virtualx-engine/thirdparty/basis_universal/encoder/basisu_opencl.cpp

1333 lines
39 KiB
C++
Raw Normal View History

// basisu_opencl.cpp
// Copyright (C) 2019-2021 Binomial LLC. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "basisu_opencl.h"
// If 1, the kernel source code will come from encoders/ocl_kernels.h. Otherwise, it will be read from the "ocl_kernels.cl" file in the current directory (for development).
#define BASISU_USE_OCL_KERNELS_HEADER (1)
#define BASISU_OCL_KERNELS_FILENAME "ocl_kernels.cl"
#if BASISU_SUPPORT_OPENCL
#include "basisu_enc.h"
// We only use OpenCL v1.2 or less.
#define CL_TARGET_OPENCL_VERSION 120
#ifdef __APPLE__
#include <OpenCL/opencl.h>
#else
#include <CL/cl.h>
#endif
#define BASISU_OPENCL_ASSERT_ON_ANY_ERRORS (1)
namespace basisu
{
#if BASISU_USE_OCL_KERNELS_HEADER
#include "basisu_ocl_kernels.h"
#endif
static void ocl_error_printf(const char* pFmt, ...)
{
va_list args;
va_start(args, pFmt);
error_vprintf(pFmt, args);
va_end(args);
#if BASISU_OPENCL_ASSERT_ON_ANY_ERRORS
assert(0);
#endif
}
class ocl
{
public:
ocl()
{
memset(&m_dev_fp_config, 0, sizeof(m_dev_fp_config));
m_ocl_mutex.lock();
m_ocl_mutex.unlock();
}
~ocl()
{
}
bool is_initialized() const { return m_device_id != nullptr; }
cl_device_id get_device_id() const { return m_device_id; }
cl_context get_context() const { return m_context; }
cl_command_queue get_command_queue() { return m_command_queue; }
cl_program get_program() const { return m_program; }
bool init(bool force_serialization)
{
deinit();
interval_timer tm;
tm.start();
cl_uint num_platforms = 0;
cl_int ret = clGetPlatformIDs(0, NULL, &num_platforms);
if (ret != CL_SUCCESS)
{
ocl_error_printf("ocl::init: clGetPlatformIDs() failed with %i\n", ret);
return false;
}
if ((!num_platforms) || (num_platforms > INT_MAX))
{
ocl_error_printf("ocl::init: clGetPlatformIDs() returned an invalid number of num_platforms\n");
return false;
}
std::vector<cl_platform_id> platforms(num_platforms);
ret = clGetPlatformIDs(num_platforms, platforms.data(), NULL);
if (ret != CL_SUCCESS)
{
ocl_error_printf("ocl::init: clGetPlatformIDs() failed\n");
return false;
}
cl_uint num_devices = 0;
ret = clGetDeviceIDs(platforms[0], CL_DEVICE_TYPE_GPU, 1, &m_device_id, &num_devices);
if (ret == CL_DEVICE_NOT_FOUND)
{
ocl_error_printf("ocl::init: Couldn't get any GPU device ID's, trying CL_DEVICE_TYPE_CPU\n");
ret = clGetDeviceIDs(platforms[0], CL_DEVICE_TYPE_CPU, 1, &m_device_id, &num_devices);
}
if (ret != CL_SUCCESS)
{
ocl_error_printf("ocl::init: Unable to get any device ID's\n");
m_device_id = nullptr;
return false;
}
ret = clGetDeviceInfo(m_device_id,
CL_DEVICE_SINGLE_FP_CONFIG,
sizeof(m_dev_fp_config),
&m_dev_fp_config,
nullptr);
if (ret != CL_SUCCESS)
{
ocl_error_printf("ocl::init: clGetDeviceInfo() failed\n");
return false;
}
char plat_vers[256];
size_t rv = 0;
ret = clGetPlatformInfo(platforms[0], CL_PLATFORM_VERSION, sizeof(plat_vers), plat_vers, &rv);
if (ret == CL_SUCCESS)
printf("OpenCL platform version: \"%s\"\n", plat_vers);
// Serialize CL calls with the AMD driver to avoid lockups when multiple command queues per thread are used. This sucks, but what can we do?
m_use_mutex = (strstr(plat_vers, "AMD") != nullptr) || force_serialization;
printf("Serializing OpenCL calls across threads: %u\n", (uint32_t)m_use_mutex);
m_context = clCreateContext(nullptr, 1, &m_device_id, nullptr, nullptr, &ret);
if (ret != CL_SUCCESS)
{
ocl_error_printf("ocl::init: clCreateContext() failed\n");
m_device_id = nullptr;
m_context = nullptr;
return false;
}
m_command_queue = clCreateCommandQueue(m_context, m_device_id, 0, &ret);
if (ret != CL_SUCCESS)
{
ocl_error_printf("ocl::init: clCreateCommandQueue() failed\n");
deinit();
return false;
}
printf("OpenCL init time: %3.3f secs\n", tm.get_elapsed_secs());
return true;
}
bool deinit()
{
if (m_program)
{
clReleaseProgram(m_program);
m_program = nullptr;
}
if (m_command_queue)
{
clReleaseCommandQueue(m_command_queue);
m_command_queue = nullptr;
}
if (m_context)
{
clReleaseContext(m_context);
m_context = nullptr;
}
m_device_id = nullptr;
return true;
}
cl_command_queue create_command_queue()
{
cl_serializer serializer(this);
cl_int ret = 0;
cl_command_queue p = clCreateCommandQueue(m_context, m_device_id, 0, &ret);
if (ret != CL_SUCCESS)
return nullptr;
return p;
}
void destroy_command_queue(cl_command_queue p)
{
if (p)
{
cl_serializer serializer(this);
clReleaseCommandQueue(p);
}
}
bool init_program(const char* pSrc, size_t src_size)
{
cl_int ret;
if (m_program != nullptr)
{
clReleaseProgram(m_program);
m_program = nullptr;
}
m_program = clCreateProgramWithSource(m_context, 1, (const char**)&pSrc, (const size_t*)&src_size, &ret);
if (ret != CL_SUCCESS)
{
ocl_error_printf("ocl::init_program: clCreateProgramWithSource() failed!\n");
return false;
}
std::string options;
if (m_dev_fp_config & CL_FP_CORRECTLY_ROUNDED_DIVIDE_SQRT)
{
options += "-cl-fp32-correctly-rounded-divide-sqrt";
}
options += " -cl-std=CL1.2";
//options += " -cl-opt-disable";
//options += " -cl-mad-enable";
//options += " -cl-fast-relaxed-math";
ret = clBuildProgram(m_program, 1, &m_device_id,
options.size() ? options.c_str() : nullptr, // options
nullptr, // notify
nullptr); // user_data
if (ret != CL_SUCCESS)
{
const cl_int build_program_result = ret;
size_t ret_val_size;
ret = clGetProgramBuildInfo(m_program, m_device_id, CL_PROGRAM_BUILD_LOG, 0, NULL, &ret_val_size);
if (ret != CL_SUCCESS)
{
ocl_error_printf("ocl::init_program: clGetProgramBuildInfo() failed!\n");
return false;
}
std::vector<char> build_log(ret_val_size + 1);
ret = clGetProgramBuildInfo(m_program, m_device_id, CL_PROGRAM_BUILD_LOG, ret_val_size, build_log.data(), NULL);
ocl_error_printf("\nclBuildProgram() failed with error %i:\n%s", build_program_result, build_log.data());
return false;
}
return true;
}
cl_kernel create_kernel(const char* pName)
{
if (!m_program)
return nullptr;
cl_serializer serializer(this);
cl_int ret;
cl_kernel kernel = clCreateKernel(m_program, pName, &ret);
if (ret != CL_SUCCESS)
{
ocl_error_printf("ocl::create_kernel: clCreateKernel() failed!\n");
return nullptr;
}
return kernel;
}
bool destroy_kernel(cl_kernel k)
{
if (k)
{
cl_serializer serializer(this);
cl_int ret = clReleaseKernel(k);
if (ret != CL_SUCCESS)
{
ocl_error_printf("ocl::destroy_kernel: clReleaseKernel() failed!\n");
return false;
}
}
return true;
}
cl_mem alloc_read_buffer(size_t size)
{
cl_serializer serializer(this);
cl_int ret;
cl_mem obj = clCreateBuffer(m_context, CL_MEM_READ_ONLY, size, NULL, &ret);
if (ret != CL_SUCCESS)
{
ocl_error_printf("ocl::alloc_read_buffer: clCreateBuffer() failed!\n");
return nullptr;
}
return obj;
}
cl_mem alloc_and_init_read_buffer(cl_command_queue command_queue, const void *pInit, size_t size)
{
cl_serializer serializer(this);
cl_int ret;
cl_mem obj = clCreateBuffer(m_context, CL_MEM_READ_ONLY, size, NULL, &ret);
if (ret != CL_SUCCESS)
{
ocl_error_printf("ocl::alloc_and_init_read_buffer: clCreateBuffer() failed!\n");
return nullptr;
}
#if 0
if (!write_to_buffer(command_queue, obj, pInit, size))
{
destroy_buffer(obj);
return nullptr;
}
#else
ret = clEnqueueWriteBuffer(command_queue, obj, CL_TRUE, 0, size, pInit, 0, NULL, NULL);
if (ret != CL_SUCCESS)
{
ocl_error_printf("ocl::alloc_and_init_read_buffer: clEnqueueWriteBuffer() failed!\n");
return nullptr;
}
#endif
return obj;
}
cl_mem alloc_write_buffer(size_t size)
{
cl_serializer serializer(this);
cl_int ret;
cl_mem obj = clCreateBuffer(m_context, CL_MEM_WRITE_ONLY, size, NULL, &ret);
if (ret != CL_SUCCESS)
{
ocl_error_printf("ocl::alloc_write_buffer: clCreateBuffer() failed!\n");
return nullptr;
}
return obj;
}
bool destroy_buffer(cl_mem buf)
{
if (buf)
{
cl_serializer serializer(this);
cl_int ret = clReleaseMemObject(buf);
if (ret != CL_SUCCESS)
{
ocl_error_printf("ocl::destroy_buffer: clReleaseMemObject() failed!\n");
return false;
}
}
return true;
}
bool write_to_buffer(cl_command_queue command_queue, cl_mem clmem, const void* d, const size_t m)
{
cl_serializer serializer(this);
cl_int ret = clEnqueueWriteBuffer(command_queue, clmem, CL_TRUE, 0, m, d, 0, NULL, NULL);
if (ret != CL_SUCCESS)
{
ocl_error_printf("ocl::write_to_buffer: clEnqueueWriteBuffer() failed!\n");
return false;
}
return true;
}
bool read_from_buffer(cl_command_queue command_queue, const cl_mem clmem, void* d, size_t m)
{
cl_serializer serializer(this);
cl_int ret = clEnqueueReadBuffer(command_queue, clmem, CL_TRUE, 0, m, d, 0, NULL, NULL);
if (ret != CL_SUCCESS)
{
ocl_error_printf("ocl::read_from_buffer: clEnqueueReadBuffer() failed!\n");
return false;
}
return true;
}
cl_mem create_read_image_u8(uint32_t width, uint32_t height, const void* pPixels, uint32_t bytes_per_pixel, bool normalized)
{
cl_image_format fmt = get_image_format(bytes_per_pixel, normalized);
cl_image_desc desc;
memset(&desc, 0, sizeof(desc));
desc.image_type = CL_MEM_OBJECT_IMAGE2D;
desc.image_width = width;
desc.image_height = height;
desc.image_row_pitch = width * bytes_per_pixel;
cl_serializer serializer(this);
cl_int ret;
cl_mem img = clCreateImage(m_context, CL_MEM_READ_ONLY | CL_MEM_COPY_HOST_PTR, &fmt, &desc, (void*)pPixels, &ret);
if (ret != CL_SUCCESS)
{
ocl_error_printf("ocl::create_read_image_u8: clCreateImage() failed!\n");
return nullptr;
}
return img;
}
cl_mem create_write_image_u8(uint32_t width, uint32_t height, uint32_t bytes_per_pixel, bool normalized)
{
cl_image_format fmt = get_image_format(bytes_per_pixel, normalized);
cl_image_desc desc;
memset(&desc, 0, sizeof(desc));
desc.image_type = CL_MEM_OBJECT_IMAGE2D;
desc.image_width = width;
desc.image_height = height;
cl_serializer serializer(this);
cl_int ret;
cl_mem img = clCreateImage(m_context, CL_MEM_WRITE_ONLY, &fmt, &desc, nullptr, &ret);
if (ret != CL_SUCCESS)
{
ocl_error_printf("ocl::create_write_image_u8: clCreateImage() failed!\n");
return nullptr;
}
return img;
}
bool read_from_image(cl_command_queue command_queue, cl_mem img, void* pPixels, uint32_t ofs_x, uint32_t ofs_y, uint32_t width, uint32_t height)
{
cl_serializer serializer(this);
size_t origin[3] = { ofs_x, ofs_y, 0 }, region[3] = { width, height, 1 };
cl_int err = clEnqueueReadImage(command_queue, img, CL_TRUE, origin, region, 0, 0, pPixels, 0, NULL, NULL);
if (err != CL_SUCCESS)
{
ocl_error_printf("ocl::read_from_image: clEnqueueReadImage() failed!\n");
return false;
}
return true;
}
bool run_1D(cl_command_queue command_queue, const cl_kernel kernel, size_t num_items)
{
cl_serializer serializer(this);
cl_int ret = clEnqueueNDRangeKernel(command_queue, kernel,
1, // work_dim
nullptr, // global_work_offset
&num_items, // global_work_size
nullptr, // local_work_size
0, // num_events_in_wait_list
nullptr, // event_wait_list
nullptr // event
);
if (ret != CL_SUCCESS)
{
ocl_error_printf("ocl::run_1D: clEnqueueNDRangeKernel() failed!\n");
return false;
}
return true;
}
bool run_2D(cl_command_queue command_queue, const cl_kernel kernel, size_t width, size_t height)
{
cl_serializer serializer(this);
size_t num_global_items[2] = { width, height };
//size_t num_local_items[2] = { 1, 1 };
cl_int ret = clEnqueueNDRangeKernel(command_queue, kernel,
2, // work_dim
nullptr, // global_work_offset
num_global_items, // global_work_size
nullptr, // local_work_size
0, // num_events_in_wait_list
nullptr, // event_wait_list
nullptr // event
);
if (ret != CL_SUCCESS)
{
ocl_error_printf("ocl::run_2D: clEnqueueNDRangeKernel() failed!\n");
return false;
}
return true;
}
bool run_2D(cl_command_queue command_queue, const cl_kernel kernel, size_t ofs_x, size_t ofs_y, size_t width, size_t height)
{
cl_serializer serializer(this);
size_t global_ofs[2] = { ofs_x, ofs_y };
size_t num_global_items[2] = { width, height };
//size_t num_local_items[2] = { 1, 1 };
cl_int ret = clEnqueueNDRangeKernel(command_queue, kernel,
2, // work_dim
global_ofs, // global_work_offset
num_global_items, // global_work_size
nullptr, // local_work_size
0, // num_events_in_wait_list
nullptr, // event_wait_list
nullptr // event
);
if (ret != CL_SUCCESS)
{
ocl_error_printf("ocl::run_2D: clEnqueueNDRangeKernel() failed!\n");
return false;
}
return true;
}
void flush(cl_command_queue command_queue)
{
cl_serializer serializer(this);
clFlush(command_queue);
clFinish(command_queue);
}
template<typename T>
bool set_kernel_arg(cl_kernel kernel, uint32_t index, const T& obj)
{
cl_serializer serializer(this);
cl_int ret = clSetKernelArg(kernel, index, sizeof(T), (void*)&obj);
if (ret != CL_SUCCESS)
{
ocl_error_printf("ocl::set_kernel_arg: clSetKernelArg() failed!\n");
return false;
}
return true;
}
template<typename T>
bool set_kernel_args(cl_kernel kernel, const T& obj1)
{
cl_serializer serializer(this);
cl_int ret = clSetKernelArg(kernel, 0, sizeof(T), (void*)&obj1);
if (ret != CL_SUCCESS)
{
ocl_error_printf("ocl::set_kernel_arg: clSetKernelArg() failed!\n");
return false;
}
return true;
}
#define BASISU_CHECK_ERR if (ret != CL_SUCCESS) { ocl_error_printf("ocl::set_kernel_args: clSetKernelArg() failed!\n"); return false; }
template<typename T, typename U>
bool set_kernel_args(cl_kernel kernel, const T& obj1, const U& obj2)
{
cl_serializer serializer(this);
cl_int ret = clSetKernelArg(kernel, 0, sizeof(T), (void*)&obj1); BASISU_CHECK_ERR
ret = clSetKernelArg(kernel, 1, sizeof(U), (void*)&obj2); BASISU_CHECK_ERR
return true;
}
template<typename T, typename U, typename V>
bool set_kernel_args(cl_kernel kernel, const T& obj1, const U& obj2, const V& obj3)
{
cl_serializer serializer(this);
cl_int ret = clSetKernelArg(kernel, 0, sizeof(T), (void*)&obj1); BASISU_CHECK_ERR
ret = clSetKernelArg(kernel, 1, sizeof(U), (void*)&obj2); BASISU_CHECK_ERR
ret = clSetKernelArg(kernel, 2, sizeof(V), (void*)&obj3); BASISU_CHECK_ERR
return true;
}
template<typename T, typename U, typename V, typename W>
bool set_kernel_args(cl_kernel kernel, const T& obj1, const U& obj2, const V& obj3, const W& obj4)
{
cl_serializer serializer(this);
cl_int ret = clSetKernelArg(kernel, 0, sizeof(T), (void*)&obj1); BASISU_CHECK_ERR
ret = clSetKernelArg(kernel, 1, sizeof(U), (void*)&obj2); BASISU_CHECK_ERR
ret = clSetKernelArg(kernel, 2, sizeof(V), (void*)&obj3); BASISU_CHECK_ERR
ret = clSetKernelArg(kernel, 3, sizeof(W), (void*)&obj4); BASISU_CHECK_ERR
return true;
}
template<typename T, typename U, typename V, typename W, typename X>
bool set_kernel_args(cl_kernel kernel, const T& obj1, const U& obj2, const V& obj3, const W& obj4, const X& obj5)
{
cl_serializer serializer(this);
cl_int ret = clSetKernelArg(kernel, 0, sizeof(T), (void*)&obj1); BASISU_CHECK_ERR
ret = clSetKernelArg(kernel, 1, sizeof(U), (void*)&obj2); BASISU_CHECK_ERR
ret = clSetKernelArg(kernel, 2, sizeof(V), (void*)&obj3); BASISU_CHECK_ERR
ret = clSetKernelArg(kernel, 3, sizeof(W), (void*)&obj4); BASISU_CHECK_ERR
ret = clSetKernelArg(kernel, 4, sizeof(X), (void*)&obj5); BASISU_CHECK_ERR
return true;
}
template<typename T, typename U, typename V, typename W, typename X, typename Y>
bool set_kernel_args(cl_kernel kernel, const T& obj1, const U& obj2, const V& obj3, const W& obj4, const X& obj5, const Y& obj6)
{
cl_serializer serializer(this);
cl_int ret = clSetKernelArg(kernel, 0, sizeof(T), (void*)&obj1); BASISU_CHECK_ERR
ret = clSetKernelArg(kernel, 1, sizeof(U), (void*)&obj2); BASISU_CHECK_ERR
ret = clSetKernelArg(kernel, 2, sizeof(V), (void*)&obj3); BASISU_CHECK_ERR
ret = clSetKernelArg(kernel, 3, sizeof(W), (void*)&obj4); BASISU_CHECK_ERR
ret = clSetKernelArg(kernel, 4, sizeof(X), (void*)&obj5); BASISU_CHECK_ERR
ret = clSetKernelArg(kernel, 5, sizeof(Y), (void*)&obj6); BASISU_CHECK_ERR
return true;
}
template<typename T, typename U, typename V, typename W, typename X, typename Y, typename Z>
bool set_kernel_args(cl_kernel kernel, const T& obj1, const U& obj2, const V& obj3, const W& obj4, const X& obj5, const Y& obj6, const Z& obj7)
{
cl_serializer serializer(this);
cl_int ret = clSetKernelArg(kernel, 0, sizeof(T), (void*)&obj1); BASISU_CHECK_ERR
ret = clSetKernelArg(kernel, 1, sizeof(U), (void*)&obj2); BASISU_CHECK_ERR
ret = clSetKernelArg(kernel, 2, sizeof(V), (void*)&obj3); BASISU_CHECK_ERR
ret = clSetKernelArg(kernel, 3, sizeof(W), (void*)&obj4); BASISU_CHECK_ERR
ret = clSetKernelArg(kernel, 4, sizeof(X), (void*)&obj5); BASISU_CHECK_ERR
ret = clSetKernelArg(kernel, 5, sizeof(Y), (void*)&obj6); BASISU_CHECK_ERR
ret = clSetKernelArg(kernel, 6, sizeof(Z), (void*)&obj7); BASISU_CHECK_ERR
return true;
}
template<typename T, typename U, typename V, typename W, typename X, typename Y, typename Z, typename A>
bool set_kernel_args(cl_kernel kernel, const T& obj1, const U& obj2, const V& obj3, const W& obj4, const X& obj5, const Y& obj6, const Z& obj7, const A& obj8)
{
cl_serializer serializer(this);
cl_int ret = clSetKernelArg(kernel, 0, sizeof(T), (void*)&obj1); BASISU_CHECK_ERR
ret = clSetKernelArg(kernel, 1, sizeof(U), (void*)&obj2); BASISU_CHECK_ERR
ret = clSetKernelArg(kernel, 2, sizeof(V), (void*)&obj3); BASISU_CHECK_ERR
ret = clSetKernelArg(kernel, 3, sizeof(W), (void*)&obj4); BASISU_CHECK_ERR
ret = clSetKernelArg(kernel, 4, sizeof(X), (void*)&obj5); BASISU_CHECK_ERR
ret = clSetKernelArg(kernel, 5, sizeof(Y), (void*)&obj6); BASISU_CHECK_ERR
ret = clSetKernelArg(kernel, 6, sizeof(Z), (void*)&obj7); BASISU_CHECK_ERR
ret = clSetKernelArg(kernel, 7, sizeof(A), (void*)&obj8); BASISU_CHECK_ERR
return true;
}
#undef BASISU_CHECK_ERR
private:
cl_device_id m_device_id = nullptr;
cl_context m_context = nullptr;
cl_command_queue m_command_queue = nullptr;
cl_program m_program = nullptr;
cl_device_fp_config m_dev_fp_config;
bool m_use_mutex = false;
std::mutex m_ocl_mutex;
// This helper object is used to optionally serialize all calls to the CL driver after initialization.
// Currently this is only used to work around race conditions in the Windows AMD driver.
struct cl_serializer
{
inline cl_serializer(const cl_serializer&);
cl_serializer& operator= (const cl_serializer&);
inline cl_serializer(ocl *p) : m_p(p)
{
if (m_p->m_use_mutex)
m_p->m_ocl_mutex.lock();
}
inline ~cl_serializer()
{
if (m_p->m_use_mutex)
m_p->m_ocl_mutex.unlock();
}
private:
ocl* m_p;
};
cl_image_format get_image_format(uint32_t bytes_per_pixel, bool normalized)
{
cl_image_format fmt;
switch (bytes_per_pixel)
{
case 1: fmt.image_channel_order = CL_LUMINANCE; break;
case 2: fmt.image_channel_order = CL_RG; break;
case 3: fmt.image_channel_order = CL_RGB; break;
case 4: fmt.image_channel_order = CL_RGBA; break;
default: assert(0); fmt.image_channel_order = CL_LUMINANCE; break;
}
fmt.image_channel_data_type = normalized ? CL_UNORM_INT8 : CL_UNSIGNED_INT8;
return fmt;
}
};
// Library blobal state
ocl g_ocl;
bool opencl_init(bool force_serialization)
{
if (g_ocl.is_initialized())
{
assert(0);
return false;
}
if (!g_ocl.init(force_serialization))
{
ocl_error_printf("opencl_init: Failed initializing OpenCL\n");
return false;
}
const char* pKernel_src = nullptr;
size_t kernel_src_size = 0;
uint8_vec kernel_src;
#if BASISU_USE_OCL_KERNELS_HEADER
pKernel_src = reinterpret_cast<const char*>(ocl_kernels_cl);
kernel_src_size = ocl_kernels_cl_len;
#else
if (!read_file_to_vec(BASISU_OCL_KERNELS_FILENAME, kernel_src))
{
ocl_error_printf("opencl_init: Cannot read OpenCL kernel source file \"%s\"\n", BASISU_OCL_KERNELS_FILENAME);
g_ocl.deinit();
return false;
}
pKernel_src = (char*)kernel_src.data();
kernel_src_size = kernel_src.size();
#endif
if (!kernel_src_size)
{
ocl_error_printf("opencl_init: Invalid OpenCL kernel source file \"%s\"\n", BASISU_OCL_KERNELS_FILENAME);
g_ocl.deinit();
return false;
}
if (!g_ocl.init_program(pKernel_src, kernel_src_size))
{
ocl_error_printf("opencl_init: Failed compiling OpenCL program\n");
g_ocl.deinit();
return false;
}
printf("OpenCL support initialized successfully\n");
return true;
}
void opencl_deinit()
{
g_ocl.deinit();
}
bool opencl_is_available()
{
return g_ocl.is_initialized();
}
struct opencl_context
{
uint32_t m_ocl_total_pixel_blocks;
cl_mem m_ocl_pixel_blocks;
cl_command_queue m_command_queue;
cl_kernel m_ocl_encode_etc1s_blocks_kernel;
cl_kernel m_ocl_refine_endpoint_clusterization_kernel;
cl_kernel m_ocl_encode_etc1s_from_pixel_cluster_kernel;
cl_kernel m_ocl_find_optimal_selector_clusters_for_each_block_kernel;
cl_kernel m_ocl_determine_selectors_kernel;
};
opencl_context_ptr opencl_create_context()
{
if (!opencl_is_available())
{
ocl_error_printf("opencl_create_context: OpenCL not initialized\n");
assert(0);
return nullptr;
}
interval_timer tm;
tm.start();
opencl_context* pContext = static_cast<opencl_context * >(calloc(sizeof(opencl_context), 1));
if (!pContext)
return nullptr;
// To avoid driver bugs in some drivers - serialize this. Likely not necessary, we don't know.
// https://community.intel.com/t5/OpenCL-for-CPU/Bug-report-clCreateKernelsInProgram-is-not-thread-safe/td-p/1159771
pContext->m_command_queue = g_ocl.create_command_queue();
if (!pContext->m_command_queue)
{
ocl_error_printf("opencl_create_context: Failed creating OpenCL command queue!\n");
opencl_destroy_context(pContext);
return nullptr;
}
pContext->m_ocl_encode_etc1s_blocks_kernel = g_ocl.create_kernel("encode_etc1s_blocks");
if (!pContext->m_ocl_encode_etc1s_blocks_kernel)
{
ocl_error_printf("opencl_create_context: Failed creating OpenCL kernel encode_etc1s_block\n");
opencl_destroy_context(pContext);
return nullptr;
}
pContext->m_ocl_refine_endpoint_clusterization_kernel = g_ocl.create_kernel("refine_endpoint_clusterization");
if (!pContext->m_ocl_refine_endpoint_clusterization_kernel)
{
ocl_error_printf("opencl_create_context: Failed creating OpenCL kernel refine_endpoint_clusterization\n");
opencl_destroy_context(pContext);
return nullptr;
}
pContext->m_ocl_encode_etc1s_from_pixel_cluster_kernel = g_ocl.create_kernel("encode_etc1s_from_pixel_cluster");
if (!pContext->m_ocl_encode_etc1s_from_pixel_cluster_kernel)
{
ocl_error_printf("opencl_create_context: Failed creating OpenCL kernel encode_etc1s_from_pixel_cluster\n");
opencl_destroy_context(pContext);
return nullptr;
}
pContext->m_ocl_find_optimal_selector_clusters_for_each_block_kernel = g_ocl.create_kernel("find_optimal_selector_clusters_for_each_block");
if (!pContext->m_ocl_find_optimal_selector_clusters_for_each_block_kernel)
{
ocl_error_printf("opencl_create_context: Failed creating OpenCL kernel find_optimal_selector_clusters_for_each_block\n");
opencl_destroy_context(pContext);
return nullptr;
}
pContext->m_ocl_determine_selectors_kernel = g_ocl.create_kernel("determine_selectors");
if (!pContext->m_ocl_determine_selectors_kernel)
{
ocl_error_printf("opencl_create_context: Failed creating OpenCL kernel determine_selectors\n");
opencl_destroy_context(pContext);
return nullptr;
}
debug_printf("opencl_create_context: Elapsed time: %f secs\n", tm.get_elapsed_secs());
return pContext;
}
void opencl_destroy_context(opencl_context_ptr pContext)
{
if (!pContext)
return;
interval_timer tm;
tm.start();
g_ocl.destroy_buffer(pContext->m_ocl_pixel_blocks);
g_ocl.destroy_kernel(pContext->m_ocl_determine_selectors_kernel);
g_ocl.destroy_kernel(pContext->m_ocl_find_optimal_selector_clusters_for_each_block_kernel);
g_ocl.destroy_kernel(pContext->m_ocl_encode_etc1s_from_pixel_cluster_kernel);
g_ocl.destroy_kernel(pContext->m_ocl_encode_etc1s_blocks_kernel);
g_ocl.destroy_kernel(pContext->m_ocl_refine_endpoint_clusterization_kernel);
g_ocl.destroy_command_queue(pContext->m_command_queue);
memset(pContext, 0, sizeof(opencl_context));
free(pContext);
debug_printf("opencl_destroy_context: Elapsed time: %f secs\n", tm.get_elapsed_secs());
}
#pragma pack(push, 1)
struct cl_encode_etc1s_param_struct
{
int m_total_blocks;
int m_perceptual;
int m_total_perms;
};
#pragma pack(pop)
bool opencl_set_pixel_blocks(opencl_context_ptr pContext, uint32_t total_blocks, const cl_pixel_block* pPixel_blocks)
{
if (!opencl_is_available())
return false;
if (pContext->m_ocl_pixel_blocks)
{
g_ocl.destroy_buffer(pContext->m_ocl_pixel_blocks);
pContext->m_ocl_pixel_blocks = nullptr;
}
pContext->m_ocl_pixel_blocks = g_ocl.alloc_and_init_read_buffer(pContext->m_command_queue, pPixel_blocks, sizeof(cl_pixel_block) * total_blocks);
if (!pContext->m_ocl_pixel_blocks)
return false;
pContext->m_ocl_total_pixel_blocks = total_blocks;
return true;
}
bool opencl_encode_etc1s_blocks(opencl_context_ptr pContext, etc_block* pOutput_blocks, bool perceptual, uint32_t total_perms)
{
if (!opencl_is_available())
return false;
interval_timer tm;
tm.start();
assert(pContext->m_ocl_pixel_blocks);
if (!pContext->m_ocl_pixel_blocks)
return false;
cl_encode_etc1s_param_struct ps;
ps.m_total_blocks = pContext->m_ocl_total_pixel_blocks;
ps.m_perceptual = perceptual;
ps.m_total_perms = total_perms;
bool status = false;
cl_mem vars = g_ocl.alloc_and_init_read_buffer(pContext->m_command_queue , &ps, sizeof(ps));
cl_mem block_buf = g_ocl.alloc_write_buffer(sizeof(etc_block) * pContext->m_ocl_total_pixel_blocks);
if (!vars || !block_buf)
goto exit;
if (!g_ocl.set_kernel_args(pContext->m_ocl_encode_etc1s_blocks_kernel, vars, pContext->m_ocl_pixel_blocks, block_buf))
goto exit;
if (!g_ocl.run_2D(pContext->m_command_queue, pContext->m_ocl_encode_etc1s_blocks_kernel, pContext->m_ocl_total_pixel_blocks, 1))
goto exit;
if (!g_ocl.read_from_buffer(pContext->m_command_queue, block_buf, pOutput_blocks, pContext->m_ocl_total_pixel_blocks * sizeof(etc_block)))
goto exit;
status = true;
debug_printf("opencl_encode_etc1s_blocks: Elapsed time: %3.3f secs\n", tm.get_elapsed_secs());
exit:
g_ocl.destroy_buffer(block_buf);
g_ocl.destroy_buffer(vars);
return status;
}
bool opencl_encode_etc1s_pixel_clusters(
opencl_context_ptr pContext,
etc_block* pOutput_blocks,
uint32_t total_clusters,
const cl_pixel_cluster* pClusters,
uint64_t total_pixels,
const color_rgba* pPixels, const uint32_t* pPixel_weights,
bool perceptual, uint32_t total_perms)
{
if (!opencl_is_available())
return false;
interval_timer tm;
tm.start();
cl_encode_etc1s_param_struct ps;
ps.m_total_blocks = total_clusters;
ps.m_perceptual = perceptual;
ps.m_total_perms = total_perms;
bool status = false;
if (sizeof(size_t) == sizeof(uint32_t))
{
if ( ((sizeof(cl_pixel_cluster) * total_clusters) > UINT32_MAX) ||
((sizeof(color_rgba) * total_pixels) > UINT32_MAX) ||
((sizeof(uint32_t) * total_pixels) > UINT32_MAX) )
{
return false;
}
}
cl_mem vars = g_ocl.alloc_and_init_read_buffer(pContext->m_command_queue , &ps, sizeof(ps));
cl_mem input_clusters = g_ocl.alloc_and_init_read_buffer(pContext->m_command_queue, pClusters, (size_t)(sizeof(cl_pixel_cluster) * total_clusters));
cl_mem input_pixels = g_ocl.alloc_and_init_read_buffer(pContext->m_command_queue, pPixels, (size_t)(sizeof(color_rgba) * total_pixels));
cl_mem weights_buf = g_ocl.alloc_and_init_read_buffer(pContext->m_command_queue, pPixel_weights, (size_t)(sizeof(uint32_t) * total_pixels));
cl_mem block_buf = g_ocl.alloc_write_buffer(sizeof(etc_block) * total_clusters);
if (!vars || !input_clusters || !input_pixels || !weights_buf || !block_buf)
goto exit;
if (!g_ocl.set_kernel_args(pContext->m_ocl_encode_etc1s_from_pixel_cluster_kernel, vars, input_clusters, input_pixels, weights_buf, block_buf))
goto exit;
if (!g_ocl.run_2D(pContext->m_command_queue, pContext->m_ocl_encode_etc1s_from_pixel_cluster_kernel, total_clusters, 1))
goto exit;
if (!g_ocl.read_from_buffer(pContext->m_command_queue, block_buf, pOutput_blocks, sizeof(etc_block) * total_clusters))
goto exit;
status = true;
debug_printf("opencl_encode_etc1s_pixel_clusters: Elapsed time: %3.3f secs\n", tm.get_elapsed_secs());
exit:
g_ocl.destroy_buffer(block_buf);
g_ocl.destroy_buffer(weights_buf);
g_ocl.destroy_buffer(input_pixels);
g_ocl.destroy_buffer(input_clusters);
g_ocl.destroy_buffer(vars);
return status;
}
#pragma pack(push, 1)
struct cl_rec_param_struct
{
int m_total_blocks;
int m_perceptual;
};
#pragma pack(pop)
bool opencl_refine_endpoint_clusterization(
opencl_context_ptr pContext,
const cl_block_info_struct* pPixel_block_info,
uint32_t total_clusters,
const cl_endpoint_cluster_struct* pCluster_info,
const uint32_t* pSorted_block_indices,
uint32_t* pOutput_cluster_indices,
bool perceptual)
{
if (!opencl_is_available())
return false;
interval_timer tm;
tm.start();
assert(pContext->m_ocl_pixel_blocks);
if (!pContext->m_ocl_pixel_blocks)
return false;
cl_rec_param_struct ps;
ps.m_total_blocks = pContext->m_ocl_total_pixel_blocks;
ps.m_perceptual = perceptual;
bool status = false;
cl_mem pixel_block_info = g_ocl.alloc_and_init_read_buffer(pContext->m_command_queue, pPixel_block_info, sizeof(cl_block_info_struct) * pContext->m_ocl_total_pixel_blocks);
cl_mem cluster_info = g_ocl.alloc_and_init_read_buffer(pContext->m_command_queue, pCluster_info, sizeof(cl_endpoint_cluster_struct) * total_clusters);
cl_mem sorted_block_indices = g_ocl.alloc_and_init_read_buffer(pContext->m_command_queue, pSorted_block_indices, sizeof(uint32_t) * pContext->m_ocl_total_pixel_blocks);
cl_mem output_buf = g_ocl.alloc_write_buffer(sizeof(uint32_t) * pContext->m_ocl_total_pixel_blocks);
if (!pixel_block_info || !cluster_info || !sorted_block_indices || !output_buf)
goto exit;
if (!g_ocl.set_kernel_args(pContext->m_ocl_refine_endpoint_clusterization_kernel, ps, pContext->m_ocl_pixel_blocks, pixel_block_info, cluster_info, sorted_block_indices, output_buf))
goto exit;
if (!g_ocl.run_2D(pContext->m_command_queue, pContext->m_ocl_refine_endpoint_clusterization_kernel, pContext->m_ocl_total_pixel_blocks, 1))
goto exit;
if (!g_ocl.read_from_buffer(pContext->m_command_queue, output_buf, pOutput_cluster_indices, pContext->m_ocl_total_pixel_blocks * sizeof(uint32_t)))
goto exit;
debug_printf("opencl_refine_endpoint_clusterization: Elapsed time: %3.3f secs\n", tm.get_elapsed_secs());
status = true;
exit:
g_ocl.destroy_buffer(pixel_block_info);
g_ocl.destroy_buffer(cluster_info);
g_ocl.destroy_buffer(sorted_block_indices);
g_ocl.destroy_buffer(output_buf);
return status;
}
bool opencl_find_optimal_selector_clusters_for_each_block(
opencl_context_ptr pContext,
const fosc_block_struct* pInput_block_info, // one per block
uint32_t total_input_selectors,
const fosc_selector_struct* pInput_selectors,
const uint32_t* pSelector_cluster_indices,
uint32_t* pOutput_selector_cluster_indices, // one per block
bool perceptual)
{
if (!opencl_is_available())
return false;
interval_timer tm;
tm.start();
assert(pContext->m_ocl_pixel_blocks);
if (!pContext->m_ocl_pixel_blocks)
return false;
fosc_param_struct ps;
ps.m_total_blocks = pContext->m_ocl_total_pixel_blocks;
ps.m_perceptual = perceptual;
bool status = false;
cl_mem input_block_info = g_ocl.alloc_and_init_read_buffer(pContext->m_command_queue, pInput_block_info, sizeof(fosc_block_struct) * pContext->m_ocl_total_pixel_blocks);
cl_mem input_selectors = g_ocl.alloc_and_init_read_buffer(pContext->m_command_queue, pInput_selectors, sizeof(fosc_selector_struct) * total_input_selectors);
cl_mem selector_cluster_indices = g_ocl.alloc_and_init_read_buffer(pContext->m_command_queue, pSelector_cluster_indices, sizeof(uint32_t) * total_input_selectors);
cl_mem output_selector_cluster_indices = g_ocl.alloc_write_buffer(sizeof(uint32_t) * pContext->m_ocl_total_pixel_blocks);
if (!input_block_info || !input_selectors || !selector_cluster_indices || !output_selector_cluster_indices)
goto exit;
if (!g_ocl.set_kernel_args(pContext->m_ocl_find_optimal_selector_clusters_for_each_block_kernel, ps, pContext->m_ocl_pixel_blocks, input_block_info, input_selectors, selector_cluster_indices, output_selector_cluster_indices))
goto exit;
if (!g_ocl.run_2D(pContext->m_command_queue, pContext->m_ocl_find_optimal_selector_clusters_for_each_block_kernel, pContext->m_ocl_total_pixel_blocks, 1))
goto exit;
if (!g_ocl.read_from_buffer(pContext->m_command_queue, output_selector_cluster_indices, pOutput_selector_cluster_indices, pContext->m_ocl_total_pixel_blocks * sizeof(uint32_t)))
goto exit;
debug_printf("opencl_find_optimal_selector_clusters_for_each_block: Elapsed time: %3.3f secs\n", tm.get_elapsed_secs());
status = true;
exit:
g_ocl.destroy_buffer(input_block_info);
g_ocl.destroy_buffer(input_selectors);
g_ocl.destroy_buffer(selector_cluster_indices);
g_ocl.destroy_buffer(output_selector_cluster_indices);
return status;
}
bool opencl_determine_selectors(
opencl_context_ptr pContext,
const color_rgba* pInput_etc_color5_and_inten,
etc_block* pOutput_blocks,
bool perceptual)
{
if (!opencl_is_available())
return false;
interval_timer tm;
tm.start();
assert(pContext->m_ocl_pixel_blocks);
if (!pContext->m_ocl_pixel_blocks)
return false;
ds_param_struct ps;
ps.m_total_blocks = pContext->m_ocl_total_pixel_blocks;
ps.m_perceptual = perceptual;
bool status = false;
cl_mem input_etc_color5_intens = g_ocl.alloc_and_init_read_buffer(pContext->m_command_queue, pInput_etc_color5_and_inten, sizeof(color_rgba) * pContext->m_ocl_total_pixel_blocks);
cl_mem output_blocks = g_ocl.alloc_write_buffer(sizeof(etc_block) * pContext->m_ocl_total_pixel_blocks);
if (!input_etc_color5_intens || !output_blocks)
goto exit;
if (!g_ocl.set_kernel_args(pContext->m_ocl_determine_selectors_kernel, ps, pContext->m_ocl_pixel_blocks, input_etc_color5_intens, output_blocks))
goto exit;
if (!g_ocl.run_2D(pContext->m_command_queue, pContext->m_ocl_determine_selectors_kernel, pContext->m_ocl_total_pixel_blocks, 1))
goto exit;
if (!g_ocl.read_from_buffer(pContext->m_command_queue, output_blocks, pOutput_blocks, pContext->m_ocl_total_pixel_blocks * sizeof(etc_block)))
goto exit;
debug_printf("opencl_determine_selectors: Elapsed time: %3.3f secs\n", tm.get_elapsed_secs());
status = true;
exit:
g_ocl.destroy_buffer(input_etc_color5_intens);
g_ocl.destroy_buffer(output_blocks);
return status;
}
#else
namespace basisu
{
// No OpenCL support - all dummy functions that return false;
bool opencl_init(bool force_serialization)
{
BASISU_NOTE_UNUSED(force_serialization);
return false;
}
void opencl_deinit()
{
}
bool opencl_is_available()
{
return false;
}
opencl_context_ptr opencl_create_context()
{
return nullptr;
}
void opencl_destroy_context(opencl_context_ptr context)
{
BASISU_NOTE_UNUSED(context);
}
bool opencl_set_pixel_blocks(opencl_context_ptr pContext, uint32_t total_blocks, const cl_pixel_block* pPixel_blocks)
{
BASISU_NOTE_UNUSED(pContext);
BASISU_NOTE_UNUSED(total_blocks);
BASISU_NOTE_UNUSED(pPixel_blocks);
return false;
}
bool opencl_encode_etc1s_blocks(opencl_context_ptr pContext, etc_block* pOutput_blocks, bool perceptual, uint32_t total_perms)
{
BASISU_NOTE_UNUSED(pContext);
BASISU_NOTE_UNUSED(pOutput_blocks);
BASISU_NOTE_UNUSED(perceptual);
BASISU_NOTE_UNUSED(total_perms);
return false;
}
bool opencl_encode_etc1s_pixel_clusters(
opencl_context_ptr pContext,
etc_block* pOutput_blocks,
uint32_t total_clusters,
const cl_pixel_cluster* pClusters,
uint64_t total_pixels,
const color_rgba* pPixels, const uint32_t *pPixel_weights,
bool perceptual, uint32_t total_perms)
{
BASISU_NOTE_UNUSED(pContext);
BASISU_NOTE_UNUSED(pOutput_blocks);
BASISU_NOTE_UNUSED(total_clusters);
BASISU_NOTE_UNUSED(pClusters);
BASISU_NOTE_UNUSED(total_pixels);
BASISU_NOTE_UNUSED(pPixels);
BASISU_NOTE_UNUSED(pPixel_weights);
BASISU_NOTE_UNUSED(perceptual);
BASISU_NOTE_UNUSED(total_perms);
return false;
}
bool opencl_refine_endpoint_clusterization(
opencl_context_ptr pContext,
const cl_block_info_struct* pPixel_block_info,
uint32_t total_clusters,
const cl_endpoint_cluster_struct* pCluster_info,
const uint32_t* pSorted_block_indices,
uint32_t* pOutput_cluster_indices,
bool perceptual)
{
BASISU_NOTE_UNUSED(pContext);
BASISU_NOTE_UNUSED(pPixel_block_info);
BASISU_NOTE_UNUSED(total_clusters);
BASISU_NOTE_UNUSED(pCluster_info);
BASISU_NOTE_UNUSED(pSorted_block_indices);
BASISU_NOTE_UNUSED(pOutput_cluster_indices);
BASISU_NOTE_UNUSED(perceptual);
return false;
}
bool opencl_find_optimal_selector_clusters_for_each_block(
opencl_context_ptr pContext,
const fosc_block_struct* pInput_block_info, // one per block
uint32_t total_input_selectors,
const fosc_selector_struct* pInput_selectors,
const uint32_t* pSelector_cluster_indices,
uint32_t* pOutput_selector_cluster_indices, // one per block
bool perceptual)
{
BASISU_NOTE_UNUSED(pContext);
BASISU_NOTE_UNUSED(pInput_block_info);
BASISU_NOTE_UNUSED(total_input_selectors);
BASISU_NOTE_UNUSED(pInput_selectors);
BASISU_NOTE_UNUSED(pSelector_cluster_indices);
BASISU_NOTE_UNUSED(pOutput_selector_cluster_indices);
BASISU_NOTE_UNUSED(perceptual);
return false;
}
bool opencl_determine_selectors(
opencl_context_ptr pContext,
const color_rgba* pInput_etc_color5_and_inten,
etc_block* pOutput_blocks,
bool perceptual)
{
BASISU_NOTE_UNUSED(pContext);
BASISU_NOTE_UNUSED(pInput_etc_color5_and_inten);
BASISU_NOTE_UNUSED(pOutput_blocks);
BASISU_NOTE_UNUSED(perceptual);
return false;
}
#endif // BASISU_SUPPORT_OPENCL
} // namespace basisu