2020-08-08 09:30:55 +02:00
|
|
|
// DO NOT ADD INCLUDE GUARDS OR PRAGMA ONCE.
|
|
|
|
// This file will be included more than once.
|
|
|
|
|
|
|
|
/*************************************************************************/
|
|
|
|
/* octree_definition.inc */
|
|
|
|
/*************************************************************************/
|
|
|
|
/* This file is part of: */
|
|
|
|
/* GODOT ENGINE */
|
|
|
|
/* https://godotengine.org */
|
|
|
|
/*************************************************************************/
|
2021-01-01 20:13:46 +01:00
|
|
|
/* Copyright (c) 2007-2021 Juan Linietsky, Ariel Manzur. */
|
|
|
|
/* Copyright (c) 2014-2021 Godot Engine contributors (cf. AUTHORS.md). */
|
2020-08-08 09:30:55 +02:00
|
|
|
/* */
|
|
|
|
/* Permission is hereby granted, free of charge, to any person obtaining */
|
|
|
|
/* a copy of this software and associated documentation files (the */
|
|
|
|
/* "Software"), to deal in the Software without restriction, including */
|
|
|
|
/* without limitation the rights to use, copy, modify, merge, publish, */
|
|
|
|
/* distribute, sublicense, and/or sell copies of the Software, and to */
|
|
|
|
/* permit persons to whom the Software is furnished to do so, subject to */
|
|
|
|
/* the following conditions: */
|
|
|
|
/* */
|
|
|
|
/* The above copyright notice and this permission notice shall be */
|
|
|
|
/* included in all copies or substantial portions of the Software. */
|
|
|
|
/* */
|
|
|
|
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
|
|
|
|
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
|
|
|
|
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
|
|
|
|
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
|
|
|
|
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
|
|
|
|
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
|
|
|
|
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
|
|
|
|
/*************************************************************************/
|
|
|
|
|
|
|
|
#include "core/list.h"
|
|
|
|
#include "core/local_vector.h"
|
|
|
|
#include "core/map.h"
|
|
|
|
#include "core/math/aabb.h"
|
|
|
|
#include "core/math/geometry.h"
|
|
|
|
#include "core/math/vector3.h"
|
2020-10-21 14:13:20 +02:00
|
|
|
#include "core/os/os.h"
|
2020-08-08 09:30:55 +02:00
|
|
|
#include "core/print_string.h"
|
|
|
|
#include "core/variant.h"
|
|
|
|
|
|
|
|
typedef uint32_t OctreeElementID;
|
|
|
|
|
|
|
|
// macro to reduce boiler plate code when providing function implementations
|
|
|
|
#define OCTREE_FUNC(RET_VALUE) template <class T, bool use_pairs, class AL> \
|
|
|
|
RET_VALUE OCTREE_CLASS_NAME<T, use_pairs, AL>
|
|
|
|
|
|
|
|
#define OCTREE_FUNC_CONSTRUCTOR template <class T, bool use_pairs, class AL> \
|
|
|
|
OCTREE_CLASS_NAME<T, use_pairs, AL>
|
|
|
|
|
|
|
|
template <class T, bool use_pairs = false, class AL = DefaultAllocator>
|
|
|
|
class OCTREE_CLASS_NAME {
|
|
|
|
public:
|
|
|
|
typedef void *(*PairCallback)(void *, OctreeElementID, T *, int, OctreeElementID, T *, int);
|
|
|
|
typedef void (*UnpairCallback)(void *, OctreeElementID, T *, int, OctreeElementID, T *, int, void *);
|
|
|
|
|
|
|
|
private:
|
|
|
|
enum {
|
|
|
|
|
|
|
|
NEG = 0,
|
|
|
|
POS = 1,
|
|
|
|
};
|
|
|
|
|
|
|
|
enum {
|
|
|
|
OCTANT_NX_NY_NZ,
|
|
|
|
OCTANT_PX_NY_NZ,
|
|
|
|
OCTANT_NX_PY_NZ,
|
|
|
|
OCTANT_PX_PY_NZ,
|
|
|
|
OCTANT_NX_NY_PZ,
|
|
|
|
OCTANT_PX_NY_PZ,
|
|
|
|
OCTANT_NX_PY_PZ,
|
|
|
|
OCTANT_PX_PY_PZ
|
|
|
|
};
|
|
|
|
|
|
|
|
struct PairKey {
|
|
|
|
union {
|
|
|
|
struct {
|
|
|
|
OctreeElementID A;
|
|
|
|
OctreeElementID B;
|
|
|
|
};
|
|
|
|
uint64_t key;
|
|
|
|
};
|
|
|
|
|
|
|
|
_FORCE_INLINE_ bool operator<(const PairKey &p_pair) const {
|
|
|
|
return key < p_pair.key;
|
|
|
|
}
|
|
|
|
|
|
|
|
_FORCE_INLINE_ PairKey(OctreeElementID p_A, OctreeElementID p_B) {
|
|
|
|
if (p_A < p_B) {
|
|
|
|
A = p_A;
|
|
|
|
B = p_B;
|
|
|
|
} else {
|
|
|
|
B = p_A;
|
|
|
|
A = p_B;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
_FORCE_INLINE_ PairKey() {}
|
|
|
|
};
|
|
|
|
|
|
|
|
struct Element;
|
|
|
|
|
|
|
|
#ifdef OCTREE_USE_CACHED_LISTS
|
|
|
|
// instead of iterating the linked list every time within octants,
|
|
|
|
// we can cache a linear list of prepared elements containing essential data
|
|
|
|
// for fast traversal, and rebuild it only when an octant changes.
|
|
|
|
struct CachedList {
|
|
|
|
LocalVector<AABB> aabbs;
|
|
|
|
LocalVector<Element *> elements;
|
|
|
|
|
|
|
|
void update(List<Element *, AL> &eles) {
|
|
|
|
// make sure local vector doesn't delete the memory
|
|
|
|
// no need to be thrashing allocations
|
|
|
|
aabbs.clear();
|
|
|
|
elements.clear();
|
|
|
|
|
|
|
|
typename List<Element *, AL>::Element *E = eles.front();
|
|
|
|
while (E) {
|
|
|
|
Element *e = E->get();
|
|
|
|
aabbs.push_back(e->aabb);
|
|
|
|
elements.push_back(e);
|
|
|
|
E = E->next();
|
|
|
|
}
|
|
|
|
}
|
|
|
|
};
|
|
|
|
#endif
|
|
|
|
|
|
|
|
struct Octant {
|
|
|
|
// cached for FAST plane check
|
|
|
|
AABB aabb;
|
|
|
|
|
|
|
|
uint64_t last_pass;
|
|
|
|
Octant *parent;
|
|
|
|
Octant *children[8];
|
|
|
|
|
|
|
|
int children_count; // cache for amount of childrens (fast check for removal)
|
|
|
|
int parent_index; // cache for parent index (fast check for removal)
|
|
|
|
|
|
|
|
List<Element *, AL> pairable_elements;
|
|
|
|
List<Element *, AL> elements;
|
|
|
|
|
|
|
|
#ifdef OCTREE_USE_CACHED_LISTS
|
|
|
|
// cached lists are linear in memory so are faster than using linked list
|
|
|
|
CachedList clist_pairable;
|
|
|
|
CachedList clist;
|
|
|
|
|
|
|
|
// use dirty flag to indicate when cached lists need updating
|
|
|
|
// this avoids having to update the cached list on lots of octants
|
|
|
|
// if nothing is moving in them.
|
|
|
|
bool dirty;
|
|
|
|
|
|
|
|
void update_cached_lists() {
|
|
|
|
if (!dirty) {
|
|
|
|
#ifdef TOOLS_ENABLED
|
|
|
|
//#define OCTREE_CACHED_LIST_ERROR_CHECKS
|
|
|
|
#endif
|
|
|
|
#ifdef OCTREE_CACHED_LIST_ERROR_CHECKS
|
|
|
|
// debug - this will slow down performance a lot,
|
|
|
|
// only enable these error checks for testing that the cached
|
|
|
|
// lists are up to date.
|
|
|
|
int hash_before_P = clist_pairable.aabbs.size();
|
|
|
|
int hash_before_N = clist.aabbs.size();
|
|
|
|
clist_pairable.update(pairable_elements);
|
|
|
|
clist.update(elements);
|
|
|
|
int hash_after_P = clist_pairable.aabbs.size();
|
|
|
|
int hash_after_N = clist.aabbs.size();
|
|
|
|
|
|
|
|
ERR_FAIL_COND(hash_before_P != hash_after_P);
|
|
|
|
ERR_FAIL_COND(hash_before_N != hash_after_N);
|
|
|
|
#endif
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
clist_pairable.update(pairable_elements);
|
|
|
|
clist.update(elements);
|
|
|
|
dirty = false;
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
|
|
Octant() {
|
|
|
|
children_count = 0;
|
|
|
|
parent_index = -1;
|
|
|
|
last_pass = 0;
|
|
|
|
parent = NULL;
|
|
|
|
#ifdef OCTREE_USE_CACHED_LISTS
|
|
|
|
dirty = true;
|
|
|
|
#endif
|
|
|
|
for (int i = 0; i < 8; i++)
|
|
|
|
children[i] = NULL;
|
|
|
|
}
|
|
|
|
|
|
|
|
~Octant() {
|
|
|
|
/*
|
|
|
|
for (int i=0;i<8;i++)
|
|
|
|
memdelete_notnull(children[i]);
|
|
|
|
*/
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
|
|
|
struct PairData;
|
|
|
|
|
|
|
|
struct Element {
|
|
|
|
OCTREE_CLASS_NAME *octree;
|
|
|
|
|
|
|
|
T *userdata;
|
|
|
|
int subindex;
|
|
|
|
bool pairable;
|
|
|
|
uint32_t pairable_mask;
|
|
|
|
uint32_t pairable_type;
|
|
|
|
|
|
|
|
uint64_t last_pass;
|
|
|
|
OctreeElementID _id;
|
|
|
|
Octant *common_parent;
|
|
|
|
|
|
|
|
AABB aabb;
|
|
|
|
AABB container_aabb;
|
|
|
|
|
|
|
|
List<PairData *, AL> pair_list;
|
|
|
|
|
|
|
|
struct OctantOwner {
|
|
|
|
Octant *octant;
|
|
|
|
typename List<Element *, AL>::Element *E;
|
|
|
|
}; // an element can be in max 8 octants
|
|
|
|
|
|
|
|
List<OctantOwner, AL> octant_owners;
|
|
|
|
|
|
|
|
#ifdef OCTREE_USE_CACHED_LISTS
|
|
|
|
// when moving we need make all owner octants dirty, because the AABB can change.
|
|
|
|
void moving() {
|
|
|
|
for (typename List<typename Element::OctantOwner, AL>::Element *F = octant_owners.front(); F;) {
|
|
|
|
Octant *o = F->get().octant;
|
|
|
|
o->dirty = true;
|
|
|
|
F = F->next();
|
|
|
|
}
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
|
|
Element() {
|
|
|
|
last_pass = 0;
|
|
|
|
_id = 0;
|
|
|
|
pairable = false;
|
|
|
|
subindex = 0;
|
|
|
|
userdata = 0;
|
|
|
|
octree = 0;
|
|
|
|
pairable_mask = 0;
|
|
|
|
pairable_type = 0;
|
|
|
|
common_parent = NULL;
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
|
|
|
struct PairData {
|
|
|
|
int refcount;
|
|
|
|
bool intersect;
|
|
|
|
Element *A, *B;
|
|
|
|
void *ud;
|
|
|
|
typename List<PairData *, AL>::Element *eA, *eB;
|
|
|
|
};
|
|
|
|
|
|
|
|
typedef Map<OctreeElementID, Element, Comparator<OctreeElementID>, AL> ElementMap;
|
|
|
|
typedef Map<PairKey, PairData, Comparator<PairKey>, AL> PairMap;
|
|
|
|
ElementMap element_map;
|
|
|
|
PairMap pair_map;
|
|
|
|
|
|
|
|
PairCallback pair_callback;
|
|
|
|
UnpairCallback unpair_callback;
|
|
|
|
void *pair_callback_userdata;
|
|
|
|
void *unpair_callback_userdata;
|
|
|
|
|
|
|
|
OctreeElementID last_element_id;
|
|
|
|
uint64_t pass;
|
|
|
|
|
|
|
|
real_t unit_size;
|
|
|
|
Octant *root;
|
|
|
|
int octant_count;
|
|
|
|
int pair_count;
|
|
|
|
int octant_elements_limit;
|
|
|
|
|
|
|
|
_FORCE_INLINE_ void _pair_check(PairData *p_pair) {
|
|
|
|
bool intersect = p_pair->A->aabb.intersects_inclusive(p_pair->B->aabb);
|
|
|
|
|
|
|
|
if (intersect != p_pair->intersect) {
|
|
|
|
if (intersect) {
|
|
|
|
if (pair_callback) {
|
|
|
|
p_pair->ud = pair_callback(pair_callback_userdata, p_pair->A->_id, p_pair->A->userdata, p_pair->A->subindex, p_pair->B->_id, p_pair->B->userdata, p_pair->B->subindex);
|
|
|
|
}
|
|
|
|
pair_count++;
|
|
|
|
} else {
|
|
|
|
if (unpair_callback) {
|
|
|
|
unpair_callback(pair_callback_userdata, p_pair->A->_id, p_pair->A->userdata, p_pair->A->subindex, p_pair->B->_id, p_pair->B->userdata, p_pair->B->subindex, p_pair->ud);
|
|
|
|
}
|
|
|
|
pair_count--;
|
|
|
|
}
|
|
|
|
|
|
|
|
p_pair->intersect = intersect;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
_FORCE_INLINE_ void _pair_reference(Element *p_A, Element *p_B) {
|
|
|
|
if (p_A == p_B || (p_A->userdata == p_B->userdata && p_A->userdata))
|
|
|
|
return;
|
|
|
|
|
|
|
|
if (!(p_A->pairable_type & p_B->pairable_mask) &&
|
|
|
|
!(p_B->pairable_type & p_A->pairable_mask))
|
|
|
|
return; // none can pair with none
|
|
|
|
|
|
|
|
PairKey key(p_A->_id, p_B->_id);
|
|
|
|
typename PairMap::Element *E = pair_map.find(key);
|
|
|
|
|
|
|
|
if (!E) {
|
|
|
|
PairData pdata;
|
|
|
|
pdata.refcount = 1;
|
|
|
|
pdata.A = p_A;
|
|
|
|
pdata.B = p_B;
|
|
|
|
pdata.intersect = false;
|
|
|
|
E = pair_map.insert(key, pdata);
|
|
|
|
E->get().eA = p_A->pair_list.push_back(&E->get());
|
|
|
|
E->get().eB = p_B->pair_list.push_back(&E->get());
|
|
|
|
|
|
|
|
/*
|
|
|
|
if (pair_callback)
|
|
|
|
pair_callback(pair_callback_userdata,p_A->userdata,p_B->userdata);
|
|
|
|
*/
|
|
|
|
} else {
|
|
|
|
E->get().refcount++;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
_FORCE_INLINE_ void _pair_unreference(Element *p_A, Element *p_B) {
|
|
|
|
if (p_A == p_B)
|
|
|
|
return;
|
|
|
|
|
|
|
|
PairKey key(p_A->_id, p_B->_id);
|
|
|
|
typename PairMap::Element *E = pair_map.find(key);
|
|
|
|
if (!E) {
|
|
|
|
return; // no pair
|
|
|
|
}
|
|
|
|
|
|
|
|
E->get().refcount--;
|
|
|
|
|
|
|
|
if (E->get().refcount == 0) {
|
|
|
|
// bye pair
|
|
|
|
|
|
|
|
if (E->get().intersect) {
|
|
|
|
if (unpair_callback) {
|
|
|
|
unpair_callback(pair_callback_userdata, p_A->_id, p_A->userdata, p_A->subindex, p_B->_id, p_B->userdata, p_B->subindex, E->get().ud);
|
|
|
|
}
|
|
|
|
|
|
|
|
pair_count--;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (p_A == E->get().B) {
|
|
|
|
//may be reaching inverted
|
|
|
|
SWAP(p_A, p_B);
|
|
|
|
}
|
|
|
|
|
|
|
|
p_A->pair_list.erase(E->get().eA);
|
|
|
|
p_B->pair_list.erase(E->get().eB);
|
|
|
|
pair_map.erase(E);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
_FORCE_INLINE_ void _element_check_pairs(Element *p_element) {
|
|
|
|
typename List<PairData *, AL>::Element *E = p_element->pair_list.front();
|
|
|
|
while (E) {
|
|
|
|
_pair_check(E->get());
|
|
|
|
E = E->next();
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
_FORCE_INLINE_ void _optimize() {
|
|
|
|
while (root && root->children_count < 2 && !root->elements.size() && !(use_pairs && root->pairable_elements.size())) {
|
|
|
|
Octant *new_root = NULL;
|
|
|
|
if (root->children_count == 1) {
|
|
|
|
for (int i = 0; i < 8; i++) {
|
|
|
|
if (root->children[i]) {
|
|
|
|
new_root = root->children[i];
|
|
|
|
root->children[i] = NULL;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
ERR_FAIL_COND(!new_root);
|
|
|
|
new_root->parent = NULL;
|
|
|
|
new_root->parent_index = -1;
|
|
|
|
}
|
|
|
|
|
|
|
|
memdelete_allocator<Octant, AL>(root);
|
|
|
|
octant_count--;
|
|
|
|
root = new_root;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
void _insert_element(Element *p_element, Octant *p_octant);
|
|
|
|
void _ensure_valid_root(const AABB &p_aabb);
|
|
|
|
bool _remove_element_pair_and_remove_empty_octants(Element *p_element, Octant *p_octant, Octant *p_limit = NULL);
|
|
|
|
void _remove_element(Element *p_element);
|
|
|
|
void _pair_element(Element *p_element, Octant *p_octant);
|
|
|
|
void _unpair_element(Element *p_element, Octant *p_octant);
|
|
|
|
|
|
|
|
struct _CullConvexData {
|
|
|
|
const Plane *planes;
|
|
|
|
int plane_count;
|
|
|
|
const Vector3 *points;
|
|
|
|
int point_count;
|
|
|
|
T **result_array;
|
|
|
|
int *result_idx;
|
|
|
|
int result_max;
|
|
|
|
uint32_t mask;
|
|
|
|
};
|
|
|
|
|
|
|
|
void _cull_convex(Octant *p_octant, _CullConvexData *p_cull);
|
|
|
|
void _cull_aabb(Octant *p_octant, const AABB &p_aabb, T **p_result_array, int *p_result_idx, int p_result_max, int *p_subindex_array, uint32_t p_mask);
|
|
|
|
void _cull_segment(Octant *p_octant, const Vector3 &p_from, const Vector3 &p_to, T **p_result_array, int *p_result_idx, int p_result_max, int *p_subindex_array, uint32_t p_mask);
|
|
|
|
void _cull_point(Octant *p_octant, const Vector3 &p_point, T **p_result_array, int *p_result_idx, int p_result_max, int *p_subindex_array, uint32_t p_mask);
|
|
|
|
|
|
|
|
void _remove_tree(Octant *p_octant) {
|
|
|
|
if (!p_octant)
|
|
|
|
return;
|
|
|
|
|
|
|
|
for (int i = 0; i < 8; i++) {
|
|
|
|
if (p_octant->children[i])
|
|
|
|
_remove_tree(p_octant->children[i]);
|
|
|
|
}
|
|
|
|
|
|
|
|
memdelete_allocator<Octant, AL>(p_octant);
|
|
|
|
}
|
|
|
|
|
|
|
|
#ifdef TOOLS_ENABLED
|
|
|
|
String debug_aabb_to_string(const AABB &aabb) const;
|
|
|
|
void debug_octant(const Octant &oct, int depth = 0);
|
|
|
|
#endif
|
|
|
|
|
|
|
|
public:
|
|
|
|
OctreeElementID create(T *p_userdata, const AABB &p_aabb = AABB(), int p_subindex = 0, bool p_pairable = false, uint32_t p_pairable_type = 0, uint32_t pairable_mask = 1);
|
|
|
|
void move(OctreeElementID p_id, const AABB &p_aabb);
|
|
|
|
void set_pairable(OctreeElementID p_id, bool p_pairable = false, uint32_t p_pairable_type = 0, uint32_t pairable_mask = 1);
|
|
|
|
void erase(OctreeElementID p_id);
|
|
|
|
|
|
|
|
bool is_pairable(OctreeElementID p_id) const;
|
|
|
|
T *get(OctreeElementID p_id) const;
|
|
|
|
int get_subindex(OctreeElementID p_id) const;
|
|
|
|
|
|
|
|
int cull_convex(const Vector<Plane> &p_convex, T **p_result_array, int p_result_max, uint32_t p_mask = 0xFFFFFFFF);
|
|
|
|
int cull_aabb(const AABB &p_aabb, T **p_result_array, int p_result_max, int *p_subindex_array = NULL, uint32_t p_mask = 0xFFFFFFFF);
|
|
|
|
int cull_segment(const Vector3 &p_from, const Vector3 &p_to, T **p_result_array, int p_result_max, int *p_subindex_array = NULL, uint32_t p_mask = 0xFFFFFFFF);
|
|
|
|
|
|
|
|
int cull_point(const Vector3 &p_point, T **p_result_array, int p_result_max, int *p_subindex_array = NULL, uint32_t p_mask = 0xFFFFFFFF);
|
|
|
|
|
|
|
|
void set_pair_callback(PairCallback p_callback, void *p_userdata);
|
|
|
|
void set_unpair_callback(UnpairCallback p_callback, void *p_userdata);
|
|
|
|
|
|
|
|
int get_octant_count() const { return octant_count; }
|
|
|
|
int get_pair_count() const { return pair_count; }
|
|
|
|
void set_octant_elements_limit(int p_limit) { octant_elements_limit = p_limit; }
|
|
|
|
|
|
|
|
// just convenience for project settings, as users don't need to know exact numbers
|
|
|
|
void set_balance(float p_bal) // 0.0 is optimized for multiple tests, 1.0 is for multiple edits (moves etc)
|
|
|
|
{
|
|
|
|
float v = CLAMP(p_bal, 0.0f, 1.0f);
|
|
|
|
v *= v;
|
|
|
|
v *= v;
|
|
|
|
v *= 8096.0f; // these values have been found empirically
|
|
|
|
int l = 0 + v;
|
|
|
|
set_octant_elements_limit(l);
|
|
|
|
}
|
|
|
|
|
|
|
|
#ifdef TOOLS_ENABLED
|
|
|
|
void debug_octants();
|
|
|
|
#endif
|
|
|
|
|
|
|
|
OCTREE_CLASS_NAME(real_t p_unit_size = 1.0);
|
|
|
|
~OCTREE_CLASS_NAME() { _remove_tree(root); }
|
|
|
|
};
|
|
|
|
|
|
|
|
/* PRIVATE FUNCTIONS */
|
|
|
|
|
|
|
|
OCTREE_FUNC(T *)::get(OctreeElementID p_id) const {
|
|
|
|
const typename ElementMap::Element *E = element_map.find(p_id);
|
|
|
|
ERR_FAIL_COND_V(!E, NULL);
|
|
|
|
return E->get().userdata;
|
|
|
|
}
|
|
|
|
|
|
|
|
OCTREE_FUNC(bool)::is_pairable(OctreeElementID p_id) const {
|
|
|
|
const typename ElementMap::Element *E = element_map.find(p_id);
|
|
|
|
ERR_FAIL_COND_V(!E, false);
|
|
|
|
return E->get().pairable;
|
|
|
|
}
|
|
|
|
|
|
|
|
OCTREE_FUNC(int)::get_subindex(OctreeElementID p_id) const {
|
|
|
|
const typename ElementMap::Element *E = element_map.find(p_id);
|
|
|
|
ERR_FAIL_COND_V(!E, -1);
|
|
|
|
return E->get().subindex;
|
|
|
|
}
|
|
|
|
|
|
|
|
#define OCTREE_DIVISOR 4
|
|
|
|
|
|
|
|
OCTREE_FUNC(void)::_insert_element(Element *p_element, Octant *p_octant) {
|
|
|
|
real_t element_size = p_element->aabb.get_longest_axis_size() * 1.01; // avoid precision issues
|
|
|
|
|
|
|
|
// don't create new child octants unless there is more than a certain number in
|
|
|
|
// this octant. This prevents runaway creation of too many octants, and is more efficient
|
|
|
|
// because brute force is faster up to a certain point.
|
|
|
|
bool can_split = true;
|
|
|
|
|
|
|
|
if (p_element->pairable) {
|
|
|
|
if (p_octant->pairable_elements.size() < octant_elements_limit)
|
|
|
|
can_split = false;
|
|
|
|
} else {
|
|
|
|
if (p_octant->elements.size() < octant_elements_limit)
|
|
|
|
can_split = false;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (!can_split || (element_size > (p_octant->aabb.size.x / OCTREE_DIVISOR))) {
|
|
|
|
/* at smallest possible size for the element */
|
|
|
|
typename Element::OctantOwner owner;
|
|
|
|
owner.octant = p_octant;
|
|
|
|
|
|
|
|
if (use_pairs && p_element->pairable) {
|
|
|
|
p_octant->pairable_elements.push_back(p_element);
|
|
|
|
owner.E = p_octant->pairable_elements.back();
|
|
|
|
} else {
|
|
|
|
p_octant->elements.push_back(p_element);
|
|
|
|
owner.E = p_octant->elements.back();
|
|
|
|
}
|
|
|
|
#ifdef OCTREE_USE_CACHED_LISTS
|
|
|
|
p_octant->dirty = true;
|
|
|
|
#endif
|
|
|
|
p_element->octant_owners.push_back(owner);
|
|
|
|
|
|
|
|
if (p_element->common_parent == NULL) {
|
|
|
|
p_element->common_parent = p_octant;
|
|
|
|
p_element->container_aabb = p_octant->aabb;
|
|
|
|
} else {
|
|
|
|
p_element->container_aabb.merge_with(p_octant->aabb);
|
|
|
|
}
|
|
|
|
|
|
|
|
if (use_pairs && p_octant->children_count > 0) {
|
|
|
|
pass++; //elements below this only get ONE reference added
|
|
|
|
|
|
|
|
for (int i = 0; i < 8; i++) {
|
|
|
|
if (p_octant->children[i]) {
|
|
|
|
_pair_element(p_element, p_octant->children[i]);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
/* not big enough, send it to subitems */
|
|
|
|
int splits = 0;
|
|
|
|
bool candidate = p_element->common_parent == NULL;
|
|
|
|
|
|
|
|
for (int i = 0; i < 8; i++) {
|
|
|
|
if (p_octant->children[i]) {
|
|
|
|
/* element exists, go straight to it */
|
|
|
|
if (p_octant->children[i]->aabb.intersects_inclusive(p_element->aabb)) {
|
|
|
|
_insert_element(p_element, p_octant->children[i]);
|
|
|
|
splits++;
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
/* check against AABB where child should be */
|
|
|
|
|
|
|
|
AABB aabb = p_octant->aabb;
|
|
|
|
aabb.size *= 0.5;
|
|
|
|
|
|
|
|
if (i & 1)
|
|
|
|
aabb.position.x += aabb.size.x;
|
|
|
|
if (i & 2)
|
|
|
|
aabb.position.y += aabb.size.y;
|
|
|
|
if (i & 4)
|
|
|
|
aabb.position.z += aabb.size.z;
|
|
|
|
|
|
|
|
if (aabb.intersects_inclusive(p_element->aabb)) {
|
|
|
|
/* if actually intersects, create the child */
|
|
|
|
|
|
|
|
Octant *child = memnew_allocator(Octant, AL);
|
|
|
|
p_octant->children[i] = child;
|
|
|
|
child->parent = p_octant;
|
|
|
|
child->parent_index = i;
|
|
|
|
|
|
|
|
child->aabb = aabb;
|
|
|
|
|
|
|
|
p_octant->children_count++;
|
|
|
|
|
|
|
|
_insert_element(p_element, child);
|
|
|
|
octant_count++;
|
|
|
|
splits++;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
if (candidate && splits > 1) {
|
|
|
|
p_element->common_parent = p_octant;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
if (use_pairs) {
|
|
|
|
typename List<Element *, AL>::Element *E = p_octant->pairable_elements.front();
|
|
|
|
|
|
|
|
while (E) {
|
|
|
|
_pair_reference(p_element, E->get());
|
|
|
|
E = E->next();
|
|
|
|
}
|
|
|
|
|
|
|
|
if (p_element->pairable) {
|
|
|
|
// and always test non-pairable if element is pairable
|
|
|
|
E = p_octant->elements.front();
|
|
|
|
while (E) {
|
|
|
|
_pair_reference(p_element, E->get());
|
|
|
|
E = E->next();
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
OCTREE_FUNC(void)::_ensure_valid_root(const AABB &p_aabb) {
|
|
|
|
if (!root) {
|
|
|
|
// octre is empty
|
|
|
|
|
|
|
|
AABB base(Vector3(), Vector3(1.0, 1.0, 1.0) * unit_size);
|
|
|
|
|
|
|
|
while (!base.encloses(p_aabb)) {
|
|
|
|
if (ABS(base.position.x + base.size.x) <= ABS(base.position.x)) {
|
|
|
|
/* grow towards positive */
|
|
|
|
base.size *= 2.0;
|
|
|
|
} else {
|
|
|
|
base.position -= base.size;
|
|
|
|
base.size *= 2.0;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
root = memnew_allocator(Octant, AL);
|
|
|
|
|
|
|
|
root->parent = NULL;
|
|
|
|
root->parent_index = -1;
|
|
|
|
root->aabb = base;
|
|
|
|
|
|
|
|
octant_count++;
|
|
|
|
|
|
|
|
} else {
|
|
|
|
AABB base = root->aabb;
|
|
|
|
|
|
|
|
while (!base.encloses(p_aabb)) {
|
|
|
|
ERR_FAIL_COND_MSG(base.size.x > OCTREE_SIZE_LIMIT, "Octree upper size limit reached, does the AABB supplied contain NAN?");
|
|
|
|
|
|
|
|
Octant *gp = memnew_allocator(Octant, AL);
|
|
|
|
octant_count++;
|
|
|
|
root->parent = gp;
|
|
|
|
|
|
|
|
if (ABS(base.position.x + base.size.x) <= ABS(base.position.x)) {
|
|
|
|
/* grow towards positive */
|
|
|
|
base.size *= 2.0;
|
|
|
|
gp->aabb = base;
|
|
|
|
gp->children[0] = root;
|
|
|
|
root->parent_index = 0;
|
|
|
|
} else {
|
|
|
|
base.position -= base.size;
|
|
|
|
base.size *= 2.0;
|
|
|
|
gp->aabb = base;
|
|
|
|
gp->children[(1 << 0) | (1 << 1) | (1 << 2)] = root; // add at all-positive
|
|
|
|
root->parent_index = (1 << 0) | (1 << 1) | (1 << 2);
|
|
|
|
}
|
|
|
|
|
|
|
|
gp->children_count = 1;
|
|
|
|
root = gp;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
OCTREE_FUNC(bool)::_remove_element_pair_and_remove_empty_octants(Element *p_element, Octant *p_octant, Octant *p_limit) {
|
|
|
|
bool octant_removed = false;
|
|
|
|
|
|
|
|
while (true) {
|
|
|
|
// check all exit conditions
|
|
|
|
|
|
|
|
if (p_octant == p_limit) // reached limit, nothing to erase, exit
|
|
|
|
return octant_removed;
|
|
|
|
|
|
|
|
bool unpaired = false;
|
|
|
|
|
|
|
|
if (use_pairs && p_octant->last_pass != pass) {
|
|
|
|
// check whether we should unpair stuff
|
|
|
|
// always test pairable
|
|
|
|
typename List<Element *, AL>::Element *E = p_octant->pairable_elements.front();
|
|
|
|
while (E) {
|
|
|
|
_pair_unreference(p_element, E->get());
|
|
|
|
E = E->next();
|
|
|
|
}
|
|
|
|
if (p_element->pairable) {
|
|
|
|
// and always test non-pairable if element is pairable
|
|
|
|
E = p_octant->elements.front();
|
|
|
|
while (E) {
|
|
|
|
_pair_unreference(p_element, E->get());
|
|
|
|
E = E->next();
|
|
|
|
}
|
|
|
|
}
|
|
|
|
p_octant->last_pass = pass;
|
|
|
|
unpaired = true;
|
|
|
|
}
|
|
|
|
|
|
|
|
bool removed = false;
|
|
|
|
|
|
|
|
Octant *parent = p_octant->parent;
|
|
|
|
|
|
|
|
if (p_octant->children_count == 0 && p_octant->elements.empty() && p_octant->pairable_elements.empty()) {
|
|
|
|
// erase octant
|
|
|
|
|
|
|
|
if (p_octant == root) { // won't have a parent, just erase
|
|
|
|
|
|
|
|
root = NULL;
|
|
|
|
} else {
|
|
|
|
ERR_FAIL_INDEX_V(p_octant->parent_index, 8, octant_removed);
|
|
|
|
|
|
|
|
parent->children[p_octant->parent_index] = NULL;
|
|
|
|
parent->children_count--;
|
|
|
|
}
|
|
|
|
|
|
|
|
memdelete_allocator<Octant, AL>(p_octant);
|
|
|
|
octant_count--;
|
|
|
|
removed = true;
|
|
|
|
octant_removed = true;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (!removed && !unpaired)
|
|
|
|
return octant_removed; // no reason to keep going up anymore! was already visited and was not removed
|
|
|
|
|
|
|
|
p_octant = parent;
|
|
|
|
}
|
|
|
|
|
|
|
|
return octant_removed;
|
|
|
|
}
|
|
|
|
|
|
|
|
OCTREE_FUNC(void)::_unpair_element(Element *p_element, Octant *p_octant) {
|
|
|
|
// always test pairable
|
|
|
|
typename List<Element *, AL>::Element *E = p_octant->pairable_elements.front();
|
|
|
|
while (E) {
|
|
|
|
if (E->get()->last_pass != pass) { // only remove ONE reference
|
|
|
|
_pair_unreference(p_element, E->get());
|
|
|
|
E->get()->last_pass = pass;
|
|
|
|
}
|
|
|
|
E = E->next();
|
|
|
|
}
|
|
|
|
|
|
|
|
if (p_element->pairable) {
|
|
|
|
// and always test non-pairable if element is pairable
|
|
|
|
E = p_octant->elements.front();
|
|
|
|
while (E) {
|
|
|
|
if (E->get()->last_pass != pass) { // only remove ONE reference
|
|
|
|
_pair_unreference(p_element, E->get());
|
|
|
|
E->get()->last_pass = pass;
|
|
|
|
}
|
|
|
|
E = E->next();
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
p_octant->last_pass = pass;
|
|
|
|
|
|
|
|
if (p_octant->children_count == 0)
|
|
|
|
return; // small optimization for leafs
|
|
|
|
|
|
|
|
for (int i = 0; i < 8; i++) {
|
|
|
|
if (p_octant->children[i])
|
|
|
|
_unpair_element(p_element, p_octant->children[i]);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
OCTREE_FUNC(void)::_pair_element(Element *p_element, Octant *p_octant) {
|
|
|
|
// always test pairable
|
|
|
|
|
|
|
|
typename List<Element *, AL>::Element *E = p_octant->pairable_elements.front();
|
|
|
|
|
|
|
|
while (E) {
|
|
|
|
if (E->get()->last_pass != pass) { // only get ONE reference
|
|
|
|
_pair_reference(p_element, E->get());
|
|
|
|
E->get()->last_pass = pass;
|
|
|
|
}
|
|
|
|
E = E->next();
|
|
|
|
}
|
|
|
|
|
|
|
|
if (p_element->pairable) {
|
|
|
|
// and always test non-pairable if element is pairable
|
|
|
|
E = p_octant->elements.front();
|
|
|
|
while (E) {
|
|
|
|
if (E->get()->last_pass != pass) { // only get ONE reference
|
|
|
|
_pair_reference(p_element, E->get());
|
|
|
|
E->get()->last_pass = pass;
|
|
|
|
}
|
|
|
|
E = E->next();
|
|
|
|
}
|
|
|
|
}
|
|
|
|
p_octant->last_pass = pass;
|
|
|
|
|
|
|
|
if (p_octant->children_count == 0)
|
|
|
|
return; // small optimization for leafs
|
|
|
|
|
|
|
|
for (int i = 0; i < 8; i++) {
|
|
|
|
if (p_octant->children[i])
|
|
|
|
_pair_element(p_element, p_octant->children[i]);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
OCTREE_FUNC(void)::_remove_element(Element *p_element) {
|
|
|
|
pass++; // will do a new pass for this
|
|
|
|
|
|
|
|
typename List<typename Element::OctantOwner, AL>::Element *I = p_element->octant_owners.front();
|
|
|
|
|
|
|
|
for (; I; I = I->next()) {
|
|
|
|
Octant *o = I->get().octant;
|
|
|
|
|
|
|
|
if (!use_pairs) {
|
|
|
|
o->elements.erase(I->get().E);
|
|
|
|
} else {
|
|
|
|
// erase children pairs, they are erased ONCE even if repeated
|
|
|
|
pass++;
|
|
|
|
for (int i = 0; i < 8; i++) {
|
|
|
|
if (o->children[i]) {
|
|
|
|
_unpair_element(p_element, o->children[i]);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
if (p_element->pairable) {
|
|
|
|
o->pairable_elements.erase(I->get().E);
|
|
|
|
} else {
|
|
|
|
o->elements.erase(I->get().E);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
#ifdef OCTREE_USE_CACHED_LISTS
|
|
|
|
o->dirty = true;
|
|
|
|
#endif
|
|
|
|
_remove_element_pair_and_remove_empty_octants(p_element, o);
|
|
|
|
}
|
|
|
|
|
|
|
|
p_element->octant_owners.clear();
|
|
|
|
|
|
|
|
if (use_pairs) {
|
|
|
|
int remaining = p_element->pair_list.size();
|
|
|
|
//p_element->pair_list.clear();
|
|
|
|
ERR_FAIL_COND(remaining);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
OCTREE_FUNC(OctreeElementID)::create(T *p_userdata, const AABB &p_aabb, int p_subindex, bool p_pairable, uint32_t p_pairable_type, uint32_t p_pairable_mask) {
|
|
|
|
// check for AABB validity
|
|
|
|
#ifdef DEBUG_ENABLED
|
|
|
|
ERR_FAIL_COND_V(p_aabb.position.x > 1e15 || p_aabb.position.x < -1e15, 0);
|
|
|
|
ERR_FAIL_COND_V(p_aabb.position.y > 1e15 || p_aabb.position.y < -1e15, 0);
|
|
|
|
ERR_FAIL_COND_V(p_aabb.position.z > 1e15 || p_aabb.position.z < -1e15, 0);
|
|
|
|
ERR_FAIL_COND_V(p_aabb.size.x > 1e15 || p_aabb.size.x < 0.0, 0);
|
|
|
|
ERR_FAIL_COND_V(p_aabb.size.y > 1e15 || p_aabb.size.y < 0.0, 0);
|
|
|
|
ERR_FAIL_COND_V(p_aabb.size.z > 1e15 || p_aabb.size.z < 0.0, 0);
|
|
|
|
ERR_FAIL_COND_V(Math::is_nan(p_aabb.size.x), 0);
|
|
|
|
ERR_FAIL_COND_V(Math::is_nan(p_aabb.size.y), 0);
|
|
|
|
ERR_FAIL_COND_V(Math::is_nan(p_aabb.size.z), 0);
|
|
|
|
|
|
|
|
#endif
|
|
|
|
typename ElementMap::Element *E = element_map.insert(last_element_id++,
|
|
|
|
Element());
|
|
|
|
Element &e = E->get();
|
|
|
|
|
|
|
|
e.aabb = p_aabb;
|
|
|
|
e.userdata = p_userdata;
|
|
|
|
e.subindex = p_subindex;
|
|
|
|
e.last_pass = 0;
|
|
|
|
e.octree = this;
|
|
|
|
e.pairable = p_pairable;
|
|
|
|
e.pairable_type = p_pairable_type;
|
|
|
|
e.pairable_mask = p_pairable_mask;
|
|
|
|
e._id = last_element_id - 1;
|
|
|
|
|
|
|
|
if (!e.aabb.has_no_surface()) {
|
|
|
|
_ensure_valid_root(p_aabb);
|
|
|
|
_insert_element(&e, root);
|
|
|
|
if (use_pairs)
|
|
|
|
_element_check_pairs(&e);
|
|
|
|
}
|
|
|
|
|
|
|
|
return last_element_id - 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
OCTREE_FUNC(void)::move(OctreeElementID p_id, const AABB &p_aabb) {
|
|
|
|
#ifdef DEBUG_ENABLED
|
|
|
|
// check for AABB validity
|
|
|
|
ERR_FAIL_COND(p_aabb.position.x > 1e15 || p_aabb.position.x < -1e15);
|
|
|
|
ERR_FAIL_COND(p_aabb.position.y > 1e15 || p_aabb.position.y < -1e15);
|
|
|
|
ERR_FAIL_COND(p_aabb.position.z > 1e15 || p_aabb.position.z < -1e15);
|
|
|
|
ERR_FAIL_COND(p_aabb.size.x > 1e15 || p_aabb.size.x < 0.0);
|
|
|
|
ERR_FAIL_COND(p_aabb.size.y > 1e15 || p_aabb.size.y < 0.0);
|
|
|
|
ERR_FAIL_COND(p_aabb.size.z > 1e15 || p_aabb.size.z < 0.0);
|
|
|
|
ERR_FAIL_COND(Math::is_nan(p_aabb.size.x));
|
|
|
|
ERR_FAIL_COND(Math::is_nan(p_aabb.size.y));
|
|
|
|
ERR_FAIL_COND(Math::is_nan(p_aabb.size.z));
|
|
|
|
#endif
|
|
|
|
typename ElementMap::Element *E = element_map.find(p_id);
|
|
|
|
ERR_FAIL_COND(!E);
|
|
|
|
Element &e = E->get();
|
|
|
|
|
|
|
|
bool old_has_surf = !e.aabb.has_no_surface();
|
|
|
|
bool new_has_surf = !p_aabb.has_no_surface();
|
|
|
|
|
|
|
|
if (old_has_surf != new_has_surf) {
|
|
|
|
if (old_has_surf) {
|
|
|
|
_remove_element(&e); // removing
|
|
|
|
e.common_parent = NULL;
|
|
|
|
e.aabb = AABB();
|
|
|
|
_optimize();
|
|
|
|
} else {
|
|
|
|
_ensure_valid_root(p_aabb); // inserting
|
|
|
|
e.common_parent = NULL;
|
|
|
|
e.aabb = p_aabb;
|
|
|
|
_insert_element(&e, root);
|
|
|
|
if (use_pairs)
|
|
|
|
_element_check_pairs(&e);
|
|
|
|
}
|
|
|
|
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (!old_has_surf) // doing nothing
|
|
|
|
return;
|
|
|
|
|
|
|
|
// it still is enclosed in the same AABB it was assigned to
|
|
|
|
if (e.container_aabb.encloses(p_aabb)) {
|
|
|
|
e.aabb = p_aabb;
|
|
|
|
if (use_pairs)
|
|
|
|
_element_check_pairs(&e); // must check pairs anyway
|
|
|
|
|
|
|
|
#ifdef OCTREE_USE_CACHED_LISTS
|
|
|
|
e.moving();
|
|
|
|
#endif
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
AABB combined = e.aabb;
|
|
|
|
combined.merge_with(p_aabb);
|
|
|
|
_ensure_valid_root(combined);
|
|
|
|
|
|
|
|
ERR_FAIL_COND(e.octant_owners.front() == NULL);
|
|
|
|
|
|
|
|
/* FIND COMMON PARENT */
|
|
|
|
|
|
|
|
List<typename Element::OctantOwner, AL> owners = e.octant_owners; // save the octant owners
|
|
|
|
Octant *common_parent = e.common_parent;
|
|
|
|
ERR_FAIL_COND(!common_parent);
|
|
|
|
|
|
|
|
//src is now the place towards where insertion is going to happen
|
|
|
|
pass++;
|
|
|
|
|
|
|
|
while (common_parent && !common_parent->aabb.encloses(p_aabb))
|
|
|
|
common_parent = common_parent->parent;
|
|
|
|
|
|
|
|
ERR_FAIL_COND(!common_parent);
|
|
|
|
|
|
|
|
//prepare for reinsert
|
|
|
|
e.octant_owners.clear();
|
|
|
|
e.common_parent = NULL;
|
|
|
|
e.aabb = p_aabb;
|
|
|
|
|
|
|
|
_insert_element(&e, common_parent); // reinsert from this point
|
|
|
|
|
|
|
|
pass++;
|
|
|
|
|
|
|
|
for (typename List<typename Element::OctantOwner, AL>::Element *F = owners.front(); F;) {
|
|
|
|
Octant *o = F->get().octant;
|
|
|
|
typename List<typename Element::OctantOwner, AL>::Element *N = F->next();
|
|
|
|
|
|
|
|
/*
|
|
|
|
if (!use_pairs)
|
|
|
|
o->elements.erase( F->get().E );
|
|
|
|
*/
|
|
|
|
|
|
|
|
if (use_pairs && e.pairable)
|
|
|
|
o->pairable_elements.erase(F->get().E);
|
|
|
|
else
|
|
|
|
o->elements.erase(F->get().E);
|
|
|
|
|
|
|
|
#ifdef OCTREE_USE_CACHED_LISTS
|
|
|
|
o->dirty = true;
|
|
|
|
#endif
|
|
|
|
|
|
|
|
if (_remove_element_pair_and_remove_empty_octants(&e, o, common_parent->parent)) {
|
|
|
|
owners.erase(F);
|
|
|
|
}
|
|
|
|
|
|
|
|
F = N;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (use_pairs) {
|
|
|
|
//unpair child elements in anything that survived
|
|
|
|
for (typename List<typename Element::OctantOwner, AL>::Element *F = owners.front(); F; F = F->next()) {
|
|
|
|
Octant *o = F->get().octant;
|
|
|
|
|
|
|
|
// erase children pairs, unref ONCE
|
|
|
|
pass++;
|
|
|
|
for (int i = 0; i < 8; i++) {
|
|
|
|
if (o->children[i])
|
|
|
|
_unpair_element(&e, o->children[i]);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
_element_check_pairs(&e);
|
|
|
|
}
|
|
|
|
|
|
|
|
_optimize();
|
|
|
|
}
|
|
|
|
|
|
|
|
OCTREE_FUNC(void)::set_pairable(OctreeElementID p_id, bool p_pairable, uint32_t p_pairable_type, uint32_t p_pairable_mask) {
|
|
|
|
typename ElementMap::Element *E = element_map.find(p_id);
|
|
|
|
ERR_FAIL_COND(!E);
|
|
|
|
|
|
|
|
Element &e = E->get();
|
|
|
|
|
|
|
|
if (p_pairable == e.pairable && e.pairable_type == p_pairable_type && e.pairable_mask == p_pairable_mask)
|
|
|
|
return; // no changes, return
|
|
|
|
|
|
|
|
if (!e.aabb.has_no_surface()) {
|
|
|
|
_remove_element(&e);
|
|
|
|
}
|
|
|
|
|
|
|
|
e.pairable = p_pairable;
|
|
|
|
e.pairable_type = p_pairable_type;
|
|
|
|
e.pairable_mask = p_pairable_mask;
|
|
|
|
e.common_parent = NULL;
|
|
|
|
|
|
|
|
if (!e.aabb.has_no_surface()) {
|
|
|
|
_ensure_valid_root(e.aabb);
|
|
|
|
_insert_element(&e, root);
|
|
|
|
if (use_pairs)
|
|
|
|
_element_check_pairs(&e);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
OCTREE_FUNC(void)::erase(OctreeElementID p_id) {
|
|
|
|
typename ElementMap::Element *E = element_map.find(p_id);
|
|
|
|
ERR_FAIL_COND(!E);
|
|
|
|
|
|
|
|
Element &e = E->get();
|
|
|
|
|
|
|
|
if (!e.aabb.has_no_surface()) {
|
|
|
|
_remove_element(&e);
|
|
|
|
}
|
|
|
|
|
|
|
|
element_map.erase(p_id);
|
|
|
|
_optimize();
|
|
|
|
}
|
|
|
|
|
|
|
|
OCTREE_FUNC(void)::_cull_convex(Octant *p_octant, _CullConvexData *p_cull) {
|
|
|
|
if (*p_cull->result_idx == p_cull->result_max)
|
|
|
|
return; //pointless
|
|
|
|
|
|
|
|
if (!p_octant->elements.empty()) {
|
|
|
|
#ifdef OCTREE_USE_CACHED_LISTS
|
|
|
|
// make sure cached list of element pointers and aabbs is up to date if this octant is dirty
|
|
|
|
p_octant->update_cached_lists();
|
|
|
|
|
|
|
|
int num_elements = p_octant->clist.elements.size();
|
|
|
|
for (int n = 0; n < num_elements; n++) {
|
|
|
|
const AABB &aabb = p_octant->clist.aabbs[n];
|
|
|
|
Element *e = p_octant->clist.elements[n];
|
|
|
|
|
|
|
|
// in most cases with the cached linear list tests we will do the AABB checks BEFORE last pass and cull mask.
|
|
|
|
// The reason is that the later checks are more expensive because they are not in cache, and many of the AABB
|
|
|
|
// tests will fail so we can avoid these cache misses.
|
|
|
|
if (aabb.intersects_convex_shape(p_cull->planes, p_cull->plane_count, p_cull->points, p_cull->point_count)) {
|
|
|
|
if (e->last_pass == pass || (use_pairs && !(e->pairable_type & p_cull->mask)))
|
|
|
|
continue;
|
|
|
|
e->last_pass = pass;
|
|
|
|
|
|
|
|
if (*p_cull->result_idx < p_cull->result_max) {
|
|
|
|
p_cull->result_array[*p_cull->result_idx] = e->userdata;
|
|
|
|
(*p_cull->result_idx)++;
|
|
|
|
} else {
|
|
|
|
return; // pointless to continue
|
|
|
|
}
|
|
|
|
}
|
|
|
|
} // for n
|
|
|
|
#else
|
|
|
|
typename List<Element *, AL>::Element *I;
|
|
|
|
I = p_octant->elements.front();
|
|
|
|
|
|
|
|
for (; I; I = I->next()) {
|
|
|
|
Element *e = I->get();
|
|
|
|
const AABB &aabb = e->aabb;
|
|
|
|
|
|
|
|
if (e->last_pass == pass || (use_pairs && !(e->pairable_type & p_cull->mask)))
|
|
|
|
continue;
|
|
|
|
e->last_pass = pass;
|
|
|
|
|
|
|
|
if (aabb.intersects_convex_shape(p_cull->planes, p_cull->plane_count, p_cull->points, p_cull->point_count)) {
|
|
|
|
if (*p_cull->result_idx < p_cull->result_max) {
|
|
|
|
p_cull->result_array[*p_cull->result_idx] = e->userdata;
|
|
|
|
(*p_cull->result_idx)++;
|
|
|
|
} else {
|
|
|
|
return; // pointless to continue
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
} // if elements not empty
|
|
|
|
|
|
|
|
if (use_pairs && !p_octant->pairable_elements.empty()) {
|
|
|
|
#ifdef OCTREE_USE_CACHED_LISTS
|
|
|
|
// make sure cached list of element pointers and aabbs is up to date if this octant is dirty
|
|
|
|
p_octant->update_cached_lists();
|
|
|
|
|
|
|
|
int num_elements = p_octant->clist_pairable.elements.size();
|
|
|
|
for (int n = 0; n < num_elements; n++) {
|
|
|
|
const AABB &aabb = p_octant->clist_pairable.aabbs[n];
|
|
|
|
Element *e = p_octant->clist_pairable.elements[n];
|
|
|
|
|
|
|
|
if (aabb.intersects_convex_shape(p_cull->planes, p_cull->plane_count, p_cull->points, p_cull->point_count)) {
|
|
|
|
if (e->last_pass == pass || (use_pairs && !(e->pairable_type & p_cull->mask)))
|
|
|
|
continue;
|
|
|
|
e->last_pass = pass;
|
|
|
|
|
|
|
|
if (*p_cull->result_idx < p_cull->result_max) {
|
|
|
|
p_cull->result_array[*p_cull->result_idx] = e->userdata;
|
|
|
|
(*p_cull->result_idx)++;
|
|
|
|
} else {
|
|
|
|
return; // pointless to continue
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
#else
|
|
|
|
|
|
|
|
typename List<Element *, AL>::Element *I;
|
|
|
|
I = p_octant->pairable_elements.front();
|
|
|
|
|
|
|
|
for (; I; I = I->next()) {
|
|
|
|
Element *e = I->get();
|
|
|
|
const AABB &aabb = e->aabb;
|
|
|
|
|
|
|
|
if (e->last_pass == pass || (use_pairs && !(e->pairable_type & p_cull->mask)))
|
|
|
|
continue;
|
|
|
|
e->last_pass = pass;
|
|
|
|
|
|
|
|
if (aabb.intersects_convex_shape(p_cull->planes, p_cull->plane_count, p_cull->points, p_cull->point_count)) {
|
|
|
|
if (*p_cull->result_idx < p_cull->result_max) {
|
|
|
|
p_cull->result_array[*p_cull->result_idx] = e->userdata;
|
|
|
|
(*p_cull->result_idx)++;
|
|
|
|
} else {
|
|
|
|
return; // pointless to continue
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
|
|
|
for (int i = 0; i < 8; i++) {
|
|
|
|
if (p_octant->children[i] && p_octant->children[i]->aabb.intersects_convex_shape(p_cull->planes, p_cull->plane_count, p_cull->points, p_cull->point_count)) {
|
|
|
|
_cull_convex(p_octant->children[i], p_cull);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
OCTREE_FUNC(void)::_cull_aabb(Octant *p_octant, const AABB &p_aabb, T **p_result_array, int *p_result_idx, int p_result_max, int *p_subindex_array, uint32_t p_mask) {
|
|
|
|
if (*p_result_idx == p_result_max)
|
|
|
|
return; //pointless
|
|
|
|
|
|
|
|
if (!p_octant->elements.empty()) {
|
|
|
|
#ifdef OCTREE_USE_CACHED_LISTS
|
|
|
|
// make sure cached list of element pointers and aabbs is up to date if this octant is dirty
|
|
|
|
p_octant->update_cached_lists();
|
|
|
|
|
|
|
|
int num_elements = p_octant->clist.elements.size();
|
|
|
|
for (int n = 0; n < num_elements; n++) {
|
|
|
|
const AABB &aabb = p_octant->clist.aabbs[n];
|
|
|
|
Element *e = p_octant->clist.elements[n];
|
|
|
|
|
|
|
|
if (p_aabb.intersects_inclusive(aabb)) {
|
|
|
|
if (e->last_pass == pass || (use_pairs && !(e->pairable_type & p_mask)))
|
|
|
|
continue;
|
|
|
|
e->last_pass = pass;
|
|
|
|
|
|
|
|
if (*p_result_idx < p_result_max) {
|
|
|
|
p_result_array[*p_result_idx] = e->userdata;
|
|
|
|
if (p_subindex_array)
|
|
|
|
p_subindex_array[*p_result_idx] = e->subindex;
|
|
|
|
|
|
|
|
(*p_result_idx)++;
|
|
|
|
} else {
|
|
|
|
return; // pointless to continue
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
#else
|
|
|
|
typename List<Element *, AL>::Element *I;
|
|
|
|
I = p_octant->elements.front();
|
|
|
|
for (; I; I = I->next()) {
|
|
|
|
Element *e = I->get();
|
|
|
|
const AABB &aabb = e->aabb;
|
|
|
|
|
|
|
|
if (p_aabb.intersects_inclusive(aabb)) {
|
|
|
|
if (e->last_pass == pass || (use_pairs && !(e->pairable_type & p_mask)))
|
|
|
|
continue;
|
|
|
|
e->last_pass = pass;
|
|
|
|
|
|
|
|
if (*p_result_idx < p_result_max) {
|
|
|
|
p_result_array[*p_result_idx] = e->userdata;
|
|
|
|
if (p_subindex_array)
|
|
|
|
p_subindex_array[*p_result_idx] = e->subindex;
|
|
|
|
|
|
|
|
(*p_result_idx)++;
|
|
|
|
} else {
|
|
|
|
return; // pointless to continue
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
|
|
|
if (use_pairs && !p_octant->pairable_elements.empty()) {
|
|
|
|
#ifdef OCTREE_USE_CACHED_LISTS
|
|
|
|
// make sure cached list of element pointers and aabbs is up to date if this octant is dirty
|
|
|
|
p_octant->update_cached_lists();
|
|
|
|
|
|
|
|
int num_elements = p_octant->clist_pairable.elements.size();
|
|
|
|
for (int n = 0; n < num_elements; n++) {
|
|
|
|
const AABB &aabb = p_octant->clist_pairable.aabbs[n];
|
|
|
|
Element *e = p_octant->clist_pairable.elements[n];
|
|
|
|
|
|
|
|
if (p_aabb.intersects_inclusive(aabb)) {
|
|
|
|
if (e->last_pass == pass || (use_pairs && !(e->pairable_type & p_mask)))
|
|
|
|
continue;
|
|
|
|
e->last_pass = pass;
|
|
|
|
|
|
|
|
if (*p_result_idx < p_result_max) {
|
|
|
|
p_result_array[*p_result_idx] = e->userdata;
|
|
|
|
if (p_subindex_array)
|
|
|
|
p_subindex_array[*p_result_idx] = e->subindex;
|
|
|
|
(*p_result_idx)++;
|
|
|
|
} else {
|
|
|
|
return; // pointless to continue
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
#else
|
|
|
|
|
|
|
|
typename List<Element *, AL>::Element *I;
|
|
|
|
I = p_octant->pairable_elements.front();
|
|
|
|
for (; I; I = I->next()) {
|
|
|
|
Element *e = I->get();
|
|
|
|
const AABB &aabb = e->aabb;
|
|
|
|
|
|
|
|
if (e->last_pass == pass || (use_pairs && !(e->pairable_type & p_mask)))
|
|
|
|
continue;
|
|
|
|
e->last_pass = pass;
|
|
|
|
|
|
|
|
if (p_aabb.intersects_inclusive(aabb)) {
|
|
|
|
if (*p_result_idx < p_result_max) {
|
|
|
|
p_result_array[*p_result_idx] = e->userdata;
|
|
|
|
if (p_subindex_array)
|
|
|
|
p_subindex_array[*p_result_idx] = e->subindex;
|
|
|
|
(*p_result_idx)++;
|
|
|
|
} else {
|
|
|
|
return; // pointless to continue
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
|
|
|
for (int i = 0; i < 8; i++) {
|
|
|
|
if (p_octant->children[i] && p_octant->children[i]->aabb.intersects_inclusive(p_aabb)) {
|
|
|
|
_cull_aabb(p_octant->children[i], p_aabb, p_result_array, p_result_idx, p_result_max, p_subindex_array, p_mask);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
OCTREE_FUNC(void)::_cull_segment(Octant *p_octant, const Vector3 &p_from, const Vector3 &p_to, T **p_result_array, int *p_result_idx, int p_result_max, int *p_subindex_array, uint32_t p_mask) {
|
|
|
|
if (*p_result_idx == p_result_max)
|
|
|
|
return; //pointless
|
|
|
|
|
|
|
|
if (!p_octant->elements.empty()) {
|
|
|
|
#ifdef OCTREE_USE_CACHED_LISTS
|
|
|
|
// make sure cached list of element pointers and aabbs is up to date if this octant is dirty
|
|
|
|
p_octant->update_cached_lists();
|
|
|
|
|
|
|
|
int num_elements = p_octant->clist.elements.size();
|
|
|
|
for (int n = 0; n < num_elements; n++) {
|
|
|
|
const AABB &aabb = p_octant->clist.aabbs[n];
|
|
|
|
Element *e = p_octant->clist.elements[n];
|
|
|
|
|
|
|
|
if (e->last_pass == pass || (use_pairs && !(e->pairable_type & p_mask)))
|
|
|
|
continue;
|
|
|
|
e->last_pass = pass;
|
|
|
|
|
|
|
|
if (aabb.intersects_segment(p_from, p_to)) {
|
|
|
|
if (*p_result_idx < p_result_max) {
|
|
|
|
p_result_array[*p_result_idx] = e->userdata;
|
|
|
|
if (p_subindex_array)
|
|
|
|
p_subindex_array[*p_result_idx] = e->subindex;
|
|
|
|
(*p_result_idx)++;
|
|
|
|
|
|
|
|
} else {
|
|
|
|
return; // pointless to continue
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
#else
|
|
|
|
|
|
|
|
typename List<Element *, AL>::Element *I;
|
|
|
|
I = p_octant->elements.front();
|
|
|
|
for (; I; I = I->next()) {
|
|
|
|
Element *e = I->get();
|
|
|
|
const AABB &aabb = e->aabb;
|
|
|
|
|
|
|
|
if (e->last_pass == pass || (use_pairs && !(e->pairable_type & p_mask)))
|
|
|
|
continue;
|
|
|
|
e->last_pass = pass;
|
|
|
|
|
|
|
|
if (aabb.intersects_segment(p_from, p_to)) {
|
|
|
|
if (*p_result_idx < p_result_max) {
|
|
|
|
p_result_array[*p_result_idx] = e->userdata;
|
|
|
|
if (p_subindex_array)
|
|
|
|
p_subindex_array[*p_result_idx] = e->subindex;
|
|
|
|
(*p_result_idx)++;
|
|
|
|
|
|
|
|
} else {
|
|
|
|
return; // pointless to continue
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
|
|
|
if (use_pairs && !p_octant->pairable_elements.empty()) {
|
|
|
|
#ifdef OCTREE_USE_CACHED_LISTS
|
|
|
|
// make sure cached list of element pointers and aabbs is up to date if this octant is dirty
|
|
|
|
p_octant->update_cached_lists();
|
|
|
|
|
|
|
|
int num_elements = p_octant->clist_pairable.elements.size();
|
|
|
|
for (int n = 0; n < num_elements; n++) {
|
|
|
|
const AABB &aabb = p_octant->clist_pairable.aabbs[n];
|
|
|
|
Element *e = p_octant->clist_pairable.elements[n];
|
|
|
|
|
|
|
|
if (e->last_pass == pass || (use_pairs && !(e->pairable_type & p_mask)))
|
|
|
|
continue;
|
|
|
|
|
|
|
|
e->last_pass = pass;
|
|
|
|
|
|
|
|
if (aabb.intersects_segment(p_from, p_to)) {
|
|
|
|
if (*p_result_idx < p_result_max) {
|
|
|
|
p_result_array[*p_result_idx] = e->userdata;
|
|
|
|
if (p_subindex_array)
|
|
|
|
p_subindex_array[*p_result_idx] = e->subindex;
|
|
|
|
|
|
|
|
(*p_result_idx)++;
|
|
|
|
|
|
|
|
} else {
|
|
|
|
return; // pointless to continue
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
#else
|
|
|
|
typename List<Element *, AL>::Element *I;
|
|
|
|
I = p_octant->pairable_elements.front();
|
|
|
|
for (; I; I = I->next()) {
|
|
|
|
Element *e = I->get();
|
|
|
|
const AABB &aabb = e->aabb;
|
|
|
|
|
|
|
|
if (e->last_pass == pass || (use_pairs && !(e->pairable_type & p_mask)))
|
|
|
|
continue;
|
|
|
|
|
|
|
|
e->last_pass = pass;
|
|
|
|
|
|
|
|
if (aabb.intersects_segment(p_from, p_to)) {
|
|
|
|
if (*p_result_idx < p_result_max) {
|
|
|
|
p_result_array[*p_result_idx] = e->userdata;
|
|
|
|
if (p_subindex_array)
|
|
|
|
p_subindex_array[*p_result_idx] = e->subindex;
|
|
|
|
|
|
|
|
(*p_result_idx)++;
|
|
|
|
|
|
|
|
} else {
|
|
|
|
return; // pointless to continue
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
|
|
|
for (int i = 0; i < 8; i++) {
|
|
|
|
if (p_octant->children[i] && p_octant->children[i]->aabb.intersects_segment(p_from, p_to)) {
|
|
|
|
_cull_segment(p_octant->children[i], p_from, p_to, p_result_array, p_result_idx, p_result_max, p_subindex_array, p_mask);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
OCTREE_FUNC(void)::_cull_point(Octant *p_octant, const Vector3 &p_point, T **p_result_array, int *p_result_idx, int p_result_max, int *p_subindex_array, uint32_t p_mask) {
|
|
|
|
if (*p_result_idx == p_result_max)
|
|
|
|
return; //pointless
|
|
|
|
|
|
|
|
if (!p_octant->elements.empty()) {
|
|
|
|
#ifdef OCTREE_USE_CACHED_LISTS
|
|
|
|
// make sure cached list of element pointers and aabbs is up to date if this octant is dirty
|
|
|
|
p_octant->update_cached_lists();
|
|
|
|
|
|
|
|
int num_elements = p_octant->clist.elements.size();
|
|
|
|
for (int n = 0; n < num_elements; n++) {
|
|
|
|
const AABB &aabb = p_octant->clist.aabbs[n];
|
|
|
|
Element *e = p_octant->clist.elements[n];
|
|
|
|
|
|
|
|
if (aabb.has_point(p_point)) {
|
|
|
|
if (e->last_pass == pass || (use_pairs && !(e->pairable_type & p_mask)))
|
|
|
|
continue;
|
|
|
|
e->last_pass = pass;
|
|
|
|
|
|
|
|
if (*p_result_idx < p_result_max) {
|
|
|
|
p_result_array[*p_result_idx] = e->userdata;
|
|
|
|
if (p_subindex_array)
|
|
|
|
p_subindex_array[*p_result_idx] = e->subindex;
|
|
|
|
(*p_result_idx)++;
|
|
|
|
|
|
|
|
} else {
|
|
|
|
return; // pointless to continue
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
#else
|
|
|
|
typename List<Element *, AL>::Element *I;
|
|
|
|
I = p_octant->elements.front();
|
|
|
|
for (; I; I = I->next()) {
|
|
|
|
Element *e = I->get();
|
|
|
|
const AABB &aabb = e->aabb;
|
|
|
|
|
|
|
|
if (e->last_pass == pass || (use_pairs && !(e->pairable_type & p_mask)))
|
|
|
|
continue;
|
|
|
|
e->last_pass = pass;
|
|
|
|
|
|
|
|
if (aabb.has_point(p_point)) {
|
|
|
|
if (*p_result_idx < p_result_max) {
|
|
|
|
p_result_array[*p_result_idx] = e->userdata;
|
|
|
|
if (p_subindex_array)
|
|
|
|
p_subindex_array[*p_result_idx] = e->subindex;
|
|
|
|
(*p_result_idx)++;
|
|
|
|
|
|
|
|
} else {
|
|
|
|
return; // pointless to continue
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
|
|
|
if (use_pairs && !p_octant->pairable_elements.empty()) {
|
|
|
|
#ifdef OCTREE_USE_CACHED_LISTS
|
|
|
|
// make sure cached list of element pointers and aabbs is up to date if this octant is dirty
|
|
|
|
p_octant->update_cached_lists();
|
|
|
|
|
|
|
|
int num_elements = p_octant->clist_pairable.elements.size();
|
|
|
|
for (int n = 0; n < num_elements; n++) {
|
|
|
|
const AABB &aabb = p_octant->clist_pairable.aabbs[n];
|
|
|
|
Element *e = p_octant->clist_pairable.elements[n];
|
|
|
|
|
|
|
|
if (aabb.has_point(p_point)) {
|
|
|
|
if (e->last_pass == pass || (use_pairs && !(e->pairable_type & p_mask)))
|
|
|
|
continue;
|
|
|
|
|
|
|
|
e->last_pass = pass;
|
|
|
|
|
|
|
|
if (*p_result_idx < p_result_max) {
|
|
|
|
p_result_array[*p_result_idx] = e->userdata;
|
|
|
|
if (p_subindex_array)
|
|
|
|
p_subindex_array[*p_result_idx] = e->subindex;
|
|
|
|
|
|
|
|
(*p_result_idx)++;
|
|
|
|
|
|
|
|
} else {
|
|
|
|
return; // pointless to continue
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
#else
|
|
|
|
typename List<Element *, AL>::Element *I;
|
|
|
|
I = p_octant->pairable_elements.front();
|
|
|
|
for (; I; I = I->next()) {
|
|
|
|
Element *e = I->get();
|
|
|
|
const AABB &aabb = e->aabb;
|
|
|
|
|
|
|
|
if (e->last_pass == pass || (use_pairs && !(e->pairable_type & p_mask)))
|
|
|
|
continue;
|
|
|
|
|
|
|
|
e->last_pass = pass;
|
|
|
|
|
|
|
|
if (aabb.has_point(p_point)) {
|
|
|
|
if (*p_result_idx < p_result_max) {
|
|
|
|
p_result_array[*p_result_idx] = e->userdata;
|
|
|
|
if (p_subindex_array)
|
|
|
|
p_subindex_array[*p_result_idx] = e->subindex;
|
|
|
|
|
|
|
|
(*p_result_idx)++;
|
|
|
|
|
|
|
|
} else {
|
|
|
|
return; // pointless to continue
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
|
|
|
for (int i = 0; i < 8; i++) {
|
|
|
|
//could be optimized..
|
|
|
|
if (p_octant->children[i] && p_octant->children[i]->aabb.has_point(p_point)) {
|
|
|
|
_cull_point(p_octant->children[i], p_point, p_result_array, p_result_idx, p_result_max, p_subindex_array, p_mask);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
OCTREE_FUNC(int)::cull_convex(const Vector<Plane> &p_convex, T **p_result_array, int p_result_max, uint32_t p_mask) {
|
|
|
|
if (!root || p_convex.size() == 0)
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
Vector<Vector3> convex_points = Geometry::compute_convex_mesh_points(&p_convex[0], p_convex.size());
|
|
|
|
if (convex_points.size() == 0)
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
int result_count = 0;
|
|
|
|
pass++;
|
|
|
|
_CullConvexData cdata;
|
|
|
|
cdata.planes = &p_convex[0];
|
|
|
|
cdata.plane_count = p_convex.size();
|
|
|
|
cdata.points = &convex_points[0];
|
|
|
|
cdata.point_count = convex_points.size();
|
|
|
|
cdata.result_array = p_result_array;
|
|
|
|
cdata.result_max = p_result_max;
|
|
|
|
cdata.result_idx = &result_count;
|
|
|
|
cdata.mask = p_mask;
|
|
|
|
|
|
|
|
_cull_convex(root, &cdata);
|
|
|
|
|
|
|
|
return result_count;
|
|
|
|
}
|
|
|
|
|
|
|
|
OCTREE_FUNC(int)::cull_aabb(const AABB &p_aabb, T **p_result_array, int p_result_max, int *p_subindex_array, uint32_t p_mask) {
|
|
|
|
if (!root)
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
int result_count = 0;
|
|
|
|
pass++;
|
|
|
|
_cull_aabb(root, p_aabb, p_result_array, &result_count, p_result_max, p_subindex_array, p_mask);
|
|
|
|
|
|
|
|
return result_count;
|
|
|
|
}
|
|
|
|
|
|
|
|
OCTREE_FUNC(int)::cull_segment(const Vector3 &p_from, const Vector3 &p_to, T **p_result_array, int p_result_max, int *p_subindex_array, uint32_t p_mask) {
|
|
|
|
if (!root)
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
int result_count = 0;
|
|
|
|
pass++;
|
|
|
|
_cull_segment(root, p_from, p_to, p_result_array, &result_count, p_result_max, p_subindex_array, p_mask);
|
|
|
|
|
|
|
|
return result_count;
|
|
|
|
}
|
|
|
|
|
|
|
|
OCTREE_FUNC(int)::cull_point(const Vector3 &p_point, T **p_result_array, int p_result_max, int *p_subindex_array, uint32_t p_mask) {
|
|
|
|
if (!root)
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
int result_count = 0;
|
|
|
|
pass++;
|
|
|
|
_cull_point(root, p_point, p_result_array, &result_count, p_result_max, p_subindex_array, p_mask);
|
|
|
|
|
|
|
|
return result_count;
|
|
|
|
}
|
|
|
|
|
|
|
|
OCTREE_FUNC(void)::set_pair_callback(PairCallback p_callback, void *p_userdata) {
|
|
|
|
pair_callback = p_callback;
|
|
|
|
pair_callback_userdata = p_userdata;
|
|
|
|
}
|
|
|
|
|
|
|
|
OCTREE_FUNC(void)::set_unpair_callback(UnpairCallback p_callback, void *p_userdata) {
|
|
|
|
unpair_callback = p_callback;
|
|
|
|
unpair_callback_userdata = p_userdata;
|
|
|
|
}
|
|
|
|
|
|
|
|
OCTREE_FUNC_CONSTRUCTOR::OCTREE_CLASS_NAME(real_t p_unit_size) {
|
|
|
|
last_element_id = 1;
|
|
|
|
pass = 1;
|
|
|
|
unit_size = p_unit_size;
|
|
|
|
root = NULL;
|
|
|
|
|
|
|
|
octant_count = 0;
|
|
|
|
pair_count = 0;
|
|
|
|
octant_elements_limit = OCTREE_DEFAULT_OCTANT_LIMIT;
|
|
|
|
|
|
|
|
pair_callback = NULL;
|
|
|
|
unpair_callback = NULL;
|
|
|
|
pair_callback_userdata = NULL;
|
|
|
|
unpair_callback_userdata = NULL;
|
|
|
|
}
|
|
|
|
|
|
|
|
#ifdef TOOLS_ENABLED
|
|
|
|
OCTREE_FUNC(String)::debug_aabb_to_string(const AABB &aabb) const {
|
|
|
|
String sz;
|
|
|
|
sz = "( " + String(aabb.position);
|
|
|
|
sz += " ) - ( ";
|
|
|
|
Vector3 max = aabb.position + aabb.size;
|
|
|
|
sz += String(max) + " )";
|
|
|
|
return sz;
|
|
|
|
}
|
|
|
|
|
|
|
|
OCTREE_FUNC(void)::debug_octants() {
|
|
|
|
if (root)
|
|
|
|
debug_octant(*root);
|
|
|
|
}
|
|
|
|
|
|
|
|
OCTREE_FUNC(void)::debug_octant(const Octant &oct, int depth) {
|
|
|
|
String sz = "";
|
|
|
|
for (int d = 0; d < depth; d++)
|
|
|
|
sz += "\t";
|
|
|
|
|
|
|
|
sz += "Octant " + debug_aabb_to_string(oct.aabb);
|
|
|
|
sz += "\tnum_children " + itos(oct.children_count);
|
|
|
|
sz += ", num_eles " + itos(oct.elements.size());
|
|
|
|
sz += ", num_paired_eles" + itos(oct.pairable_elements.size());
|
|
|
|
print_line(sz);
|
|
|
|
|
|
|
|
for (int n = 0; n < 8; n++) {
|
|
|
|
const Octant *pChild = oct.children[n];
|
|
|
|
if (pChild) {
|
|
|
|
debug_octant(*pChild, depth + 1);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
#endif // TOOLS_ENABLED
|
|
|
|
|
|
|
|
#undef OCTREE_FUNC
|