virtualx-engine/servers/rendering/renderer_rd/shaders/sdfgi_debug.glsl

276 lines
7.8 KiB
Text
Raw Normal View History

#[compute]
#version 450
VERSION_DEFINES
layout(local_size_x = 8, local_size_y = 8, local_size_z = 1) in;
#define MAX_CASCADES 8
layout(set = 0, binding = 1) uniform texture3D sdf_cascades[MAX_CASCADES];
layout(set = 0, binding = 2) uniform texture3D light_cascades[MAX_CASCADES];
layout(set = 0, binding = 3) uniform texture3D aniso0_cascades[MAX_CASCADES];
layout(set = 0, binding = 4) uniform texture3D aniso1_cascades[MAX_CASCADES];
layout(set = 0, binding = 5) uniform texture3D occlusion_texture;
layout(set = 0, binding = 8) uniform sampler linear_sampler;
struct CascadeData {
vec3 offset; //offset of (0,0,0) in world coordinates
float to_cell; // 1/bounds * grid_size
ivec3 probe_world_offset;
uint pad;
};
layout(set = 0, binding = 9, std140) uniform Cascades {
CascadeData data[MAX_CASCADES];
}
cascades;
layout(rgba16f, set = 0, binding = 10) uniform restrict writeonly image2D screen_buffer;
layout(set = 0, binding = 11) uniform texture2DArray lightprobe_texture;
layout(push_constant, binding = 0, std430) uniform Params {
vec3 grid_size;
uint max_cascades;
ivec2 screen_size;
bool use_occlusion;
float y_mult;
vec3 cam_extent;
int probe_axis_size;
mat4 cam_transform;
}
params;
vec3 linear_to_srgb(vec3 color) {
//if going to srgb, clamp from 0 to 1.
color = clamp(color, vec3(0.0), vec3(1.0));
const vec3 a = vec3(0.055f);
return mix((vec3(1.0f) + a) * pow(color.rgb, vec3(1.0f / 2.4f)) - a, 12.92f * color.rgb, lessThan(color.rgb, vec3(0.0031308f)));
}
vec2 octahedron_wrap(vec2 v) {
vec2 signVal;
signVal.x = v.x >= 0.0 ? 1.0 : -1.0;
signVal.y = v.y >= 0.0 ? 1.0 : -1.0;
return (1.0 - abs(v.yx)) * signVal;
}
vec2 octahedron_encode(vec3 n) {
// https://twitter.com/Stubbesaurus/status/937994790553227264
n /= (abs(n.x) + abs(n.y) + abs(n.z));
n.xy = n.z >= 0.0 ? n.xy : octahedron_wrap(n.xy);
n.xy = n.xy * 0.5 + 0.5;
return n.xy;
}
void main() {
// Pixel being shaded
ivec2 screen_pos = ivec2(gl_GlobalInvocationID.xy);
if (any(greaterThanEqual(screen_pos, params.screen_size))) { //too large, do nothing
return;
}
vec3 ray_pos;
vec3 ray_dir;
{
ray_pos = params.cam_transform[3].xyz;
ray_dir.xy = params.cam_extent.xy * ((vec2(screen_pos) / vec2(params.screen_size)) * 2.0 - 1.0);
ray_dir.z = params.cam_extent.z;
ray_dir = normalize(mat3(params.cam_transform) * ray_dir);
}
ray_pos.y *= params.y_mult;
ray_dir.y *= params.y_mult;
ray_dir = normalize(ray_dir);
vec3 pos_to_uvw = 1.0 / params.grid_size;
vec3 light = vec3(0.0);
float blend = 0.0;
#if 1
vec3 inv_dir = 1.0 / ray_dir;
float rough = 0.5;
bool hit = false;
for (uint i = 0; i < params.max_cascades; i++) {
//convert to local bounds
vec3 pos = ray_pos - cascades.data[i].offset;
pos *= cascades.data[i].to_cell;
// Should never happen for debug, since we start mostly at the bounds center,
// but add anyway.
//if (any(lessThan(pos,vec3(0.0))) || any(greaterThanEqual(pos,params.grid_size))) {
// continue; //already past bounds for this cascade, goto next
//}
//find maximum advance distance (until reaching bounds)
vec3 t0 = -pos * inv_dir;
vec3 t1 = (params.grid_size - pos) * inv_dir;
vec3 tmax = max(t0, t1);
float max_advance = min(tmax.x, min(tmax.y, tmax.z));
float advance = 0.0;
vec3 uvw;
hit = false;
while (advance < max_advance) {
//read how much to advance from SDF
uvw = (pos + ray_dir * advance) * pos_to_uvw;
float distance = texture(sampler3D(sdf_cascades[i], linear_sampler), uvw).r * 255.0 - 1.7;
if (distance < 0.001) {
//consider hit
hit = true;
break;
}
advance += distance;
}
if (!hit) {
pos += ray_dir * min(advance, max_advance);
pos /= cascades.data[i].to_cell;
pos += cascades.data[i].offset;
ray_pos = pos;
continue;
}
//compute albedo, emission and normal at hit point
const float EPSILON = 0.001;
vec3 hit_normal = normalize(vec3(
texture(sampler3D(sdf_cascades[i], linear_sampler), uvw + vec3(EPSILON, 0.0, 0.0)).r - texture(sampler3D(sdf_cascades[i], linear_sampler), uvw - vec3(EPSILON, 0.0, 0.0)).r,
texture(sampler3D(sdf_cascades[i], linear_sampler), uvw + vec3(0.0, EPSILON, 0.0)).r - texture(sampler3D(sdf_cascades[i], linear_sampler), uvw - vec3(0.0, EPSILON, 0.0)).r,
texture(sampler3D(sdf_cascades[i], linear_sampler), uvw + vec3(0.0, 0.0, EPSILON)).r - texture(sampler3D(sdf_cascades[i], linear_sampler), uvw - vec3(0.0, 0.0, EPSILON)).r));
vec3 hit_light = texture(sampler3D(light_cascades[i], linear_sampler), uvw).rgb;
vec4 aniso0 = texture(sampler3D(aniso0_cascades[i], linear_sampler), uvw);
vec3 hit_aniso0 = aniso0.rgb;
vec3 hit_aniso1 = vec3(aniso0.a, texture(sampler3D(aniso1_cascades[i], linear_sampler), uvw).rg);
hit_light *= (dot(max(vec3(0.0), (hit_normal * hit_aniso0)), vec3(1.0)) + dot(max(vec3(0.0), (-hit_normal * hit_aniso1)), vec3(1.0)));
if (blend > 0.0) {
light = mix(light, hit_light, blend);
blend = 0.0;
} else {
light = hit_light;
//process blend
float blend_from = (float(params.probe_axis_size - 1) / 2.0) - 2.5;
float blend_to = blend_from + 2.0;
vec3 cam_pos = params.cam_transform[3].xyz - cascades.data[i].offset;
cam_pos *= cascades.data[i].to_cell;
pos += ray_dir * min(advance, max_advance);
vec3 inner_pos = pos - cam_pos;
inner_pos = inner_pos * float(params.probe_axis_size - 1) / params.grid_size.x;
float len = length(inner_pos);
inner_pos = abs(normalize(inner_pos));
len *= max(inner_pos.x, max(inner_pos.y, inner_pos.z));
if (len >= blend_from) {
blend = smoothstep(blend_from, blend_to, len);
pos /= cascades.data[i].to_cell;
pos += cascades.data[i].offset;
ray_pos = pos;
hit = false; //continue trace for blend
continue;
}
}
break;
}
light = mix(light, vec3(0.0), blend);
#else
vec3 inv_dir = 1.0 / ray_dir;
bool hit = false;
vec4 light_accum = vec4(0.0);
float blend_size = (params.grid_size.x / float(params.probe_axis_size - 1)) * 0.5;
float radius_sizes[MAX_CASCADES];
for (uint i = 0; i < params.max_cascades; i++) {
radius_sizes[i] = (1.0 / cascades.data[i].to_cell) * (params.grid_size.x * 0.5 - blend_size);
}
float max_distance = radius_sizes[params.max_cascades - 1];
float advance = 0;
while (advance < max_distance) {
for (uint i = 0; i < params.max_cascades; i++) {
if (advance < radius_sizes[i]) {
vec3 pos = (ray_pos + ray_dir * advance) - cascades.data[i].offset;
pos *= cascades.data[i].to_cell * pos_to_uvw;
float distance = texture(sampler3D(sdf_cascades[i], linear_sampler), pos).r * 255.0 - 1.0;
vec4 hit_light = vec4(0.0);
if (distance < 1.0) {
hit_light.a = max(0.0, 1.0 - distance);
hit_light.rgb = texture(sampler3D(light_cascades[i], linear_sampler), pos).rgb;
hit_light.rgb *= hit_light.a;
}
distance /= cascades.data[i].to_cell;
if (i < (params.max_cascades - 1)) {
pos = (ray_pos + ray_dir * advance) - cascades.data[i + 1].offset;
pos *= cascades.data[i + 1].to_cell * pos_to_uvw;
float distance2 = texture(sampler3D(sdf_cascades[i + 1], linear_sampler), pos).r * 255.0 - 1.0;
vec4 hit_light2 = vec4(0.0);
if (distance2 < 1.0) {
hit_light2.a = max(0.0, 1.0 - distance2);
hit_light2.rgb = texture(sampler3D(light_cascades[i + 1], linear_sampler), pos).rgb;
hit_light2.rgb *= hit_light2.a;
}
float prev_radius = i == 0 ? 0.0 : radius_sizes[i - 1];
float blend = (advance - prev_radius) / (radius_sizes[i] - prev_radius);
distance2 /= cascades.data[i + 1].to_cell;
hit_light = mix(hit_light, hit_light2, blend);
distance = mix(distance, distance2, blend);
}
light_accum += hit_light;
advance += distance;
break;
}
}
if (light_accum.a > 0.98) {
break;
}
}
light = light_accum.rgb / light_accum.a;
#endif
imageStore(screen_buffer, screen_pos, vec4(linear_to_srgb(light), 1.0));
}