2020-08-11 11:10:23 +02:00
|
|
|
// © 2016 and later: Unicode, Inc. and others.
|
|
|
|
// License & terms of use: http://www.unicode.org/copyright.html
|
|
|
|
/*
|
|
|
|
*******************************************************************************
|
|
|
|
*
|
|
|
|
* Copyright (C) 2001-2014, International Business Machines
|
|
|
|
* Corporation and others. All Rights Reserved.
|
|
|
|
*
|
|
|
|
*******************************************************************************
|
|
|
|
* file name: unormcmp.cpp
|
|
|
|
* encoding: UTF-8
|
|
|
|
* tab size: 8 (not used)
|
|
|
|
* indentation:4
|
|
|
|
*
|
|
|
|
* created on: 2004sep13
|
|
|
|
* created by: Markus W. Scherer
|
|
|
|
*
|
|
|
|
* unorm_compare() function moved here from unorm.cpp for better modularization.
|
|
|
|
* Depends on both normalization and case folding.
|
|
|
|
* Allows unorm.cpp to not depend on any character properties code.
|
|
|
|
*/
|
|
|
|
|
|
|
|
#include "unicode/utypes.h"
|
|
|
|
|
|
|
|
#if !UCONFIG_NO_NORMALIZATION
|
|
|
|
|
|
|
|
#include "unicode/unorm.h"
|
|
|
|
#include "unicode/ustring.h"
|
|
|
|
#include "cmemory.h"
|
|
|
|
#include "normalizer2impl.h"
|
|
|
|
#include "ucase.h"
|
|
|
|
#include "uprops.h"
|
|
|
|
#include "ustr_imp.h"
|
|
|
|
|
|
|
|
U_NAMESPACE_USE
|
|
|
|
|
|
|
|
/* compare canonically equivalent ------------------------------------------- */
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Compare two strings for canonical equivalence.
|
|
|
|
* Further options include case-insensitive comparison and
|
|
|
|
* code point order (as opposed to code unit order).
|
|
|
|
*
|
|
|
|
* In this function, canonical equivalence is optional as well.
|
|
|
|
* If canonical equivalence is tested, then both strings must fulfill
|
|
|
|
* the FCD check.
|
|
|
|
*
|
|
|
|
* Semantically, this is equivalent to
|
|
|
|
* strcmp[CodePointOrder](NFD(foldCase(s1)), NFD(foldCase(s2)))
|
|
|
|
* where code point order, NFD and foldCase are all optional.
|
|
|
|
*
|
|
|
|
* String comparisons almost always yield results before processing both strings
|
|
|
|
* completely.
|
|
|
|
* They are generally more efficient working incrementally instead of
|
|
|
|
* performing the sub-processing (strlen, normalization, case-folding)
|
|
|
|
* on the entire strings first.
|
|
|
|
*
|
|
|
|
* It is also unnecessary to not normalize identical characters.
|
|
|
|
*
|
|
|
|
* This function works in principle as follows:
|
|
|
|
*
|
|
|
|
* loop {
|
|
|
|
* get one code unit c1 from s1 (-1 if end of source)
|
|
|
|
* get one code unit c2 from s2 (-1 if end of source)
|
|
|
|
*
|
|
|
|
* if(either string finished) {
|
|
|
|
* return result;
|
|
|
|
* }
|
|
|
|
* if(c1==c2) {
|
|
|
|
* continue;
|
|
|
|
* }
|
|
|
|
*
|
|
|
|
* // c1!=c2
|
|
|
|
* try to decompose/case-fold c1/c2, and continue if one does;
|
|
|
|
*
|
|
|
|
* // still c1!=c2 and neither decomposes/case-folds, return result
|
|
|
|
* return c1-c2;
|
|
|
|
* }
|
|
|
|
*
|
|
|
|
* When a character decomposes, then the pointer for that source changes to
|
|
|
|
* the decomposition, pushing the previous pointer onto a stack.
|
|
|
|
* When the end of the decomposition is reached, then the code unit reader
|
|
|
|
* pops the previous source from the stack.
|
|
|
|
* (Same for case-folding.)
|
|
|
|
*
|
|
|
|
* This is complicated further by operating on variable-width UTF-16.
|
|
|
|
* The top part of the loop works on code units, while lookups for decomposition
|
|
|
|
* and case-folding need code points.
|
|
|
|
* Code points are assembled after the equality/end-of-source part.
|
|
|
|
* The source pointer is only advanced beyond all code units when the code point
|
|
|
|
* actually decomposes/case-folds.
|
|
|
|
*
|
|
|
|
* If we were on a trail surrogate unit when assembling a code point,
|
|
|
|
* and the code point decomposes/case-folds, then the decomposition/folding
|
|
|
|
* result must be compared with the part of the other string that corresponds to
|
|
|
|
* this string's lead surrogate.
|
|
|
|
* Since we only assemble a code point when hitting a trail unit when the
|
|
|
|
* preceding lead units were identical, we back up the other string by one unit
|
|
|
|
* in such a case.
|
|
|
|
*
|
|
|
|
* The optional code point order comparison at the end works with
|
|
|
|
* the same fix-up as the other code point order comparison functions.
|
|
|
|
* See ustring.c and the comment near the end of this function.
|
|
|
|
*
|
|
|
|
* Assumption: A decomposition or case-folding result string never contains
|
|
|
|
* a single surrogate. This is a safe assumption in the Unicode Standard.
|
|
|
|
* Therefore, we do not need to check for surrogate pairs across
|
|
|
|
* decomposition/case-folding boundaries.
|
|
|
|
*
|
|
|
|
* Further assumptions (see verifications tstnorm.cpp):
|
|
|
|
* The API function checks for FCD first, while the core function
|
|
|
|
* first case-folds and then decomposes. This requires that case-folding does not
|
|
|
|
* un-FCD any strings.
|
|
|
|
*
|
|
|
|
* The API function may also NFD the input and turn off decomposition.
|
|
|
|
* This requires that case-folding does not un-NFD strings either.
|
|
|
|
*
|
|
|
|
* TODO If any of the above two assumptions is violated,
|
|
|
|
* then this entire code must be re-thought.
|
|
|
|
* If this happens, then a simple solution is to case-fold both strings up front
|
|
|
|
* and to turn off UNORM_INPUT_IS_FCD.
|
|
|
|
* We already do this when not both strings are in FCD because makeFCD
|
|
|
|
* would be a partial NFD before the case folding, which does not work.
|
|
|
|
* Note that all of this is only a problem when case-folding _and_
|
|
|
|
* canonical equivalence come together.
|
|
|
|
* (Comments in unorm_compare() are more up to date than this TODO.)
|
|
|
|
*/
|
|
|
|
|
|
|
|
/* stack element for previous-level source/decomposition pointers */
|
|
|
|
struct CmpEquivLevel {
|
2023-05-23 02:05:01 +02:00
|
|
|
const char16_t *start, *s, *limit;
|
2020-08-11 11:10:23 +02:00
|
|
|
};
|
|
|
|
typedef struct CmpEquivLevel CmpEquivLevel;
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Internal option for unorm_cmpEquivFold() for decomposing.
|
|
|
|
* If not set, just do strcasecmp().
|
|
|
|
*/
|
|
|
|
#define _COMPARE_EQUIV 0x80000
|
|
|
|
|
|
|
|
/* internal function */
|
|
|
|
static int32_t
|
2023-05-23 02:05:01 +02:00
|
|
|
unorm_cmpEquivFold(const char16_t *s1, int32_t length1,
|
|
|
|
const char16_t *s2, int32_t length2,
|
2020-08-11 11:10:23 +02:00
|
|
|
uint32_t options,
|
|
|
|
UErrorCode *pErrorCode) {
|
|
|
|
const Normalizer2Impl *nfcImpl;
|
|
|
|
|
|
|
|
/* current-level start/limit - s1/s2 as current */
|
2023-05-23 02:05:01 +02:00
|
|
|
const char16_t *start1, *start2, *limit1, *limit2;
|
2020-08-11 11:10:23 +02:00
|
|
|
|
|
|
|
/* decomposition and case folding variables */
|
2023-05-23 02:05:01 +02:00
|
|
|
const char16_t *p;
|
2020-08-11 11:10:23 +02:00
|
|
|
int32_t length;
|
|
|
|
|
|
|
|
/* stacks of previous-level start/current/limit */
|
|
|
|
CmpEquivLevel stack1[2], stack2[2];
|
|
|
|
|
|
|
|
/* buffers for algorithmic decompositions */
|
2023-05-23 02:05:01 +02:00
|
|
|
char16_t decomp1[4], decomp2[4];
|
2020-08-11 11:10:23 +02:00
|
|
|
|
|
|
|
/* case folding buffers, only use current-level start/limit */
|
2023-05-23 02:05:01 +02:00
|
|
|
char16_t fold1[UCASE_MAX_STRING_LENGTH+1], fold2[UCASE_MAX_STRING_LENGTH+1];
|
2020-08-11 11:10:23 +02:00
|
|
|
|
|
|
|
/* track which is the current level per string */
|
|
|
|
int32_t level1, level2;
|
|
|
|
|
|
|
|
/* current code units, and code points for lookups */
|
|
|
|
UChar32 c1, c2, cp1, cp2;
|
|
|
|
|
|
|
|
/* no argument error checking because this itself is not an API */
|
|
|
|
|
|
|
|
/*
|
|
|
|
* assume that at least one of the options _COMPARE_EQUIV and U_COMPARE_IGNORE_CASE is set
|
|
|
|
* otherwise this function must behave exactly as uprv_strCompare()
|
|
|
|
* not checking for that here makes testing this function easier
|
|
|
|
*/
|
|
|
|
|
|
|
|
/* normalization/properties data loaded? */
|
|
|
|
if((options&_COMPARE_EQUIV)!=0) {
|
|
|
|
nfcImpl=Normalizer2Factory::getNFCImpl(*pErrorCode);
|
|
|
|
} else {
|
2023-05-23 02:05:01 +02:00
|
|
|
nfcImpl=nullptr;
|
2020-08-11 11:10:23 +02:00
|
|
|
}
|
|
|
|
if(U_FAILURE(*pErrorCode)) {
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* initialize */
|
|
|
|
start1=s1;
|
|
|
|
if(length1==-1) {
|
2023-05-23 02:05:01 +02:00
|
|
|
limit1=nullptr;
|
2020-08-11 11:10:23 +02:00
|
|
|
} else {
|
|
|
|
limit1=s1+length1;
|
|
|
|
}
|
|
|
|
|
|
|
|
start2=s2;
|
|
|
|
if(length2==-1) {
|
2023-05-23 02:05:01 +02:00
|
|
|
limit2=nullptr;
|
2020-08-11 11:10:23 +02:00
|
|
|
} else {
|
|
|
|
limit2=s2+length2;
|
|
|
|
}
|
|
|
|
|
|
|
|
level1=level2=0;
|
|
|
|
c1=c2=-1;
|
|
|
|
|
|
|
|
/* comparison loop */
|
|
|
|
for(;;) {
|
|
|
|
/*
|
|
|
|
* here a code unit value of -1 means "get another code unit"
|
|
|
|
* below it will mean "this source is finished"
|
|
|
|
*/
|
|
|
|
|
|
|
|
if(c1<0) {
|
|
|
|
/* get next code unit from string 1, post-increment */
|
|
|
|
for(;;) {
|
2023-05-23 02:05:01 +02:00
|
|
|
if(s1==limit1 || ((c1=*s1)==0 && (limit1==nullptr || (options&_STRNCMP_STYLE)))) {
|
2020-08-11 11:10:23 +02:00
|
|
|
if(level1==0) {
|
|
|
|
c1=-1;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
++s1;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* reached end of level buffer, pop one level */
|
|
|
|
do {
|
|
|
|
--level1;
|
|
|
|
start1=stack1[level1].start; /*Not uninitialized*/
|
2023-05-23 02:05:01 +02:00
|
|
|
} while(start1==nullptr);
|
2020-08-11 11:10:23 +02:00
|
|
|
s1=stack1[level1].s; /*Not uninitialized*/
|
|
|
|
limit1=stack1[level1].limit; /*Not uninitialized*/
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
if(c2<0) {
|
|
|
|
/* get next code unit from string 2, post-increment */
|
|
|
|
for(;;) {
|
2023-05-23 02:05:01 +02:00
|
|
|
if(s2==limit2 || ((c2=*s2)==0 && (limit2==nullptr || (options&_STRNCMP_STYLE)))) {
|
2020-08-11 11:10:23 +02:00
|
|
|
if(level2==0) {
|
|
|
|
c2=-1;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
++s2;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* reached end of level buffer, pop one level */
|
|
|
|
do {
|
|
|
|
--level2;
|
|
|
|
start2=stack2[level2].start; /*Not uninitialized*/
|
2023-05-23 02:05:01 +02:00
|
|
|
} while(start2==nullptr);
|
2020-08-11 11:10:23 +02:00
|
|
|
s2=stack2[level2].s; /*Not uninitialized*/
|
|
|
|
limit2=stack2[level2].limit; /*Not uninitialized*/
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* compare c1 and c2
|
|
|
|
* either variable c1, c2 is -1 only if the corresponding string is finished
|
|
|
|
*/
|
|
|
|
if(c1==c2) {
|
|
|
|
if(c1<0) {
|
|
|
|
return 0; /* c1==c2==-1 indicating end of strings */
|
|
|
|
}
|
|
|
|
c1=c2=-1; /* make us fetch new code units */
|
|
|
|
continue;
|
|
|
|
} else if(c1<0) {
|
|
|
|
return -1; /* string 1 ends before string 2 */
|
|
|
|
} else if(c2<0) {
|
|
|
|
return 1; /* string 2 ends before string 1 */
|
|
|
|
}
|
|
|
|
/* c1!=c2 && c1>=0 && c2>=0 */
|
|
|
|
|
|
|
|
/* get complete code points for c1, c2 for lookups if either is a surrogate */
|
|
|
|
cp1=c1;
|
|
|
|
if(U_IS_SURROGATE(c1)) {
|
2023-05-23 02:05:01 +02:00
|
|
|
char16_t c;
|
2020-08-11 11:10:23 +02:00
|
|
|
|
|
|
|
if(U_IS_SURROGATE_LEAD(c1)) {
|
|
|
|
if(s1!=limit1 && U16_IS_TRAIL(c=*s1)) {
|
|
|
|
/* advance ++s1; only below if cp1 decomposes/case-folds */
|
|
|
|
cp1=U16_GET_SUPPLEMENTARY(c1, c);
|
|
|
|
}
|
|
|
|
} else /* isTrail(c1) */ {
|
|
|
|
if(start1<=(s1-2) && U16_IS_LEAD(c=*(s1-2))) {
|
|
|
|
cp1=U16_GET_SUPPLEMENTARY(c, c1);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
cp2=c2;
|
|
|
|
if(U_IS_SURROGATE(c2)) {
|
2023-05-23 02:05:01 +02:00
|
|
|
char16_t c;
|
2020-08-11 11:10:23 +02:00
|
|
|
|
|
|
|
if(U_IS_SURROGATE_LEAD(c2)) {
|
|
|
|
if(s2!=limit2 && U16_IS_TRAIL(c=*s2)) {
|
|
|
|
/* advance ++s2; only below if cp2 decomposes/case-folds */
|
|
|
|
cp2=U16_GET_SUPPLEMENTARY(c2, c);
|
|
|
|
}
|
|
|
|
} else /* isTrail(c2) */ {
|
|
|
|
if(start2<=(s2-2) && U16_IS_LEAD(c=*(s2-2))) {
|
|
|
|
cp2=U16_GET_SUPPLEMENTARY(c, c2);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* go down one level for each string
|
|
|
|
* continue with the main loop as soon as there is a real change
|
|
|
|
*/
|
|
|
|
|
|
|
|
if( level1==0 && (options&U_COMPARE_IGNORE_CASE) &&
|
|
|
|
(length=ucase_toFullFolding((UChar32)cp1, &p, options))>=0
|
|
|
|
) {
|
|
|
|
/* cp1 case-folds to the code point "length" or to p[length] */
|
|
|
|
if(U_IS_SURROGATE(c1)) {
|
|
|
|
if(U_IS_SURROGATE_LEAD(c1)) {
|
|
|
|
/* advance beyond source surrogate pair if it case-folds */
|
|
|
|
++s1;
|
|
|
|
} else /* isTrail(c1) */ {
|
|
|
|
/*
|
|
|
|
* we got a supplementary code point when hitting its trail surrogate,
|
|
|
|
* therefore the lead surrogate must have been the same as in the other string;
|
|
|
|
* compare this decomposition with the lead surrogate in the other string
|
|
|
|
* remember that this simulates bulk text replacement:
|
|
|
|
* the decomposition would replace the entire code point
|
|
|
|
*/
|
|
|
|
--s2;
|
|
|
|
c2=*(s2-1);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/* push current level pointers */
|
|
|
|
stack1[0].start=start1;
|
|
|
|
stack1[0].s=s1;
|
|
|
|
stack1[0].limit=limit1;
|
|
|
|
++level1;
|
|
|
|
|
|
|
|
/* copy the folding result to fold1[] */
|
|
|
|
if(length<=UCASE_MAX_STRING_LENGTH) {
|
|
|
|
u_memcpy(fold1, p, length);
|
|
|
|
} else {
|
|
|
|
int32_t i=0;
|
|
|
|
U16_APPEND_UNSAFE(fold1, i, length);
|
|
|
|
length=i;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* set next level pointers to case folding */
|
|
|
|
start1=s1=fold1;
|
|
|
|
limit1=fold1+length;
|
|
|
|
|
|
|
|
/* get ready to read from decomposition, continue with loop */
|
|
|
|
c1=-1;
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
|
|
|
|
if( level2==0 && (options&U_COMPARE_IGNORE_CASE) &&
|
|
|
|
(length=ucase_toFullFolding((UChar32)cp2, &p, options))>=0
|
|
|
|
) {
|
|
|
|
/* cp2 case-folds to the code point "length" or to p[length] */
|
|
|
|
if(U_IS_SURROGATE(c2)) {
|
|
|
|
if(U_IS_SURROGATE_LEAD(c2)) {
|
|
|
|
/* advance beyond source surrogate pair if it case-folds */
|
|
|
|
++s2;
|
|
|
|
} else /* isTrail(c2) */ {
|
|
|
|
/*
|
|
|
|
* we got a supplementary code point when hitting its trail surrogate,
|
|
|
|
* therefore the lead surrogate must have been the same as in the other string;
|
|
|
|
* compare this decomposition with the lead surrogate in the other string
|
|
|
|
* remember that this simulates bulk text replacement:
|
|
|
|
* the decomposition would replace the entire code point
|
|
|
|
*/
|
|
|
|
--s1;
|
|
|
|
c1=*(s1-1);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/* push current level pointers */
|
|
|
|
stack2[0].start=start2;
|
|
|
|
stack2[0].s=s2;
|
|
|
|
stack2[0].limit=limit2;
|
|
|
|
++level2;
|
|
|
|
|
|
|
|
/* copy the folding result to fold2[] */
|
|
|
|
if(length<=UCASE_MAX_STRING_LENGTH) {
|
|
|
|
u_memcpy(fold2, p, length);
|
|
|
|
} else {
|
|
|
|
int32_t i=0;
|
|
|
|
U16_APPEND_UNSAFE(fold2, i, length);
|
|
|
|
length=i;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* set next level pointers to case folding */
|
|
|
|
start2=s2=fold2;
|
|
|
|
limit2=fold2+length;
|
|
|
|
|
|
|
|
/* get ready to read from decomposition, continue with loop */
|
|
|
|
c2=-1;
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
|
|
|
|
if( level1<2 && (options&_COMPARE_EQUIV) &&
|
|
|
|
0!=(p=nfcImpl->getDecomposition((UChar32)cp1, decomp1, length))
|
|
|
|
) {
|
|
|
|
/* cp1 decomposes into p[length] */
|
|
|
|
if(U_IS_SURROGATE(c1)) {
|
|
|
|
if(U_IS_SURROGATE_LEAD(c1)) {
|
|
|
|
/* advance beyond source surrogate pair if it decomposes */
|
|
|
|
++s1;
|
|
|
|
} else /* isTrail(c1) */ {
|
|
|
|
/*
|
|
|
|
* we got a supplementary code point when hitting its trail surrogate,
|
|
|
|
* therefore the lead surrogate must have been the same as in the other string;
|
|
|
|
* compare this decomposition with the lead surrogate in the other string
|
|
|
|
* remember that this simulates bulk text replacement:
|
|
|
|
* the decomposition would replace the entire code point
|
|
|
|
*/
|
|
|
|
--s2;
|
|
|
|
c2=*(s2-1);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/* push current level pointers */
|
|
|
|
stack1[level1].start=start1;
|
|
|
|
stack1[level1].s=s1;
|
|
|
|
stack1[level1].limit=limit1;
|
|
|
|
++level1;
|
|
|
|
|
|
|
|
/* set empty intermediate level if skipped */
|
|
|
|
if(level1<2) {
|
2023-05-23 02:05:01 +02:00
|
|
|
stack1[level1++].start=nullptr;
|
2020-08-11 11:10:23 +02:00
|
|
|
}
|
|
|
|
|
|
|
|
/* set next level pointers to decomposition */
|
|
|
|
start1=s1=p;
|
|
|
|
limit1=p+length;
|
|
|
|
|
|
|
|
/* get ready to read from decomposition, continue with loop */
|
|
|
|
c1=-1;
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
|
|
|
|
if( level2<2 && (options&_COMPARE_EQUIV) &&
|
|
|
|
0!=(p=nfcImpl->getDecomposition((UChar32)cp2, decomp2, length))
|
|
|
|
) {
|
|
|
|
/* cp2 decomposes into p[length] */
|
|
|
|
if(U_IS_SURROGATE(c2)) {
|
|
|
|
if(U_IS_SURROGATE_LEAD(c2)) {
|
|
|
|
/* advance beyond source surrogate pair if it decomposes */
|
|
|
|
++s2;
|
|
|
|
} else /* isTrail(c2) */ {
|
|
|
|
/*
|
|
|
|
* we got a supplementary code point when hitting its trail surrogate,
|
|
|
|
* therefore the lead surrogate must have been the same as in the other string;
|
|
|
|
* compare this decomposition with the lead surrogate in the other string
|
|
|
|
* remember that this simulates bulk text replacement:
|
|
|
|
* the decomposition would replace the entire code point
|
|
|
|
*/
|
|
|
|
--s1;
|
|
|
|
c1=*(s1-1);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/* push current level pointers */
|
|
|
|
stack2[level2].start=start2;
|
|
|
|
stack2[level2].s=s2;
|
|
|
|
stack2[level2].limit=limit2;
|
|
|
|
++level2;
|
|
|
|
|
|
|
|
/* set empty intermediate level if skipped */
|
|
|
|
if(level2<2) {
|
2023-05-23 02:05:01 +02:00
|
|
|
stack2[level2++].start=nullptr;
|
2020-08-11 11:10:23 +02:00
|
|
|
}
|
|
|
|
|
|
|
|
/* set next level pointers to decomposition */
|
|
|
|
start2=s2=p;
|
|
|
|
limit2=p+length;
|
|
|
|
|
|
|
|
/* get ready to read from decomposition, continue with loop */
|
|
|
|
c2=-1;
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* no decomposition/case folding, max level for both sides:
|
|
|
|
* return difference result
|
|
|
|
*
|
|
|
|
* code point order comparison must not just return cp1-cp2
|
|
|
|
* because when single surrogates are present then the surrogate pairs
|
|
|
|
* that formed cp1 and cp2 may be from different string indexes
|
|
|
|
*
|
|
|
|
* example: { d800 d800 dc01 } vs. { d800 dc00 }, compare at second code units
|
|
|
|
* c1=d800 cp1=10001 c2=dc00 cp2=10000
|
|
|
|
* cp1-cp2>0 but c1-c2<0 and in fact in UTF-32 it is { d800 10001 } < { 10000 }
|
|
|
|
*
|
|
|
|
* therefore, use same fix-up as in ustring.c/uprv_strCompare()
|
|
|
|
* except: uprv_strCompare() fetches c=*s while this functions fetches c=*s++
|
|
|
|
* so we have slightly different pointer/start/limit comparisons here
|
|
|
|
*/
|
|
|
|
|
|
|
|
if(c1>=0xd800 && c2>=0xd800 && (options&U_COMPARE_CODE_POINT_ORDER)) {
|
|
|
|
/* subtract 0x2800 from BMP code points to make them smaller than supplementary ones */
|
|
|
|
if(
|
|
|
|
(c1<=0xdbff && s1!=limit1 && U16_IS_TRAIL(*s1)) ||
|
|
|
|
(U16_IS_TRAIL(c1) && start1!=(s1-1) && U16_IS_LEAD(*(s1-2)))
|
|
|
|
) {
|
|
|
|
/* part of a surrogate pair, leave >=d800 */
|
|
|
|
} else {
|
|
|
|
/* BMP code point - may be surrogate code point - make <d800 */
|
|
|
|
c1-=0x2800;
|
|
|
|
}
|
|
|
|
|
|
|
|
if(
|
|
|
|
(c2<=0xdbff && s2!=limit2 && U16_IS_TRAIL(*s2)) ||
|
|
|
|
(U16_IS_TRAIL(c2) && start2!=(s2-1) && U16_IS_LEAD(*(s2-2)))
|
|
|
|
) {
|
|
|
|
/* part of a surrogate pair, leave >=d800 */
|
|
|
|
} else {
|
|
|
|
/* BMP code point - may be surrogate code point - make <d800 */
|
|
|
|
c2-=0x2800;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
return c1-c2;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
static
|
2023-05-23 02:05:01 +02:00
|
|
|
UBool _normalize(const Normalizer2 *n2, const char16_t *s, int32_t length,
|
2020-08-11 11:10:23 +02:00
|
|
|
UnicodeString &normalized, UErrorCode *pErrorCode) {
|
|
|
|
UnicodeString str(length<0, s, length);
|
|
|
|
|
|
|
|
// check if s fulfill the conditions
|
|
|
|
int32_t spanQCYes=n2->spanQuickCheckYes(str, *pErrorCode);
|
|
|
|
if (U_FAILURE(*pErrorCode)) {
|
2022-10-28 08:11:55 +02:00
|
|
|
return false;
|
2020-08-11 11:10:23 +02:00
|
|
|
}
|
|
|
|
/*
|
|
|
|
* ICU 2.4 had a further optimization:
|
|
|
|
* If both strings were not in FCD, then they were both NFD'ed,
|
|
|
|
* and the _COMPARE_EQUIV option was turned off.
|
|
|
|
* It is not entirely clear that this is valid with the current
|
|
|
|
* definition of the canonical caseless match.
|
|
|
|
* Therefore, ICU 2.6 removes that optimization.
|
|
|
|
*/
|
|
|
|
if(spanQCYes<str.length()) {
|
|
|
|
UnicodeString unnormalized=str.tempSubString(spanQCYes);
|
2022-10-28 08:11:55 +02:00
|
|
|
normalized.setTo(false, str.getBuffer(), spanQCYes);
|
2020-08-11 11:10:23 +02:00
|
|
|
n2->normalizeSecondAndAppend(normalized, unnormalized, *pErrorCode);
|
|
|
|
if (U_SUCCESS(*pErrorCode)) {
|
2022-10-28 08:11:55 +02:00
|
|
|
return true;
|
2020-08-11 11:10:23 +02:00
|
|
|
}
|
|
|
|
}
|
2022-10-28 08:11:55 +02:00
|
|
|
return false;
|
2020-08-11 11:10:23 +02:00
|
|
|
}
|
|
|
|
|
|
|
|
U_CAPI int32_t U_EXPORT2
|
2023-05-23 02:05:01 +02:00
|
|
|
unorm_compare(const char16_t *s1, int32_t length1,
|
|
|
|
const char16_t *s2, int32_t length2,
|
2020-08-11 11:10:23 +02:00
|
|
|
uint32_t options,
|
|
|
|
UErrorCode *pErrorCode) {
|
|
|
|
/* argument checking */
|
|
|
|
if(U_FAILURE(*pErrorCode)) {
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
if(s1==0 || length1<-1 || s2==0 || length2<-1) {
|
|
|
|
*pErrorCode=U_ILLEGAL_ARGUMENT_ERROR;
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
UnicodeString fcd1, fcd2;
|
|
|
|
int32_t normOptions=(int32_t)(options>>UNORM_COMPARE_NORM_OPTIONS_SHIFT);
|
|
|
|
options|=_COMPARE_EQUIV;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* UAX #21 Case Mappings, as fixed for Unicode version 4
|
|
|
|
* (see Jitterbug 2021), defines a canonical caseless match as
|
|
|
|
*
|
|
|
|
* A string X is a canonical caseless match
|
|
|
|
* for a string Y if and only if
|
|
|
|
* NFD(toCasefold(NFD(X))) = NFD(toCasefold(NFD(Y)))
|
|
|
|
*
|
|
|
|
* For better performance, we check for FCD (or let the caller tell us that
|
|
|
|
* both strings are in FCD) for the inner normalization.
|
|
|
|
* BasicNormalizerTest::FindFoldFCDExceptions() makes sure that
|
|
|
|
* case-folding preserves the FCD-ness of a string.
|
|
|
|
* The outer normalization is then only performed by unorm_cmpEquivFold()
|
|
|
|
* when there is a difference.
|
|
|
|
*
|
|
|
|
* Exception: When using the Turkic case-folding option, we do perform
|
|
|
|
* full NFD first. This is because in the Turkic case precomposed characters
|
|
|
|
* with 0049 capital I or 0069 small i fold differently whether they
|
|
|
|
* are first decomposed or not, so an FCD check - a check only for
|
|
|
|
* canonical order - is not sufficient.
|
|
|
|
*/
|
|
|
|
if(!(options&UNORM_INPUT_IS_FCD) || (options&U_FOLD_CASE_EXCLUDE_SPECIAL_I)) {
|
|
|
|
const Normalizer2 *n2;
|
|
|
|
if(options&U_FOLD_CASE_EXCLUDE_SPECIAL_I) {
|
|
|
|
n2=Normalizer2::getNFDInstance(*pErrorCode);
|
|
|
|
} else {
|
|
|
|
n2=Normalizer2Factory::getFCDInstance(*pErrorCode);
|
|
|
|
}
|
|
|
|
if (U_FAILURE(*pErrorCode)) {
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
if(normOptions&UNORM_UNICODE_3_2) {
|
|
|
|
const UnicodeSet *uni32=uniset_getUnicode32Instance(*pErrorCode);
|
|
|
|
FilteredNormalizer2 fn2(*n2, *uni32);
|
|
|
|
if(_normalize(&fn2, s1, length1, fcd1, pErrorCode)) {
|
|
|
|
s1=fcd1.getBuffer();
|
|
|
|
length1=fcd1.length();
|
|
|
|
}
|
|
|
|
if(_normalize(&fn2, s2, length2, fcd2, pErrorCode)) {
|
|
|
|
s2=fcd2.getBuffer();
|
|
|
|
length2=fcd2.length();
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
if(_normalize(n2, s1, length1, fcd1, pErrorCode)) {
|
|
|
|
s1=fcd1.getBuffer();
|
|
|
|
length1=fcd1.length();
|
|
|
|
}
|
|
|
|
if(_normalize(n2, s2, length2, fcd2, pErrorCode)) {
|
|
|
|
s2=fcd2.getBuffer();
|
|
|
|
length2=fcd2.length();
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
if(U_SUCCESS(*pErrorCode)) {
|
|
|
|
return unorm_cmpEquivFold(s1, length1, s2, length2, options, pErrorCode);
|
|
|
|
} else {
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
#endif /* #if !UCONFIG_NO_NORMALIZATION */
|