2014-02-10 02:10:30 +01:00
/*************************************************************************/
/* body_pair_sw.cpp */
/*************************************************************************/
/* This file is part of: */
/* GODOT ENGINE */
/* http://www.godotengine.org */
/*************************************************************************/
2017-01-01 22:01:57 +01:00
/* Copyright (c) 2007-2017 Juan Linietsky, Ariel Manzur. */
2017-04-08 00:11:42 +02:00
/* Copyright (c) 2014-2017 Godot Engine contributors (cf. AUTHORS.md) */
2014-02-10 02:10:30 +01:00
/* */
/* Permission is hereby granted, free of charge, to any person obtaining */
/* a copy of this software and associated documentation files (the */
/* "Software"), to deal in the Software without restriction, including */
/* without limitation the rights to use, copy, modify, merge, publish, */
/* distribute, sublicense, and/or sell copies of the Software, and to */
/* permit persons to whom the Software is furnished to do so, subject to */
/* the following conditions: */
/* */
/* The above copyright notice and this permission notice shall be */
/* included in all copies or substantial portions of the Software. */
/* */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
/*************************************************************************/
# include "body_pair_sw.h"
# include "collision_solver_sw.h"
2014-09-03 04:13:40 +02:00
# include "os/os.h"
2017-03-05 16:44:50 +01:00
# include "space_sw.h"
2014-02-10 02:10:30 +01:00
/*
# define NO_ACCUMULATE_IMPULSES
# define NO_SPLIT_IMPULSES
# define NO_FRICTION
*/
# define NO_TANGENTIALS
/* BODY PAIR */
//#define ALLOWED_PENETRATION 0.01
# define RELAXATION_TIMESTEPS 3
# define MIN_VELOCITY 0.0001
2017-03-05 16:44:50 +01:00
void BodyPairSW : : _contact_added_callback ( const Vector3 & p_point_A , const Vector3 & p_point_B , void * p_userdata ) {
2014-02-10 02:10:30 +01:00
2017-03-05 16:44:50 +01:00
BodyPairSW * pair = ( BodyPairSW * ) p_userdata ;
pair - > contact_added_callback ( p_point_A , p_point_B ) ;
2014-02-10 02:10:30 +01:00
}
2017-03-05 16:44:50 +01:00
void BodyPairSW : : contact_added_callback ( const Vector3 & p_point_A , const Vector3 & p_point_B ) {
2014-02-10 02:10:30 +01:00
// check if we already have the contact
//Vector3 local_A = A->get_inv_transform().xform(p_point_A);
//Vector3 local_B = B->get_inv_transform().xform(p_point_B);
Vector3 local_A = A - > get_inv_transform ( ) . basis . xform ( p_point_A ) ;
2017-03-05 16:44:50 +01:00
Vector3 local_B = B - > get_inv_transform ( ) . basis . xform ( p_point_B - offset_B ) ;
2014-02-10 02:10:30 +01:00
int new_index = contact_count ;
2017-03-05 16:44:50 +01:00
ERR_FAIL_COND ( new_index > = ( MAX_CONTACTS + 1 ) ) ;
2014-02-10 02:10:30 +01:00
Contact contact ;
2017-03-05 16:44:50 +01:00
contact . acc_normal_impulse = 0 ;
contact . acc_bias_impulse = 0 ;
contact . acc_tangent_impulse = Vector3 ( ) ;
contact . local_A = local_A ;
contact . local_B = local_B ;
contact . normal = ( p_point_A - p_point_B ) . normalized ( ) ;
2014-02-10 02:10:30 +01:00
// attempt to determine if the contact will be reused
2017-03-05 16:44:50 +01:00
real_t contact_recycle_radius = space - > get_contact_recycle_radius ( ) ;
2014-02-10 02:10:30 +01:00
2017-03-05 16:44:50 +01:00
for ( int i = 0 ; i < contact_count ; i + + ) {
2014-02-10 02:10:30 +01:00
2017-03-05 16:44:50 +01:00
Contact & c = contacts [ i ] ;
2014-02-10 02:10:30 +01:00
if (
2017-03-05 16:44:50 +01:00
c . local_A . distance_squared_to ( local_A ) < ( contact_recycle_radius * contact_recycle_radius ) & &
c . local_B . distance_squared_to ( local_B ) < ( contact_recycle_radius * contact_recycle_radius ) ) {
contact . acc_normal_impulse = c . acc_normal_impulse ;
contact . acc_bias_impulse = c . acc_bias_impulse ;
contact . acc_tangent_impulse = c . acc_tangent_impulse ;
new_index = i ;
break ;
2014-02-10 02:10:30 +01:00
}
}
// figure out if the contact amount must be reduced to fit the new contact
if ( new_index = = MAX_CONTACTS ) {
// remove the contact with the minimum depth
2017-03-05 16:44:50 +01:00
int least_deep = - 1 ;
real_t min_depth = 1e10 ;
2014-02-10 02:10:30 +01:00
2017-03-05 16:44:50 +01:00
for ( int i = 0 ; i < = contact_count ; i + + ) {
2014-02-10 02:10:30 +01:00
2017-03-05 16:44:50 +01:00
Contact & c = ( i = = contact_count ) ? contact : contacts [ i ] ;
2014-02-10 02:10:30 +01:00
Vector3 global_A = A - > get_transform ( ) . basis . xform ( c . local_A ) ;
2017-03-05 16:44:50 +01:00
Vector3 global_B = B - > get_transform ( ) . basis . xform ( c . local_B ) + offset_B ;
2014-02-10 02:10:30 +01:00
Vector3 axis = global_A - global_B ;
2017-03-05 16:44:50 +01:00
real_t depth = axis . dot ( c . normal ) ;
2014-02-10 02:10:30 +01:00
2017-03-05 16:44:50 +01:00
if ( depth < min_depth ) {
2014-02-10 02:10:30 +01:00
2017-03-05 16:44:50 +01:00
min_depth = depth ;
least_deep = i ;
2014-02-10 02:10:30 +01:00
}
}
2017-03-05 16:44:50 +01:00
ERR_FAIL_COND ( least_deep = = - 1 ) ;
2014-02-10 02:10:30 +01:00
if ( least_deep < contact_count ) { //replace the last deep contact by the new one
2017-03-05 16:44:50 +01:00
contacts [ least_deep ] = contact ;
2014-02-10 02:10:30 +01:00
}
return ;
}
2017-03-05 16:44:50 +01:00
contacts [ new_index ] = contact ;
2014-02-10 02:10:30 +01:00
2017-03-05 16:44:50 +01:00
if ( new_index = = contact_count ) {
2014-02-10 02:10:30 +01:00
contact_count + + ;
}
}
void BodyPairSW : : validate_contacts ( ) {
//make sure to erase contacts that are no longer valid
2017-03-05 16:44:50 +01:00
real_t contact_max_separation = space - > get_contact_max_separation ( ) ;
for ( int i = 0 ; i < contact_count ; i + + ) {
2014-02-10 02:10:30 +01:00
2017-03-05 16:44:50 +01:00
Contact & c = contacts [ i ] ;
2014-02-10 02:10:30 +01:00
Vector3 global_A = A - > get_transform ( ) . basis . xform ( c . local_A ) ;
2017-03-05 16:44:50 +01:00
Vector3 global_B = B - > get_transform ( ) . basis . xform ( c . local_B ) + offset_B ;
2014-02-10 02:10:30 +01:00
Vector3 axis = global_A - global_B ;
2017-03-05 16:44:50 +01:00
real_t depth = axis . dot ( c . normal ) ;
2014-02-10 02:10:30 +01:00
if ( depth < - contact_max_separation | | ( global_B + c . normal * depth - global_A ) . length ( ) > contact_max_separation ) {
// contact no longer needed, remove
2017-03-05 16:44:50 +01:00
if ( ( i + 1 ) < contact_count ) {
2014-02-10 02:10:30 +01:00
// swap with the last one
2017-03-05 16:44:50 +01:00
SWAP ( contacts [ i ] , contacts [ contact_count - 1 ] ) ;
2014-02-10 02:10:30 +01:00
}
i - - ;
contact_count - - ;
}
}
}
2017-03-05 16:44:50 +01:00
bool BodyPairSW : : _test_ccd ( real_t p_step , BodySW * p_A , int p_shape_A , const Transform & p_xform_A , BodySW * p_B , int p_shape_B , const Transform & p_xform_B ) {
2015-01-06 03:00:35 +01:00
2017-03-05 16:44:50 +01:00
Vector3 motion = p_A - > get_linear_velocity ( ) * p_step ;
2015-01-06 03:00:35 +01:00
real_t mlen = motion . length ( ) ;
2017-03-05 16:44:50 +01:00
if ( mlen < CMP_EPSILON )
2015-01-06 03:00:35 +01:00
return false ;
Vector3 mnormal = motion / mlen ;
2017-03-05 16:44:50 +01:00
real_t min , max ;
p_A - > get_shape ( p_shape_A ) - > project_range ( mnormal , p_xform_A , min , max ) ;
bool fast_object = mlen > ( max - min ) * 0.3 ; //going too fast in that direction
2015-01-06 03:00:35 +01:00
if ( ! fast_object ) { //did it move enough in this direction to even attempt raycast? let's say it should move more than 1/3 the size of the object in that axis
return false ;
}
//cast a segment from support in motion normal, in the same direction of motion by motion length
//support is the worst case collision point, so real collision happened before
2017-03-05 16:44:50 +01:00
Vector3 s = p_A - > get_shape ( p_shape_A ) - > get_support ( p_xform_A . basis . xform ( mnormal ) . normalized ( ) ) ;
2015-01-06 03:00:35 +01:00
Vector3 from = p_xform_A . xform ( s ) ;
Vector3 to = from + motion ;
Transform from_inv = p_xform_B . affine_inverse ( ) ;
2017-03-05 16:44:50 +01:00
Vector3 local_from = from_inv . xform ( from - mnormal * mlen * 0.1 ) ; //start from a little inside the bounding box
2015-01-06 03:00:35 +01:00
Vector3 local_to = from_inv . xform ( to ) ;
2017-03-05 16:44:50 +01:00
Vector3 rpos , rnorm ;
if ( ! p_B - > get_shape ( p_shape_B ) - > intersect_segment ( local_from , local_to , rpos , rnorm ) ) {
2015-01-06 03:00:35 +01:00
return false ;
}
//shorten the linear velocity so it does not hit, but gets close enough, next frame will hit softly or soft enough
Vector3 hitpos = p_xform_B . xform ( rpos ) ;
2017-03-05 16:44:50 +01:00
real_t newlen = hitpos . distance_to ( from ) - ( max - min ) * 0.01 ;
p_A - > set_linear_velocity ( ( mnormal * newlen ) / p_step ) ;
2015-01-06 03:00:35 +01:00
return true ;
}
2017-02-14 00:25:05 +01:00
bool BodyPairSW : : setup ( real_t p_step ) {
2014-02-10 02:10:30 +01:00
2014-09-03 04:13:40 +02:00
//cannot collide
2017-03-05 16:44:50 +01:00
if ( ! A - > test_collision_mask ( B ) | | A - > has_exception ( B - > get_self ( ) ) | | B - > has_exception ( A - > get_self ( ) ) | | ( A - > get_mode ( ) < = PhysicsServer : : BODY_MODE_KINEMATIC & & B - > get_mode ( ) < = PhysicsServer : : BODY_MODE_KINEMATIC & & A - > get_max_contacts_reported ( ) = = 0 & & B - > get_max_contacts_reported ( ) = = 0 ) ) {
collided = false ;
2014-09-03 04:13:40 +02:00
return false ;
}
2014-02-10 02:10:30 +01:00
2017-07-15 06:23:10 +02:00
if ( A - > is_shape_set_as_disabled ( shape_A ) | | B - > is_shape_set_as_disabled ( shape_B ) ) {
collided = false ;
return false ;
}
2014-02-10 02:10:30 +01:00
offset_B = B - > get_transform ( ) . get_origin ( ) - A - > get_transform ( ) . get_origin ( ) ;
validate_contacts ( ) ;
Vector3 offset_A = A - > get_transform ( ) . get_origin ( ) ;
2017-03-05 16:44:50 +01:00
Transform xform_Au = Transform ( A - > get_transform ( ) . basis , Vector3 ( ) ) ;
2014-02-10 02:10:30 +01:00
Transform xform_A = xform_Au * A - > get_shape_transform ( shape_A ) ;
Transform xform_Bu = B - > get_transform ( ) ;
2017-03-05 16:44:50 +01:00
xform_Bu . origin - = offset_A ;
2014-02-10 02:10:30 +01:00
Transform xform_B = xform_Bu * B - > get_shape_transform ( shape_B ) ;
2017-03-05 16:44:50 +01:00
ShapeSW * shape_A_ptr = A - > get_shape ( shape_A ) ;
ShapeSW * shape_B_ptr = B - > get_shape ( shape_B ) ;
2014-02-10 02:10:30 +01:00
2017-03-05 16:44:50 +01:00
bool collided = CollisionSolverSW : : solve_static ( shape_A_ptr , xform_A , shape_B_ptr , xform_B , _contact_added_callback , this , & sep_axis ) ;
this - > collided = collided ;
2015-01-06 03:00:35 +01:00
if ( ! collided ) {
//test ccd (currently just a raycast)
2017-03-05 16:44:50 +01:00
if ( A - > is_continuous_collision_detection_enabled ( ) & & A - > get_mode ( ) > PhysicsServer : : BODY_MODE_KINEMATIC & & B - > get_mode ( ) < = PhysicsServer : : BODY_MODE_KINEMATIC ) {
_test_ccd ( p_step , A , shape_A , xform_A , B , shape_B , xform_B ) ;
2015-01-06 03:00:35 +01:00
}
2017-03-05 16:44:50 +01:00
if ( B - > is_continuous_collision_detection_enabled ( ) & & B - > get_mode ( ) > PhysicsServer : : BODY_MODE_KINEMATIC & & A - > get_mode ( ) < = PhysicsServer : : BODY_MODE_KINEMATIC ) {
_test_ccd ( p_step , B , shape_B , xform_B , A , shape_A , xform_A ) ;
2015-01-06 03:00:35 +01:00
}
2014-02-10 02:10:30 +01:00
return false ;
2015-01-06 03:00:35 +01:00
}
2014-02-10 02:10:30 +01:00
real_t max_penetration = space - > get_contact_max_allowed_penetration ( ) ;
2017-02-14 00:25:05 +01:00
real_t bias = ( real_t ) 0.3 ;
2014-02-10 02:10:30 +01:00
if ( shape_A_ptr - > get_custom_bias ( ) | | shape_B_ptr - > get_custom_bias ( ) ) {
2017-03-05 16:44:50 +01:00
if ( shape_A_ptr - > get_custom_bias ( ) = = 0 )
bias = shape_B_ptr - > get_custom_bias ( ) ;
else if ( shape_B_ptr - > get_custom_bias ( ) = = 0 )
bias = shape_A_ptr - > get_custom_bias ( ) ;
2014-02-10 02:10:30 +01:00
else
2017-03-05 16:44:50 +01:00
bias = ( shape_B_ptr - > get_custom_bias ( ) + shape_A_ptr - > get_custom_bias ( ) ) * 0.5 ;
2014-02-10 02:10:30 +01:00
}
2017-03-05 16:44:50 +01:00
real_t inv_dt = 1.0 / p_step ;
2014-02-10 02:10:30 +01:00
2017-03-05 16:44:50 +01:00
for ( int i = 0 ; i < contact_count ; i + + ) {
2014-02-10 02:10:30 +01:00
Contact & c = contacts [ i ] ;
2017-03-05 16:44:50 +01:00
c . active = false ;
2014-02-10 02:10:30 +01:00
Vector3 global_A = xform_Au . xform ( c . local_A ) ;
Vector3 global_B = xform_Bu . xform ( c . local_B ) ;
real_t depth = c . normal . dot ( global_A - global_B ) ;
2017-03-05 16:44:50 +01:00
if ( depth < = 0 ) {
c . active = false ;
2014-02-10 02:10:30 +01:00
continue ;
}
2017-03-05 16:44:50 +01:00
c . active = true ;
2014-02-10 02:10:30 +01:00
2015-09-20 18:03:46 +02:00
# ifdef DEBUG_ENABLED
if ( space - > is_debugging_contacts ( ) ) {
2017-03-05 16:44:50 +01:00
space - > add_debug_contact ( global_A + offset_A ) ;
space - > add_debug_contact ( global_B + offset_A ) ;
2015-09-20 18:03:46 +02:00
}
# endif
2017-03-05 16:44:50 +01:00
c . rA = global_A - A - > get_center_of_mass ( ) ;
c . rB = global_B - B - > get_center_of_mass ( ) - offset_B ;
2014-02-10 02:10:30 +01:00
2017-03-05 16:44:50 +01:00
// contact query reporting...
2014-02-10 02:10:30 +01:00
#if 0
if ( A - > get_body_type ( ) = = PhysicsServer : : BODY_CHARACTER )
static_cast < CharacterBodySW * > ( A ) - > report_character_contact ( global_A , global_B , B ) ;
if ( B - > get_body_type ( ) = = PhysicsServer : : BODY_CHARACTER )
static_cast < CharacterBodySW * > ( B ) - > report_character_contact ( global_B , global_A , A ) ;
if ( A - > has_contact_query ( ) )
A - > report_contact ( global_A , global_B , B ) ;
if ( B - > has_contact_query ( ) )
B - > report_contact ( global_B , global_A , A ) ;
# endif
if ( A - > can_report_contacts ( ) ) {
2017-03-05 16:44:50 +01:00
Vector3 crA = A - > get_angular_velocity ( ) . cross ( c . rA ) + A - > get_linear_velocity ( ) ;
A - > add_contact ( global_A , - c . normal , depth , shape_A , global_B , shape_B , B - > get_instance_id ( ) , B - > get_self ( ) , crA ) ;
2014-02-10 02:10:30 +01:00
}
if ( B - > can_report_contacts ( ) ) {
2017-03-05 16:44:50 +01:00
Vector3 crB = B - > get_angular_velocity ( ) . cross ( c . rB ) + B - > get_linear_velocity ( ) ;
B - > add_contact ( global_B , c . normal , depth , shape_B , global_A , shape_A , A - > get_instance_id ( ) , A - > get_self ( ) , crB ) ;
2014-02-10 02:10:30 +01:00
}
2017-03-05 16:44:50 +01:00
c . active = true ;
2014-02-10 02:10:30 +01:00
// Precompute normal mass, tangent mass, and bias.
2017-03-05 16:44:50 +01:00
Vector3 inertia_A = A - > get_inv_inertia_tensor ( ) . xform ( c . rA . cross ( c . normal ) ) ;
Vector3 inertia_B = B - > get_inv_inertia_tensor ( ) . xform ( c . rB . cross ( c . normal ) ) ;
2014-02-10 02:10:30 +01:00
real_t kNormal = A - > get_inv_mass ( ) + B - > get_inv_mass ( ) ;
2017-03-05 16:44:50 +01:00
kNormal + = c . normal . dot ( inertia_A . cross ( c . rA ) ) + c . normal . dot ( inertia_B . cross ( c . rB ) ) ;
2014-02-10 02:10:30 +01:00
c . mass_normal = 1.0f / kNormal ;
# if 1
c . bias = - bias * inv_dt * MIN ( 0.0f , - depth + max_penetration ) ;
# else
if ( depth > max_penetration ) {
2017-03-05 16:44:50 +01:00
c . bias = ( depth - max_penetration ) * ( 1.0 / ( p_step * ( 1.0 / RELAXATION_TIMESTEPS ) ) ) ;
2014-02-10 02:10:30 +01:00
} else {
2017-02-14 00:25:05 +01:00
real_t approach = - 0.1 * ( depth - max_penetration ) / ( CMP_EPSILON + max_penetration ) ;
2017-03-05 16:44:50 +01:00
approach = CLAMP ( approach , CMP_EPSILON , 1.0 ) ;
c . bias = approach * ( depth - max_penetration ) * ( 1.0 / p_step ) ;
2014-02-10 02:10:30 +01:00
}
# endif
2017-03-05 16:44:50 +01:00
c . depth = depth ;
2014-02-10 02:10:30 +01:00
Vector3 j_vec = c . normal * c . acc_normal_impulse + c . acc_tangent_impulse ;
2017-03-05 16:44:50 +01:00
A - > apply_impulse ( c . rA + A - > get_center_of_mass ( ) , - j_vec ) ;
B - > apply_impulse ( c . rB + B - > get_center_of_mass ( ) , j_vec ) ;
c . acc_bias_impulse = 0 ;
2014-02-10 02:10:30 +01:00
Vector3 jb_vec = c . normal * c . acc_bias_impulse ;
2017-03-05 16:44:50 +01:00
A - > apply_bias_impulse ( c . rA + A - > get_center_of_mass ( ) , - jb_vec ) ;
B - > apply_bias_impulse ( c . rB + B - > get_center_of_mass ( ) , jb_vec ) ;
2014-02-10 02:10:30 +01:00
2017-03-05 16:44:50 +01:00
c . bounce = MAX ( A - > get_bounce ( ) , B - > get_bounce ( ) ) ;
2014-09-15 16:33:30 +02:00
if ( c . bounce ) {
2017-03-05 16:44:50 +01:00
Vector3 crA = A - > get_angular_velocity ( ) . cross ( c . rA ) ;
Vector3 crB = B - > get_angular_velocity ( ) . cross ( c . rB ) ;
2014-09-15 16:33:30 +02:00
Vector3 dv = B - > get_linear_velocity ( ) + crB - A - > get_linear_velocity ( ) - crA ;
//normal impule
c . bounce = c . bounce * dv . dot ( c . normal ) ;
}
2014-02-10 02:10:30 +01:00
}
return true ;
}
2017-02-14 00:25:05 +01:00
void BodyPairSW : : solve ( real_t p_step ) {
2014-02-10 02:10:30 +01:00
if ( ! collided )
return ;
2017-03-05 16:44:50 +01:00
for ( int i = 0 ; i < contact_count ; i + + ) {
2014-02-10 02:10:30 +01:00
Contact & c = contacts [ i ] ;
if ( ! c . active )
continue ;
2017-03-05 16:44:50 +01:00
c . active = false ; //try to deactivate, will activate itself if still needed
2014-02-10 02:10:30 +01:00
//bias impule
2017-03-05 16:44:50 +01:00
Vector3 crbA = A - > get_biased_angular_velocity ( ) . cross ( c . rA ) ;
Vector3 crbB = B - > get_biased_angular_velocity ( ) . cross ( c . rB ) ;
2014-02-10 02:10:30 +01:00
Vector3 dbv = B - > get_biased_linear_velocity ( ) + crbB - A - > get_biased_linear_velocity ( ) - crbA ;
real_t vbn = dbv . dot ( c . normal ) ;
2017-03-05 16:44:50 +01:00
if ( Math : : abs ( - vbn + c . bias ) > MIN_VELOCITY ) {
2014-02-10 02:10:30 +01:00
2017-03-05 16:44:50 +01:00
real_t jbn = ( - vbn + c . bias ) * c . mass_normal ;
2014-02-10 02:10:30 +01:00
real_t jbnOld = c . acc_bias_impulse ;
c . acc_bias_impulse = MAX ( jbnOld + jbn , 0.0f ) ;
Vector3 jb = c . normal * ( c . acc_bias_impulse - jbnOld ) ;
2017-03-05 16:44:50 +01:00
A - > apply_bias_impulse ( c . rA + A - > get_center_of_mass ( ) , - jb ) ;
B - > apply_bias_impulse ( c . rB + B - > get_center_of_mass ( ) , jb ) ;
2014-02-10 02:10:30 +01:00
2017-03-05 16:44:50 +01:00
c . active = true ;
2014-02-10 02:10:30 +01:00
}
2017-03-05 16:44:50 +01:00
Vector3 crA = A - > get_angular_velocity ( ) . cross ( c . rA ) ;
Vector3 crB = B - > get_angular_velocity ( ) . cross ( c . rB ) ;
2014-02-10 02:10:30 +01:00
Vector3 dv = B - > get_linear_velocity ( ) + crB - A - > get_linear_velocity ( ) - crA ;
//normal impule
real_t vn = dv . dot ( c . normal ) ;
2017-03-05 16:44:50 +01:00
if ( Math : : abs ( vn ) > MIN_VELOCITY ) {
2014-02-10 02:10:30 +01:00
2017-03-05 16:44:50 +01:00
real_t jn = - ( c . bounce + vn ) * c . mass_normal ;
2014-02-10 02:10:30 +01:00
real_t jnOld = c . acc_normal_impulse ;
c . acc_normal_impulse = MAX ( jnOld + jn , 0.0f ) ;
2017-03-05 16:44:50 +01:00
Vector3 j = c . normal * ( c . acc_normal_impulse - jnOld ) ;
2014-02-10 02:10:30 +01:00
2017-03-05 16:44:50 +01:00
A - > apply_impulse ( c . rA + A - > get_center_of_mass ( ) , - j ) ;
B - > apply_impulse ( c . rB + B - > get_center_of_mass ( ) , j ) ;
2014-02-10 02:10:30 +01:00
2017-03-05 16:44:50 +01:00
c . active = true ;
2014-02-10 02:10:30 +01:00
}
//friction impule
real_t friction = A - > get_friction ( ) * B - > get_friction ( ) ;
2017-03-05 16:44:50 +01:00
Vector3 lvA = A - > get_linear_velocity ( ) + A - > get_angular_velocity ( ) . cross ( c . rA ) ;
Vector3 lvB = B - > get_linear_velocity ( ) + B - > get_angular_velocity ( ) . cross ( c . rB ) ;
2014-02-10 02:10:30 +01:00
Vector3 dtv = lvB - lvA ;
real_t tn = c . normal . dot ( dtv ) ;
// tangential velocity
Vector3 tv = dtv - c . normal * tn ;
real_t tvl = tv . length ( ) ;
if ( tvl > MIN_VELOCITY ) {
tv / = tvl ;
2017-03-05 16:44:50 +01:00
Vector3 temp1 = A - > get_inv_inertia_tensor ( ) . xform ( c . rA . cross ( tv ) ) ;
Vector3 temp2 = B - > get_inv_inertia_tensor ( ) . xform ( c . rB . cross ( tv ) ) ;
2014-02-10 02:10:30 +01:00
real_t t = - tvl /
2017-03-05 16:44:50 +01:00
( A - > get_inv_mass ( ) + B - > get_inv_mass ( ) + tv . dot ( temp1 . cross ( c . rA ) + temp2 . cross ( c . rB ) ) ) ;
2014-02-10 02:10:30 +01:00
Vector3 jt = t * tv ;
Vector3 jtOld = c . acc_tangent_impulse ;
c . acc_tangent_impulse + = jt ;
real_t fi_len = c . acc_tangent_impulse . length ( ) ;
real_t jtMax = c . acc_normal_impulse * friction ;
if ( fi_len > CMP_EPSILON & & fi_len > jtMax ) {
2017-03-05 16:44:50 +01:00
c . acc_tangent_impulse * = jtMax / fi_len ;
2014-02-10 02:10:30 +01:00
}
jt = c . acc_tangent_impulse - jtOld ;
2017-03-05 16:44:50 +01:00
A - > apply_impulse ( c . rA + A - > get_center_of_mass ( ) , - jt ) ;
B - > apply_impulse ( c . rB + B - > get_center_of_mass ( ) , jt ) ;
2014-02-10 02:10:30 +01:00
2017-03-05 16:44:50 +01:00
c . active = true ;
2014-02-10 02:10:30 +01:00
}
}
}
2017-03-05 16:44:50 +01:00
BodyPairSW : : BodyPairSW ( BodySW * p_A , int p_shape_A , BodySW * p_B , int p_shape_B )
: ConstraintSW ( _arr , 2 ) {
A = p_A ;
B = p_B ;
shape_A = p_shape_A ;
shape_B = p_shape_B ;
space = A - > get_space ( ) ;
A - > add_constraint ( this , 0 ) ;
B - > add_constraint ( this , 1 ) ;
contact_count = 0 ;
collided = false ;
2014-02-10 02:10:30 +01:00
}
BodyPairSW : : ~ BodyPairSW ( ) {
A - > remove_constraint ( this ) ;
B - > remove_constraint ( this ) ;
}