virtualx-engine/thirdparty/embree/kernels/common/scene_line_segments.h

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

635 lines
24 KiB
C++
Raw Normal View History

// Copyright 2009-2021 Intel Corporation
2021-04-20 18:38:09 +02:00
// SPDX-License-Identifier: Apache-2.0
#pragma once
#include "default.h"
#include "geometry.h"
#include "buffer.h"
namespace embree
{
/*! represents an array of line segments */
struct LineSegments : public Geometry
{
/*! type of this geometry */
static const Geometry::GTypeMask geom_type = Geometry::MTY_CURVE2;
public:
/*! line segments construction */
LineSegments (Device* device, Geometry::GType gtype);
public:
void setMask (unsigned mask);
void setNumTimeSteps (unsigned int numTimeSteps);
void setVertexAttributeCount (unsigned int N);
void setBuffer(RTCBufferType type, unsigned int slot, RTCFormat format, const Ref<Buffer>& buffer, size_t offset, size_t stride, unsigned int num);
void* getBuffer(RTCBufferType type, unsigned int slot);
void updateBuffer(RTCBufferType type, unsigned int slot);
void commit();
bool verify ();
void interpolate(const RTCInterpolateArguments* const args);
void setTessellationRate(float N);
void setMaxRadiusScale(float s);
void addElementsToCount (GeometryCounts & counts) const;
template<int N>
void interpolate_impl(const RTCInterpolateArguments* const args)
{
unsigned int primID = args->primID;
float u = args->u;
RTCBufferType bufferType = args->bufferType;
unsigned int bufferSlot = args->bufferSlot;
float* P = args->P;
float* dPdu = args->dPdu;
float* ddPdudu = args->ddPdudu;
unsigned int valueCount = args->valueCount;
/* calculate base pointer and stride */
assert((bufferType == RTC_BUFFER_TYPE_VERTEX && bufferSlot < numTimeSteps) ||
(bufferType == RTC_BUFFER_TYPE_VERTEX_ATTRIBUTE && bufferSlot <= vertexAttribs.size()));
const char* src = nullptr;
size_t stride = 0;
if (bufferType == RTC_BUFFER_TYPE_VERTEX_ATTRIBUTE) {
src = vertexAttribs[bufferSlot].getPtr();
stride = vertexAttribs[bufferSlot].getStride();
} else {
src = vertices[bufferSlot].getPtr();
stride = vertices[bufferSlot].getStride();
}
for (unsigned int i=0; i<valueCount; i+=N)
{
const size_t ofs = i*sizeof(float);
const size_t segment = segments[primID];
const vbool<N> valid = vint<N>((int)i)+vint<N>(step) < vint<N>(int(valueCount));
const vfloat<N> p0 = mem<vfloat<N>>::loadu(valid,(float*)&src[(segment+0)*stride+ofs]);
const vfloat<N> p1 = mem<vfloat<N>>::loadu(valid,(float*)&src[(segment+1)*stride+ofs]);
if (P ) mem<vfloat<N>>::storeu(valid,P+i,lerp(p0,p1,u));
if (dPdu ) mem<vfloat<N>>::storeu(valid,dPdu+i,p1-p0);
if (ddPdudu) mem<vfloat<N>>::storeu(valid,dPdu+i,vfloat<N>(zero));
}
}
2021-04-20 18:38:09 +02:00
public:
/*! returns the number of vertices */
__forceinline size_t numVertices() const {
return vertices[0].size();
}
/*! returns the i'th segment */
__forceinline const unsigned int& segment(size_t i) const {
return segments[i];
}
2024-02-24 12:40:55 +01:00
#if defined(EMBREE_SYCL_SUPPORT) && defined(__SYCL_DEVICE_ONLY__)
/*! returns the i'th segment */
template<int M>
__forceinline const vuint<M> vsegment(const vuint<M>& i) const {
return segments[i.v];
}
#endif
2021-04-20 18:38:09 +02:00
/*! returns the segment to the left of the i'th segment */
__forceinline bool segmentLeftExists(size_t i) const {
assert (flags);
return (flags[i] & RTC_CURVE_FLAG_NEIGHBOR_LEFT) != 0;
}
/*! returns the segment to the right of the i'th segment */
__forceinline bool segmentRightExists(size_t i) const {
assert (flags);
return (flags[i] & RTC_CURVE_FLAG_NEIGHBOR_RIGHT) != 0;
}
/*! returns i'th vertex of the first time step */
__forceinline Vec3ff vertex(size_t i) const {
return vertices0[i];
}
/*! returns i'th vertex of the first time step */
__forceinline const char* vertexPtr(size_t i) const {
return vertices0.getPtr(i);
}
/*! returns i'th normal of the first time step */
__forceinline Vec3fa normal(size_t i) const {
return normals0[i];
}
/*! returns i'th radius of the first time step */
__forceinline float radius(size_t i) const {
return vertices0[i].w;
}
/*! returns i'th vertex of itime'th timestep */
__forceinline Vec3ff vertex(size_t i, size_t itime) const {
return vertices[itime][i];
}
/*! returns i'th vertex of itime'th timestep */
__forceinline const char* vertexPtr(size_t i, size_t itime) const {
return vertices[itime].getPtr(i);
}
/*! returns i'th normal of itime'th timestep */
__forceinline Vec3fa normal(size_t i, size_t itime) const {
return normals[itime][i];
}
/*! returns i'th radius of itime'th timestep */
__forceinline float radius(size_t i, size_t itime) const {
return vertices[itime][i].w;
}
2024-02-24 12:40:55 +01:00
/*! gathers the curve starting with i'th vertex */
__forceinline void gather(Vec3ff& p0, Vec3ff& p1, unsigned int vid) const
{
p0 = vertex(vid+0);
p1 = vertex(vid+1);
}
#if defined(EMBREE_SYCL_SUPPORT) && defined(__SYCL_DEVICE_ONLY__)
template<int M>
__forceinline void vgather(Vec4vf<M>& p0, Vec4vf<M>& p1, const vuint<M>& vid) const
{
p0 = vertex(vid.v+0);
p1 = vertex(vid.v+1);
}
#endif
/*! gathers the curve starting with i'th vertex of itime'th timestep */
__forceinline void gather(Vec3ff& p0, Vec3ff& p1, unsigned int vid, size_t itime) const
{
p0 = vertex(vid+0,itime);
p1 = vertex(vid+1,itime);
}
#if defined(EMBREE_SYCL_SUPPORT) && defined(__SYCL_DEVICE_ONLY__)
template<int M>
__forceinline void vgather(Vec4vf<M>& p0, Vec4vf<M>& p1, const vuint<M>& vid, const vint<M>& itime) const
{
p0 = vertex(vid.v+0,itime.v);
p1 = vertex(vid.v+1,itime.v);
}
#endif
/*! loads curve vertices for specified time */
__forceinline void gather(Vec3ff& p0, Vec3ff& p1, unsigned int vid, float time) const
{
float ftime;
const size_t itime = timeSegment(time, ftime);
const float t0 = 1.0f - ftime;
const float t1 = ftime;
Vec3ff a0,a1; gather(a0,a1,vid,itime);
Vec3ff b0,b1; gather(b0,b1,vid,itime+1);
p0 = madd(Vec3ff(t0),a0,t1*b0);
p1 = madd(Vec3ff(t0),a1,t1*b1);
}
/*! loads curve vertices for specified time for mblur and non-mblur case */
__forceinline void gather_safe(Vec3ff& p0, Vec3ff& p1, unsigned int vid, float time) const
{
if (hasMotionBlur()) gather(p0,p1,vid,time);
else gather(p0,p1,vid);
}
#if defined(EMBREE_SYCL_SUPPORT) && defined(__SYCL_DEVICE_ONLY__)
template<int M>
__forceinline void vgather(Vec4vf<M>& p0, Vec4vf<M>& p1, const vuint<M>& vid, const vfloat<M>& time) const
{
vfloat<M> ftime;
const vint<M> itime = timeSegment<M>(time, ftime);
const vfloat<M> t0 = 1.0f - ftime;
const vfloat<M> t1 = ftime;
Vec4vf<M> a0,a1; vgather<M>(a0,a1,vid,itime);
Vec4vf<M> b0,b1; vgather<M>(b0,b1,vid,itime+1);
p0 = madd(Vec4vf<M>(t0),a0,t1*b0);
p1 = madd(Vec4vf<M>(t0),a1,t1*b1);
}
#endif
/*! gathers the cone curve starting with i'th vertex */
__forceinline void gather(Vec3ff& p0, Vec3ff& p1, bool& cL, bool& cR, unsigned int primID, unsigned int vid) const
{
gather(p0,p1,vid);
cL = !segmentLeftExists (primID);
cR = !segmentRightExists(primID);
}
#if defined(EMBREE_SYCL_SUPPORT) && defined(__SYCL_DEVICE_ONLY__)
template<int M>
__forceinline void vgather(Vec4vf<M>& p0, Vec4vf<M>& p1, vbool<M>& cL, vbool<M>& cR, const vuint<M>& primID, const vuint<M>& vid) const
{
vgather<M>(p0,p1,vid);
cL = !segmentLeftExists (primID.v);
cR = !segmentRightExists(primID.v);
}
#endif
/*! gathers the cone curve starting with i'th vertex of itime'th timestep */
__forceinline void gather(Vec3ff& p0, Vec3ff& p1, bool& cL, bool& cR, unsigned int primID, size_t vid, size_t itime) const
{
gather(p0,p1,vid,itime);
cL = !segmentLeftExists (primID);
cR = !segmentRightExists(primID);
}
/*! loads cone curve vertices for specified time */
__forceinline void gather(Vec3ff& p0, Vec3ff& p1, bool& cL, bool& cR, unsigned int primID, size_t vid, float time) const
{
gather(p0,p1,vid,time);
cL = !segmentLeftExists (primID);
cR = !segmentRightExists(primID);
}
/*! loads cone curve vertices for specified time for mblur and non-mblur geometry */
__forceinline void gather_safe(Vec3ff& p0, Vec3ff& p1, bool& cL, bool& cR, unsigned int primID, size_t vid, float time) const
{
if (hasMotionBlur()) gather(p0,p1,cL,cR,primID,vid,time);
else gather(p0,p1,cL,cR,primID,vid);
}
#if defined(EMBREE_SYCL_SUPPORT) && defined(__SYCL_DEVICE_ONLY__)
template<int M>
__forceinline void vgather(Vec4vf<M>& p0, Vec4vf<M>& p1, vbool<M>& cL, vbool<M>& cR, const vuint<M>& primID, const vuint<M>& vid, const vfloat<M>& time) const
{
vgather<M>(p0,p1,vid,time);
cL = !segmentLeftExists (primID.v);
cR = !segmentRightExists(primID.v);
}
#endif
/*! gathers the curve starting with i'th vertex */
__forceinline void gather(Vec3ff& p0, Vec3ff& p1, Vec3ff& p2, Vec3ff& p3, unsigned int primID, size_t vid) const
{
p0 = vertex(vid+0);
p1 = vertex(vid+1);
p2 = segmentLeftExists (primID) ? vertex(vid-1) : Vec3ff(inf);
p3 = segmentRightExists(primID) ? vertex(vid+2) : Vec3ff(inf);
}
#if defined(EMBREE_SYCL_SUPPORT) && defined(__SYCL_DEVICE_ONLY__)
template<int M>
__forceinline void vgather(Vec4vf<M>& p0, Vec4vf<M>& p1, Vec4vf<M>& p2, Vec4vf<M>& p3, const vuint<M>& primID, const vuint<M>& vid) const
{
p0 = vertex(vid.v+0);
p1 = vertex(vid.v+1);
vbool<M> left = segmentLeftExists (primID.v);
vbool<M> right = segmentRightExists(primID.v);
vuint<M> i2 = select(left, vid-1,vid+0);
vuint<M> i3 = select(right,vid+2,vid+1);
p2 = vertex(i2.v);
p3 = vertex(i3.v);
p2 = select(left, p2,Vec4vf<M>(inf));
p3 = select(right,p3,Vec4vf<M>(inf));
}
#endif
/*! gathers the curve starting with i'th vertex of itime'th timestep */
__forceinline void gather(Vec3ff& p0, Vec3ff& p1, Vec3ff& p2, Vec3ff& p3, unsigned int primID, size_t vid, size_t itime) const
{
p0 = vertex(vid+0,itime);
p1 = vertex(vid+1,itime);
p2 = segmentLeftExists (primID) ? vertex(vid-1,itime) : Vec3ff(inf);
p3 = segmentRightExists(primID) ? vertex(vid+2,itime) : Vec3ff(inf);
}
#if defined(EMBREE_SYCL_SUPPORT) && defined(__SYCL_DEVICE_ONLY__)
template<int M>
__forceinline void vgather(Vec4vf<M>& p0, Vec4vf<M>& p1, Vec4vf<M>& p2, Vec4vf<M>& p3, const vuint<M>& primID, const vuint<M>& vid, const vint<M>& itime) const
{
p0 = vertex(vid.v+0, itime.v);
p1 = vertex(vid.v+1, itime.v);
vbool<M> left = segmentLeftExists (primID.v);
vbool<M> right = segmentRightExists(primID.v);
vuint<M> i2 = select(left, vid-1,vid+0);
vuint<M> i3 = select(right,vid+2,vid+1);
p2 = vertex(i2.v, itime.v);
p3 = vertex(i3.v, itime.v);
p2 = select(left, p2,Vec4vf<M>(inf));
p3 = select(right,p3,Vec4vf<M>(inf));
}
#endif
/*! loads curve vertices for specified time */
__forceinline void gather(Vec3ff& p0, Vec3ff& p1, Vec3ff& p2, Vec3ff& p3, unsigned int primID, size_t vid, float time) const
{
float ftime;
const size_t itime = timeSegment(time, ftime);
const float t0 = 1.0f - ftime;
const float t1 = ftime;
Vec3ff a0,a1,a2,a3; gather(a0,a1,a2,a3,primID,vid,itime);
Vec3ff b0,b1,b2,b3; gather(b0,b1,b2,b3,primID,vid,itime+1);
p0 = madd(Vec3ff(t0),a0,t1*b0);
p1 = madd(Vec3ff(t0),a1,t1*b1);
p2 = madd(Vec3ff(t0),a2,t1*b2);
p3 = madd(Vec3ff(t0),a3,t1*b3);
}
/*! loads curve vertices for specified time for mblur and non-mblur geometry */
__forceinline void gather_safe(Vec3ff& p0, Vec3ff& p1, Vec3ff& p2, Vec3ff& p3, unsigned int primID, size_t vid, float time) const
{
if (hasMotionBlur()) gather(p0,p1,p2,p3,primID,vid,time);
else gather(p0,p1,p2,p3,primID,vid);
}
#if defined(EMBREE_SYCL_SUPPORT) && defined(__SYCL_DEVICE_ONLY__)
template<int M>
__forceinline void vgather(Vec4vf<M>& p0, Vec4vf<M>& p1, Vec4vf<M>& p2, Vec4vf<M>& p3, const vuint<M>& primID, const vuint<M>& vid, const vfloat<M>& time) const
{
vfloat<M> ftime;
const vint<M> itime = timeSegment<M>(time, ftime);
const vfloat<M> t0 = 1.0f - ftime;
const vfloat<M> t1 = ftime;
Vec4vf<M> a0,a1,a2,a3; vgather<M>(a0,a1,a2,a3,primID,vid,itime);
Vec4vf<M> b0,b1,b2,b3; vgather<M>(b0,b1,b2,b3,primID,vid,itime+1);
p0 = madd(Vec4vf<M>(t0),a0,t1*b0);
p1 = madd(Vec4vf<M>(t0),a1,t1*b1);
p2 = madd(Vec4vf<M>(t0),a2,t1*b2);
p3 = madd(Vec4vf<M>(t0),a3,t1*b3);
}
#endif
2021-04-20 18:38:09 +02:00
/*! calculates bounding box of i'th line segment */
__forceinline BBox3fa bounds(const Vec3ff& v0, const Vec3ff& v1) const
{
const BBox3ff b = merge(BBox3ff(v0),BBox3ff(v1));
return enlarge((BBox3fa)b,maxRadiusScale*Vec3fa(max(v0.w,v1.w)));
}
/*! calculates bounding box of i'th line segment */
__forceinline BBox3fa bounds(size_t i) const
{
const unsigned int index = segment(i);
const Vec3ff v0 = vertex(index+0);
const Vec3ff v1 = vertex(index+1);
return bounds(v0,v1);
}
/*! calculates bounding box of i'th line segment for the itime'th time step */
__forceinline BBox3fa bounds(size_t i, size_t itime) const
{
const unsigned int index = segment(i);
const Vec3ff v0 = vertex(index+0,itime);
const Vec3ff v1 = vertex(index+1,itime);
return bounds(v0,v1);
}
/*! calculates bounding box of i'th line segment */
__forceinline BBox3fa bounds(const LinearSpace3fa& space, size_t i) const
{
const unsigned int index = segment(i);
const Vec3ff v0 = vertex(index+0);
const Vec3ff v1 = vertex(index+1);
const Vec3ff w0(xfmVector(space,(Vec3fa)v0),v0.w);
const Vec3ff w1(xfmVector(space,(Vec3fa)v1),v1.w);
return bounds(w0,w1);
}
/*! calculates bounding box of i'th line segment for the itime'th time step */
__forceinline BBox3fa bounds(const LinearSpace3fa& space, size_t i, size_t itime) const
{
const unsigned int index = segment(i);
const Vec3ff v0 = vertex(index+0,itime);
const Vec3ff v1 = vertex(index+1,itime);
const Vec3ff w0(xfmVector(space,(Vec3fa)v0),v0.w);
const Vec3ff w1(xfmVector(space,(Vec3fa)v1),v1.w);
return bounds(w0,w1);
}
2024-02-24 12:40:55 +01:00
/*! calculates bounding box of i'th segment */
__forceinline BBox3fa bounds(const Vec3fa& ofs, const float scale, const float r_scale0, const LinearSpace3fa& space, size_t i, size_t itime = 0) const
{
const float r_scale = r_scale0*scale;
const unsigned int index = segment(i);
const Vec3ff v0 = vertex(index+0,itime);
const Vec3ff v1 = vertex(index+1,itime);
const Vec3ff w0(xfmVector(space,(v0-ofs)*Vec3fa(scale)),maxRadiusScale*v0.w*r_scale);
const Vec3ff w1(xfmVector(space,(v1-ofs)*Vec3fa(scale)),maxRadiusScale*v1.w*r_scale);
return bounds(w0,w1);
}
2021-04-20 18:38:09 +02:00
/*! check if the i'th primitive is valid at the itime'th timestep */
__forceinline bool valid(size_t i, size_t itime) const {
return valid(i, make_range(itime, itime));
}
/*! check if the i'th primitive is valid between the specified time range */
__forceinline bool valid(size_t i, const range<size_t>& itime_range) const
{
const unsigned int index = segment(i);
if (index+1 >= numVertices()) return false;
2024-02-24 12:40:55 +01:00
#if !defined(__SYCL_DEVICE_ONLY__)
2021-04-20 18:38:09 +02:00
for (size_t itime = itime_range.begin(); itime <= itime_range.end(); itime++)
{
const Vec3ff v0 = vertex(index+0,itime); if (unlikely(!isvalid4(v0))) return false;
const Vec3ff v1 = vertex(index+1,itime); if (unlikely(!isvalid4(v1))) return false;
if (min(v0.w,v1.w) < 0.0f) return false;
}
2024-02-24 12:40:55 +01:00
#endif
2021-04-20 18:38:09 +02:00
return true;
}
/*! calculates the linear bounds of the i'th primitive at the itimeGlobal'th time segment */
__forceinline LBBox3fa linearBounds(size_t i, size_t itime) const {
return LBBox3fa(bounds(i,itime+0),bounds(i,itime+1));
}
/*! calculates the build bounds of the i'th primitive, if it's valid */
__forceinline bool buildBounds(size_t i, BBox3fa* bbox) const
{
if (!valid(i,0)) return false;
*bbox = bounds(i);
return true;
}
/*! calculates the build bounds of the i'th primitive at the itime'th time segment, if it's valid */
__forceinline bool buildBounds(size_t i, size_t itime, BBox3fa& bbox) const
{
if (!valid(i,itime+0) || !valid(i,itime+1)) return false;
bbox = bounds(i,itime); // use bounds of first time step in builder
return true;
}
/*! calculates the linear bounds of the i'th primitive for the specified time range */
__forceinline LBBox3fa linearBounds(size_t primID, const BBox1f& dt) const {
return LBBox3fa([&] (size_t itime) { return bounds(primID, itime); }, dt, time_range, fnumTimeSegments);
}
/*! calculates the linear bounds of the i'th primitive for the specified time range */
__forceinline LBBox3fa linearBounds(const LinearSpace3fa& space, size_t primID, const BBox1f& dt) const {
return LBBox3fa([&] (size_t itime) { return bounds(space, primID, itime); }, dt, time_range, fnumTimeSegments);
}
2024-02-24 12:40:55 +01:00
/*! calculates the linear bounds of the i'th primitive for the specified time range */
__forceinline LBBox3fa linearBounds(const Vec3fa& ofs, const float scale, const float r_scale0, const LinearSpace3fa& space, size_t primID, const BBox1f& dt) const {
return LBBox3fa([&] (size_t itime) { return bounds(ofs, scale, r_scale0, space, primID, itime); }, dt, this->time_range, fnumTimeSegments);
}
2021-04-20 18:38:09 +02:00
/*! calculates the linear bounds of the i'th primitive for the specified time range */
__forceinline bool linearBounds(size_t i, const BBox1f& time_range, LBBox3fa& bbox) const
{
if (!valid(i, timeSegmentRange(time_range))) return false;
bbox = linearBounds(i, time_range);
return true;
}
/*! get fast access to first vertex buffer */
__forceinline float * getCompactVertexArray () const {
return (float*) vertices0.getPtr();
}
public:
BufferView<unsigned int> segments; //!< array of line segment indices
BufferView<Vec3ff> vertices0; //!< fast access to first vertex buffer
BufferView<Vec3fa> normals0; //!< fast access to first normal buffer
BufferView<char> flags; //!< start, end flag per segment
2024-02-24 12:40:55 +01:00
Device::vector<BufferView<Vec3ff>> vertices = device; //!< vertex array for each timestep
Device::vector<BufferView<Vec3fa>> normals = device; //!< normal array for each timestep
Device::vector<BufferView<char>> vertexAttribs = device; //!< user buffers
2021-04-20 18:38:09 +02:00
int tessellationRate; //!< tessellation rate for bezier curve
float maxRadiusScale = 1.0; //!< maximal min-width scaling of curve radii
};
namespace isa
{
struct LineSegmentsISA : public LineSegments
{
LineSegmentsISA (Device* device, Geometry::GType gtype)
: LineSegments(device,gtype) {}
2024-02-24 12:40:55 +01:00
LinearSpace3fa computeAlignedSpace(const size_t primID) const
{
const Vec3fa dir = normalize(computeDirection(primID));
if (is_finite(dir)) return frame(dir);
else return LinearSpace3fa(one);
}
LinearSpace3fa computeAlignedSpaceMB(const size_t primID, const BBox1f time_range) const
{
Vec3fa axisz(0,0,1);
Vec3fa axisy(0,1,0);
const range<int> tbounds = this->timeSegmentRange(time_range);
if (tbounds.size() == 0) return frame(axisz);
const size_t itime = (tbounds.begin()+tbounds.end())/2;
const Vec3fa dir = normalize(computeDirection(primID,itime));
if (is_finite(dir)) return frame(dir);
else return LinearSpace3fa(one);
}
2021-04-20 18:38:09 +02:00
Vec3fa computeDirection(unsigned int primID) const
{
const unsigned vtxID = segment(primID);
const Vec3fa v0 = vertex(vtxID+0);
const Vec3fa v1 = vertex(vtxID+1);
return v1-v0;
}
Vec3fa computeDirection(unsigned int primID, size_t time) const
{
const unsigned vtxID = segment(primID);
const Vec3fa v0 = vertex(vtxID+0,time);
const Vec3fa v1 = vertex(vtxID+1,time);
return v1-v0;
}
2024-02-24 12:40:55 +01:00
PrimInfo createPrimRefArray(PrimRef* prims, const range<size_t>& r, size_t k, unsigned int geomID) const
2021-04-20 18:38:09 +02:00
{
PrimInfo pinfo(empty);
for (size_t j=r.begin(); j<r.end(); j++)
{
BBox3fa bounds = empty;
if (!buildBounds(j,&bounds)) continue;
const PrimRef prim(bounds,geomID,unsigned(j));
pinfo.add_center2(prim);
prims[k++] = prim;
}
return pinfo;
}
PrimInfo createPrimRefArrayMB(mvector<PrimRef>& prims, size_t itime, const range<size_t>& r, size_t k, unsigned int geomID) const
{
PrimInfo pinfo(empty);
for (size_t j=r.begin(); j<r.end(); j++)
{
BBox3fa bounds = empty;
if (!buildBounds(j,itime,bounds)) continue;
const PrimRef prim(bounds,geomID,unsigned(j));
pinfo.add_center2(prim);
prims[k++] = prim;
}
return pinfo;
}
2024-02-24 12:40:55 +01:00
PrimInfo createPrimRefArrayMB(PrimRef* prims, const BBox1f& time_range, const range<size_t>& r, size_t k, unsigned int geomID) const
{
PrimInfo pinfo(empty);
const BBox1f t0t1 = BBox1f::intersect(getTimeRange(), time_range);
if (t0t1.empty()) return pinfo;
for (size_t j = r.begin(); j < r.end(); j++) {
LBBox3fa lbounds = empty;
if (!linearBounds(j, t0t1, lbounds))
continue;
const PrimRef prim(lbounds.bounds(), geomID, unsigned(j));
pinfo.add_center2(prim);
prims[k++] = prim;
}
return pinfo;
}
2021-04-20 18:38:09 +02:00
PrimInfoMB createPrimRefMBArray(mvector<PrimRefMB>& prims, const BBox1f& t0t1, const range<size_t>& r, size_t k, unsigned int geomID) const
{
PrimInfoMB pinfo(empty);
for (size_t j=r.begin(); j<r.end(); j++)
{
if (!valid(j, timeSegmentRange(t0t1))) continue;
const PrimRefMB prim(linearBounds(j,t0t1),this->numTimeSegments(),this->time_range,this->numTimeSegments(),geomID,unsigned(j));
pinfo.add_primref(prim);
prims[k++] = prim;
}
return pinfo;
}
BBox3fa vbounds(size_t i) const {
return bounds(i);
}
BBox3fa vbounds(const LinearSpace3fa& space, size_t i) const {
return bounds(space,i);
}
2024-02-24 12:40:55 +01:00
BBox3fa vbounds(const Vec3fa& ofs, const float scale, const float r_scale0, const LinearSpace3fa& space, size_t i, size_t itime = 0) const {
return bounds(ofs,scale,r_scale0,space,i,itime);
}
2021-04-20 18:38:09 +02:00
LBBox3fa vlinearBounds(size_t primID, const BBox1f& time_range) const {
return linearBounds(primID,time_range);
}
LBBox3fa vlinearBounds(const LinearSpace3fa& space, size_t primID, const BBox1f& time_range) const {
return linearBounds(space,primID,time_range);
}
2024-02-24 12:40:55 +01:00
LBBox3fa vlinearBounds(const Vec3fa& ofs, const float scale, const float r_scale0, const LinearSpace3fa& space, size_t primID, const BBox1f& time_range) const {
return linearBounds(ofs,scale,r_scale0,space,primID,time_range);
}
2021-04-20 18:38:09 +02:00
};
}
DECLARE_ISA_FUNCTION(LineSegments*, createLineSegments, Device* COMMA Geometry::GType);
}