FORCE_DECOMPRESS_X2
/*-***************************/
/* single-symbol decoding */
/*-***************************/
typedef struct { BYTE nbBits; BYTE byte; } HUF_DEltX1; /* single-symbol decoding */
/**
* Packs 4 HUF_DEltX1 structs into a U64. This is used to lay down 4 entries at
* a time.
*/
static U64 HUF_DEltX1_set4(BYTE symbol, BYTE nbBits) {
U64 D4;
if (MEM_isLittleEndian()) {
D4 = (U64)((symbol << 8) + nbBits);
} else {
D4 = (U64)(symbol + (nbBits << 8));
}
assert(D4 < (1U << 16));
D4 *= 0x0001000100010001ULL;
return D4;
}
/**
* Increase the tableLog to targetTableLog and rescales the stats.
* If tableLog > targetTableLog this is a no-op.
* @returns New tableLog
*/
static U32 HUF_rescaleStats(BYTE* huffWeight, U32* rankVal, U32 nbSymbols, U32 tableLog, U32 targetTableLog)
{
if (tableLog > targetTableLog)
return tableLog;
if (tableLog < targetTableLog) {
U32 const scale = targetTableLog - tableLog;
U32 s;
/* Increase the weight for all non-zero probability symbols by scale. */
for (s = 0; s < nbSymbols; ++s) {
huffWeight[s] += (BYTE)((huffWeight[s] == 0) ? 0 : scale);
}
/* Update rankVal to reflect the new weights.
* All weights except 0 get moved to weight + scale.
* Weights [1, scale] are empty.
*/
for (s = targetTableLog; s > scale; --s) {
rankVal[s] = rankVal[s - scale];
}
for (s = scale; s > 0; --s) {
rankVal[s] = 0;
}
}
return targetTableLog;
}
typedef struct {
U32 rankVal[HUF_TABLELOG_ABSOLUTEMAX + 1];
U32 rankStart[HUF_TABLELOG_ABSOLUTEMAX + 1];
U32 statsWksp[HUF_READ_STATS_WORKSPACE_SIZE_U32];
BYTE symbols[HUF_SYMBOLVALUE_MAX + 1];
BYTE huffWeight[HUF_SYMBOLVALUE_MAX + 1];
} HUF_ReadDTableX1_Workspace;
size_t HUF_readDTableX1_wksp(HUF_DTable* DTable, const void* src, size_t srcSize, void* workSpace, size_t wkspSize, int flags)
{
U32 tableLog = 0;
U32 nbSymbols = 0;
size_t iSize;
void* const dtPtr = DTable + 1;
2019-01-04 01:30:03 +01:00
HUF_DEltX1* const dt = (HUF_DEltX1*)dtPtr;
HUF_ReadDTableX1_Workspace* wksp = (HUF_ReadDTableX1_Workspace*)workSpace;
DEBUG_STATIC_ASSERT(HUF_DECOMPRESS_WORKSPACE_SIZE >= sizeof(*wksp));
if (sizeof(*wksp) > wkspSize) return ERROR(tableLog_tooLarge);
2017-07-22 23:46:05 +02:00
2019-01-04 01:30:03 +01:00
DEBUG_STATIC_ASSERT(sizeof(DTableDesc) == sizeof(HUF_DTable));
/* ZSTD_memset(huffWeight, 0, sizeof(huffWeight)); */ /* is not necessary, even though some analyzer complain ... */
iSize = HUF_readStats_wksp(wksp->huffWeight, HUF_SYMBOLVALUE_MAX + 1, wksp->rankVal, &nbSymbols, &tableLog, src, srcSize, wksp->statsWksp, sizeof(wksp->statsWksp), flags);
if (HUF_isError(iSize)) return iSize;
/* Table header */
{ DTableDesc dtd = HUF_getDTableDesc(DTable);
U32 const maxTableLog = dtd.maxTableLog + 1;
U32 const targetTableLog = MIN(maxTableLog, HUF_DECODER_FAST_TABLELOG);
tableLog = HUF_rescaleStats(wksp->huffWeight, wksp->rankVal, nbSymbols, tableLog, targetTableLog);
if (tableLog > (U32)(dtd.maxTableLog+1)) return ERROR(tableLog_tooLarge); /* DTable too small, Huffman tree cannot fit in */
dtd.tableType = 0;
dtd.tableLog = (BYTE)tableLog;
ZSTD_memcpy(DTable, &dtd, sizeof(dtd));
}
/* Compute symbols and rankStart given rankVal:
*
* rankVal already contains the number of values of each weight.
*
* symbols contains the symbols ordered by weight. First are the rankVal[0]
* weight 0 symbols, followed by the rankVal[1] weight 1 symbols, and so on.
* symbols[0] is filled (but unused) to avoid a branch.
*
* rankStart contains the offset where each rank belongs in the DTable.
* rankStart[0] is not filled because there are no entries in the table for
* weight 0.
*/
{ int n;
U32 nextRankStart = 0;
int const unroll = 4;
int const nLimit = (int)nbSymbols - unroll + 1;
for (n=0; n<(int)tableLog+1; n++) {
U32 const curr = nextRankStart;
nextRankStart += wksp->rankVal[n];
wksp->rankStart[n] = curr;
}
for (n=0; n < nLimit; n += unroll) {
int u;
for (u=0; u < unroll; ++u) {
size_t const w = wksp->huffWeight[n+u];
wksp->symbols[wksp->rankStart[w]++] = (BYTE)(n+u);
}
}
for (; n < (int)nbSymbols; ++n) {
size_t const w = wksp->huffWeight[n];
wksp->symbols[wksp->rankStart[w]++] = (BYTE)n;
}
}
/* fill DTable
* We fill all entries of each weight in order.
* That way length is a constant for each iteration of the outer loop.
* We can switch based on the length to a different inner loop which is
* optimized for that particular case.
*/
{ U32 w;
int symbol = wksp->rankVal[0];
int rankStart = 0;
for (w=1; w<tableLog+1; ++w) {
int const symbolCount = wksp->rankVal[w];
int const length = (1 << w) >> 1;
int uStart = rankStart;
BYTE const nbBits = (BYTE)(tableLog + 1 - w);
int s;
int u;
switch (length) {
case 1:
for (s=0; s<symbolCount; ++s) {
HUF_DEltX1 D;
D.byte = wksp->symbols[symbol + s];
D.nbBits = nbBits;
dt[uStart] = D;
uStart += 1;
}
break;
case 2:
for (s=0; s<symbolCount; ++s) {
HUF_DEltX1 D;
D.byte = wksp->symbols[symbol + s];
D.nbBits = nbBits;
dt[uStart+0] = D;
dt[uStart+1] = D;
uStart += 2;
}
break;
case 4:
for (s=0; s<symbolCount; ++s) {
U64 const D4 = HUF_DEltX1_set4(wksp->symbols[symbol + s], nbBits);
MEM_write64(dt + uStart, D4);
uStart += 4;
}
break;
case 8:
for (s=0; s<symbolCount; ++s) {
U64 const D4 = HUF_DEltX1_set4(wksp->symbols[symbol + s], nbBits);
MEM_write64(dt + uStart, D4);
MEM_write64(dt + uStart + 4, D4);
uStart += 8;
}
break;
default:
for (s=0; s<symbolCount; ++s) {
U64 const D4 = HUF_DEltX1_set4(wksp->symbols[symbol + s], nbBits);
for (u=0; u < length; u += 16) {
MEM_write64(dt + uStart + u + 0, D4);
MEM_write64(dt + uStart + u + 4, D4);
MEM_write64(dt + uStart + u + 8, D4);
MEM_write64(dt + uStart + u + 12, D4);
}
assert(u == length);
uStart += length;
}
break;
}
symbol += symbolCount;
rankStart += symbolCount * length;
}
}
return iSize;
}
2018-05-15 19:45:22 +02:00
FORCE_INLINE_TEMPLATE BYTE
2019-01-04 01:30:03 +01:00
HUF_decodeSymbolX1(BIT_DStream_t* Dstream, const HUF_DEltX1* dt, const U32 dtLog)
{
size_t const val = BIT_lookBitsFast(Dstream, dtLog); /* note : dtLog >= 1 */
BYTE const c = dt[val].byte;
BIT_skipBits(Dstream, dt[val].nbBits);
return c;
}
2019-01-04 01:30:03 +01:00
#define HUF_DECODE_SYMBOLX1_0(ptr, DStreamPtr) \
*ptr++ = HUF_decodeSymbolX1(DStreamPtr, dt, dtLog)
2019-01-04 01:30:03 +01:00
#define HUF_DECODE_SYMBOLX1_1(ptr, DStreamPtr) \
if (MEM_64bits() || (HUF_TABLELOG_MAX<=12)) \
2019-01-04 01:30:03 +01:00
HUF_DECODE_SYMBOLX1_0(ptr, DStreamPtr)
2019-01-04 01:30:03 +01:00
#define HUF_DECODE_SYMBOLX1_2(ptr, DStreamPtr) \
if (MEM_64bits()) \
2019-01-04 01:30:03 +01:00
HUF_DECODE_SYMBOLX1_0(ptr, DStreamPtr)
2018-05-15 19:45:22 +02:00
HINT_INLINE size_t
2019-01-04 01:30:03 +01:00
HUF_decodeStreamX1(BYTE* p, BIT_DStream_t* const bitDPtr, BYTE* const pEnd, const HUF_DEltX1* const dt, const U32 dtLog)
{
BYTE* const pStart = p;
/* up to 4 symbols at a time */
if ((pEnd - p) > 3) {
while ((BIT_reloadDStream(bitDPtr) == BIT_DStream_unfinished) & (p < pEnd-3)) {
HUF_DECODE_SYMBOLX1_2(p, bitDPtr);
HUF_DECODE_SYMBOLX1_1(p, bitDPtr);
HUF_DECODE_SYMBOLX1_2(p, bitDPtr);
HUF_DECODE_SYMBOLX1_0(p, bitDPtr);
}
} else {
BIT_reloadDStream(bitDPtr);
}
2018-05-15 19:45:22 +02:00
/* [0-3] symbols remaining */
if (MEM_32bits())
while ((BIT_reloadDStream(bitDPtr) == BIT_DStream_unfinished) & (p < pEnd))
2019-01-04 01:30:03 +01:00
HUF_DECODE_SYMBOLX1_0(p, bitDPtr);
2018-05-15 19:45:22 +02:00
/* no more data to retrieve from bitstream, no need to reload */
while (p < pEnd)
2019-01-04 01:30:03 +01:00
HUF_DECODE_SYMBOLX1_0(p, bitDPtr);
return (size_t)(pEnd-pStart);
}
2018-05-15 19:45:22 +02:00
FORCE_INLINE_TEMPLATE size_t
2019-01-04 01:30:03 +01:00
HUF_decompress1X1_usingDTable_internal_body(
void* dst, size_t dstSize,
const void* cSrc, size_t cSrcSize,
const HUF_DTable* DTable)
{
BYTE* op = (BYTE*)dst;
BYTE* const oend = op + dstSize;
const void* dtPtr = DTable + 1;
2019-01-04 01:30:03 +01:00
const HUF_DEltX1* const dt = (const HUF_DEltX1*)dtPtr;
BIT_DStream_t bitD;
DTableDesc const dtd = HUF_getDTableDesc(DTable);
U32 const dtLog = dtd.tableLog;
2018-05-15 19:45:22 +02:00
CHECK_F( BIT_initDStream(&bitD, cSrc, cSrcSize) );
2019-01-04 01:30:03 +01:00
HUF_decodeStreamX1(op, &bitD, oend, dt, dtLog);
if (!BIT_endOfDStream(&bitD)) return ERROR(corruption_detected);
return dstSize;
}
/* HUF_decompress4X1_usingDTable_internal_body():
* Conditions :
* @dstSize >= 6
*/
2018-05-15 19:45:22 +02:00
FORCE_INLINE_TEMPLATE size_t
2019-01-04 01:30:03 +01:00
HUF_decompress4X1_usingDTable_internal_body(
void* dst, size_t dstSize,
const void* cSrc, size_t cSrcSize,
const HUF_DTable* DTable)
{
/* Check */
if (cSrcSize < 10) return ERROR(corruption_detected); /* strict minimum : jump table + 1 byte per stream */
{ const BYTE* const istart = (const BYTE*) cSrc;
BYTE* const ostart = (BYTE*) dst;
BYTE* const oend = ostart + dstSize;
BYTE* const olimit = oend - 3;
const void* const dtPtr = DTable + 1;
2019-01-04 01:30:03 +01:00
const HUF_DEltX1* const dt = (const HUF_DEltX1*)dtPtr;
/* Init */
BIT_DStream_t bitD1;
BIT_DStream_t bitD2;
BIT_DStream_t bitD3;
BIT_DStream_t bitD4;
size_t const length1 = MEM_readLE16(istart);
size_t const length2 = MEM_readLE16(istart+2);
size_t const length3 = MEM_readLE16(istart+4);
size_t const length4 = cSrcSize - (length1 + length2 + length3 + 6);
const BYTE* const istart1 = istart + 6; /* jumpTable */
const BYTE* const istart2 = istart1 + length1;
const BYTE* const istart3 = istart2 + length2;
const BYTE* const istart4 = istart3 + length3;
const size_t segmentSize = (dstSize+3) / 4;
BYTE* const opStart2 = ostart + segmentSize;
BYTE* const opStart3 = opStart2 + segmentSize;
BYTE* const opStart4 = opStart3 + segmentSize;
BYTE* op1 = ostart;
BYTE* op2 = opStart2;
BYTE* op3 = opStart3;
BYTE* op4 = opStart4;
DTableDesc const dtd = HUF_getDTableDesc(DTable);
U32 const dtLog = dtd.tableLog;
U32 endSignal = 1;
if (length4 > cSrcSize) return ERROR(corruption_detected); /* overflow */
if (opStart4 > oend) return ERROR(corruption_detected); /* overflow */
if (dstSize < 6) return ERROR(corruption_detected); /* stream 4-split doesn't work */
2018-05-15 19:45:22 +02:00
CHECK_F( BIT_initDStream(&bitD1, istart1, length1) );
CHECK_F( BIT_initDStream(&bitD2, istart2, length2) );
CHECK_F( BIT_initDStream(&bitD3, istart3, length3) );
CHECK_F( BIT_initDStream(&bitD4, istart4, length4) );
2018-05-15 19:45:22 +02:00
/* up to 16 symbols per loop (4 symbols per stream) in 64-bit mode */
if ((size_t)(oend - op4) >= sizeof(size_t)) {
for ( ; (endSignal) & (op4 < olimit) ; ) {
HUF_DECODE_SYMBOLX1_2(op1, &bitD1);
HUF_DECODE_SYMBOLX1_2(op2, &bitD2);
HUF_DECODE_SYMBOLX1_2(op3, &bitD3);
HUF_DECODE_SYMBOLX1_2(op4, &bitD4);
HUF_DECODE_SYMBOLX1_1(op1, &bitD1);
HUF_DECODE_SYMBOLX1_1(op2, &bitD2);
HUF_DECODE_SYMBOLX1_1(op3, &bitD3);
HUF_DECODE_SYMBOLX1_1(op4, &bitD4);
HUF_DECODE_SYMBOLX1_2(op1, &bitD1);
HUF_DECODE_SYMBOLX1_2(op2, &bitD2);
HUF_DECODE_SYMBOLX1_2(op3, &bitD3);
HUF_DECODE_SYMBOLX1_2(op4, &bitD4);
HUF_DECODE_SYMBOLX1_0(op1, &bitD1);
HUF_DECODE_SYMBOLX1_0(op2, &bitD2);
HUF_DECODE_SYMBOLX1_0(op3, &bitD3);
HUF_DECODE_SYMBOLX1_0(op4, &bitD4);
endSignal &= BIT_reloadDStreamFast(&bitD1) == BIT_DStream_unfinished;
endSignal &= BIT_reloadDStreamFast(&bitD2) == BIT_DStream_unfinished;
endSignal &= BIT_reloadDStreamFast(&bitD3) == BIT_DStream_unfinished;
endSignal &= BIT_reloadDStreamFast(&bitD4) == BIT_DStream_unfinished;
}
}
/* check corruption */
2018-05-15 19:45:22 +02:00
/* note : should not be necessary : op# advance in lock step, and we control op4.
* but curiously, binary generated by gcc 7.2 & 7.3 with -mbmi2 runs faster when >=1 test is present */
if (op1 > opStart2) return ERROR(corruption_detected);
if (op2 > opStart3) return ERROR(corruption_detected);
if (op3 > opStart4) return ERROR(corruption_detected);
/* note : op4 supposed already verified within main loop */
/* finish bitStreams one by one */
2019-01-04 01:30:03 +01:00
HUF_decodeStreamX1(op1, &bitD1, opStart2, dt, dtLog);
HUF_decodeStreamX1(op2, &bitD2, opStart3, dt, dtLog);
HUF_decodeStreamX1(op3, &bitD3, opStart4, dt, dtLog);
HUF_decodeStreamX1(op4, &bitD4, oend, dt, dtLog);
2018-05-15 19:45:22 +02:00
/* check */
{ U32 const endCheck = BIT_endOfDStream(&bitD1) & BIT_endOfDStream(&bitD2) & BIT_endOfDStream(&bitD3) & BIT_endOfDStream(&bitD4);
if (!endCheck) return ERROR(corruption_detected); }
/* decoded size */
return dstSize;
}
}
#if HUF_NEED_BMI2_FUNCTION
static BMI2_TARGET_ATTRIBUTE
size_t HUF_decompress4X1_usingDTable_internal_bmi2(void* dst, size_t dstSize, void const* cSrc,
size_t cSrcSize, HUF_DTable const* DTable) {
return HUF_decompress4X1_usingDTable_internal_body(dst, dstSize, cSrc, cSrcSize, DTable);
}
#endif
static
size_t HUF_decompress4X1_usingDTable_internal_default(void* dst, size_t dstSize, void const* cSrc,
size_t cSrcSize, HUF_DTable const* DTable) {
return HUF_decompress4X1_usingDTable_internal_body(dst, dstSize, cSrc, cSrcSize, DTable);
}
#if ZSTD_ENABLE_ASM_X86_64_BMI2
HUF_ASM_DECL void HUF_decompress4X1_usingDTable_internal_fast_asm_loop(HUF_DecompressFastArgs* args) ZSTDLIB_HIDDEN;
#endif
static HUF_FAST_BMI2_ATTRS
void HUF_decompress4X1_usingDTable_internal_fast_c_loop(HUF_DecompressFastArgs* args)
{
U64 bits[4];
BYTE const* ip[4];
BYTE* op[4];
U16 const* const dtable = (U16 const*)args->dt;
BYTE* const oend = args->oend;
BYTE const* const ilimit = args->ilimit;
/* Copy the arguments to local variables */
ZSTD_memcpy(&bits, &args->bits, sizeof(bits));
ZSTD_memcpy((void*)(&ip), &args->ip, sizeof(ip));
ZSTD_memcpy(&op, &args->op, sizeof(op));
assert(MEM_isLittleEndian());
assert(!MEM_32bits());
for (;;) {
BYTE* olimit;
int stream;
int symbol;
/* Assert loop preconditions */
#ifndef NDEBUG
for (stream = 0; stream < 4; ++stream) {
assert(op[stream] <= (stream == 3 ? oend : op[stream + 1]));
assert(ip[stream] >= ilimit);
}
#endif
/* Compute olimit */
{
/* Each iteration produces 5 output symbols per stream */
size_t const oiters = (size_t)(oend - op[3]) / 5;
/* Each iteration consumes up to 11 bits * 5 = 55 bits < 7 bytes
* per stream.
*/
size_t const iiters = (size_t)(ip[0] - ilimit) / 7;
/* We can safely run iters iterations before running bounds checks */
size_t const iters = MIN(oiters, iiters);
size_t const symbols = iters * 5;
/* We can simply check that op[3] < olimit, instead of checking all
* of our bounds, since we can't hit the other bounds until we've run
* iters iterations, which only happens when op[3] == olimit.
*/
olimit = op[3] + symbols;
/* Exit fast decoding loop once we get close to the end. */
if (op[3] + 20 > olimit)
break;
/* Exit the decoding loop if any input pointer has crossed the
* previous one. This indicates corruption, and a precondition
* to our loop is that ip[i] >= ip[0].
*/
for (stream = 1; stream < 4; ++stream) {
if (ip[stream] < ip[stream - 1])
goto _out;
}
}
#ifndef NDEBUG
for (stream = 1; stream < 4; ++stream) {
assert(ip[stream] >= ip[stream - 1]);
}
#endif
do {
/* Decode 5 symbols in each of the 4 streams */
for (symbol = 0; symbol < 5; ++symbol) {
for (stream = 0; stream < 4; ++stream) {
int const index = (int)(bits[stream] >> 53);
int const entry = (int)dtable[index];
bits[stream] <<= (entry & 63);
op[stream][symbol] = (BYTE)((entry >> 8) & 0xFF);
}
}
/* Reload the bitstreams */
for (stream = 0; stream < 4; ++stream) {
int const ctz = ZSTD_countTrailingZeros64(bits[stream]);
int const nbBits = ctz & 7;
int const nbBytes = ctz >> 3;
op[stream] += 5;
ip[stream] -= nbBytes;
bits[stream] = MEM_read64(ip[stream]) | 1;
bits[stream] <<= nbBits;
}
} while (op[3] < olimit);
}
_out:
/* Save the final values of each of the state variables back to args. */
ZSTD_memcpy(&args->bits, &bits, sizeof(bits));
ZSTD_memcpy((void*)(&args->ip), &ip, sizeof(ip));
ZSTD_memcpy(&args->op, &op, sizeof(op));
}
/**
* @returns @p dstSize on success (>= 6)
* 0 if the fallback implementation should be used
* An error if an error occurred
*/
static HUF_FAST_BMI2_ATTRS
size_t
HUF_decompress4X1_usingDTable_internal_fast(
void* dst, size_t dstSize,
const void* cSrc, size_t cSrcSize,
const HUF_DTable* DTable,
HUF_DecompressFastLoopFn loopFn)
{
void const* dt = DTable + 1;
const BYTE* const iend = (const BYTE*)cSrc + 6;
BYTE* const oend = (BYTE*)dst + dstSize;
HUF_DecompressFastArgs args;
{ size_t const ret = HUF_DecompressFastArgs_init(&args, dst, dstSize, cSrc, cSrcSize, DTable);
FORWARD_IF_ERROR(ret, "Failed to init fast loop args");
if (ret == 0)
return 0;
}
assert(args.ip[0] >= args.ilimit);
loopFn(&args);
/* Our loop guarantees that ip[] >= ilimit and that we haven't
* overwritten any op[].
*/
assert(args.ip[0] >= iend);
assert(args.ip[1] >= iend);
assert(args.ip[2] >= iend);
assert(args.ip[3] >= iend);
assert(args.op[3] <= oend);
(void)iend;
/* finish bit streams one by one. */
{ size_t const segmentSize = (dstSize+3) / 4;
BYTE* segmentEnd = (BYTE*)dst;
int i;
for (i = 0; i < 4; ++i) {
BIT_DStream_t bit;
if (segmentSize <= (size_t)(oend - segmentEnd))
segmentEnd += segmentSize;
else
segmentEnd = oend;
FORWARD_IF_ERROR(HUF_initRemainingDStream(&bit, &args, i, segmentEnd), "corruption");
/* Decompress and validate that we've produced exactly the expected length. */
args.op[i] += HUF_decodeStreamX1(args.op[i], &bit, segmentEnd, (HUF_DEltX1 const*)dt, HUF_DECODER_FAST_TABLELOG);
if (args.op[i] != segmentEnd) return ERROR(corruption_detected);
}
}
/* decoded size */
assert(dstSize != 0);
return dstSize;
}
2018-05-15 19:45:22 +02:00
2019-01-04 01:30:03 +01:00
HUF_DGEN(HUF_decompress1X1_usingDTable_internal)
2018-05-15 19:45:22 +02:00
static size_t HUF_decompress4X1_usingDTable_internal(void* dst, size_t dstSize, void const* cSrc,
size_t cSrcSize, HUF_DTable const* DTable, int flags)
{
HUF_DecompressUsingDTableFn fallbackFn = HUF_decompress4X1_usingDTable_internal_default;
HUF_DecompressFastLoopFn loopFn = HUF_decompress4X1_usingDTable_internal_fast_c_loop;
#if DYNAMIC_BMI2
if (flags & HUF_flags_bmi2) {
fallbackFn = HUF_decompress4X1_usingDTable_internal_bmi2;
# if ZSTD_ENABLE_ASM_X86_64_BMI2
if (!(flags & HUF_flags_disableAsm)) {
loopFn = HUF_decompress4X1_usingDTable_internal_fast_asm_loop;
}
# endif
} else {
return fallbackFn(dst, dstSize, cSrc, cSrcSize, DTable);
}
#endif
#if ZSTD_ENABLE_ASM_X86_64_BMI2 && defined(__BMI2__)
if (!(flags & HUF_flags_disableAsm)) {
loopFn = HUF_decompress4X1_usingDTable_internal_fast_asm_loop;
}
#endif
2018-05-15 19:45:22 +02:00
if (!(flags & HUF_flags_disableFast)) {
size_t const ret = HUF_decompress4X1_usingDTable_internal_fast(dst, dstSize, cSrc, cSrcSize, DTable, loopFn);
if (ret != 0)
return ret;
}
return fallbackFn(dst, dstSize, cSrc, cSrcSize, DTable);
2018-05-15 19:45:22 +02:00
}
static size_t HUF_decompress4X1_DCtx_wksp(HUF_DTable* dctx, void* dst, size_t dstSize,
2018-05-15 19:45:22 +02:00
const void* cSrc, size_t cSrcSize,
void* workSpace, size_t wkspSize, int flags)
2018-05-15 19:45:22 +02:00
{
const BYTE* ip = (const BYTE*) cSrc;
size_t const hSize = HUF_readDTableX1_wksp(dctx, cSrc, cSrcSize, workSpace, wkspSize, flags);
if (HUF_isError(hSize)) return hSize;
if (hSize >= cSrcSize) return ERROR(srcSize_wrong);
ip += hSize; cSrcSize -= hSize;
return HUF_decompress4X1_usingDTable_internal(dst, dstSize, ip, cSrcSize, dctx, flags);
}
2019-01-04 01:30:03 +01:00
#endif /* HUF_FORCE_DECOMPRESS_X2 */
#ifndef HUF_FORCE_DECOMPRESS_X1
/* *************************/
/* double-symbols decoding */
/* *************************/
2019-01-04 01:30:03 +01:00
typedef struct { U16 sequence; BYTE nbBits; BYTE length; } HUF_DEltX2; /* double-symbols decoding */
typedef struct { BYTE symbol; } sortedSymbol_t;
2019-01-04 01:30:03 +01:00
typedef U32 rankValCol_t[HUF_TABLELOG_MAX + 1];
typedef rankValCol_t rankVal_t[HUF_TABLELOG_MAX];
/**
* Constructs a HUF_DEltX2 in a U32.
*/
static U32 HUF_buildDEltX2U32(U32 symbol, U32 nbBits, U32 baseSeq, int level)
{
U32 seq;
DEBUG_STATIC_ASSERT(offsetof(HUF_DEltX2, sequence) == 0);
DEBUG_STATIC_ASSERT(offsetof(HUF_DEltX2, nbBits) == 2);
DEBUG_STATIC_ASSERT(offsetof(HUF_DEltX2, length) == 3);
DEBUG_STATIC_ASSERT(sizeof(HUF_DEltX2) == sizeof(U32));
if (MEM_isLittleEndian()) {
seq = level == 1 ? symbol : (baseSeq + (symbol << 8));
return seq + (nbBits << 16) + ((U32)level << 24);
} else {
seq = level == 1 ? (symbol << 8) : ((baseSeq << 8) + symbol);
return (seq << 16) + (nbBits << 8) + (U32)level;
}
}
2019-01-04 01:30:03 +01:00
/**
* Constructs a HUF_DEltX2.
*/
static HUF_DEltX2 HUF_buildDEltX2(U32 symbol, U32 nbBits, U32 baseSeq, int level)
{
2019-01-04 01:30:03 +01:00
HUF_DEltX2 DElt;
U32 const val = HUF_buildDEltX2U32(symbol, nbBits, baseSeq, level);
DEBUG_STATIC_ASSERT(sizeof(DElt) == sizeof(val));
ZSTD_memcpy(&DElt, &val, sizeof(val));
return DElt;
}
/**
* Constructs 2 HUF_DEltX2s and packs them into a U64.
*/
static U64 HUF_buildDEltX2U64(U32 symbol, U32 nbBits, U16 baseSeq, int level)
{
U32 DElt = HUF_buildDEltX2U32(symbol, nbBits, baseSeq, level);
return (U64)DElt + ((U64)DElt << 32);
}
/**
* Fills the DTable rank with all the symbols from [begin, end) that are each
* nbBits long.
*
* @param DTableRank The start of the rank in the DTable.
* @param begin The first symbol to fill (inclusive).
* @param end The last symbol to fill (exclusive).
* @param nbBits Each symbol is nbBits long.
* @param tableLog The table log.
* @param baseSeq If level == 1 { 0 } else { the first level symbol }
* @param level The level in the table. Must be 1 or 2.
*/
static void HUF_fillDTableX2ForWeight(
HUF_DEltX2* DTableRank,
sortedSymbol_t const* begin, sortedSymbol_t const* end,
U32 nbBits, U32 tableLog,
U16 baseSeq, int const level)
{
U32 const length = 1U << ((tableLog - nbBits) & 0x1F /* quiet static-analyzer */);
const sortedSymbol_t* ptr;
assert(level >= 1 && level <= 2);
switch (length) {
case 1:
for (ptr = begin; ptr != end; ++ptr) {
HUF_DEltX2 const DElt = HUF_buildDEltX2(ptr->symbol, nbBits, baseSeq, level);
*DTableRank++ = DElt;
}
break;
case 2:
for (ptr = begin; ptr != end; ++ptr) {
HUF_DEltX2 const DElt = HUF_buildDEltX2(ptr->symbol, nbBits, baseSeq, level);
DTableRank[0] = DElt;
DTableRank[1] = DElt;
DTableRank += 2;
}
break;
case 4:
for (ptr = begin; ptr != end; ++ptr) {
U64 const DEltX2 = HUF_buildDEltX2U64(ptr->symbol, nbBits, baseSeq, level);
ZSTD_memcpy(DTableRank + 0, &DEltX2, sizeof(DEltX2));
ZSTD_memcpy(DTableRank + 2, &DEltX2, sizeof(DEltX2));
DTableRank += 4;
}
break;
case 8:
for (ptr = begin; ptr != end; ++ptr) {
U64 const DEltX2 = HUF_buildDEltX2U64(ptr->symbol, nbBits, baseSeq, level);
ZSTD_memcpy(DTableRank + 0, &DEltX2, sizeof(DEltX2));
ZSTD_memcpy(DTableRank + 2, &DEltX2, sizeof(DEltX2));
ZSTD_memcpy(DTableRank + 4, &DEltX2, sizeof(DEltX2));
ZSTD_memcpy(DTableRank + 6, &DEltX2, sizeof(DEltX2));
DTableRank += 8;
}
break;
default:
for (ptr = begin; ptr != end; ++ptr) {
U64 const DEltX2 = HUF_buildDEltX2U64(ptr->symbol, nbBits, baseSeq, level);
HUF_DEltX2* const DTableRankEnd = DTableRank + length;
for (; DTableRank != DTableRankEnd; DTableRank += 8) {
ZSTD_memcpy(DTableRank + 0, &DEltX2, sizeof(DEltX2));
ZSTD_memcpy(DTableRank + 2, &DEltX2, sizeof(DEltX2));
ZSTD_memcpy(DTableRank + 4, &DEltX2, sizeof(DEltX2));
ZSTD_memcpy(DTableRank + 6, &DEltX2, sizeof(DEltX2));
}
}
break;
}
}
/* HUF_fillDTableX2Level2() :
* `rankValOrigin` must be a table of at least (HUF_TABLELOG_MAX + 1) U32 */
static void HUF_fillDTableX2Level2(HUF_DEltX2* DTable, U32 targetLog, const U32 consumedBits,
const U32* rankVal, const int minWeight, const int maxWeight1,
const sortedSymbol_t* sortedSymbols, U32 const* rankStart,
U32 nbBitsBaseline, U16 baseSeq)
{
/* Fill skipped values (all positions up to rankVal[minWeight]).
* These are positions only get a single symbol because the combined weight
* is too large.
*/
if (minWeight>1) {
U32 const length = 1U << ((targetLog - consumedBits) & 0x1F /* quiet static-analyzer */);
U64 const DEltX2 = HUF_buildDEltX2U64(baseSeq, consumedBits, /* baseSeq */ 0, /* level */ 1);
int const skipSize = rankVal[minWeight];
assert(length > 1);
assert((U32)skipSize < length);
switch (length) {
case 2:
assert(skipSize == 1);
ZSTD_memcpy(DTable, &DEltX2, sizeof(DEltX2));
break;
case 4:
assert(skipSize <= 4);
ZSTD_memcpy(DTable + 0, &DEltX2, sizeof(DEltX2));
ZSTD_memcpy(DTable + 2, &DEltX2, sizeof(DEltX2));
break;
default:
{
int i;
for (i = 0; i < skipSize; i += 8) {
ZSTD_memcpy(DTable + i + 0, &DEltX2, sizeof(DEltX2));
ZSTD_memcpy(DTable + i + 2, &DEltX2, sizeof(DEltX2));
ZSTD_memcpy(DTable + i + 4, &DEltX2, sizeof(DEltX2));
ZSTD_memcpy(DTable + i + 6, &DEltX2, sizeof(DEltX2));
}
}
}
}
/* Fill each of the second level symbols by weight. */
{
int w;
for (w = minWeight; w < maxWeight1; ++w) {
int const begin = rankStart[w];
int const end = rankStart[w+1];
U32 const nbBits = nbBitsBaseline - w;
U32 const totalBits = nbBits + consumedBits;
HUF_fillDTableX2ForWeight(
DTable + rankVal[w],
sortedSymbols + begin, sortedSymbols + end,
totalBits, targetLog,
baseSeq, /* level */ 2);
}
}
}
2019-01-04 01:30:03 +01:00
static void HUF_fillDTableX2(HUF_DEltX2* DTable, const U32 targetLog,
const sortedSymbol_t* sortedList,
const U32* rankStart, rankValCol_t* rankValOrigin, const U32 maxWeight,
const U32 nbBitsBaseline)
{
U32* const rankVal = rankValOrigin[0];
const int scaleLog = nbBitsBaseline - targetLog; /* note : targetLog >= srcLog, hence scaleLog <= 1 */
const U32 minBits = nbBitsBaseline - maxWeight;
int w;
int const wEnd = (int)maxWeight + 1;
/* Fill DTable in order of weight. */
for (w = 1; w < wEnd; ++w) {
int const begin = (int)rankStart[w];
int const end = (int)rankStart[w+1];
U32 const nbBits = nbBitsBaseline - w;
if (targetLog-nbBits >= minBits) {
/* Enough room for a second symbol. */
int start = rankVal[w];
U32 const length = 1U << ((targetLog - nbBits) & 0x1F /* quiet static-analyzer */);
int minWeight = nbBits + scaleLog;
int s;
if (minWeight < 1) minWeight = 1;
/* Fill the DTable for every symbol of weight w.
* These symbols get at least 1 second symbol.
*/
for (s = begin; s != end; ++s) {
HUF_fillDTableX2Level2(
DTable + start, targetLog, nbBits,
rankValOrigin[nbBits], minWeight, wEnd,
sortedList, rankStart,
nbBitsBaseline, sortedList[s].symbol);
start += length;
}
} else {
/* Only a single symbol. */
HUF_fillDTableX2ForWeight(
DTable + rankVal[w],
sortedList + begin, sortedList + end,
nbBits, targetLog,
/* baseSeq */ 0, /* level */ 1);
}
}
}
typedef struct {
rankValCol_t rankVal[HUF_TABLELOG_MAX];
U32 rankStats[HUF_TABLELOG_MAX + 1];
U32 rankStart0[HUF_TABLELOG_MAX + 3];
sortedSymbol_t sortedSymbol[HUF_SYMBOLVALUE_MAX + 1];
BYTE weightList[HUF_SYMBOLVALUE_MAX + 1];
U32 calleeWksp[HUF_READ_STATS_WORKSPACE_SIZE_U32];
} HUF_ReadDTableX2_Workspace;
2019-01-04 01:30:03 +01:00
size_t HUF_readDTableX2_wksp(HUF_DTable* DTable,
const void* src, size_t srcSize,
void* workSpace, size_t wkspSize, int flags)
{
U32 tableLog, maxW, nbSymbols;
DTableDesc dtd = HUF_getDTableDesc(DTable);
U32 maxTableLog = dtd.maxTableLog;
size_t iSize;
void* dtPtr = DTable+1; /* force compiler to avoid strict-aliasing */
2019-01-04 01:30:03 +01:00
HUF_DEltX2* const dt = (HUF_DEltX2*)dtPtr;
2017-07-22 23:46:05 +02:00
U32 *rankStart;
HUF_ReadDTableX2_Workspace* const wksp = (HUF_ReadDTableX2_Workspace*)workSpace;
if (sizeof(*wksp) > wkspSize) return ERROR(GENERIC);
rankStart = wksp->rankStart0 + 1;
ZSTD_memset(wksp->rankStats, 0, sizeof(wksp->rankStats));
ZSTD_memset(wksp->rankStart0, 0, sizeof(wksp->rankStart0));
2019-01-04 01:30:03 +01:00
DEBUG_STATIC_ASSERT(sizeof(HUF_DEltX2) == sizeof(HUF_DTable)); /* if compiler fails here, assertion is wrong */
if (maxTableLog > HUF_TABLELOG_MAX) return ERROR(tableLog_tooLarge);
/* ZSTD_memset(weightList, 0, sizeof(weightList)); */ /* is not necessary, even though some analyzer complain ... */
iSize = HUF_readStats_wksp(wksp->weightList, HUF_SYMBOLVALUE_MAX + 1, wksp->rankStats, &nbSymbols, &tableLog, src, srcSize, wksp->calleeWksp, sizeof(wksp->calleeWksp), flags);
if (HUF_isError(iSize)) return iSize;
/* check result */
if (tableLog > maxTableLog) return ERROR(tableLog_tooLarge); /* DTable can't fit code depth */
if (tableLog <= HUF_DECODER_FAST_TABLELOG && maxTableLog > HUF_DECODER_FAST_TABLELOG) maxTableLog = HUF_DECODER_FAST_TABLELOG;
/* find maxWeight */
for (maxW = tableLog; wksp->rankStats[maxW]==0; maxW--) {} /* necessarily finds a solution before 0 */
/* Get start index of each weight */
{ U32 w, nextRankStart = 0;
for (w=1; w<maxW+1; w++) {
U32 curr = nextRankStart;
nextRankStart += wksp->rankStats[w];
rankStart[w] = curr;
}
rankStart[0] = nextRankStart; /* put all 0w symbols at the end of sorted list*/
rankStart[maxW+1] = nextRankStart;
}
/* sort symbols by weight */
{ U32 s;
for (s=0; s<nbSymbols; s++) {
U32 const w = wksp->weightList[s];
U32 const r = rankStart[w]++;
wksp->sortedSymbol[r].symbol = (BYTE)s;
}
rankStart[0] = 0; /* forget 0w symbols; this is beginning of weight(1) */
}
/* Build rankVal */
{ U32* const rankVal0 = wksp->rankVal[0];
{ int const rescale = (maxTableLog-tableLog) - 1; /* tableLog <= maxTableLog */
U32 nextRankVal = 0;
U32 w;
for (w=1; w<maxW+1; w++) {
U32 curr = nextRankVal;
nextRankVal += wksp->rankStats[w] << (w+rescale);
rankVal0[w] = curr;
} }
{ U32 const minBits = tableLog+1 - maxW;
U32 consumed;
for (consumed = minBits; consumed < maxTableLog - minBits + 1; consumed++) {
U32* const rankValPtr = wksp->rankVal[consumed];
U32 w;
for (w = 1; w < maxW+1; w++) {
rankValPtr[w] = rankVal0[w] >> consumed;
} } } }
2019-01-04 01:30:03 +01:00
HUF_fillDTableX2(dt, maxTableLog,
wksp->sortedSymbol,
wksp->rankStart0, wksp->rankVal, maxW,
tableLog+1);
dtd.tableLog = (BYTE)maxTableLog;
dtd.tableType = 1;
ZSTD_memcpy(DTable, &dtd, sizeof(dtd));
return iSize;
}
2019-01-04 01:30:03 +01:00
FORCE_INLINE_TEMPLATE U32
HUF_decodeSymbolX2(void* op, BIT_DStream_t* DStream, const HUF_DEltX2* dt, const U32 dtLog)
{
size_t const val = BIT_lookBitsFast(DStream, dtLog); /* note : dtLog >= 1 */
ZSTD_memcpy(op, &dt[val].sequence, 2);
2019-01-04 01:30:03 +01:00
BIT_skipBits(DStream, dt[val].nbBits);
return dt[val].length;
}
FORCE_INLINE_TEMPLATE U32
HUF_decodeLastSymbolX2(void* op, BIT_DStream_t* DStream, const HUF_DEltX2* dt, const U32 dtLog)
{
size_t const val = BIT_lookBitsFast(DStream, dtLog); /* note : dtLog >= 1 */
ZSTD_memcpy(op, &dt[val].sequence, 1);
if (dt[val].length==1) {
BIT_skipBits(DStream, dt[val].nbBits);
} else {
2019-01-04 01:30:03 +01:00
if (DStream->bitsConsumed < (sizeof(DStream->bitContainer)*8)) {
BIT_skipBits(DStream, dt[val].nbBits);
if (DStream->bitsConsumed > (sizeof(DStream->bitContainer)*8))
/* ugly hack; works only because it's the last symbol. Note : can't easily extract nbBits from just this symbol */
DStream->bitsConsumed = (sizeof(DStream->bitContainer)*8);
}
}
2019-01-04 01:30:03 +01:00
return 1;
}
#define HUF_DECODE_SYMBOLX2_0(ptr, DStreamPtr) \
ptr += HUF_decodeSymbolX2(ptr, DStreamPtr, dt, dtLog)
#define HUF_DECODE_SYMBOLX2_1(ptr, DStreamPtr) \
if (MEM_64bits() || (HUF_TABLELOG_MAX<=12)) \
ptr += HUF_decodeSymbolX2(ptr, DStreamPtr, dt, dtLog)
#define HUF_DECODE_SYMBOLX2_2(ptr, DStreamPtr) \
if (MEM_64bits()) \
ptr += HUF_decodeSymbolX2(ptr, DStreamPtr, dt, dtLog)
HINT_INLINE size_t
HUF_decodeStreamX2(BYTE* p, BIT_DStream_t* bitDPtr, BYTE* const pEnd,
const HUF_DEltX2* const dt, const U32 dtLog)
{
BYTE* const pStart = p;
/* up to 8 symbols at a time */
if ((size_t)(pEnd - p) >= sizeof(bitDPtr->bitContainer)) {
if (dtLog <= 11 && MEM_64bits()) {
/* up to 10 symbols at a time */
while ((BIT_reloadDStream(bitDPtr) == BIT_DStream_unfinished) & (p < pEnd-9)) {
HUF_DECODE_SYMBOLX2_0(p, bitDPtr);
HUF_DECODE_SYMBOLX2_0(p, bitDPtr);
HUF_DECODE_SYMBOLX2_0(p, bitDPtr);
HUF_DECODE_SYMBOLX2_0(p, bitDPtr);
HUF_DECODE_SYMBOLX2_0(p, bitDPtr);
}
} else {
/* up to 8 symbols at a time */
while ((BIT_reloadDStream(bitDPtr) == BIT_DStream_unfinished) & (p < pEnd-(sizeof(bitDPtr->bitContainer)-1))) {
HUF_DECODE_SYMBOLX2_2(p, bitDPtr);
HUF_DECODE_SYMBOLX2_1(p, bitDPtr);
HUF_DECODE_SYMBOLX2_2(p, bitDPtr);
HUF_DECODE_SYMBOLX2_0(p, bitDPtr);
}
}
} else {
BIT_reloadDStream(bitDPtr);
2019-01-04 01:30:03 +01:00
}
/* closer to end : up to 2 symbols at a time */
if ((size_t)(pEnd - p) >= 2) {
while ((BIT_reloadDStream(bitDPtr) == BIT_DStream_unfinished) & (p <= pEnd-2))
HUF_DECODE_SYMBOLX2_0(p, bitDPtr);
2019-01-04 01:30:03 +01:00
while (p <= pEnd-2)
HUF_DECODE_SYMBOLX2_0(p, bitDPtr); /* no need to reload : reached the end of DStream */
}
2019-01-04 01:30:03 +01:00
if (p < pEnd)
p += HUF_decodeLastSymbolX2(p, bitDPtr, dt, dtLog);
return p-pStart;
}
FORCE_INLINE_TEMPLATE size_t
HUF_decompress1X2_usingDTable_internal_body(
void* dst, size_t dstSize,
const void* cSrc, size_t cSrcSize,
const HUF_DTable* DTable)
{
BIT_DStream_t bitD;
/* Init */
CHECK_F( BIT_initDStream(&bitD, cSrc, cSrcSize) );
/* decode */
{ BYTE* const ostart = (BYTE*) dst;
BYTE* const oend = ostart + dstSize;
const void* const dtPtr = DTable+1; /* force compiler to not use strict-aliasing */
const HUF_DEltX2* const dt = (const HUF_DEltX2*)dtPtr;
DTableDesc const dtd = HUF_getDTableDesc(DTable);
HUF_decodeStreamX2(ostart, &bitD, oend, dt, dtd.tableLog);
}
/* check */
if (!BIT_endOfDStream(&bitD)) return ERROR(corruption_detected);
/* decoded size */
return dstSize;
}
/* HUF_decompress4X2_usingDTable_internal_body():
* Conditions:
* @dstSize >= 6
*/
2019-01-04 01:30:03 +01:00
FORCE_INLINE_TEMPLATE size_t
HUF_decompress4X2_usingDTable_internal_body(
void* dst, size_t dstSize,
const void* cSrc, size_t cSrcSize,
const HUF_DTable* DTable)
{
if (cSrcSize < 10) return ERROR(corruption_detected); /* strict minimum : jump table + 1 byte per stream */
{ const BYTE* const istart = (const BYTE*) cSrc;
BYTE* const ostart = (BYTE*) dst;
BYTE* const oend = ostart + dstSize;
BYTE* const olimit = oend - (sizeof(size_t)-1);
2019-01-04 01:30:03 +01:00
const void* const dtPtr = DTable+1;
const HUF_DEltX2* const dt = (const HUF_DEltX2*)dtPtr;
/* Init */
BIT_DStream_t bitD1;
BIT_DStream_t bitD2;
BIT_DStream_t bitD3;
BIT_DStream_t bitD4;
size_t const length1 = MEM_readLE16(istart);
size_t const length2 = MEM_readLE16(istart+2);
size_t const length3 = MEM_readLE16(istart+4);
size_t const length4 = cSrcSize - (length1 + length2 + length3 + 6);
const BYTE* const istart1 = istart + 6; /* jumpTable */
const BYTE* const istart2 = istart1 + length1;
const BYTE* const istart3 = istart2 + length2;
const BYTE* const istart4 = istart3 + length3;
size_t const segmentSize = (dstSize+3) / 4;
BYTE* const opStart2 = ostart + segmentSize;
BYTE* const opStart3 = opStart2 + segmentSize;
BYTE* const opStart4 = opStart3 + segmentSize;
BYTE* op1 = ostart;
BYTE* op2 = opStart2;
BYTE* op3 = opStart3;
BYTE* op4 = opStart4;
U32 endSignal = 1;
2019-01-04 01:30:03 +01:00
DTableDesc const dtd = HUF_getDTableDesc(DTable);
U32 const dtLog = dtd.tableLog;
if (length4 > cSrcSize) return ERROR(corruption_detected); /* overflow */
if (opStart4 > oend) return ERROR(corruption_detected); /* overflow */
if (dstSize < 6) return ERROR(corruption_detected); /* stream 4-split doesn't work */
2019-01-04 01:30:03 +01:00
CHECK_F( BIT_initDStream(&bitD1, istart1, length1) );
CHECK_F( BIT_initDStream(&bitD2, istart2, length2) );
CHECK_F( BIT_initDStream(&bitD3, istart3, length3) );
CHECK_F( BIT_initDStream(&bitD4, istart4, length4) );
/* 16-32 symbols per loop (4-8 symbols per stream) */
if ((size_t)(oend - op4) >= sizeof(size_t)) {
for ( ; (endSignal) & (op4 < olimit); ) {
#if defined(__clang__) && (defined(__x86_64__) || defined(__i386__))
HUF_DECODE_SYMBOLX2_2(op1, &bitD1);
HUF_DECODE_SYMBOLX2_1(op1, &bitD1);
HUF_DECODE_SYMBOLX2_2(op1, &bitD1);
HUF_DECODE_SYMBOLX2_0(op1, &bitD1);
HUF_DECODE_SYMBOLX2_2(op2, &bitD2);
HUF_DECODE_SYMBOLX2_1(op2, &bitD2);
HUF_DECODE_SYMBOLX2_2(op2, &bitD2);
HUF_DECODE_SYMBOLX2_0(op2, &bitD2);
endSignal &= BIT_reloadDStreamFast(&bitD1) == BIT_DStream_unfinished;
endSignal &= BIT_reloadDStreamFast(&bitD2) == BIT_DStream_unfinished;
HUF_DECODE_SYMBOLX2_2(op3, &bitD3);
HUF_DECODE_SYMBOLX2_1(op3, &bitD3);
HUF_DECODE_SYMBOLX2_2(op3, &bitD3);
HUF_DECODE_SYMBOLX2_0(op3, &bitD3);
HUF_DECODE_SYMBOLX2_2(op4, &bitD4);
HUF_DECODE_SYMBOLX2_1(op4, &bitD4);
HUF_DECODE_SYMBOLX2_2(op4, &bitD4);
HUF_DECODE_SYMBOLX2_0(op4, &bitD4);
endSignal &= BIT_reloadDStreamFast(&bitD3) == BIT_DStream_unfinished;
endSignal &= BIT_reloadDStreamFast(&bitD4) == BIT_DStream_unfinished;
#else
HUF_DECODE_SYMBOLX2_2(op1, &bitD1);
HUF_DECODE_SYMBOLX2_2(op2, &bitD2);
HUF_DECODE_SYMBOLX2_2(op3, &bitD3);
HUF_DECODE_SYMBOLX2_2(op4, &bitD4);
HUF_DECODE_SYMBOLX2_1(op1, &bitD1);
HUF_DECODE_SYMBOLX2_1(op2, &bitD2);
HUF_DECODE_SYMBOLX2_1(op3, &bitD3);
HUF_DECODE_SYMBOLX2_1(op4, &bitD4);
HUF_DECODE_SYMBOLX2_2(op1, &bitD1);
HUF_DECODE_SYMBOLX2_2(op2, &bitD2);
HUF_DECODE_SYMBOLX2_2(op3, &bitD3);
HUF_DECODE_SYMBOLX2_2(op4, &bitD4);
HUF_DECODE_SYMBOLX2_0(op1, &bitD1);
HUF_DECODE_SYMBOLX2_0(op2, &bitD2);
HUF_DECODE_SYMBOLX2_0(op3, &bitD3);
HUF_DECODE_SYMBOLX2_0(op4, &bitD4);
endSignal = (U32)LIKELY((U32)
(BIT_reloadDStreamFast(&bitD1) == BIT_DStream_unfinished)
& (BIT_reloadDStreamFast(&bitD2) == BIT_DStream_unfinished)
& (BIT_reloadDStreamFast(&bitD3) == BIT_DStream_unfinished)
& (BIT_reloadDStreamFast(&bitD4) == BIT_DStream_unfinished));
#endif
}
2019-01-04 01:30:03 +01:00
}
/* check corruption */
if (op1 > opStart2) return ERROR(corruption_detected);
if (op2 > opStart3) return ERROR(corruption_detected);
if (op3 > opStart4) return ERROR(corruption_detected);
/* note : op4 already verified within main loop */
/* finish bitStreams one by one */
HUF_decodeStreamX2(op1, &bitD1, opStart2, dt, dtLog);
HUF_decodeStreamX2(op2, &bitD2, opStart3, dt, dtLog);
HUF_decodeStreamX2(op3, &bitD3, opStart4, dt, dtLog);
HUF_decodeStreamX2(op4, &bitD4, oend, dt, dtLog);
/* check */
{ U32 const endCheck = BIT_endOfDStream(&bitD1) & BIT_endOfDStream(&bitD2) & BIT_endOfDStream(&bitD3) & BIT_endOfDStream(&bitD4);
if (!endCheck) return ERROR(corruption_detected); }
/* decoded size */
return dstSize;
}
}
#if HUF_NEED_BMI2_FUNCTION
static BMI2_TARGET_ATTRIBUTE
size_t HUF_decompress4X2_usingDTable_internal_bmi2(void* dst, size_t dstSize, void const* cSrc,
size_t cSrcSize, HUF_DTable const* DTable) {
return HUF_decompress4X2_usingDTable_internal_body(dst, dstSize, cSrc, cSrcSize, DTable);
}
#endif
static
size_t HUF_decompress4X2_usingDTable_internal_default(void* dst, size_t dstSize, void const* cSrc,
size_t cSrcSize, HUF_DTable const* DTable) {
return HUF_decompress4X2_usingDTable_internal_body(dst, dstSize, cSrc, cSrcSize, DTable);
}
#if ZSTD_ENABLE_ASM_X86_64_BMI2
HUF_ASM_DECL void HUF_decompress4X2_usingDTable_internal_fast_asm_loop(HUF_DecompressFastArgs* args) ZSTDLIB_HIDDEN;
#endif
static HUF_FAST_BMI2_ATTRS
void HUF_decompress4X2_usingDTable_internal_fast_c_loop(HUF_DecompressFastArgs* args)
{
U64 bits[4];
BYTE const* ip[4];
BYTE* op[4];
BYTE* oend[4];
HUF_DEltX2 const* const dtable = (HUF_DEltX2 const*)args->dt;
BYTE const* const ilimit = args->ilimit;
/* Copy the arguments to local registers. */
ZSTD_memcpy(&bits, &args->bits, sizeof(bits));
ZSTD_memcpy((void*)(&ip), &args->ip, sizeof(ip));
ZSTD_memcpy(&op, &args->op, sizeof(op));
oend[0] = op[1];
oend[1] = op[2];
oend[2] = op[3];
oend[3] = args->oend;
assert(MEM_isLittleEndian());
assert(!MEM_32bits());
for (;;) {
BYTE* olimit;
int stream;
int symbol;
/* Assert loop preconditions */
#ifndef NDEBUG
for (stream = 0; stream < 4; ++stream) {
assert(op[stream] <= oend[stream]);
assert(ip[stream] >= ilimit);
}
#endif
/* Compute olimit */
{
/* Each loop does 5 table lookups for each of the 4 streams.
* Each table lookup consumes up to 11 bits of input, and produces
* up to 2 bytes of output.
*/
/* We can consume up to 7 bytes of input per iteration per stream.
* We also know that each input pointer is >= ip[0]. So we can run
* iters loops before running out of input.
*/
size_t iters = (size_t)(ip[0] - ilimit) / 7;
/* Each iteration can produce up to 10 bytes of output per stream.
* Each output stream my advance at different rates. So take the
* minimum number of safe iterations among all the output streams.
*/
for (stream = 0; stream < 4; ++stream) {
size_t const oiters = (size_t)(oend[stream] - op[stream]) / 10;
iters = MIN(iters, oiters);
}
/* Each iteration produces at least 5 output symbols. So until
* op[3] crosses olimit, we know we haven't executed iters
* iterations yet. This saves us maintaining an iters counter,
* at the expense of computing the remaining # of iterations
* more frequently.
*/
olimit = op[3] + (iters * 5);
/* Exit the fast decoding loop if we are too close to the end. */
if (op[3] + 10 > olimit)
break;
/* Exit the decoding loop if any input pointer has crossed the
* previous one. This indicates corruption, and a precondition
* to our loop is that ip[i] >= ip[0].
*/
for (stream = 1; stream < 4; ++stream) {
if (ip[stream] < ip[stream - 1])
goto _out;
}
}
#ifndef NDEBUG
for (stream = 1; stream < 4; ++stream) {
assert(ip[stream] >= ip[stream - 1]);
}
#endif
do {
/* Do 5 table lookups for each of the first 3 streams */
for (symbol = 0; symbol < 5; ++symbol) {
for (stream = 0; stream < 3; ++stream) {
int const index = (int)(bits[stream] >> 53);
HUF_DEltX2 const entry = dtable[index];
MEM_write16(op[stream], entry.sequence);
bits[stream] <<= (entry.nbBits);
op[stream] += (entry.length);
}
}
/* Do 1 table lookup from the final stream */
{
int const index = (int)(bits[3] >> 53);
HUF_DEltX2 const entry = dtable[index];
MEM_write16(op[3], entry.sequence);
bits[3] <<= (entry.nbBits);
op[3] += (entry.length);
}
/* Do 4 table lookups from the final stream & reload bitstreams */
for (stream = 0; stream < 4; ++stream) {
/* Do a table lookup from the final stream.
* This is interleaved with the reloading to reduce register
* pressure. This shouldn't be necessary, but compilers can
* struggle with codegen with high register pressure.
*/
{
int const index = (int)(bits[3] >> 53);
HUF_DEltX2 const entry = dtable[index];
MEM_write16(op[3], entry.sequence);
bits[3] <<= (entry.nbBits);
op[3] += (entry.length);
}
/* Reload the bistreams. The final bitstream must be reloaded
* after the 5th symbol was decoded.
*/
{
int const ctz = ZSTD_countTrailingZeros64(bits[stream]);
int const nbBits = ctz & 7;
int const nbBytes = ctz >> 3;
ip[stream] -= nbBytes;
bits[stream] = MEM_read64(ip[stream]) | 1;
bits[stream] <<= nbBits;
}
}
} while (op[3] < olimit);
}
_out:
/* Save the final values of each of the state variables back to args. */
ZSTD_memcpy(&args->bits, &bits, sizeof(bits));
ZSTD_memcpy((void*)(&args->ip), &ip, sizeof(ip));
ZSTD_memcpy(&args->op, &op, sizeof(op));
}
static HUF_FAST_BMI2_ATTRS size_t
HUF_decompress4X2_usingDTable_internal_fast(
void* dst, size_t dstSize,
const void* cSrc, size_t cSrcSize,
const HUF_DTable* DTable,
HUF_DecompressFastLoopFn loopFn) {
void const* dt = DTable + 1;
const BYTE* const iend = (const BYTE*)cSrc + 6;
BYTE* const oend = (BYTE*)dst + dstSize;
HUF_DecompressFastArgs args;
{
size_t const ret = HUF_DecompressFastArgs_init(&args, dst, dstSize, cSrc, cSrcSize, DTable);
FORWARD_IF_ERROR(ret, "Failed to init asm args");
if (ret == 0)
return 0;
}
assert(args.ip[0] >= args.ilimit);
loopFn(&args);
/* note : op4 already verified within main loop */
assert(args.ip[0] >= iend);
assert(args.ip[1] >= iend);
assert(args.ip[2] >= iend);
assert(args.ip[3] >= iend);
assert(args.op[3] <= oend);
(void)iend;
/* finish bitStreams one by one */
{
size_t const segmentSize = (dstSize+3) / 4;
BYTE* segmentEnd = (BYTE*)dst;
int i;
for (i = 0; i < 4; ++i) {
BIT_DStream_t bit;
if (segmentSize <= (size_t)(oend - segmentEnd))
segmentEnd += segmentSize;
else
segmentEnd = oend;
FORWARD_IF_ERROR(HUF_initRemainingDStream(&bit, &args, i, segmentEnd), "corruption");
args.op[i] += HUF_decodeStreamX2(args.op[i], &bit, segmentEnd, (HUF_DEltX2 const*)dt, HUF_DECODER_FAST_TABLELOG);
if (args.op[i] != segmentEnd)
return ERROR(corruption_detected);
}
}
/* decoded size */
return dstSize;
}
static size_t HUF_decompress4X2_usingDTable_internal(void* dst, size_t dstSize, void const* cSrc,
size_t cSrcSize, HUF_DTable const* DTable, int flags)
{
HUF_DecompressUsingDTableFn fallbackFn = HUF_decompress4X2_usingDTable_internal_default;
HUF_DecompressFastLoopFn loopFn = HUF_decompress4X2_usingDTable_internal_fast_c_loop;
#if DYNAMIC_BMI2
if (flags & HUF_flags_bmi2) {
fallbackFn = HUF_decompress4X2_usingDTable_internal_bmi2;
# if ZSTD_ENABLE_ASM_X86_64_BMI2
if (!(flags & HUF_flags_disableAsm)) {
loopFn = HUF_decompress4X2_usingDTable_internal_fast_asm_loop;
}
# endif
} else {
return fallbackFn(dst, dstSize, cSrc, cSrcSize, DTable);
}
#endif
#if ZSTD_ENABLE_ASM_X86_64_BMI2 && defined(__BMI2__)
if (!(flags & HUF_flags_disableAsm)) {
loopFn = HUF_decompress4X2_usingDTable_internal_fast_asm_loop;
}
#endif
if (!(flags & HUF_flags_disableFast)) {
size_t const ret = HUF_decompress4X2_usingDTable_internal_fast(dst, dstSize, cSrc, cSrcSize, DTable, loopFn);
if (ret != 0)
return ret;
}
return fallbackFn(dst, dstSize, cSrc, cSrcSize, DTable);
}
2019-01-04 01:30:03 +01:00
HUF_DGEN(HUF_decompress1X2_usingDTable_internal)
size_t HUF_decompress1X2_DCtx_wksp(HUF_DTable* DCtx, void* dst, size_t dstSize,
2017-07-22 23:46:05 +02:00
const void* cSrc, size_t cSrcSize,
void* workSpace, size_t wkspSize, int flags)
{
const BYTE* ip = (const BYTE*) cSrc;
2019-01-04 01:30:03 +01:00
size_t const hSize = HUF_readDTableX2_wksp(DCtx, cSrc, cSrcSize,
workSpace, wkspSize, flags);
if (HUF_isError(hSize)) return hSize;
if (hSize >= cSrcSize) return ERROR(srcSize_wrong);
ip += hSize; cSrcSize -= hSize;
return HUF_decompress1X2_usingDTable_internal(dst, dstSize, ip, cSrcSize, DCtx, flags);
}
static size_t HUF_decompress4X2_DCtx_wksp(HUF_DTable* dctx, void* dst, size_t dstSize,
2017-07-22 23:46:05 +02:00
const void* cSrc, size_t cSrcSize,
void* workSpace, size_t wkspSize, int flags)
{
const BYTE* ip = (const BYTE*) cSrc;
2019-01-04 01:30:03 +01:00
size_t hSize = HUF_readDTableX2_wksp(dctx, cSrc, cSrcSize,
workSpace, wkspSize, flags);
if (HUF_isError(hSize)) return hSize;
if (hSize >= cSrcSize) return ERROR(srcSize_wrong);
ip += hSize; cSrcSize -= hSize;
return HUF_decompress4X2_usingDTable_internal(dst, dstSize, ip, cSrcSize, dctx, flags);
2018-05-15 19:45:22 +02:00
}
2019-01-04 01:30:03 +01:00
#endif /* HUF_FORCE_DECOMPRESS_X1 */
2019-01-04 01:30:03 +01:00
/* ***********************************/
/* Universal decompression selectors */
/* ***********************************/
2019-01-04 01:30:03 +01:00
#if !defined(HUF_FORCE_DECOMPRESS_X1) && !defined(HUF_FORCE_DECOMPRESS_X2)
typedef struct { U32 tableTime; U32 decode256Time; } algo_time_t;
static const algo_time_t algoTime[16 /* Quantization */][2 /* single, double */] =
{
/* single, double, quad */
{{0,0}, {1,1}}, /* Q==0 : impossible */
{{0,0}, {1,1}}, /* Q==1 : impossible */
{{ 150,216}, { 381,119}}, /* Q == 2 : 12-18% */
{{ 170,205}, { 514,112}}, /* Q == 3 : 18-25% */
{{ 177,199}, { 539,110}}, /* Q == 4 : 25-32% */
{{ 197,194}, { 644,107}}, /* Q == 5 : 32-38% */
{{ 221,192}, { 735,107}}, /* Q == 6 : 38-44% */
{{ 256,189}, { 881,106}}, /* Q == 7 : 44-50% */
{{ 359,188}, {1167,109}}, /* Q == 8 : 50-56% */
{{ 582,187}, {1570,114}}, /* Q == 9 : 56-62% */
{{ 688,187}, {1712,122}}, /* Q ==10 : 62-69% */
{{ 825,186}, {1965,136}}, /* Q ==11 : 69-75% */
{{ 976,185}, {2131,150}}, /* Q ==12 : 75-81% */
{{1180,186}, {2070,175}}, /* Q ==13 : 81-87% */
{{1377,185}, {1731,202}}, /* Q ==14 : 87-93% */
{{1412,185}, {1695,202}}, /* Q ==15 : 93-99% */
};
2019-01-04 01:30:03 +01:00
#endif
/** HUF_selectDecoder() :
2018-05-15 19:45:22 +02:00
* Tells which decoder is likely to decode faster,
* based on a set of pre-computed metrics.
2019-01-04 01:30:03 +01:00
* @return : 0==HUF_decompress4X1, 1==HUF_decompress4X2 .
2018-05-15 19:45:22 +02:00
* Assumption : 0 < dstSize <= 128 KB */
U32 HUF_selectDecoder (size_t dstSize, size_t cSrcSize)
{
2018-05-15 19:45:22 +02:00
assert(dstSize > 0);
2019-01-04 01:30:03 +01:00
assert(dstSize <= 128*1024);
#if defined(HUF_FORCE_DECOMPRESS_X1)
(void)dstSize;
(void)cSrcSize;
return 0;
#elif defined(HUF_FORCE_DECOMPRESS_X2)
(void)dstSize;
(void)cSrcSize;
return 1;
#else
/* decoder timing evaluation */
2018-05-15 19:45:22 +02:00
{ U32 const Q = (cSrcSize >= dstSize) ? 15 : (U32)(cSrcSize * 16 / dstSize); /* Q < 16 */
U32 const D256 = (U32)(dstSize >> 8);
U32 const DTime0 = algoTime[Q][0].tableTime + (algoTime[Q][0].decode256Time * D256);
U32 DTime1 = algoTime[Q][1].tableTime + (algoTime[Q][1].decode256Time * D256);
DTime1 += DTime1 >> 5; /* small advantage to algorithm using less memory, to reduce cache eviction */
2018-05-15 19:45:22 +02:00
return DTime1 < DTime0;
2019-01-04 01:30:03 +01:00
}
#endif
}
2017-07-22 23:46:05 +02:00
size_t HUF_decompress1X_DCtx_wksp(HUF_DTable* dctx, void* dst, size_t dstSize,
const void* cSrc, size_t cSrcSize,
void* workSpace, size_t wkspSize, int flags)
{
/* validation checks */
if (dstSize == 0) return ERROR(dstSize_tooSmall);
if (cSrcSize > dstSize) return ERROR(corruption_detected); /* invalid */
if (cSrcSize == dstSize) { ZSTD_memcpy(dst, cSrc, dstSize); return dstSize; } /* not compressed */
if (cSrcSize == 1) { ZSTD_memset(dst, *(const BYTE*)cSrc, dstSize); return dstSize; } /* RLE */
{ U32 const algoNb = HUF_selectDecoder(dstSize, cSrcSize);
2019-01-04 01:30:03 +01:00
#if defined(HUF_FORCE_DECOMPRESS_X1)
(void)algoNb;
assert(algoNb == 0);
return HUF_decompress1X1_DCtx_wksp(dctx, dst, dstSize, cSrc,
cSrcSize, workSpace, wkspSize, flags);
2019-01-04 01:30:03 +01:00
#elif defined(HUF_FORCE_DECOMPRESS_X2)
(void)algoNb;
assert(algoNb == 1);
return HUF_decompress1X2_DCtx_wksp(dctx, dst, dstSize, cSrc,
cSrcSize, workSpace, wkspSize, flags);
2019-01-04 01:30:03 +01:00
#else
return algoNb ? HUF_decompress1X2_DCtx_wksp(dctx, dst, dstSize, cSrc,
cSrcSize, workSpace, wkspSize, flags):
2019-01-04 01:30:03 +01:00
HUF_decompress1X1_DCtx_wksp(dctx, dst, dstSize, cSrc,
cSrcSize, workSpace, wkspSize, flags);
2019-01-04 01:30:03 +01:00
#endif
}
}
2017-07-22 23:46:05 +02:00
2018-05-15 19:45:22 +02:00
size_t HUF_decompress1X_usingDTable(void* dst, size_t maxDstSize, const void* cSrc, size_t cSrcSize, const HUF_DTable* DTable, int flags)
2018-05-15 19:45:22 +02:00
{
DTableDesc const dtd = HUF_getDTableDesc(DTable);
2019-01-04 01:30:03 +01:00
#if defined(HUF_FORCE_DECOMPRESS_X1)
(void)dtd;
assert(dtd.tableType == 0);
return HUF_decompress1X1_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable, flags);
2019-01-04 01:30:03 +01:00
#elif defined(HUF_FORCE_DECOMPRESS_X2)
(void)dtd;
assert(dtd.tableType == 1);
return HUF_decompress1X2_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable, flags);
2019-01-04 01:30:03 +01:00
#else
return dtd.tableType ? HUF_decompress1X2_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable, flags) :
HUF_decompress1X1_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable, flags);
2019-01-04 01:30:03 +01:00
#endif
2018-05-15 19:45:22 +02:00
}
2019-01-04 01:30:03 +01:00
#ifndef HUF_FORCE_DECOMPRESS_X2
size_t HUF_decompress1X1_DCtx_wksp(HUF_DTable* dctx, void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize, void* workSpace, size_t wkspSize, int flags)
2018-05-15 19:45:22 +02:00
{
const BYTE* ip = (const BYTE*) cSrc;
size_t const hSize = HUF_readDTableX1_wksp(dctx, cSrc, cSrcSize, workSpace, wkspSize, flags);
2018-05-15 19:45:22 +02:00
if (HUF_isError(hSize)) return hSize;
if (hSize >= cSrcSize) return ERROR(srcSize_wrong);
ip += hSize; cSrcSize -= hSize;
return HUF_decompress1X1_usingDTable_internal(dst, dstSize, ip, cSrcSize, dctx, flags);
2018-05-15 19:45:22 +02:00
}
2019-01-04 01:30:03 +01:00
#endif
2018-05-15 19:45:22 +02:00
size_t HUF_decompress4X_usingDTable(void* dst, size_t maxDstSize, const void* cSrc, size_t cSrcSize, const HUF_DTable* DTable, int flags)
2018-05-15 19:45:22 +02:00
{
DTableDesc const dtd = HUF_getDTableDesc(DTable);
2019-01-04 01:30:03 +01:00
#if defined(HUF_FORCE_DECOMPRESS_X1)
(void)dtd;
assert(dtd.tableType == 0);
return HUF_decompress4X1_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable, flags);
2019-01-04 01:30:03 +01:00
#elif defined(HUF_FORCE_DECOMPRESS_X2)
(void)dtd;
assert(dtd.tableType == 1);
return HUF_decompress4X2_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable, flags);
2019-01-04 01:30:03 +01:00
#else
return dtd.tableType ? HUF_decompress4X2_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable, flags) :
HUF_decompress4X1_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable, flags);
2019-01-04 01:30:03 +01:00
#endif
2018-05-15 19:45:22 +02:00
}
size_t HUF_decompress4X_hufOnly_wksp(HUF_DTable* dctx, void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize, void* workSpace, size_t wkspSize, int flags)
2018-05-15 19:45:22 +02:00
{
/* validation checks */
if (dstSize == 0) return ERROR(dstSize_tooSmall);
if (cSrcSize == 0) return ERROR(corruption_detected);
{ U32 const algoNb = HUF_selectDecoder(dstSize, cSrcSize);
2019-01-04 01:30:03 +01:00
#if defined(HUF_FORCE_DECOMPRESS_X1)
(void)algoNb;
assert(algoNb == 0);
return HUF_decompress4X1_DCtx_wksp(dctx, dst, dstSize, cSrc, cSrcSize, workSpace, wkspSize, flags);
2019-01-04 01:30:03 +01:00
#elif defined(HUF_FORCE_DECOMPRESS_X2)
(void)algoNb;
assert(algoNb == 1);
return HUF_decompress4X2_DCtx_wksp(dctx, dst, dstSize, cSrc, cSrcSize, workSpace, wkspSize, flags);
2019-01-04 01:30:03 +01:00
#else
return algoNb ? HUF_decompress4X2_DCtx_wksp(dctx, dst, dstSize, cSrc, cSrcSize, workSpace, wkspSize, flags) :
HUF_decompress4X1_DCtx_wksp(dctx, dst, dstSize, cSrc, cSrcSize, workSpace, wkspSize, flags);
2019-01-04 01:30:03 +01:00
#endif
2018-05-15 19:45:22 +02:00
}
}