virtualx-engine/thirdparty/bullet/BulletSoftBody/BulletReducedDeformableBody/btReducedDeformableBodySolver.cpp

325 lines
9.7 KiB
C++
Raw Normal View History

#include "btReducedDeformableBodySolver.h"
#include "btReducedDeformableBody.h"
btReducedDeformableBodySolver::btReducedDeformableBodySolver()
{
m_ascendOrder = true;
m_reducedSolver = true;
m_dampingAlpha = 0;
m_dampingBeta = 0;
m_gravity = btVector3(0, 0, 0);
}
void btReducedDeformableBodySolver::setGravity(const btVector3& gravity)
{
m_gravity = gravity;
}
void btReducedDeformableBodySolver::reinitialize(const btAlignedObjectArray<btSoftBody*>& bodies, btScalar dt)
{
m_softBodies.copyFromArray(bodies);
bool nodeUpdated = updateNodes();
if (nodeUpdated)
{
m_dv.resize(m_numNodes, btVector3(0, 0, 0));
m_ddv.resize(m_numNodes, btVector3(0, 0, 0));
m_residual.resize(m_numNodes, btVector3(0, 0, 0));
m_backupVelocity.resize(m_numNodes, btVector3(0, 0, 0));
}
// need to setZero here as resize only set value for newly allocated items
for (int i = 0; i < m_numNodes; ++i)
{
m_dv[i].setZero();
m_ddv[i].setZero();
m_residual[i].setZero();
}
if (dt > 0)
{
m_dt = dt;
}
m_objective->reinitialize(nodeUpdated, dt);
int N = bodies.size();
if (nodeUpdated)
{
m_staticConstraints.resize(N);
m_nodeRigidConstraints.resize(N);
// m_faceRigidConstraints.resize(N);
}
for (int i = 0; i < N; ++i)
{
m_staticConstraints[i].clear();
m_nodeRigidConstraints[i].clear();
// m_faceRigidConstraints[i].clear();
}
for (int i = 0; i < m_softBodies.size(); ++i)
{
btReducedDeformableBody* rsb = static_cast<btReducedDeformableBody*>(m_softBodies[i]);
rsb->m_contactNodesList.clear();
}
// set node index offsets
int sum = 0;
for (int i = 0; i < m_softBodies.size(); ++i)
{
btReducedDeformableBody* rsb = static_cast<btReducedDeformableBody*>(m_softBodies[i]);
rsb->m_nodeIndexOffset = sum;
sum += rsb->m_nodes.size();
}
btDeformableBodySolver::updateSoftBodies();
}
void btReducedDeformableBodySolver::predictMotion(btScalar solverdt)
{
applyExplicitForce(solverdt);
// predict new mesh location
predictReduceDeformableMotion(solverdt);
//TODO: check if there is anything missed from btDeformableBodySolver::predictDeformableMotion
}
void btReducedDeformableBodySolver::predictReduceDeformableMotion(btScalar solverdt)
{
for (int i = 0; i < m_softBodies.size(); ++i)
{
btReducedDeformableBody* rsb = static_cast<btReducedDeformableBody*>(m_softBodies[i]);
if (!rsb->isActive())
{
continue;
}
// clear contacts variables
rsb->m_nodeRigidContacts.resize(0);
rsb->m_faceRigidContacts.resize(0);
rsb->m_faceNodeContacts.resize(0);
// calculate inverse mass matrix for all nodes
for (int j = 0; j < rsb->m_nodes.size(); ++j)
{
if (rsb->m_nodes[j].m_im > 0)
{
rsb->m_nodes[j].m_effectiveMass_inv = rsb->m_nodes[j].m_effectiveMass.inverse();
}
}
// rigid motion: t, R at time^*
rsb->predictIntegratedTransform(solverdt, rsb->getInterpolationWorldTransform());
// update reduced dofs at time^*
// rsb->updateReducedDofs(solverdt);
// update local moment arm at time^*
// rsb->updateLocalMomentArm();
// rsb->updateExternalForceProjectMatrix(true);
// predict full space velocity at time^* (needed for constraints)
rsb->mapToFullVelocity(rsb->getInterpolationWorldTransform());
// update full space nodal position at time^*
rsb->mapToFullPosition(rsb->getInterpolationWorldTransform());
// update bounding box
rsb->updateBounds();
// update tree
rsb->updateNodeTree(true, true);
if (!rsb->m_fdbvt.empty())
{
rsb->updateFaceTree(true, true);
}
}
}
void btReducedDeformableBodySolver::applyExplicitForce(btScalar solverdt)
{
for (int i = 0; i < m_softBodies.size(); ++i)
{
btReducedDeformableBody* rsb = static_cast<btReducedDeformableBody*>(m_softBodies[i]);
// apply gravity to the rigid frame, get m_linearVelocity at time^*
rsb->applyRigidGravity(m_gravity, solverdt);
if (!rsb->isReducedModesOFF())
{
// add internal force (elastic force & damping force)
rsb->applyReducedElasticForce(rsb->m_reducedDofsBuffer);
rsb->applyReducedDampingForce(rsb->m_reducedVelocityBuffer);
// get reduced velocity at time^*
rsb->updateReducedVelocity(solverdt);
}
// apply damping (no need at this point)
// rsb->applyDamping(solverdt);
}
}
void btReducedDeformableBodySolver::applyTransforms(btScalar timeStep)
{
for (int i = 0; i < m_softBodies.size(); ++i)
{
btReducedDeformableBody* rsb = static_cast<btReducedDeformableBody*>(m_softBodies[i]);
// rigid motion
rsb->proceedToTransform(timeStep, true);
if (!rsb->isReducedModesOFF())
{
// update reduced dofs for time^n+1
rsb->updateReducedDofs(timeStep);
// update local moment arm for time^n+1
rsb->updateLocalMomentArm();
rsb->updateExternalForceProjectMatrix(true);
}
// update mesh nodal positions for time^n+1
rsb->mapToFullPosition(rsb->getRigidTransform());
// update mesh nodal velocity
rsb->mapToFullVelocity(rsb->getRigidTransform());
// end of time step clean up and update
rsb->endOfTimeStepZeroing();
// update the rendering mesh
rsb->interpolateRenderMesh();
}
}
void btReducedDeformableBodySolver::setConstraints(const btContactSolverInfo& infoGlobal)
{
for (int i = 0; i < m_softBodies.size(); ++i)
{
btReducedDeformableBody* rsb = static_cast<btReducedDeformableBody*>(m_softBodies[i]);
if (!rsb->isActive())
{
continue;
}
// set fixed constraints
for (int j = 0; j < rsb->m_fixedNodes.size(); ++j)
{
int i_node = rsb->m_fixedNodes[j];
if (rsb->m_nodes[i_node].m_im == 0)
{
for (int k = 0; k < 3; ++k)
{
btVector3 dir(0, 0, 0);
dir[k] = 1;
btReducedDeformableStaticConstraint static_constraint(rsb, &rsb->m_nodes[i_node], rsb->getRelativePos(i_node), rsb->m_x0[i_node], dir, infoGlobal, m_dt);
m_staticConstraints[i].push_back(static_constraint);
}
}
}
btAssert(rsb->m_fixedNodes.size() * 3 == m_staticConstraints[i].size());
// set Deformable Node vs. Rigid constraint
for (int j = 0; j < rsb->m_nodeRigidContacts.size(); ++j)
{
const btSoftBody::DeformableNodeRigidContact& contact = rsb->m_nodeRigidContacts[j];
// skip fixed points
if (contact.m_node->m_im == 0)
{
continue;
}
btReducedDeformableNodeRigidContactConstraint constraint(rsb, contact, infoGlobal, m_dt);
m_nodeRigidConstraints[i].push_back(constraint);
rsb->m_contactNodesList.push_back(contact.m_node->index - rsb->m_nodeIndexOffset);
}
// std::cout << "contact node list size: " << rsb->m_contactNodesList.size() << "\n";
// std::cout << "#contact nodes: " << m_nodeRigidConstraints[i].size() << "\n";
}
}
btScalar btReducedDeformableBodySolver::solveContactConstraints(btCollisionObject** deformableBodies, int numDeformableBodies, const btContactSolverInfo& infoGlobal)
{
btScalar residualSquare = 0;
for (int i = 0; i < m_softBodies.size(); ++i)
{
btAlignedObjectArray<int> m_orderNonContactConstraintPool;
btAlignedObjectArray<int> m_orderContactConstraintPool;
btReducedDeformableBody* rsb = static_cast<btReducedDeformableBody*>(m_softBodies[i]);
// shuffle the order of applying constraint
m_orderNonContactConstraintPool.resize(m_staticConstraints[i].size());
m_orderContactConstraintPool.resize(m_nodeRigidConstraints[i].size());
if (infoGlobal.m_solverMode & SOLVER_RANDMIZE_ORDER)
{
// fixed constraint order
for (int j = 0; j < m_staticConstraints[i].size(); ++j)
{
m_orderNonContactConstraintPool[j] = m_ascendOrder ? j : m_staticConstraints[i].size() - 1 - j;
}
// contact constraint order
for (int j = 0; j < m_nodeRigidConstraints[i].size(); ++j)
{
m_orderContactConstraintPool[j] = m_ascendOrder ? j : m_nodeRigidConstraints[i].size() - 1 - j;
}
m_ascendOrder = m_ascendOrder ? false : true;
}
else
{
for (int j = 0; j < m_staticConstraints[i].size(); ++j)
{
m_orderNonContactConstraintPool[j] = j;
}
// contact constraint order
for (int j = 0; j < m_nodeRigidConstraints[i].size(); ++j)
{
m_orderContactConstraintPool[j] = j;
}
}
// handle fixed constraint
for (int k = 0; k < m_staticConstraints[i].size(); ++k)
{
btReducedDeformableStaticConstraint& constraint = m_staticConstraints[i][m_orderNonContactConstraintPool[k]];
btScalar localResidualSquare = constraint.solveConstraint(infoGlobal);
residualSquare = btMax(residualSquare, localResidualSquare);
}
// handle contact constraint
// node vs rigid contact
// std::cout << "!!#contact_nodes: " << m_nodeRigidConstraints[i].size() << '\n';
for (int k = 0; k < m_nodeRigidConstraints[i].size(); ++k)
{
btReducedDeformableNodeRigidContactConstraint& constraint = m_nodeRigidConstraints[i][m_orderContactConstraintPool[k]];
btScalar localResidualSquare = constraint.solveConstraint(infoGlobal);
residualSquare = btMax(residualSquare, localResidualSquare);
}
// face vs rigid contact
// for (int k = 0; k < m_faceRigidConstraints[i].size(); ++k)
// {
// btReducedDeformableFaceRigidContactConstraint& constraint = m_faceRigidConstraints[i][k];
// btScalar localResidualSquare = constraint.solveConstraint(infoGlobal);
// residualSquare = btMax(residualSquare, localResidualSquare);
// }
}
return residualSquare;
}
void btReducedDeformableBodySolver::deformableBodyInternalWriteBack()
{
// reduced deformable update
for (int i = 0; i < m_softBodies.size(); ++i)
{
btReducedDeformableBody* rsb = static_cast<btReducedDeformableBody*>(m_softBodies[i]);
rsb->applyInternalVelocityChanges();
}
m_ascendOrder = true;
}